1
|
Gcwensa NZ, Russell DL, Long KY, Brzozowski CF, Liu X, Gamble KL, Cowell RM, Volpicelli-Daley LA. Excitatory synaptic structural abnormalities produced by templated aggregation of α-syn in the basolateral amygdala. Neurobiol Dis 2024; 199:106595. [PMID: 38972360 PMCID: PMC11632701 DOI: 10.1016/j.nbd.2024.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-syn pre-formed fibrils (PFFs) into the striatum induces robust α-syn aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6 J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-syn show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that asymmetric synapses in mice with PFF-induced α-syn aggregates have reduced synaptic vesicle intervesicular distances, similar to a recent study showing phospho-serine-129 α-syn increases synaptic vesicle clustering. Thus, pathologic α-syn causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.
Collapse
Affiliation(s)
- Nolwazi Z Gcwensa
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Dreson L Russell
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Khaliah Y Long
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Charlotte F Brzozowski
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Xinran Liu
- Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Karen L Gamble
- Department of Psychiatry and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Rita M Cowell
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Gcwensa NZ, Russell DL, Long KY, Brzozowski CF, Liu X, Gamble KL, Cowell RM, Volpicelli-Daley LA. Cortico-amygdala synaptic structural abnormalities produced by templated aggregation of α-synuclein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594419. [PMID: 38798467 PMCID: PMC11118572 DOI: 10.1101/2024.05.15.594419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Parkinson's disease (PD) and Dementia with Lewy bodies (DLB) are characterized by neuronal α-synuclein (α-syn) inclusions termed Lewy Pathology, which are abundant in the amygdala. The basolateral amygdala (BLA), in particular, receives projections from the thalamus and cortex. These projections play a role in cognition and emotional processing, behaviors which are impaired in α-synucleinopathies. To understand if and how pathologic α-syn impacts the BLA requires animal models of α-syn aggregation. Injection of α-synuclein pre-formed fibrils (PFFs) into the striatum induces robust α-synuclein aggregation in excitatory neurons in the BLA that corresponds with reduced contextual fear conditioning. At early time points after aggregate formation, cortico-amygdala excitatory transmission is abolished. The goal of this project was to determine if α-syn inclusions in the BLA induce synaptic degeneration and/or morphological changes. In this study, we used C57BL/6J mice injected bilaterally with PFFs in the dorsal striatum to induce α-syn aggregate formation in the BLA. A method was developed using immunofluorescence and three-dimensional reconstruction to analyze excitatory cortico-amygdala and thalamo-amygdala presynaptic terminals closely juxtaposed to postsynaptic densities. The abundance and morphology of synapses were analyzed at 6- or 12-weeks post-injection of PFFs. α-Syn aggregate formation in the BLA did not cause a significant loss of synapses, but cortico-amygdala and thalamo-amygdala presynaptic terminals and postsynaptic densities with aggregates of α-synuclein show increased volumes, similar to previous findings in human DLB cortex, and in non-human primate models of PD. Transmission electron microscopy showed that PFF-injected mice showed reduced intervesicular distances similar to a recent study showing phospho-serine-129 α-synuclein increases synaptic vesicle clustering. Thus, pathologic α-synuclein causes major alterations to synaptic architecture in the BLA, potentially contributing to behavioral impairment and amygdala dysfunction observed in synucleinopathies.
Collapse
|
3
|
Menšíková K, Steele JC, Rosales R, Colosimo C, Spencer P, Lannuzel A, Ugawa Y, Sasaki R, Giménez-Roldán S, Matej R, Tuckova L, Hrabos D, Kolarikova K, Vodicka R, Vrtel R, Strnad M, Hlustik P, Otruba P, Prochazka M, Bares M, Boluda S, Buee L, Ransmayr G, Kaňovský P. Endemic parkinsonism: clusters, biology and clinical features. Nat Rev Neurol 2023; 19:599-616. [PMID: 37684518 DOI: 10.1038/s41582-023-00866-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 09/10/2023]
Abstract
The term 'endemic parkinsonism' refers to diseases that manifest with a dominant parkinsonian syndrome, which can be typical or atypical, and are present only in a particular geographically defined location or population. Ten phenotypes of endemic parkinsonism are currently known: three in the Western Pacific region; two in the Asian-Oceanic region; one in the Caribbean islands of Guadeloupe and Martinique; and four in Europe. Some of these disease entities seem to be disappearing over time and therefore are probably triggered by unique environmental factors. By contrast, other types persist because they are exclusively genetically determined. Given the geographical clustering and potential overlap in biological and clinical features of these exceptionally interesting diseases, this Review provides a historical reference text and offers current perspectives on each of the 10 phenotypes of endemic parkinsonism. Knowledge obtained from the study of these disease entities supports the hypothesis that both genetic and environmental factors contribute to the development of neurodegenerative diseases, not only in endemic parkinsonism but also in general. At the same time, this understanding suggests useful directions for further research in this area.
Collapse
Affiliation(s)
- Katerina Menšíková
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | | | - Raymond Rosales
- Research Center for Health Sciences, Faculty of Medicine and Surgery, University of Santo Tomás, Manila, The Philippines
- St Luke's Institute of Neuroscience, Metro, Manila, The Philippines
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Peter Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Annie Lannuzel
- Départment de Neurologie, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-á-Pitre, France
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| | - Ryogen Sasaki
- Department of Neurology, Kuwana City Medical Center, Kuwana, Japan
| | | | - Radoslav Matej
- Department of Pathology, 3rd Medical Faculty, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, 3rd Medical Faculty, Charles University and Thomayer University Hospital, Prague, Czech Republic
| | - Lucie Tuckova
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Dominik Hrabos
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Kristyna Kolarikova
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Vodicka
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Radek Vrtel
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Hlustik
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | - Pavel Otruba
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
- University Hospital, Olomouc, Czech Republic
| | - Martin Prochazka
- University Hospital, Olomouc, Czech Republic
- Department of Clinical and Molecular Genetics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Martin Bares
- First Department of Neurology, Masaryk University Medical School, Brno, Czech Republic
- St Anne University Hospital, Brno, Czech Republic
| | - Susana Boluda
- Département de Neuropathologie, Hôpital La Pitié - Salpêtrière, Paris, France
| | - Luc Buee
- Lille Neuroscience & Cognition Research Centre, INSERM U1172, Lille, France
| | - Gerhard Ransmayr
- Department of Neurology, Faculty of Medicine, Johannes Kepler University, Linz, Austria
| | - Petr Kaňovský
- Department of Neurology and Clinical Neuroscience Center, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
- University Hospital, Olomouc, Czech Republic.
| |
Collapse
|
4
|
Lai TT, Gericke B, Feja M, Conoscenti M, Zelikowsky M, Richter F. Anxiety in synucleinopathies: neuronal circuitry, underlying pathomechanisms and current therapeutic strategies. NPJ Parkinsons Dis 2023; 9:97. [PMID: 37349373 DOI: 10.1038/s41531-023-00547-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Synucleinopathies are neurodegenerative disorders characterized by alpha-synuclein (αSyn) accumulation in neurons or glial cells, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). αSyn-related pathology plays a critical role in the pathogenesis of synucleinopathies leading to the progressive loss of neuronal populations in specific brain regions and the development of motor and non-motor symptoms. Anxiety is among the most frequent non-motor symptoms in patients with PD, but it remains underrecognized and undertreated, which significantly reduces the quality of life for patients. Anxiety is defined as a neuropsychiatric complication with characteristics such as nervousness, loss of concentration, and sweating due to the anticipation of impending danger. In patients with PD, neuropathology in the amygdala, a central region in the anxiety and fear circuitry, may contribute to the high prevalence of anxiety. Studies in animal models reported αSyn pathology in the amygdala together with alteration of anxiety or fear learning response. Therefore, understanding the progression, extent, and specifics of pathology in the anxiety and fear circuitry in synucleinopathies will suggest novel approaches to the diagnosis and treatment of neuropsychiatric symptoms. Here, we provide an overview of studies that address neuropsychiatric symptoms in synucleinopathies. We offer insights into anxiety and fear circuitry in animal models and the current implications for therapeutic intervention. In summary, it is apparent that anxiety is not a bystander symptom in these disorders but reflects early pathogenic mechanisms in the cortico-limbic system which may even contribute as a driver to disease progression.
Collapse
Affiliation(s)
- Thuy Thi Lai
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Malte Feja
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | | | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
5
|
Western Pacific ALS-PDC: Evidence implicating cycad genotoxins. J Neurol Sci 2020; 419:117185. [PMID: 33190068 DOI: 10.1016/j.jns.2020.117185] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) is a disappearing neurodegenerative disorder of apparent environmental origin formerly hyperendemic among Chamorros of Guam-USA, Japanese residents of the Kii Peninsula, Honshu Island, Japan and Auyu-Jakai linguistic groups of Papua-Indonesia on the island of New Guinea. The most plausible etiology is exposure to genotoxins in seed of neurotoxic cycad plants formerly used for food and/or medicine. Primary suspicion falls on methylazoxymethanol (MAM), the aglycone of cycasin and on the non-protein amino acid β-N-methylamino-L-alanine, both of which are metabolized to formaldehyde. Human and animal studies suggest: (a) exposures occurred early in life and sometimes during late fetal brain development, (b) clinical expression of neurodegenerative disease appeared years or decades later, and (c) pathological changes in various tissues indicate the disease was not confined to the CNS. Experimental evidence points to toxic molecular mechanisms involving DNA damage, epigenetic changes, transcriptional mutagenesis, neuronal cell-cycle reactivation and perturbation of the ubiquitin-proteasome system that led to polyproteinopathy and culminated in neuronal degeneration. Lessons learned from research on ALS-PDC include: (a) familial disease may reflect common toxic exposures across generations, (b) primary disease prevention follows cessation of exposure to culpable environmental triggers; and (c) disease latency provides a prolonged period during which to intervene therapeutically. Exposure to genotoxic chemicals ("slow toxins") in the early stages of life should be considered in the search for the etiology of ALS-PDC-related neurodegenerative disorders, including sporadic forms of ALS, progressive supranuclear palsy and Alzheimer's disease.
Collapse
|
6
|
Deng HX, Pericak-Vance MA, Siddique T. Reply to 'TMEM230 variants in Parkinson's disease' and 'Doubts about TMEM230 as a gene for parkinsonism'. Nat Genet 2019; 51:369-371. [PMID: 30804556 DOI: 10.1038/s41588-019-0355-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Han-Xiang Deng
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Teepu Siddique
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
7
|
Verheijen BM, Oyanagi K, van Leeuwen FW. Dysfunction of Protein Quality Control in Parkinsonism-Dementia Complex of Guam. Front Neurol 2018; 9:173. [PMID: 29615966 PMCID: PMC5869191 DOI: 10.3389/fneur.2018.00173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Guam parkinsonism–dementia complex (G-PDC) is an enigmatic neurodegenerative disease that is endemic to the Pacific island of Guam. G-PDC patients are clinically characterized by progressive cognitive impairment and parkinsonism. Neuropathologically, G-PDC is characterized by abundant neurofibrillary tangles, which are composed of hyperphosphorylated tau, marked deposition of 43-kDa TAR DNA-binding protein, and neuronal loss. Although both genetic and environmental factors have been implicated, the etiology and pathogenesis of G-PDC remain unknown. Recent neuropathological studies have provided new clues about the pathomechanisms involved in G-PDC. For example, deposition of abnormal components of the protein quality control system in brains of G-PDC patients indicates a role for proteostasis imbalance in the disease. This opens up promising avenues for new research on G-PDC and could have important implications for the study of other neurodegenerative disorders.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Kiyomitsu Oyanagi
- Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Nagano, Japan.,Brain Research Laboratory, Hatsuishi Hospital, Chiba, Japan
| | - Fred W van Leeuwen
- Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ, Van Eldik LJ, Jicha GA, Gal Z, Nelson RS, Nelson BG, Gal J, Azam MT, Fardo DW, Cykowski MD. The Amygdala as a Locus of Pathologic Misfolding in Neurodegenerative Diseases. J Neuropathol Exp Neurol 2018; 77:2-20. [PMID: 29186501 DOI: 10.1093/jnen/nlx099] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Over the course of most common neurodegenerative diseases the amygdala accumulates pathologically misfolded proteins. Misfolding of 1 protein in aged brains often is accompanied by the misfolding of other proteins, suggesting synergistic mechanisms. The multiplicity of pathogenic processes in human amygdalae has potentially important implications for the pathogenesis of Alzheimer disease, Lewy body diseases, chronic traumatic encephalopathy, primary age-related tauopathy, and hippocampal sclerosis, and for the biomarkers used to diagnose those diseases. Converging data indicate that the amygdala may represent a preferential locus for a pivotal transition from a relatively benign clinical condition to a more aggressive disease wherein multiple protein species are misfolded. Thus, understanding of amygdalar pathobiology may yield insights relevant to diagnoses and therapies; it is, however, a complex and imperfectly defined brain region. Here, we review aspects of amygdalar anatomy, connectivity, vasculature, and pathologic involvement in neurodegenerative diseases with supporting data from the University of Kentucky Alzheimer's Disease Center autopsy cohort. Immunohistochemical staining of amygdalae for Aβ, Tau, α-synuclein, and TDP-43 highlight the often-coexisting pathologies. We suggest that the amygdala may represent an "incubator" for misfolded proteins and that it is possible that misfolded amygdalar protein species are yet to be discovered.
Collapse
Affiliation(s)
- Peter T Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Erin L Abner
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ela Patel
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Sonya Anderson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Donna M Wilcock
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Richard J Kryscio
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Linda J Van Eldik
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Gregory A Jicha
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Zsombor Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ruth S Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Bela G Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jozsef Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Md Tofial Azam
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - David W Fardo
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Matthew D Cykowski
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
9
|
Van Kampen JM, Robertson HA. The BSSG rat model of Parkinson's disease: progressing towards a valid, predictive model of disease. EPMA J 2017; 8:261-271. [PMID: 29021837 PMCID: PMC5613678 DOI: 10.1007/s13167-017-0114-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022]
Abstract
ABSTRACT Parkinson's disease (PD) is a neurodegenerative disorder, classically considered a movement disorder. A great deal is known about the anatomical connections and neuropathology and pharmacological changes of PD, as they relate to the loss of dopaminergic function and the appearance of cardinal motor symptoms. Our understanding of the role of dopamine in PD has led to the development of effective pharmacological treatments of the motor symptoms in the form of dopamine replacement therapy using levodopa and dopaminergic agonists. Much of the information concerning these drug treatments has been obtained using classical neurotoxic models that mimic dopamine depletion (e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or MPTP, 6-hydroxydopamine, reserpine). However, PD is more than a disorder of the nigrostriatal dopamine pathway. Our understanding of the neuropathology of PD has undergone massive changes, with the discovery that mutations in α-synuclein cause a familial form of PD and that PD pathology may spread, affecting multiple neurotransmitter systems and brain regions. These new developments in our understanding of PD demand that we reconsider our animal models. While classic neurotoxin models have been useful for the development of effective symptomatic treatments for motor manifestations, the paucity of a valid animal model exhibiting the progressive development of multiple key features of PD pathophysiology and phenotype has impeded the search for neuroprotective therapies, capable of slowing or halting disease progression. RELEVANCE OF THE ARTICLE FOR PREDICTIVE PREVENTIVE AND PERSONALISED MEDICINE What characteristics would a good animal model of human PD have? In so much as is possible, a good model would exhibit as many behavioral, anatomical, biochemical, immunological, and pathological changes as are observed in the human condition, developing progressively, with clear, identifiable biomarkers along the way. Here, we review the BSSG rat model of PD, a novel environmental model of PD, with strong construct, face, and predictive validity. This model offers an effective tool for the screening of preventive therapies that may prove to be more predictive of their effects in human patients.
Collapse
Affiliation(s)
- Jackalina M. Van Kampen
- Neurodyn Life Sciences, NRC Building, 550 University Ave., Charlottetown, PE C1A 4P3 Canada
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3 Canada
| | - Harold A. Robertson
- Neurodyn Life Sciences, NRC Building, 550 University Ave., Charlottetown, PE C1A 4P3 Canada
- Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown, PE C1A 4P3 Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2 Canada
| |
Collapse
|
10
|
Vanmierlo T, Bogie JF, Mailleux J, Vanmol J, Lütjohann D, Mulder M, Hendriks JJ. Plant sterols: Friend or foe in CNS disorders? Prog Lipid Res 2015; 58:26-39. [DOI: 10.1016/j.plipres.2015.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 12/21/2022]
|
11
|
Oyanagi K, Yamazaki M, Hashimoto T, Asakawa M, Wakabayashi K, Takahashi H. Hippocampal sclerosis in the parkinsonism-dementia complex of Guam: quantitative examination of neurons, neurofibrillary tangles, and TDP-43 immunoreactivity in CA1. Neuropathology 2015; 35:224-35. [PMID: 25783521 DOI: 10.1111/neup.12185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 01/23/2023]
Abstract
The cornu ammonis 1 (CA1) area in the hippocampus of the parkinsonism-dementia complex (PDC) of Guam was examined quantitatively with special references to the number of neurons, intraneuronal (i) and extracellular (e) neurofibirillary tangles (NFTs), and TDP-43 (43-kDa trans-activation-responsive region DNA-binding protein)-immunopositive structures, in 24 Chamorro patients with PDC of Guam and seven control Chamorro Guamanians (both groups having no ischemic or anoxic complications). The results were that: (i) in the patients with mildly involved PDC, total numbers of neurons, iNFTs and eNFTs were almost the same as those of neurons of controls; (ii) in patients severely involved, total numbers of neurons, iNFTs and eNFTs decreased markedly; (iii) the decrease of the number of pyramidal neurons in CA1 with positive nuclear TDP-43 was intimately correlated with the decrease in total neuron numbers; (iv) whereas the numbers of neurons and TDP-43-immunopositive intracytoplasmic aggregation in the CA1 area were inversely correlated; and (v) depression of nuclear TDP-43 immuonostainability was not affected by the presence or absence of NFTs. In conclusion, hippocampal sclerosis exists in PDC; there is a possibility of elimination of eNFTs which appeared in the CA1 in patients with PDC and loss of the neurons correlates with disappearance of nuclear TDP-43, but not with appearance of intraneurocytoplasmic TDP-43 aggregation or iNFTs.
Collapse
Affiliation(s)
- Kiyomitsu Oyanagi
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Mineo Yamazaki
- Department of Neurology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Tomoyo Hashimoto
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan.,Department of Neurology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Mika Asakawa
- Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Niigata, Japan
| |
Collapse
|
12
|
Abstract
α-Synuclein is an abundant neuronal protein which localizes predominantly to presynaptic terminals, and is strongly linked genetically and pathologically to Parkinson's disease and other neurodegenerative diseases. While the accumulation of α-synuclein in the form of misfolded oligomers and large aggregates defines multiple neurodegenerative diseases called "synucleinopathies", its cellular function has remained largely unclear, and is the subject of intense investigation. In this review, I focus on the structural characteristics of α-synuclein, its cellular and subcellular localization, and discuss how this relates to its function in neurons, in particular at the neuronal synapse.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer’s Disease Research, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
13
|
Ferrer I, López-Gonzalez I, Carmona M, Dalfó E, Pujol A, Martínez A. Neurochemistry and the non-motor aspects of PD. Neurobiol Dis 2012; 46:508-26. [PMID: 22737710 DOI: 10.1016/j.nbd.2011.10.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Parkinson disease (PD) is a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment and psychiatric symptoms, in addition to the classical motor symptoms. Many non-motor symptoms appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a relationship, albeit not causal, between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. This may apply to complex alterations interfering with olfactory and autonomic nervous systemfunctions, emotions, sleep regulation, and behavioral, cognitive and mental performance. Involvement of the cerebral cortex leading to impaired behavior and cognition is related to several convergent altered factors including: a. dopaminergic, noradrenergic, serotoninergic and cholinergic cortical innervation; b. synapses; c. cortical metabolism; d. mitochondrial function and energy production; e. oxidative damage; f. transcription; g. protein expression; h. lipid composition; and i. ubiquitin–proteasome system and autophagy, among others. This complex situation indicates that multiple subcellular failure in selected cell populations is difficult to reconcilewith a reductionistic scenario of a single causative cascade of events leading to non-motor symptoms in PD. Furthermore, these alterationsmay appear at early stages of the disease and may precede the appearance of substantial irreversible cell loss by years. These observations have important implications in the design of therapeutic approaches geared to prevention and treatment of PD.
Collapse
Affiliation(s)
- I Ferrer
- Institute of Neuropathology, Service of Pathology, University Hospital of Bellvitge, Spain.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW This review covers the amyotrophic lateral sclerosis (ALS)/parkinsonism dementia complex (PDC) of Guam. Clinical and epidemiological characteristics, genetic possible and environmental causes, and neuropathological features of the disease are discussed. RECENT FINDINGS Recent studies of clinical syndromes and neuropathological studies are compared with previous descriptions of the disease. The latest genetic and environmental studies are also reviewed. SUMMARY In recent years, understanding of the molecular pathogenesis of neurodegenerative diseases has evolved. ALS/PDC shares neuropathological features found in many neurodegenerative diseases such as Alzheimer's disease, Lewy body disease, and frontotemporal lobar degeneration. Thus, examining ALS/PDC may provide further explanations on how various proteins seen in neurodegenerative disorders may be interrelated.
Collapse
|
15
|
Vivacqua G, Casini A, Vaccaro R, Salvi EP, Pasquali L, Fornai F, Yu S, D’Este L. Spinal cord and parkinsonism: Neuromorphological evidences in humans and experimental studies. J Chem Neuroanat 2011; 42:327-40. [DOI: 10.1016/j.jchemneu.2011.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/20/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
|
16
|
Usuki S, Kamitani T, Matsuo Y, Yu RK. Pathobiochemical effect of acylated steryl-β-glucoside on aggregation and cytotoxicity of α-synuclein. Neurochem Res 2011; 37:1261-6. [PMID: 22124781 DOI: 10.1007/s11064-011-0662-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/27/2011] [Accepted: 11/17/2011] [Indexed: 11/26/2022]
Abstract
Cycad seed consumption by the native islanders of Guam is frequently associated with high rates of amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS/PDC); furthermore, accompanying pathological examination often exhibits α-synuclein inclusions in the neurons of the affected brain. Acylated steryl-β-glucoside (ASG) contained in cycad seeds is considered as causative environmental risk factor. We aimed to investigate whether ASG influences aggregation and cell toxicity of α-synuclein. To understand whether ASG is a causative factor in the development of ALS/PDC, soybean-derived ASG was tested for its effect on in vitro aggregation of α-synuclein using Thioflavin-T. ASG was also tested to determine whether it modulates α-synuclein cytotoxicity in yeast cells. In addition, we determined whether an interaction between ASG and α-synuclein occurs in the plasma membrane or cytoplasm using three factors: GM1 ganglioside, small unilamellar vesicles, and ATP. In the present study, we found that ASG-mediated acceleration of α-synuclein aggregation is influenced by the presence of ATP, but not by the presence of GM1. ASG accelerated the α-synuclein aggregation in the cytoplasm. ASG also enhanced α-synuclein-induced cytotoxicity in yeast cells. This study demonstrated that ASG directly enhances aggregation and cytotoxicity of α-synuclein, which are often observed in patients with ALS/PDC. These results, using assays that replicate cytoplasmic conditions, are consistent with the molecular mechanism that cytotoxicity is caused by intracellular α-synuclein fibril formation in neuronal cells.
Collapse
Affiliation(s)
- Seigo Usuki
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, GA 30912, USA.
| | | | | | | |
Collapse
|
17
|
Kaul T, Credle J, Haggerty T, Oaks AW, Masliah E, Sidhu A. Region-specific tauopathy and synucleinopathy in brain of the alpha-synuclein overexpressing mouse model of Parkinson's disease. BMC Neurosci 2011; 12:79. [PMID: 21812967 PMCID: PMC3176190 DOI: 10.1186/1471-2202-12-79] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/03/2011] [Indexed: 12/18/2022] Open
Abstract
Background α-synuclein [α-Syn]-mediated activation of GSK-3β leading to increases in hyperphosphorylated Tau has been shown by us to occur in striata of Parkinson's diseased [PD] patients and in animal models of PD. In Alzheimer's disease, tauopathy exists in several brain regions; however, the pattern of distribution of tauopathy in other brain regions of PD or in animal models of PD is not known. The current studies were undertaken to analyze the distribution of tauopathy in different brain regions in a widely used mouse model of PD, the α-Syn overexpressing mouse. Results High levels of α-Syn levels were seen in the brain stem, with a much smaller increase in the frontal cortex; neither cerebellum nor hippocampus showed any overexpression of α-Syn. Elevated levels of p-Tau, hyperphosphorylated at Ser202, Ser262 and Ser396/404, were seen in brain stem, with lower levels seen in hippocampus. In both frontal cortex and cerebellum, increases were seen only in p-Ser396/404 Tau, but not in p-Ser202 and p-Ser262. p-GSK-3β levels were not elevated in any of the brain regions, although total GSK-3β was elevated in brain stem. p-p38MAPK levels were unchanged in all brain regions examined, while p-ERK levels were elevated in brain stem, hippocampus and cerebellum, but not the frontal cortex. p-JNK levels were increased in brain stem and cerebellum but not in the frontal cortex or hippocampus. Elevated levels of free tubulin, indicating microtubule destabilization, were seen only in the brain stem. Conclusion Our combined data suggest that in this animal model of PD, tauopathy, along with microtubule destabilization, exists primarily in the brain stem and striatum, which are also the two major brain regions known to express high levels of α-Syn and undergo the highest levels of degeneration in human PD. Thus, tauopathy in PD may have a very restricted pattern of distribution.
Collapse
Affiliation(s)
- Tiffany Kaul
- Department of Biochemistry and Molecular and Cell Biology, University of California San Diego, La Jolla, California, USA
| | | | | | | | | | | |
Collapse
|
18
|
Halliday GM, Holton JL, Revesz T, Dickson DW. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 2011; 122:187-204. [PMID: 21720849 DOI: 10.1007/s00401-011-0852-9] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/18/2011] [Accepted: 06/20/2011] [Indexed: 01/31/2023]
Abstract
Abnormal aggregates of the synaptic protein, α-synuclein, are the dominant pathology in syndromes known as the synucleinopathies. The cellular aggregation of the protein occurs in three distinct types of inclusions in three main clinical syndromes. α-Synuclein deposits in neuronal Lewy bodies and Lewy neurites in idiopathic Parkinson's disease (PD) and dementia with Lewy bodies (DLB), as well as incidentally in a number of other conditions. In contrast, α-synuclein deposits largely in oligodendroglial cytoplasmic inclusions in multiple system atrophy (MSA). Lastly, α-synuclein also deposits in large axonal spheroids in a number of rarer neuroaxonal dystrophies. Disorders are usually defined by their most dominant pathology, but for the synucleinopathies, clinical heterogeneity within the main syndromes is well documented. MSA was originally viewed as three different clinical phenotypes due to different anatomical localization of the lesions. In PD, recent meta-analyses have identified four main clinical phenotypes, and clinicopathological correlations suggest that more severe and more rapid progression of pathology with chronological age, as well as the involvement of additional neuropathologies, differentiates these phenotypes. In DLB, recent large studies show that clinical diagnosis is too insensitive to identify the syndrome itself, although clinicopathological studies suggest variable clinical features occur in the different pathological forms of this syndrome (pure DLB, DLB with Alzheimer's disease (AD), and AD with amygdala predominant Lewy pathology). The recognition of considerable heterogeneity within the synucleinopathy syndromes is important for the identification of factors involved in changing their pathological phenotype.
Collapse
Affiliation(s)
- Glenda M Halliday
- Neuroscience Research Australia, University of New South Wales, Randwick, Sydney, Australia.
| | | | | | | |
Collapse
|
19
|
McGeer PL, Steele JC. The ALS/PDC syndrome of Guam: potential biomarkers for an enigmatic disorder. Prog Neurobiol 2011; 95:663-9. [PMID: 21527311 DOI: 10.1016/j.pneurobio.2011.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/31/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
The ALS/parkinsonism-dementia complex of Guam is a long latency disease with a diverse phenotypic expression characteristic of classical ALS, parkinsonism and dementia. It is remarkably similar to a syndrome localized to the Kii Peninsula of Japan. There are as yet no identified pathological features that will clearly distinguish the Guam or Kii ALS/PDC syndrome from other degenerative neurological disorders. At present, ALS/PDC of Guam and the Kii Peninsula can be confirmed only by postmortem examination. The most prominent pathological hallmark is the widespread occurrence of neurofibrillary tangles which express the same balance of 3R and 4R tau that is found in Alzheimer disease. They both show an increased prevalence of a peculiar retinal disorder termed linear retinal pigmentary epitheliopathy. The disorders are both highly familial. Several environmental factors have been proposed but no supportive evidence for an environmental or dietary factor has been found. Genome searches have so far failed to identify causative genes although two single nuclear polymorphisms related to MAPT that increase the risk of the Guam syndrome have been located. The two syndromes are clearly unique, and clues as to their causation could be beneficial in understanding the etiology of similar, but much more prevalent disorders in North America, Europe and Asia. Identification of biomarkers for premortem diagnosis would be helpful in management as well as in revealing the true etiology.
Collapse
Affiliation(s)
- Patrick L McGeer
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
20
|
Wills J, Credle J, Haggerty T, Lee JH, Oaks AW, Sidhu A. Tauopathic changes in the striatum of A53T α-synuclein mutant mouse model of Parkinson's disease. PLoS One 2011; 6:e17953. [PMID: 21445308 PMCID: PMC3061878 DOI: 10.1371/journal.pone.0017953] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 02/19/2011] [Indexed: 01/15/2023] Open
Abstract
Tauopathic pathways lead to degenerative changes in Alzheimer's disease and there is evidence that they are also involved in the neurodegenerative pathology of Parkinson's disease [PD]. We have examined tauopathic changes in striatum of the α-synuclein (α-Syn) A53T mutant mouse. Elevated levels of α-Syn were observed in striatum of the adult A53T α-Syn mice. This was accompanied by increases in hyperphosphorylated Tau [p-Tau], phosphorylated at Ser202, Ser262 and Ser396/404, which are the same toxic sites also seen in Alzheimer's disease. There was an increase in active p-GSK-3β, hyperphosphorylated at Tyr216, a major and primary kinase known to phosphorylate Tau at multiple sites. The sites of hyperphosphorylation of Tau in the A53T mutant mice were similar to those seen in post-mortem striata from PD patients, attesting to their pathophysiological relevance. Increases in p-Tau were not due to alterations on protein phosphatases in either A53T mice or in human PD, suggesting lack of involvement of these proteins in tauopathy. Extraction of striata with Triton X-100 showed large increases in oligomeric forms of α-Syn suggesting that α-Syn had formed aggregates the mutant mice. In addition, increased levels of p-GSK-3β and pSer396/404 were also found associated with aggregated α-Syn. Differential solubilization to measure protein binding to cytoskeletal proteins demonstrated that p-Tau in the A53T mutant mouse were unbound to cytoskeletal proteins, consistent with dissociation of p-Tau from the microtubules upon hyperphosphorylation. Interestingly, α-Syn remained tightly bound to the cytoskeleton, while p-GSK-3β was seen in the cytoskeleton-free fractions. Immunohistochemical studies showed that α-Syn, pSer396/404 Tau and p-GSK-3β co-localized with one another and was aggregated and accumulated into large inclusion bodies, leading to cell death of Substantia nigral neurons. Together, these data demonstrate an elevated state of tauopathy in striata of the A53T α-Syn mutant mice, suggesting that tauopathy is a common feature of synucleinopathies.
Collapse
Affiliation(s)
- Jonathan Wills
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, D.C., United States of America
| | - Joel Credle
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, D.C., United States of America
| | - Thomas Haggerty
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, D.C., United States of America
| | - Jae-Hoon Lee
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, D.C., United States of America
| | - Adam W. Oaks
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, D.C., United States of America
| | - Anita Sidhu
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, D.C., United States of America
| |
Collapse
|
21
|
Wills J, Jones J, Haggerty T, Duka V, Joyce JN, Sidhu A. Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson's disease brains with and without dementia. Exp Neurol 2010; 225:210-8. [PMID: 20599975 DOI: 10.1016/j.expneurol.2010.06.017] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2010] [Revised: 05/21/2010] [Accepted: 06/20/2010] [Indexed: 01/18/2023]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease, results in abnormal accumulation of insoluble alpha-synuclein (alpha-Syn) in dopaminergic neurons. Here we examined tauopathic changes and the alpha-Syn/p-GSK-3beta/proteasome pathway in postmortem striata and inferior frontal gyri (IFG) from patients with PD and PD with dementia (PDD). In both PD and PDD, alpha-Syn levels were high, especially the insoluble form of this protein; in PDD, insoluble alpha-Syn levels were persistently higher than PD across both brain regions. Levels of p-GSK-3beta phosphorylated at Tyr 216, which hyperphosphorylates Tau to produce toxic pathological forms of p-Tau, were higher in striata of both PD and PDD compared to controls, but were unaltered in IFG. While proteasomal activity was unchanged in striatum of PD and PDD, such activity was diminished in the IFG of both PD and PDD. A decrease in 19S subunit of the proteasomes was seen in IFG of PDD, while lower levels of 20S subunits were seen in striatum and IFG of both PD and PDD patients. Parkin levels were similar in PD and PDD, suggesting lack of involvement of this protein. Most interestingly, tauopathic changes were noted only in striatum of PD and PDD, with increased hyperphosphorylation seen at Ser262 and Ser396/404; increases in Ser202 levels were seen only in PD but not in PDD striatum. We were unable to detect any tauopathy in IFG in either PD or PDD despite increased levels of alpha-Syn, and decreased proteasomal activity, and is probably due to lack of increase in p-GSK-3beta in IFG. Unlike Alzheimer's disease where tauopathy is more globally observed in diverse brain regions, our data demonstrates restricted expression of tauopathy in brains of PD and PDD, probably limited to dopaminergic neurons of the nigrostriatal region.
Collapse
Affiliation(s)
- Jonathan Wills
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
22
|
Protein coding of neurodegenerative dementias: the neuropathological basis of biomarker diagnostics. Acta Neuropathol 2010; 119:389-408. [PMID: 20198481 DOI: 10.1007/s00401-010-0658-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/12/2010] [Accepted: 02/13/2010] [Indexed: 12/11/2022]
Abstract
Neuropathological diagnosis of neurodegenerative dementias evolved by adapting the results of neuroanatomy, biochemistry, and cellular and molecular biology. Milestone findings of intra- and extracellular argyrophilic structures, visualizing protein deposition, initiated a protein-based classification. Widespread application of immunohistochemical and biochemical investigations revealed that (1) there are modifications of proteins intrinsic to disease (species that are phosphorylated, nitrated, oligomers, proteinase-resistant, with or without amyloid characteristics; cleavage products), (2) disease forms characterized by the accumulation of a single protein only are rather the exception than the rule, and (3) some modifications of proteins elude present neuropathological diagnostic procedures. In this review, we summarize how neuropathology, together with biochemistry, contributes to disease typing, by demonstrating a spectrum of disorders characterized by the deposition of various modifications of various proteins in various locations. Neuropathology may help to elucidate how brain pathologies alter the detectability of proteins in body fluids by upregulation of physiological forms or entrapment of different proteins. Modifications of at least the five most relevant proteins (amyloid-beta, prion protein, tau, alpha-synuclein, and TDP-43), aided by analysis of further "attracted" proteins, are pivotal to be evaluated simultaneously with different methods. This should complement the detection of biomarkers associated with pathogenetic processes, and also neuroimaging and genetic analysis, in order to obtain a highly personalized diagnostic profile. Defining clusters of patients based on the patterns of protein deposition and immunohistochemically or biochemically detectable modifications of proteins ("codes") may have higher prognostic predictive value, may be useful for monitoring therapy, and may open new avenues for research on pathogenesis.
Collapse
|
23
|
Neuropathology of Lewy body disorders. Brain Res Bull 2009; 80:203-10. [DOI: 10.1016/j.brainresbull.2009.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/18/2009] [Accepted: 06/22/2009] [Indexed: 11/21/2022]
|
24
|
Strong MJ. The syndromes of frontotemporal dysfunction in amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 9:323-38. [PMID: 18752088 DOI: 10.1080/17482960802372371] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Yokota O. Frontotemporal lobar degeneration and dementia with Lewy bodies: clinicopathological issues associated with antemortem diagnosis. Psychogeriatrics 2009; 9:91-102. [PMID: 19604332 DOI: 10.1111/j.1479-8301.2009.00286.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, the clinical diagnostic criteria of frontotemporal lobar degeneration (FTLD) and dementia with Lewy bodies (DLB) are well known to neurologists and psychiatrists. However, the accuracy of the clinical diagnosis of these diseases in autopsy series is not always adequate. For example, FTLD is a syndrome rather than a clinicopathological disease entity that is comprised of various pathological substrates, including Pick's disease, FTLD with microtubule-associated protein tau gene mutation, FTLD with tau-negative ubiquitin-positive inclusions (FTLD-U), FTLD-U with progranulin gene mutation, corticobasal degeneration, basophilic inclusion body disease, and neuronal intermediate filament inclusion disease. Whether these underlying pathologies can be identified clinically is one of the greatest interests in neuropathological research. The pathophysiological relationship between Lewy pathology and Alzheimer pathology in DLB is explored with interest because it may be associated with the accuracy of clinical diagnoses. For example, although Lewy pathology may progress from the brain stem nuclei to the cerebral cortex in Parkinson's disease, recent studies have demonstrated that the progression pattern in DLB is not always identical to that in Parkinson's disease. It is also considered that the progression pattern of Lewy pathology correlates with the evolution of clinical symptoms and that the progression pattern of Lewy pathology may be altered when Alzheimer pathology coexists. In the present paper, the clinicopathological features of two demented cases are presented, and some pathological issues associated with the clinical diagnosis of FTLD and DLB are discussed.
Collapse
Affiliation(s)
- Osamu Yokota
- Department of Neuropathology, Tokyo Institute of Psychiatry, Tokyo, Japan.
| |
Collapse
|
26
|
Le Forestier N, Lacomblez L, Meininger V. Syndromes parkinsoniens et sclérose latérale amyotrophique. Rev Neurol (Paris) 2009; 165:15-30. [DOI: 10.1016/j.neurol.2008.02.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/31/2007] [Accepted: 02/08/2008] [Indexed: 12/11/2022]
|
27
|
Enduring involvement of tau, beta-amyloid, alpha-synuclein, ubiquitin and TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism-dementia complex of Guam (ALS/PDC). Acta Neuropathol 2008; 116:625-37. [PMID: 18843496 DOI: 10.1007/s00401-008-0439-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/11/2008] [Accepted: 09/18/2008] [Indexed: 12/25/2022]
Abstract
Guam ALS/PDC is a severe tangle forming disorder endemic to Guam with features overlapping such neurodegenerative disorders as Alzheimer disease (AD), Parkinson disease (PD), progressive supranuclear palsy (PSP), ALS, corticobasal degeneration (CBD) and pallido-ponto-nigral degeneration (PPND). Since the prevalence is declining, we examined brain tissue from 35 clinically diagnosed Chamorro patients with ALS/PDC and two Chamorro controls autopsied between 1946 and 2006, to determine if distinct variations in the pathology could be identified up to this time. Although the age at autopsy increased by 4.5-5 years per decade, we identified no qualitative differences in pathological deposits with antibodies against tau, ubiquitin, A beta, alpha-synuclein and TDP-43, indicating that these more recently identified proteins have been involved in the neuropathogenesis over the past 6 decades. Tau and TDP-43 positive neuronal, oligodendroglial and astrocytic inclusions involving multiple nerve fiber tracts occurred in both the ALS and PDC types, reinforcing the concept that these forms are part of the same disorder. The results obtained may help to define the commonality of the Guam disease with other tangle forming disorders and may help in monitoring the epidemiological changes that are taking place.
Collapse
|
28
|
Abstract
The technology, experimental approaches, and bioinformatics that support proteomic research are evolving rapidly. The application of these new capabilities to the study of neurodegenerative diseases is providing insight into the biochemical pathogenesis of neurodegeneration as well as fueling major efforts in biomarker discovery. Here, we review the fundamentals of commonly used proteomic approaches and the outcomes of these investigations with autopsy and cerebrospinal fluid samples from patients with neurodegenerative diseases.
Collapse
|
29
|
|
30
|
Caudle WM, Pan S, Shi M, Quinn T, Hoekstra J, Beyer RP, Montine TJ, Zhang J. Proteomic identification of proteins in the human brain: Towards a more comprehensive understanding of neurodegenerative disease. Proteomics Clin Appl 2008; 2:1484-97. [PMID: 21136796 DOI: 10.1002/prca.200800043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Indexed: 12/21/2022]
Abstract
Proteomics has revealed itself as a powerful tool in the identification and determination of proteins and their biological significance. More recently, several groups have taken advantage of the high-throughput nature of proteomics in order to gain a more in-depth understanding of the human brain. In turn, this information has provided researchers with invaluable insight into the potential pathways and mechanisms involved in the pathogenesis of several neurodegenerative disorders, e.g., Alzheimer and Parkinson disease. Furthermore, these findings likely will improve methods to diagnose disease and monitor disease progression as well as generate novel targets for therapeutic intervention. Despite these advances, comprehensive understanding of the human brain proteome remains challenging, and requires development of improved sample enrichment, better instrumentation, and innovative analytic techniques. In this review, we will focus on the most recent progress related to identification of proteins in the human brain under normal as well as pathological conditions, mainly Alzheimer and Parkinson disease, their potential application in biomarker discovery, and discuss current advances in protein identification aimed at providing a more comprehensive understanding of the brain.
Collapse
Affiliation(s)
- W Michael Caudle
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Xun Z, Kaufman TC, Clemmer DE. Proteome response to the panneural expression of human wild-type alpha-synuclein: a Drosophila model of Parkinson's disease. J Proteome Res 2008; 7:3911-21. [PMID: 18683964 DOI: 10.1021/pr800207h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The alpha-synuclein protein is associated with several neurodegenarative diseases, including Parkinson's disease (PD). In humans, only mutated forms of alpha-synuclein are linked to PD; however, panneural expression of human wild-type (WT) alpha-synuclein induces Parkinson's like-symptoms in Drosophila. Here, we report a quantitative proteomic analysis of WT alpha-synuclein transgenic flies with age-matched controls at the presymptomatic stage utilizing a global isotopic labeling strategy combined with multidimensional liquid chromatographies and tandem mass spectrometry. The analysis includes two biological replicates, in which samples are isotopically labeled in forward and reverse directions. In total, 229 proteins were quantified from assignments of at least two peptide sequences. Of these, 188 (82%) proteins were detected in both forward and reverse labeling measurements. Twelve proteins were found to be differentially expressed in response to the expression of human WT alpha-synuclein; down-regulations of larval serum protein 2 and fat body protein 1 levels were confirmed by Western blot analysis. Gene Ontology analysis indicates that the dysregulated proteins are primarily associated with cellular metabolism and signaling, suggesting potential contributions of perturbed metabolic and signaling pathways to PD. An increased level of the iron (III)-binding protein, ferritin, typically found in the brains of PD patients, is also observed in presymptomatic WT alpha-synuclein expressing animals. The observed alterations in both pathology-associated and novel proteins may shed light on the pathological roles of alpha-synuclein that may lead to the development of diagnostic strategies at the presymptomatic stage.
Collapse
Affiliation(s)
- Zhiyin Xun
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
32
|
The α-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp Neurol 2008; 212:235-8. [DOI: 10.1016/j.expneurol.2008.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 02/06/2023]
|
33
|
Halliday GM, McCann H. Human-based studies on α-synuclein deposition and relationship to Parkinson's disease symptoms. Exp Neurol 2008; 209:12-21. [PMID: 17706644 DOI: 10.1016/j.expneurol.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 06/30/2007] [Accepted: 07/05/2007] [Indexed: 11/28/2022]
Abstract
This article reviews the current knowledge on alpha-synuclein and its cellular locations in studies using human brain tissue. Alterations in the conformation and distribution of alpha-synuclein are examined in Parkinson's disease and the relationship between clinical symptoms and pathology explored. alpha-Synuclein as a molecular chaperone has several isoforms and is known to have different environment-dependent conformations. Processing methods for studying human brain tissue significantly impact on the conformational type of alpha-synuclein analysed, and antibody species used for the in situ detection of alpha-synuclein give variable results depending on the epitope visualised. Human studies show that alpha-synuclein is not isolated to neurons, but is also found in glia, making the interpretation of studies using brain tissue homogenates less clearly related to neurons. These methodological issues impact significantly on our understanding of the form, location, and therefore function of alpha-synuclein in normal human brain tissue. There are less methodological issues regarding highly aggregated alpha-synuclein found in the major hallmark of Parkinson's disease, the Lewy body. However, it remains unclear whether these alpha-synuclein inclusions are harmful to host neurons or provide protection. Several correlations exist between the clinical symptoms of Parkinson's disease and the distribution of Lewy pathology, the strongest being the association between limbic and cortical Lewy bodies and well-formed visual hallucinations. Further correlation studies in prospectively-followed patients and, perhaps more importantly, controls are required in order to determine normal versus pathologic alpha-synuclein and how to detect such differences in clinical situations.
Collapse
Affiliation(s)
- Glenda M Halliday
- Prince of Wales, Medical Research Institute, Randwick, NSW, Australia.
| | | |
Collapse
|
34
|
Yang W, Woltjer RL, Sokal I, Pan C, Wang Y, Brodey M, Peskind ER, Leverenz JB, Zhang J, Perl DP, Galasko DR, Montine TJ. Quantitative proteomics identifies surfactant-resistant alpha-synuclein in cerebral cortex of Parkinsonism-dementia complex of Guam but not Alzheimer's disease or progressive supranuclear palsy. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:993-1002. [PMID: 17675576 PMCID: PMC1959487 DOI: 10.2353/ajpath.2007.070015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parkinsonism-dementia complex (PDC) remains a significant health burden to the Chamorro population. We tested the hypothesis that quantitative proteomics might provide fresh insight into this enigmatic illness by analyzing proteins resistant to surfactant extraction from patients with Alzheimer's disease (AD) or PDC and their matched controls using isobaric tags for relative and absolute quantification. In addition to the expected increase in abnormal frontal cortical Abeta peptides, tau, ubiquitin, and apolipoprotein E in AD, and tau in PDC, we identified alpha-synuclein (SNCA) as a major abnormal protein in PDC but not AD. We confirmed our isobaric tags for relative and absolute quantification findings by enzyme-linked immunosorbent assay in frontal and temporal cortices. We extended our assays to include a limited number of cases of progressive supranuclear palsy (PSP) and dementia with Lewy bodies; we observed increased abnormal tau but not SNCA in PSP, and abnormal SNCA in dementia with Lewy bodies that was quantitatively similar to PDC. Finally, soluble Abeta oligomers were selectively increased in AD but not PDC or PSP. These results show that frontal and temporal cortex in PDC is distinguished from AD and PSP by its accumulation of abnormal SNCA and suggest that PDC be considered a synucleinopathy as well as a tauopathy.
Collapse
Affiliation(s)
- Wan Yang
- Department of Pathology, University of Washington, Harborview Medical Center, Box 359791, Seattle, WA 98104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yokota O, Tsuchiya K, Uchihara T, Ujike H, Terada S, Takahashi M, Kimura Y, Ishizu H, Akiyama H, Kuroda S. Lewy body variant of Alzheimer's disease or cerebral type Lewy body disease? Two autopsy cases of presenile onset with minimal involvement of the brainstem. Neuropathology 2007; 27:21-35. [PMID: 17319280 DOI: 10.1111/j.1440-1789.2006.00736.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lewy bodies (LB) usually extend from the brainstem to the cerebrum in patients with Parkinson's disease. However, whether the patterns of progression of LB and neuronal loss in Parkinson's disease are identical to those in other Lewy body diseases (LBD) remains unclear. In addition, pathological data on the autonomic nervous system involvement in LBD are limited. We present here the clinicopathological characteristics of two autopsy cases with both Alzheimer's disease and dementia with Lewy bodies (DLB), possibly diagnosed as having Lewy body variant of Alzheimer's disease (LBV/AD). Our patients presented clinically with dementia without parkinsonism. Histopathologically, phosphorylated alpha-synuclein-positive LB and Lewy neurites were abundant in the limbic system, especially in the amygdala, and to a lesser degree, in the neocortex, including the primary motor cortex. The amygdala was also most severely affected by neuronal loss, and the other limbic areas and neocortex were affected to a lesser degree. Despite the existence of a small number of LB and many Lewy neurites, neurons in the brainstem nuclei were relatively well preserved. The Braak stages of concurrent neurofibrillary changes and senile plaques were stage V and C, respectively, in both cases. Tyrosine hydroxylase-positive nerve fibers were relatively well spared in one case examined compared with Parkinson's disease cases. Furthermore, many Lewy neurites immunopositive for phosphorylated a-synuclein were found in the nerve fascicles of the epicardium in one case examined and in Parkinson's disease cases to a lesser degree. These findings suggest that: (i) in at least some LBV/AD cases, the amygdala develops neuronal loss and Lewy-related pathology prior to the brainstem nuclei; and (ii) the depletion of nerves in the heart tissue of LBV/AD is not necessarily complete despite the development of Lewy-related pathology.
Collapse
Affiliation(s)
- Osamu Yokota
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
During over 50 years of the first author's career in neuropathology at Montefiore Medical Center in New York, we have come across certain interesting neuropathological findings. In this communication, some photographs showing macroscopic, microscopic and electron microscopic significant findings are selected to illustrate usefulness not only for the diagnosis but also for understanding of the nervous system. The six topics presented in this paper are: (i) unattached presynaptic terminals in cerebellar neuroblastoma; (ii) neurofibrillary tangle formation in the nucleus basalis of Meynert ipsilateral to a massive cerebral infarct; (iii) orderly arrangement of tumor cells in leptomeningeal carcinomatosis; (iv) interface between craniopharyngioma and brain tissue; (v) neurofibrillary tangles and Lewy bodies in a single neuron; and (vi) Cu/Zn superoxide dismutase positive Lewy body-like hyaline inclusions in anterior horn cells in familial motor neuron diseases. Analyses of these findings are presented for an educational purpose.
Collapse
Affiliation(s)
- Asao Hirano
- Division of Neuropathology, Montefiore Medical Center, Bronx, New York, NY 10467-2490, USA.
| | | |
Collapse
|
37
|
Croisier E, Graeber MB. Glial degeneration and reactive gliosis in alpha-synucleinopathies: the emerging concept of primary gliodegeneration. Acta Neuropathol 2006; 112:517-30. [PMID: 16896905 DOI: 10.1007/s00401-006-0119-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/04/2006] [Accepted: 07/04/2006] [Indexed: 01/06/2023]
Abstract
The concept of gliodegenerative diseases has not been widely established although there is accumulating evidence that glial cells may represent a primary target of degenerative disease processes. In the central nervous system (CNS), examples that provide a "proof of concept" include at least one alpha-synucleinopathy, multiple system atrophy (MSA), but this disease is conventionally discussed under the heading of "neurodegeneration". Additional evidence in support of primary glial affection has been reported in neurodegenerative disorders such as Parkinson's disease, Alzheimer's disease and transmissible spongiform encephalopathies. Based on biochemical, genetic and transcriptomic studies it is also becoming increasingly clear that the molecular changes measured in whole tissue extracts, e.g. obtained from Parkinson's disease brain, are not based on a purely neuronal contribution. This important evidence has been missed in cell culture or laser capture work focusing on the neuronal cell population. Studies of animal and in vitro models of disease pathogenesis additionally suggest glial accountability for some CNS degenerative processes. This review provides a critical analysis of the evidence available to date in support of the concept of gliodegeneration, which we propose to represent an essential although largely disregarded component of the spectrum of classical "neurodegeneration". Examples from the spectrum of alpha-synucleinopathies are presented.
Collapse
Affiliation(s)
- Emilie Croisier
- University Department of Neuropathology, Imperial College London and Hammersmith Hospitals Trust, Charing Cross Campus, Fulham Palace Road, London, UK
| | | |
Collapse
|
38
|
Kisby GE, Standley M, Park T, Olivas A, Fei S, Jacob T, Reddy A, Lu X, Pattee P, Nagalla SR. Proteomic Analysis of the Genotoxicant Methylazoxymethanol (MAM)-Induced Changes in the Developing Cerebellum. J Proteome Res 2006; 5:2656-65. [PMID: 17022636 DOI: 10.1021/pr060126g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The genotoxicant methylazoxymethanol (MAM) is a widely used developmental neurotoxin, and its glucoside is an etiological factor for western Pacific amyotrophic lateral sclerosis-parkinsonism-dementia complex (ALS/PDC). Identification of global protein expression changes that occur in response to MAM in the developing cerebellum could provide valuable insight into the potential mechanisms involved in the neurodegeneration process. We have utilized fluorescence 2-dimensional differential gel electrophoresis (2D-DIGE), to determine the protein expression changes that occur during normal cerebellar development and in response to MAM. Three day-old postnatal C57BL/6 mice (PND3) received a single injection of MAM, and the cerebella of postnatal day 4 (PND4) and day 22 (PND22) were analyzed. Approximately, 1400 unique spots were matched and quantified in all samples. Comparison of PND4 and PND22 developing cerebellum showed that a significant fraction of the proteome (approximately 68%) changes at this stage. The immediate response of the developing cerebellum to MAM was minimal (approximately 10%). However, significant differences (27%) were noted 14 days after MAM exposure. In contrast, the transcriptome changes were more pronounced at 24 h compared to 14 days. MAM targeted several proteins networks including transport (e.g., alpha-synuclein), cytoskeletal (e.g., beta-tubulin, vimentin), and mitochondrial (e.g., Atp5b) proteins. Immunochemistry confirmed several of the changes in protein expression (alpha-synuclein). Comparison with gene expression changes revealed that the temporal changes observed in the transcriptome and proteome are not correlative. These studies demonstrate for the first time the potential networks involved during neuronal development and neurodegenerative processes that are perturbed by MAM.
Collapse
Affiliation(s)
- G E Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET) and Center for Biomarker Discovery, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Galpern WR, Lang AE. Interface between tauopathies and synucleinopathies: a tale of two proteins. Ann Neurol 2006; 59:449-58. [PMID: 16489609 DOI: 10.1002/ana.20819] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurodegenerative diseases are often classified based on the abnormal accumulation of synuclein or tau. Traditionally, these disorders have been viewed as distinct clinical and pathological entities. However, advances in molecular genetics and protein biochemistry have shown intriguing overlaps. The most common synucleinopathy, Parkinson's disease, is characterized by extrapyramidal motor dysfunction, whereas the most common tauopathy, Alzheimer's disease, is defined by dementia. Yet there is overlap of clinical features; Parkinson's disease patients frequently have dementia, and Alzheimer's disease patients often manifest parkinsonism. Dementia with Lewy bodies exemplifies the existence of a continuum among these diseases. This overlap extends to the neuropathological findings; the pathognomonic hallmark for one set of disorders, Lewy bodies or neurofibrillary tangles, is present more often than expected in the other set. Moreover, mutations in LRRK2 known to cause parkinsonism are associated not only with dopaminergic neuronal degeneration, but also with the accumulation of synuclein, tau, neither, or both proteins. Other shared genetic features between tauopathies and synucleinopathies also exist. Finally, the known protein interactions between tau and synuclein further highlight the interface. Evidence for the intersection of tauopathies and synucleinopathies indicates the need for an updated disease classification scheme and may have important implications for therapeutic development.
Collapse
Affiliation(s)
- Wendy R Galpern
- Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
40
|
Winton MJ, Joyce S, Zhukareva V, Practico D, Perl DP, Galasko D, Craig U, Trojanowski JQ, Lee VMY. Characterization of tau pathologies in gray and white matter of Guam parkinsonism-dementia complex. Acta Neuropathol 2006; 111:401-12. [PMID: 16609851 DOI: 10.1007/s00401-006-0053-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 02/05/2006] [Accepted: 02/05/2006] [Indexed: 10/24/2022]
Abstract
Guam parkinsonism-dementia complex (PDC) is a neurodegenerative tauopathy in ethnic Chamorro residents of the Mariana Islands that manifests clinically with parkinsonism as well as dementia and is characterized neuropathologically by prominent cortical neuron loss in association with extensive telencephalic neurofibrillary tau pathology. To further characterize cortical gray and white matter tau, alpha-synuclein and lipid peroxidation pathologies in Guam PDC, we examined the brains of 17 Chamorro PDC and control subjects using biochemical and immunohistological techniques. We observed insoluble tau pathology in both gray and white matter of PDC and Guam control cases, with frontal and temporal lobes being most severely affected. Using phosphorylation dependent anti-tau antibodies, abundant tau inclusions were detected by immunohistochemistry in both neuronal and glial cells of the neocortex, while less alpha-synuclein pathology was observed in more limited brain regions. Further, in sharp contrast to Alzheimer's disease (AD), levels of the lipid peroxidation product 8, 12-iso-iPF(2alpha)-VI isoprostane were not elevated in Guam PDC brains relative to controls. Thus, although the tau pathologies of Guam PDC share similarities with AD, the composite Guam PDC neuropathology profile of tau, alpha-synuclein and 8, 12-iso-iPF(2alpha)-VI isoprostane reported here more closely resembles that seen in other tauopathies including frontotemporal dementias (FTDs), which may imply that Guam PDC and FTD tauopathies share underlying mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Matthew J Winton
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4283, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sahin HA, Emre M, Ziabreva I, Perry E, Celasun B, Perry R. The distribution pattern of pathology and cholinergic deficits in amygdaloid complex in Alzheimer's disease and dementia with Lewy bodies. Acta Neuropathol 2006; 111:115-25. [PMID: 16468020 DOI: 10.1007/s00401-005-0003-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/23/2005] [Accepted: 09/23/2005] [Indexed: 11/28/2022]
Abstract
We studied the distribution pattern of pathology and cholinergic deficits in the subnuclei of the amygdaloid complex (AC) in five patients with Alzheimer's disease (AD), eight with dementia with Lewy bodies (DLB) and five normal controls. In controls, the basal nucleus contained the highest choline acetyltransferase activity; the activity in the lateral and central nuclei and those in the cortical, medial and accessory basal nuclei were comparable. In AD, there was a significant decrease in choline acetyltransferase activity in the accessory basal and lateral nuclei, in DLB a significant decrease was observed in the accessory basal, lateral and cortical nuclei. Compared to controls the hyperphosphorylated tau-pathology burden was significantly higher in the basal, central and medial nuclei in AD and in the central, cortical, lateral and medial nuclei in DLB. The amyloid plaque burden was significantly higher in the accessory basal, basal, lateral and cortical nuclei in AD and in all nuclei in DLB. The alpha-synuclein burden was significantly higher in all nuclei in both AD and DLB. Compared to AD alpha-synuclein burden was higher in all nuclei in DLB. There were no correlations between the distribution pattern of hyperphosphorylated tau-pathology, amyloid plaques and alpha-synuclein-positive structures, and choline acetyltransferase activity, except the lateral nucleus in DLB. In conclusion we found no relationship between the pattern of cholinergic deficits and the distribution pattern of lesions in the AC of patients with AD or DLB. Cholinergic deficits were more prominent in the nuclei of basolateral (BL) group in AD, whereas the nuclei of both BL and corticomedial groups were involved in DLB, which may be due to the involvement of both basal forebrain and brainstem cholinergic nuclei in the latter.
Collapse
Affiliation(s)
- Huseyin A Sahin
- Department of Neurology, Ondokuz Mayis University, Faculty of Medicine, Kurupelit, 55139, Samsun, Turkey.
| | | | | | | | | | | |
Collapse
|
42
|
Tofaris GK, Spillantini MG. Alpha-synuclein dysfunction in Lewy body diseases. Mov Disord 2005; 20 Suppl 12:S37-44. [PMID: 16092089 DOI: 10.1002/mds.20538] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
alpha-Synuclein belongs to a small group of natively unfolded proteins that can transiently bind to lipid membranes and acquire a partial alpha-helical conformation. Its relevance to Parkinson's disease (PD) is based on mutations found in familial cases of the disease and its presence in filaments of Lewy bodies (LB) and Lewy neurites (LN) in sporadic cases where it is packed in a beta-sheet configuration. This structural plasticity of alpha-synuclein has raised the possibility that neurodegeneration may be a consequence of abnormal protein folding. The extent to which abnormal folding and aggregation of neuronal proteins is directly toxic to the cell, an inert biochemical marker of an underlying harmful metabolic defect, or a protective reaction remains to be seen. We review the function of alpha-synuclein and recent studies that have shed light on the mechanisms by which it aggregates.
Collapse
|
43
|
Yamazaki M, Hasegawa M, Mori O, Murayama S, Tsuchiya K, Ikeda K, Chen KM, Katayama Y, Oyanagi K. Tau-Positive Fine Granules in the Cerebral White Matter: A Novel Finding Among the Tauopathies Exclusive to Parkinsonism-Dementia Complex of Guam. J Neuropathol Exp Neurol 2005; 64:839-46. [PMID: 16215455 DOI: 10.1097/01.jnen.0000182977.79483.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We examined the autopsied brains of cases of 6 types of tauopathy: parkinsonism-dementia complex of Guam (PDC), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), Pick disease, Alzheimer disease (AD), and myotonic dystrophy together with Guamanian controls. Light microscopy sections of these brains were examined using anti-tau antibodies. Tau-positive fine granules (TFGs) were globe-shaped, and 3 to 6 mum in diameter, were observed predominantly in the frontal white matter in 30 of the 35 patients with PDC. However, no TFGs were found in association with PSP, myotonic dystrophy, Pick disease, AD, or CBD. Western blot analysis of frozen brain tissue taken from the PDC cases revealed that the frontal cortex was hyperphosphorylated and contained 6 tau isoforms (3R+4R tau). However, in the present study, it was revealed that the novel TFGs in the white matter of patients with PDC was composed of 4R tau. Western blot analysis of sarkosyl-insoluble tau from the white matter of the PDC cases showed 2 major bands of 60 and 64 kDa and one minor band of 67 kDa. After dephosphorylation, these bands resolved into one major band of 4-repeat (4R) tau isoform and 3 minor bands of 3-repeat (3R) and 4R tau isoforms. Moreover, the TFGs observed in cases in which the number of neurofibrillary tangles (NFTs) was higher than the threshold level were not correlated with the presence of cortical NFTs. In conclusion, these novel TFGs were found almost exclusively in PDC brains and could therefore be considered as a characteristic neuropathologic marker of this particular tauopathy. The TFGs were hyperphosphorylated tau-positive structures that may be formed by a different mechanism from that used to produce cortical NFTs.
Collapse
Affiliation(s)
- Mineo Yamazaki
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Fuchu-shi, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ince PG, Codd GA. Return of the cycad hypothesis - does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol Appl Neurobiol 2005; 31:345-53. [PMID: 16008818 DOI: 10.1111/j.1365-2990.2005.00686.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently published work provides evidence in support of the cycad hypothesis for Lytico--Bodig, the Guamanian amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC), based on a new understanding of Chamorro food practices, a cyanobacterial origin of beta-methylaminoalanine (BMAA) in cycad tissue, and a possible mechanism of biomagnification of this neurotoxic amino acid in the food chain. BMAA is one of two cycad chemicals with known neurotoxic properties (the other is cycasin, a proven developmental neurotoxin) among the many substances that exist in these highly poisonous plants, the seeds of which are used by Chamorros for food and medicine. The traditional diet includes the fruit bat, a species that feeds on cycad seed components and reportedly bioaccumulates BMAA. Plant and animal proteins provide a previously unrecognized reservoir for the slow release of this toxin. BMAA is reported in the brain tissue of Guam patients and early data suggest that some Northern American patients dying of Alzheimer's disease (AD) have detectable brain levels of BMAA. The possible role of cyanobacterial toxicity in sporadic neurodegenerative disease is therefore worthy of consideration. Recent neuropathology studies of ALS/PDC confirm understanding of this disorder as a 'tangle' disease, based on variable anatomical burden, and showing biochemical characteristics of 'AD-like' combined 3R and 4R tau species. This model mirrors the emerging view that other neurodegenerative disease spectra comprise clusters of related syndromes, owing to common molecular pathology, with variable anatomical distribution in the nervous system giving rise to different clinical phenotypes. Evidence for 'ubiquitin-only' inclusions in ALS/PDC is weak. Similarly, although there is evidence for alpha-synucleinopathy in ALS/PDC, the parkinsonian component of the disease is not caused by Lewy body disease. The spectrum of sporadic AD includes involvement of the substantia nigra and a high prevalence of 'incidental'alpha-synucleinopathy in sporadic AD is reported. Therefore the pathogenesis of Lytico-Bodig appears still to have most pertinence to the ongoing investigation of the pathogenesis of AD and other tauopathies.
Collapse
Affiliation(s)
- P G Ince
- Academic Unit of Pathology, Division of Genomic Medicine, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
45
|
Western Pacific ALS/parkinsonism–dementia complex. NEURODEGENER DIS 2005. [DOI: 10.1017/cbo9780511544873.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Oyanagi K. The nature of the parkinsonism-dementia complex and amyotrophic lateral sclerosis of Guam and magnesium deficiency. Parkinsonism Relat Disord 2005; 11 Suppl 1:S17-23. [PMID: 15885623 DOI: 10.1016/j.parkreldis.2005.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 02/14/2005] [Accepted: 02/14/2005] [Indexed: 12/01/2022]
Abstract
The parkinsonism-dementia complex (PDC) and amyotrophic lateral sclerosis (ALS) were the fatal neurological diseases, showing very high incidence during 1950-1970 and dramatic decrease after 1970 on Guam. Through the research, the present author insisted that; (1) NFTs in Guam ALS patients are merely a background feature widely dispersed in the population, (2) Guam ALS and PDC are basically different diseases, and (3) Guam ALS occurs initially as classic ALS. As pathogeneses of the diseases, intake of low calcium (Ca) and magnesium (Mg) and high aluminum water and of some plant excitatory neurotoxin has been speculated. To elucidate the pathogenesis, the author performed an experiment exposing rats to low Ca and/or Mg intake for two generations, so as to follow the actual way of human living on the island, since several generations live continuously in the same environment. The study indicates that continuous low Mg intake for two generations induces exclusive loss of dopaminergic neurons in in rats, and may support the Mg hypothesis in the pathogenesis of PDC of Guam.
Collapse
Affiliation(s)
- Kiyomitsu Oyanagi
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Japan.
| |
Collapse
|
47
|
Saito Y, Suzuki K, Hulette CM, Murayama S. Aberrant phosphorylation of alpha-synuclein in human Niemann-Pick type C1 disease. J Neuropathol Exp Neurol 2004; 63:323-8. [PMID: 15099022 DOI: 10.1093/jnen/63.4.323] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Niemann-Pick type C1 disease (NPC1) is an autosomal recessive neurovisceral storage disease caused by the mutation of NPC1 gene, resulting in perturbed intracellular transport of unesterified cholesterol. In NPC1, early-onset tauopathy is a constant feature. In addition, in NPC1 patients with ApoE epsilon4 homozygosity, deposition of A beta occurs mimicking Alzheimer disease (AD). Since AD is frequently associated with neuronal expression of alpha-synuclein, we investigated phosphorylated alpha-synuclein (psyn) immunoreactivity in the brains of 12 NPC1 patients, ages at death ranging from 9 months to 55 years. Psyn immunoreactivity was demonstrated in the perikarya of storage neurons and oligodendroglia in 10 cases. The immunoreactivity appeared more intense in subjects who had the ApoE epsilon4 allele. Lewy bodies were found in the substantia nigra in 2 of these cases. The psyn immunoreactivity was most intense in the substantia nigra where tauopathy was most severe. Phosphorylated tau and alpha-synuclein frequently colocalized. This study first documents alpha-synucleinopathy in NPC1. This observation suggests that the defect in intracellular cholesterol trafficking in NPC1 may provoke aberrant phosphorylation of alpha-synuclein and tau, and that this phosphorylation is enhanced by the ApoE epsilon4 allele. Thus, elucidation of metabolic pathways in NPC1 could provide clues to common mechanisms associated with neurodegeneration.
Collapse
Affiliation(s)
- Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Lee VMY, Giasson BI, Trojanowski JQ. More than just two peas in a pod: common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases. Trends Neurosci 2004; 27:129-34. [PMID: 15036877 DOI: 10.1016/j.tins.2004.01.007] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Intracytoplasmic filamentous aggregates, such as neurofibrillary tangles in Alzheimer's disease and Lewy bodies in Parkinson's disease, are composed of the proteins tau and alpha-synuclein, respectively. These pathological inclusions are linked directly to the etiology and mechanisms of disease in a wide spectrum of neurodegenerative disorders, termed 'tauopathies' and 'synucleinopathies'. Emerging evidence indicates that there is frequent overlap of the pathological and clinical features of patients with tauopathies and synucleinopathies, thereby re-enforcing the notion that these disorders might be linked mechanistically. Indeed, several lines of investigation suggest that tau and alpha-synuclein might constitute a unique class of unstructured proteins that assemble predominantly into homopolymeric (rather than heteropolymeric) fibrils, which deposit mainly in separate amyloid inclusions, but occasionally deposit together. Thus, the ability of tau and alpha-synuclein to affect each other directly or indirectly might contribute to the overlap in the clinical and pathological features of tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Virginia M-Y Lee
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, the University of Pennsylvania, Philadelphia, PA 19104-4283, USA.
| | | | | |
Collapse
|
49
|
Norris EH, Giasson BI, Lee VMY. α-Synuclein: Normal Function and Role in Neurodegenerative Diseases. Curr Top Dev Biol 2004; 60:17-54. [PMID: 15094295 DOI: 10.1016/s0070-2153(04)60002-0] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synucleins are a family of small, highly charged proteins expressed predominantly in neurons. Since their discovery and characterization during the last decade, much has been learned about their structure, potential functions, interactions with other proteins, and roles in disease. One of these proteins, alpha-synuclein (alpha-syn), is the major building block of pathological inclusions that characterize many neurodegenerative disorders, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and neurodegeneration with brain iron accumulation type 1 (NBIA-1), which collectively are termed synucleinopathies. Furthermore, genetic and biological studies support a role for alpha-syn in the pathophysiology of these diseases. Therefore, research must be continued in order to better understand the functions of the synuclein proteins under normal physiological conditions as well as their role in diseases.
Collapse
Affiliation(s)
- Erin H Norris
- Center for Neurodegenerative Disease Research and the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
50
|
Abstract
Synucleinopathies comprise a diverse group of neurodegenerative proteinopathies that share common pathological lesions composed of aggregates of conformational and posttranslational modifications of alpha-synuclein in selected populations of neurons and glia. Abnormal filamentous aggregates of misfolded alpha-synuclein protein are the major components of Lewy bodies, dystrophic (Lewy) neurites, and the Papp-Lantos filaments in oligodendroglia and neurons in multiple system atrophy linked to degeneration of affected brain regions. The synucleinopathies include (1) Lewy body disorders and dementia with Lewy bodies, (2) multiple system atrophy (MSA), and (3) Hallervorden-Spatz disease. (1) The pathological diagnosis of Lewy body disorders and dementia with Lewy bodies is established by validated consensus criteria based on semiquantitative assessment of subcortical and cortical Lewy bodies as their common hallmarks. They are accompanied by subcortical multisystem degeneration with neuronal loss and gliosis with or without Alzheimer pathologic state. Lewy bodies also occur in numerous other disorders, including pure autonomic failure, neuroaxonal dystrophies, and various amyloidoses and tauopathies. (2) Multiple system atrophy, a sporadic, adult-onset degenerative movement disorder of unknown cause, is characterized by alpha-synuclein-positive glial cytoplasmic and rare neuronal inclusions throughout the central nervous system associated with striatonigral degeneration, olivopontocerebellar atrophy, and involvement of medullar and spinal autonomic nuclei. (3) In neurodegeneration with brain iron accumulation type I, or Hallervorden-Spatz disease, alpha-synuclein is present in axonal spheroids and glial and neuronal inclusions. While the identity of the major components of Lewy bodies suggests that a pathway leading from normal soluble to abnormal misfolded filamentous proteins is central for their pathogenesis, regardless of the primary disorder, there are conformational differences in alpha-synuclein between neuronal and glial aggregates, showing nonuniform mapping for its epitopes. Despite several cellular and transgenic models, it is not clear whether inclusion body formation is an adaptive/neuroprotective or a pathogenic reaction/process generated in response to different, mostly undetermined, functional triggers linked to neurodegeneration.
Collapse
|