1
|
Wexler Y, Kiere Y, Sobol G, Nuriel R, Azoulay‐Portal S, Cohen A, Toporik H, Pasmanik‐Chor M, Finkler A, Shkolnik D. Modulation of Root Hydrotropism and Recovery From Drought by MIZ1-like Genes in Tomato. PLANT, CELL & ENVIRONMENT 2025; 48:2739-2754. [PMID: 39526383 PMCID: PMC11893929 DOI: 10.1111/pce.15260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Drought limits crop performance worldwide. Plant roots' ability to grow toward moisture, termed hydrotropism, is considered one strategy for optimizing water recruitment from the growth medium. Based on the sequence of the hydrotropism-indispensable MIZ1 protein in Arabidopsis thaliana, we identify hydrotropism and drought-responsive genes in tomato. We utilized CRISPR/Cas9 genome-editing technology for targeted mutagenesis of three hydrotropism-associated loci (MIZ1-like) in tomato (Solanum lycopersicum). We show that the three tomato MIZ1-like genes are drought-responsive and two of them are hydrostimulation-responsive. Examination of the root hydrotropic response of triple and double mutants indicated the gene SlMIZ1-1 as indispensable for tomato root hydrotropism. Moreover, expression of the SlMIZ1-1 gene in the Arabidopsis miz1 mutant effectively complemented the lost MIZ1 functionality, including root hydrotropic bending and generation of hydrotropic Ca2+ signals. Transcriptome analysis of hydrostimulated tomato root tips under control gravity and continuous clinorotation conditions was performed to identify gravitropism- and hydrotropism-responsive genes. This analysis suggested the involvement of ethylene and ABA signalling in modulating the interplay between hydrotropism and gravitropism. Unveiling the molecular mechanisms that underlie hydrotropism and drought response holds great potential for improving crop performance under limiting water availability due to global climate changes.
Collapse
Affiliation(s)
- Yonatan Wexler
- School of Plant Sciences and Food Security, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Yvonne Kiere
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Guy Sobol
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Roye Nuriel
- School of Plant Sciences and Food Security, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Shaked Azoulay‐Portal
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Amir Cohen
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Hila Toporik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| | - Metsada Pasmanik‐Chor
- Bioinformatics Unit, G.S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Aliza Finkler
- School of Plant Sciences and Food Security, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Doron Shkolnik
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and EnvironmentHebrew University of JerusalemRehovotIsrael
| |
Collapse
|
2
|
Liang H, Wang L, Gong F, Chang J. Functions of plant hormones and calcium signaling in regulating root hydrotropism. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154490. [PMID: 40185051 DOI: 10.1016/j.jplph.2025.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Hydrotropism enables plant roots to grow toward areas with high water availability. This capacity is essential for plant growth and development, particularly when water availability is a limiting factor. The physiological characterization of hydrotropism began approximately 270 years ago, and substantial progress has been made in elucidating its molecular mechanisms over the past two decades. Auxin, cytokinin, abscisic acid, brassinosteroid, and calcium have been reported by various laboratories to regulate root hydrotropism. However, the interrelation among these regulatory components in controlling root hydrotropism remains unknown. This review summarized the regulatory mechanisms of hydrotropism from the perspective of plant hormones and calcium, aiming to elucidate the internal cross-talks between their signaling pathways. Additionally, we addressed central scientific questions, provided insights into future research directions, and highlighted strategies for advancing the application of root hydrotropism in agricultural breeding.
Collapse
Affiliation(s)
- Huimin Liang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ling Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fuqiang Gong
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinke Chang
- School of Life Sciences, Northwest Agriculture & Forestry University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Fu W, Shen J, He L, Wang L, Li J, Chang J. MIZU-KUSSEI 1 regulates root hydrotropism and cytokinin signal transduction by interacting with cytokinin receptors. PLANT PHYSIOLOGY 2025; 197:kiaf129. [PMID: 40184189 DOI: 10.1093/plphys/kiaf129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
Roots exhibit hydrotropism in response to moisture gradients to avoid drought stress. Several proteins have been reported to regulate this process, with MIZU-KUSSEI 1 (MIZ1) being identified as a pivotal regulator. Although most studies on the regulatory mechanisms of root hydrotropism have focused on MIZ1, the molecular mechanisms of MIZ1 are poorly understood. Here, we report that MIZ1 plays an essential role in regulating cytokinin signal transduction by interacting with cytokinin receptors, ARABIDOPSIS HISTIDINE KINASEs (AHKs), in Arabidopsis (Arabidopsis thaliana). The miz1-2 mutant exhibited a decreased response to cytokinins, whereas overexpressors of MIZ1 showed an increased response to cytokinins. The expression levels of 2 Type-A Arabidopsis response regulators (ARRs) of cytokinins, ARR16 and ARR17, were downregulated, and their upregulation by cytokinins was substantially attenuated in miz1-2 compared with those in Col-0. Overexpression of MIZ1 partially rescued the decreased response of the ahk2-5 ahk3-7 double mutant to cytokinins. MIZ1 can physically interact with AHKs, as revealed by yeast 2-hybrid, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (co-IP) assays. Mutants of cytokinin signal transduction, such as ahk2-5 ahk3-7 ahk4-2 and arr3 arr4 arr5 arr6 arr8 arr9 arr16-C arr17-C, showed a greatly reduced hydrotropic response, similar to miz1-2. Additionally, MIZ1 also regulates the homeostasis of cytokinins by controlling the expression of genes encoding their biosynthetic and catabolic enzymes. Our results reveal the critical role of MIZ1 in regulating the cytokinin signaling response, which is essential for the root hydrotropic response.
Collapse
Affiliation(s)
- Weihao Fu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Juan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liming He
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ling Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jinke Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Khandani Y, Sarikhani H, Gholami M, Chehregani Rad A, Shirani Bidabadi S. Alteration in certain growth, biochemical, and anatomical indices of grapevine ( Vitis vinifera) in response to the foliar application of auxin under water deficit. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24059. [PMID: 39388429 DOI: 10.1071/fp24059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Drought-induced stress represents one of the most economically detrimental natural phenomena impacting grapevine (Vitis vinifera ) development, yield, and fruit characteristics. Also, auxin is one of the most important plant growth regulators that can reduce damage caused by stress in plants. In this study, the impact of exogenously sprayed auxin (0, 50, and 200mgL-1 ) on growth, biochemical, and anatomical parameters was investigated in two grapevine varieties (cvs. 'Rashe' and 'Fakhri') under water deficit. According to our findings, water deficit led to a notable decrease in growth, protein content, and anatomical parameters; but significantly enhanced electrolyte leakage. Grapevines exposed to water deficit exhibited substantial increases in total phenolic compounds and antioxidant activity. Applying 50mgL-1 napthalene acetic acid (NAA) reduced the effects of water deficit in both grapevine cultivars by decreasing electrolyte leakage (15% in 'Rashe' and 20% in 'Fakhri'), and accumulating protein content (22% 'Rashe' and 32% 'Fakhri'), total phenolic compounds (33%'Rashe' and 40% 'Fakhri'), and antioxidant capacity (11% 'Rashe' and 39% 'Fakhri'); anantomical parameters were also improved. However, application of 200mgL-1 NAA had adverse effects on growth and biochemical traits of grapevines, with a more pronounced impact on root growth and anatomical parameters compared to other NAA concentrations. In conclusion, the application of 50mgL-1 NAA enhanced grapevine growth, enabling them to better thrive under water deficit.
Collapse
Affiliation(s)
- Yaser Khandani
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mansour Gholami
- Department of Horticultural Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | | | | |
Collapse
|
5
|
Wexler Y, Schroeder JI, Shkolnik D. Hydrotropism mechanisms and their interplay with gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1732-1746. [PMID: 38394056 DOI: 10.1111/tpj.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.
Collapse
Affiliation(s)
- Yonatan Wexler
- Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Doron Shkolnik
- Faculty of Agriculture, Food and Environment, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
6
|
Hong Y, Liu S, Chen Y, Yao Z, Jiang S, Wang L, Zhu X, Xu W, Zhang J, Li Y. Amyloplast is involved in the MIZ1-modulated root hydrotropism. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154224. [PMID: 38507925 DOI: 10.1016/j.jplph.2024.154224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Roots exhibit hydrotropism in response to moisture gradients, with the hydrotropism-related gene Mizu-kussei1 (MIZ1) playing a role in regulating root hydrotropism in an oblique orientation. However, the mechanisms underlying MIZ1-regulated root hydrotropism are not well understood. In this study, we employed obliquely oriented experimental systems to investigate root hydrotropism in Arabidopsis. We found that the miz1 mutant displays reduced root hydrotropism but increased root gravitropism following hydrostimulation, as compared to wild-type plants. Conversely, overexpression of AtMIZ1 leads to enhanced root hydrotropism but decreased root gravitropism following hydrostimulation, as compared to wild-type plants. Using co-immunoprecipitation followed by mass spectrometry (IP-MS), we explored proteins that interact with AtMIZ1, and we identified PGMC1 co-immunoprecipitated with MIZ1 in vivo. Furthermore, the miz1 mutant exhibited higher expression of the PGMC1 gene and increased phosphoglucomutase (PGM) activity, while AtMIZ1 overexpressors resulted in lower expression of the PGMC1 gene, reduced amyloplast amount, and reduced PGM activity in comparison to wild-type roots. In addition, different Arabidopsis natural accessions having difference in their hydrotropic response demonstrated expression level of PGMC1 was negatively correlated with hydrotropic root curvature and AtMIZ1 expression. Our results provide valuable insights into the role of amyloplast in MIZ1-regulated root hydrotropism.
Collapse
Affiliation(s)
- Yonghui Hong
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Siqi Liu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Zixuan Yao
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuqiu Jiang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Lulu Wang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China.
| | - Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Uzilday B, Takahashi K, Kobayashi A, Uzilday RO, Fujii N, Takahashi H, Turkan I. Role of Abscisic Acid, Reactive Oxygen Species, and Ca 2+ Signaling in Hydrotropism-Drought Avoidance-Associated Response of Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1220. [PMID: 38732435 PMCID: PMC11085316 DOI: 10.3390/plants13091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant roots exert hydrotropism in response to moisture gradients to avoid drought stress. The regulatory mechanism underlying hydrotropism involves novel regulators such as MIZ1 and GNOM/MIZ2 as well as abscisic acid (ABA), reactive oxygen species (ROS), and Ca2+ signaling. ABA, ROS, and Ca2+ signaling are also involved in plant responses to drought stress. Although the mechanism of moisture gradient perception remains largely unknown, the sensory apparatus has been reported to reside in the root elongation zone rather than in the root cap. In Arabidopsis roots, hydrotropism is mediated by the action of MIZ1 and ABA in the cortex of the elongation zone, the accumulation of ROS at the root curvature, and the variation in the cytosolic Ca2+ concentration in the entire root tip including the root cap and stele of the elongation zone. Moreover, root exposure to moisture gradients has been proposed to cause asymmetric ABA distribution or Ca2+ signaling, leading to the induction of the hydrotropic response. A comprehensive and detailed analysis of hydrotropism regulators and their signaling network in relation to the tissues required for their function is apparently crucial for understanding the mechanisms unique to root hydrotropism. Here, referring to studies on plant responses to drought stress, we summarize the recent findings relating to the role of ABA, ROS, and Ca2+ signaling in hydrotropism, discuss their functional sites and plausible networks, and raise some questions that need to be answered in future studies.
Collapse
Affiliation(s)
- Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
| | - Kaori Takahashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Rengin Ozgur Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
- Research Center for Space Agriculture and Horticulture, Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
- Faculty of Agricultural Sciences and Technologies, Yasar University, University Street, No. 37-39, Bornova 35100, Izmir, Turkey
| |
Collapse
|
8
|
Chang J, Li X, Shen J, Hu J, Wu L, Zhang X, Li J. Defects in the cell wall and its deposition caused by loss-of-function of three RLKs alter root hydrotropism in Arabidopsis thaliana. Nat Commun 2024; 15:2648. [PMID: 38531848 DOI: 10.1038/s41467-024-46889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Root tips can sense moisture gradients and grow into environments with higher water potential. This process is called root hydrotropism. Here, we report three closely related receptor-like kinases (RLKs) that play critical roles in root hydrotropism: ALTERED ROOT HYDROTROPIC RESPONSE 1 (ARH1), FEI1, and FEI2. Overexpression of these RLKs strongly reduce root hydrotropism, but corresponding loss-of-function mutants exhibit an increased hydrotropic response in their roots. All these RLKs show polar localization at the plasma membrane regions in root tips. The biosynthesis of the cell wall, cutin, and wax (CCW) is significantly impaired in root tips of arh1-2 fei1-C fei2-C. A series of known CCW mutants also exhibit increased root hydrotropism and reduced osmotic tolerance, similar to the characteristics of the triple mutant. Our results demonstrat that the integrity of the cell wall, cutin, and root cap wax mediate a trade-off between root hydrotropism and osmotic tolerance.
Collapse
Affiliation(s)
- Jinke Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaopeng Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Juan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jun Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Liangfan Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
- Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Li Y, Wang L, Chen Y, Zhang J, Xu W. Recovery of root hydrotropism in miz1 mutant by eliminating root gravitropism. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154144. [PMID: 38104389 DOI: 10.1016/j.jplph.2023.154144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Mizu-kussei1 (MIZ1) plays a crucial role in root hydrotropism, but it is still unclear whether auxin-mediated gravitropism is involved in MIZ1-modulated root hydrotropism. This study aimed to investigate whether the hydrotropism of the Arabidopsis miz1 mutants could be restored through pharmacological inhibition of auxin transport or genetic modification in root gravitropism. Our findings indicate that the hydrotropic defects of miz1 mutant can be partly recovered by using an auxin transport inhibitor. Furthermore, miz1/pin2 double mutants exhibit more pronounced defects in root gravitropism compared to the wild type, while still displaying a normal hydrotropic response similar to the wild type. These results suggest that the elimination of gravitropism enables miz1 roots to become hydrotropically responsive to moisture gradients.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Lulu Wang
- Jiangsu Key Laboratory of Crop Genomics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Yadi Chen
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, 225009, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Dalal M, Mansi, Mayandi K. Zoom-in to molecular mechanisms underlying root growth and function under heterogeneous soil environment and abiotic stresses. PLANTA 2023; 258:108. [PMID: 37898971 DOI: 10.1007/s00425-023-04262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023]
Abstract
MAIN CONCLUSION The review describes tissue-specific and non-cell autonomous molecular responses regulating the root system architecture and function in plants. Phenotypic plasticity of roots relies on specific molecular and tissue specific responses towards local and microscale heterogeneity in edaphic factors. Unlike gravitropism, hydrotropism in Arabidopsis is regulated by MIZU KUSSIE1 (MIZ1)-dependent asymmetric distribution of cytokinin and activation of Arabidopsis response regulators, ARR16 and ARR17 on the lower water potential side of the root leading to higher cell division and root bending. The cortex specific role of Abscisic acid (ABA)-activated SNF1-related protein kinase 2.2 (SnRK2.2) and MIZ1 in elongation zone is emerging for hydrotropic curvature. Halotropism involves clathrin-mediated internalization of PIN FORMED 2 (PIN2) proteins at the side facing higher salt concentration in the root tip, and ABA-activated SnRK2.6 mediated phosphorylation of cortical microtubule-associated protein Spiral2-like (SP2L) in the root transition zone, which results in anisotropic cell expansion and root bending away from higher salt. In hydropatterning, Indole-3-acetic acid 3 (IAA3) interacts with SUMOylated-ARF7 (Auxin response factor 7) and prevents expression of Lateral organ boundaries-domain 16 (LBD16) in air-side of the root, while on wet side of the root, IAA3 cannot repress the non-SUMOylated-ARF7 thereby leading to LBD16 expression and lateral root development. In root vasculature, ABA induces expression of microRNA165/microRNA166 in endodermis, which moves into the stele to target class III Homeodomain leucine zipper protein (HD-ZIP III) mRNA in non-cell autonomous manner. The bidirectional gradient of microRNA165/6 and HD-ZIP III mRNA regulates xylem patterning under stress. Understanding the tissue specific molecular mechanisms regulating the root responses under heterogeneous and stress environments will help in designing climate-resilient crops.
Collapse
Affiliation(s)
- Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Mansi
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Karthikeyan Mayandi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
11
|
Pang L, Kobayashi A, Atsumi Y, Miyazawa Y, Fujii N, Dietrich D, Bennett MJ, Takahashi H. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 control not only positive hydrotropism but also phototropism in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5026-5038. [PMID: 37220914 DOI: 10.1093/jxb/erad193] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 05/25/2023]
Abstract
In response to unilateral blue light illumination, roots of some plant species such as Arabidopsis thaliana exhibit negative phototropism (bending away from light), which is important for light avoidance in nature. MIZU-KUSSEI1 (MIZ1) and GNOM/MIZ2 are essential for positive hydrotropism (i.e. in the presence of a moisture gradient, root bending towards greater water availability). Intriguingly, mutations in these genes also cause a substantial reduction in phototropism. Here, we examined whether the same tissue-specific sites of expression required for MIZ1- and GNOM/MIZ2-regulated hydrotropism in Arabidopsis roots are also required for phototropism. The attenuated phototropic response of miz1 roots was completely restored when a functional MIZ1-green fluorescent protein (GFP) fusion was expressed in the cortex of the root elongation zone but not in other tissues such as root cap, meristem, epidermis, or endodermis. The hydrotropic defect and reduced phototropism of miz2 roots were restored by GNOM/MIZ2 expression in either the epidermis, cortex, or stele, but not in the root cap or endodermis. Thus, the sites in root tissues that are involved in the regulation of MIZ1- and GNOM/MIZ2-dependent hydrotropism also regulate phototropism. These results suggest that MIZ1- and GNOM/MIZ2-mediated pathways are, at least in part, shared by hydrotropic and phototropic responses in Arabidopsis roots.
Collapse
Affiliation(s)
- Lei Pang
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuka Atsumi
- Graduate School of Science and Engineering, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Yutaka Miyazawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Daniela Dietrich
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Research Center for Space Agriculture and Horticulture, Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
12
|
Akita K, Miyazawa Y. Auxin biosynthesis, transport, and response directly attenuate hydrotropism in the latter stages to fine-tune root growth direction in Arabidopsis. PHYSIOLOGIA PLANTARUM 2023; 175:e14051. [PMID: 37882259 DOI: 10.1111/ppl.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Roots detect water potential gradients in the soil and orient toward moister areas, a response known as hydrotropism that aids drought avoidance. Although auxin is crucial in tropism, its polar transport is not essential for hydrotropism in Arabidopsis. Moreover, antiauxin treatments in Arabidopsis produced inconsistent outcomes: some studies indicated auxin action was necessary while others did not. In this study, we examined auxin's physiological role in hydrotropism. We found that inhibiting auxin biosynthesis or transport intensified hydrotropic bending not only in wild-type, but also in hydrotropism defective mutants, namely miz1-1 and miz2 plants. Given that miz1-1 and miz2 exhibited compromised hydrotropism even under clinorotated conditions, we infer that auxin biosynthesis and transport directly suppress hydrotropism. Additionally, tir1-10, afb1-3, and afb2-3 displayed augmented hydrotropism. We observed a significant delay in hydrotropic bending in arf7-1arf19-1, suggesting that ARF7 and ARF19 amplify hydrotropism in its early stages. To discern the functional ties of ARF7/19 with MIZ1 and MIZ2, we studied the hydrotropic phenotypes of arf7-1arf19-1miz1-1 and arf7-1arf19-1miz2. Both triple mutants had diminished early-stage hydrotropism yet showed partial but significant recovery in the later stages. Given MIZ1's role in reducing auxin levels and MIZ2's essentiality for MIZ1 functionality, we conclude that auxin inhibits hydrotropism downstream of MIZ1 in later stages to refine root bending. Furthermore, it is posited that gene expression driven by ARF7 and ARF19 is pivotal for early-stage root hydrotropism.
Collapse
Affiliation(s)
- Kotaro Akita
- Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | | |
Collapse
|
13
|
Mao B, Takahashi H, Takahashi H, Fujii N. Diversity of root hydrotropism among natural variants of Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2022; 135:799-808. [PMID: 36149514 PMCID: PMC10039817 DOI: 10.1007/s10265-022-01412-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/08/2022] [Indexed: 05/30/2023]
Abstract
Root gravitropism affects root hydrotropism. The interference intensity of root gravitropism with root hydrotropism differs among plant species. However, these differences have not been well compared within a single plant species. In this study, we compared root hydrotropism in various natural variants of Arabidopsis under stationary conditions. As a result, we detected a range of root hydrotropism under stationary conditions among natural Arabidopsis variants. Comparison of root gravitropism and root hydrotropism among several Arabidopsis natural variants classified natural variants that decreased root hydrotropism into two types; namely one type that expresses root gravitropism and root hydrotropism weaker than Col-0, and the other type that expresses weaker root hydrotropism than Col-0 but expresses similar root gravitropism with Col-0. However, root hydrotropism of all examined Arabidopsis natural variants was facilitated by clinorotation. These results suggested that the interference of root gravitropism with root hydrotropism is conserved among Arabidopsis natural variants, although the intensity of root gravitropism interference with root hydrotropism differs.
Collapse
Affiliation(s)
- Boyuan Mao
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hiroki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan.
| |
Collapse
|
14
|
Abstract
Plant hormones are signalling compounds that regulate crucial aspects of growth, development and environmental stress responses. Abiotic stresses, such as drought, salinity, heat, cold and flooding, have profound effects on plant growth and survival. Adaptation and tolerance to such stresses require sophisticated sensing, signalling and stress response mechanisms. In this Review, we discuss recent advances in understanding how diverse plant hormones control abiotic stress responses in plants and highlight points of hormonal crosstalk during abiotic stress signalling. Control mechanisms and stress responses mediated by plant hormones including abscisic acid, auxin, brassinosteroids, cytokinins, ethylene and gibberellins are discussed. We discuss new insights into osmotic stress sensing and signalling mechanisms, hormonal control of gene regulation and plant development during stress, hormone-regulated submergence tolerance and stomatal movements. We further explore how innovative imaging approaches are providing insights into single-cell and tissue hormone dynamics. Understanding stress tolerance mechanisms opens new opportunities for agricultural applications.
Collapse
|
15
|
Maqbool S, Hassan MA, Xia X, York LM, Rasheed A, He Z. Root system architecture in cereals: progress, challenges and perspective. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:23-42. [PMID: 35020968 DOI: 10.1111/tpj.15669] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Roots are essential multifunctional plant organs involved in water and nutrient uptake, metabolite storage, anchorage, mechanical support, and interaction with the soil environment. Understanding of this 'hidden half' provides potential for manipulation of root system architecture (RSA) traits to optimize resource use efficiency and grain yield in cereal crops. Unfortunately, root traits are highly neglected in breeding due to the challenges of phenotyping, but could have large rewards if the variability in RSA traits can be fully exploited. Until now, a plethora of genes have been characterized in detail for their potential role in improving RSA. The use of forward genetics approaches to find sequence variations in genes underpinning desirable RSA would be highly beneficial. Advances in computer vision applications have allowed image-based approaches for high-throughput phenotyping of RSA traits that can be used by any laboratory worldwide to make progress in understanding root function and dissection of the genetics. At the same time, the frontiers of root measurement include non-invasive methods like X-ray computer tomography and magnetic resonance imaging that facilitate new types of temporal studies. Root physiology and ecology are further supported by spatiotemporal root simulation modeling. The discovery of component traits providing improved resilience and yield advantage in target environments is a key necessity for mainstreaming root-based cereal breeding. The integrated use of pan-genome resources, now available in most cereals, coupled with new in-field phenotyping platforms has the potential for precise selection of superior genotypes with improved RSA.
Collapse
Affiliation(s)
- Saman Maqbool
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Adeel Hassan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Larry M York
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Wheat and Maize Improvement Center (CIMMYT) China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
16
|
Abstract
Tropisms are growth-based plant directional movements, allowing plants to respond to their living environments. Plant roots have developed various tropic responses, including gravitropism, hydrotropism, chemotropism, and halotropism, in response to the gravity, moisture gradient, nutrient gradient, and salinity gradient, respectively. Revealed mechanisms of several tropic responses suggested that plant hormone gradient and cell division activity play key roles in determining these responses. Approaches to measure cell division and hormone gradients, however, have rarely been applied in root tropic analyses. Here, we describe a number of methods to quantify cell division and hormone gradients during root tropic analysis. These approaches are mainly based on our previous researches on root hydrotropism.
Collapse
|
17
|
Li Y, Yuan W, Li L, Dai H, Dang X, Miao R, Baluška F, Kronzucker HJ, Lu C, Zhang J, Xu W. Comparative analysis reveals gravity is involved in the MIZ1-regulated root hydrotropism. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7316-7330. [PMID: 32905588 DOI: 10.1093/jxb/eraa409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Hydrotropism is the directed growth of roots toward the water found in the soil. However, mechanisms governing interactions between hydrotropism and gravitropism remain largely unclear. In this study, we found that an air system and an agar-sorbitol system induced only oblique water-potential gradients; an agar-glycerol system induced only vertical water-potential gradients; and a sand system established both oblique and vertical water-potential gradients. We employed obliquely oriented and vertically oriented experimental systems to study hydrotropism in Arabidopsis and tomato plants. Comparative analyses using different hydrotropic systems showed that gravity hindered the ability of roots to search for obliquely oriented water, whilst facilitating roots' search for vertically oriented water. We found that the gravitropism-deficient mutant aux1 showed enhanced hydrotropism in the oblique orientation but impaired root elongation towards water in the vertical orientation. The miz1 mutant exhibited deficient hydrotropism in the oblique orientation but normal root elongation towards water in the vertical orientation. Importantly, in contrast to miz1, the miz1/aux1 double mutant exhibited hydrotropic bending in the oblique orientation and attenuated root elongation towards water in the vertical orientation. Our results suggest that gravitropism is required for MIZ1-regulated root hydrotropism in both the oblique orientation and the vertical orientation, providing further insight into the role of gravity in root hydrotropism.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Wei Yuan
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Luocheng Li
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Hui Dai
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Xiaolin Dang
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - Rui Miao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - Herbert J Kronzucker
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Stake Key Laboratory of Agrobiotechnology and Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and college of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, China
| |
Collapse
|
18
|
Li Y, Yuan W, Li L, Miao R, Dai H, Zhang J, Xu W. Light-Dark Modulates Root Hydrotropism Associated with Gravitropism by Involving Amyloplast Response in Arabidopsis. Cell Rep 2020; 32:108198. [PMID: 32997985 DOI: 10.1016/j.celrep.2020.108198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/28/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The role of amyloplasts in the interactions between hydrotropism and gravitropism has been previously described. However, the effect of light-dark on the interactions between the two tropisms remains unclear. Here, by developing a method that makes it possible to mimic natural conditions more closely than the conventional lab conditions, we show that hydrotropism is higher in wild-type Arabidopsis seedlings whose shoots are illuminated but whose roots are grown in the dark compared with seedlings that are fully exposed to light. Root gravitropism is substantially decreased because of the reduction of amyloplast content in the root tip with decreased gene expression in PGM1 (a key starch biosynthesis gene), which may contribute to enhanced root hydrotropism under darkness. Furthermore, the starch-deficient mutant pgm1-1 exhibits greater hydrotropism compared with wild-type. Our results suggest that amyloplast response and starch reduction occur under light-dark modulation, followed by decreased gravitropism and enhanced hydrotropism in Arabidopsis root.
Collapse
Affiliation(s)
- Ying Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Wei Yuan
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Luocheng Li
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Rui Miao
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Hui Dai
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China.
| |
Collapse
|
19
|
Wang Y, Afeworki Y, Geng S, Kanchupati P, Gu M, Martins C, Rude B, Tefera H, Kim Y, Ge X, Auger D, Chen S, Yang P, Hu T, Wu Y. Hydrotropism in the primary roots of maize. THE NEW PHYTOLOGIST 2020; 226:1796-1808. [PMID: 32020611 DOI: 10.1111/nph.16472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Recent studies mainly in Arabidopsis have renewed interest and discussion in some of the key issues in hydrotropism of roots, such as the site of water sensing and the involvement of auxin. We examined hydrotropism in maize (Zea mays) primary roots. We determined the site of water sensing along the root using a nonintrusive method. Kinematic analysis was conducted to investigate spatial root elongation during hydrotropic response. Indole-3-acetic acid (IAA) and other hormones were quantified using LC-MS/MS. The transcriptome was analyzed using RNA sequencing. Main results: The very tip of the root is the most sensitive to the hydrostimulant. Hydrotropic bending involves coordinated adjustment of spatial cell elongation and cell flux. IAA redistribution occurred in maize roots, preceding hydrotropic bending. The redistribution is caused by a reduction of IAA content on the side facing a hydrostimulant, resulting in a higher IAA content on the dry side. Transcriptomic analysis of the elongation zone prior to bending identified IAA response and lignin synthesis/wall cross-linking as some of the key processes occurring during the early stages of hydrotropic response. We conclude that maize roots differ from Arabidopsis in the location of hydrostimulant sensing and the involvement of IAA redistribution.
Collapse
Affiliation(s)
- Yafang Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yohannes Afeworki
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, 57007, USA
| | - Sisi Geng
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Praveena Kanchupati
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Muyu Gu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Chidi Martins
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Brady Rude
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Haileselassie Tefera
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Yongjun Kim
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, 57007, USA
| | - Donald Auger
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| |
Collapse
|
20
|
Miyazawa Y, Takahashi H. Molecular mechanisms mediating root hydrotropism: what we have observed since the rediscovery of hydrotropism. JOURNAL OF PLANT RESEARCH 2020; 133:3-14. [PMID: 31797131 PMCID: PMC7082378 DOI: 10.1007/s10265-019-01153-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/19/2019] [Indexed: 06/02/2023]
Abstract
Roots display directional growth toward moisture in response to a water potential gradient. Root hydrotropism is thought to facilitate plant adaptation to continuously changing water availability. Hydrotropism has not been as extensively studied as gravitropism. However, comparisons of hydrotropic and gravitropic responses identified mechanisms that are unique to hydrotropism. Regulatory mechanisms underlying the hydrotropic response appear to differ among different species. We recently performed molecular and genetic analyses of root hydrotropism in Arabidopsis thaliana. In this review, we summarize the current knowledge of specific mechanisms mediating root hydrotropism in several plant species.
Collapse
Affiliation(s)
- Yutaka Miyazawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, 990-8560, Japan.
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
21
|
Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Res 2019; 29:984-993. [PMID: 31601978 PMCID: PMC6951336 DOI: 10.1038/s41422-019-0239-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/05/2019] [Indexed: 11/17/2022] Open
Abstract
The phenomenon of plant root tips sensing moisture gradient in soil and growing towards higher water potential is designated as root hydrotropism, which is critical for plants to survive when water is a limited factor. Molecular mechanisms regulating such a fundamental process, however, are largely unknown. Here we report our identification that cytokinins are key signaling molecules directing root growth orientation in a hydrostimulation (moisture gradient) condition. Lower water potential side of the root tip shows more cytokinin response relative to the higher water potential side. Consequently, two cytokinin downstream type-A response regulators, ARR16 and ARR17, were found to be up-regulated at the lower water potential side, causing increased cell division in the meristem zone, which allows the root to bend towards higher water potential side. Genetic analyses indicated that various cytokinin biosynthesis and signaling mutants, including the arr16 arr17 double mutant, are significantly less responsive to hydrostimulation. Consistently, treatments with chemical inhibitors interfering with either cytokinin biosynthesis or cell division completely abolished root hydrotropic response. Asymmetrically induced expression of ARR16 or ARR17 effectively led to root bending in both wild-type and miz1, a previously known hydrotropism-defective mutant. These data demonstrate that asymmetric cytokinin distribution is a primary determinant governing root hydrotropism.
Collapse
|
22
|
Lehman TA, Sanguinet KA. Auxin and Cell Wall Crosstalk as Revealed by the Arabidopsis thaliana Cellulose Synthase Mutant Radially Swollen 1. PLANT & CELL PHYSIOLOGY 2019; 60:1487-1503. [PMID: 31004494 DOI: 10.1093/pcp/pcz055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Plant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, USA
| |
Collapse
|
23
|
Motte H, Vanneste S, Beeckman T. Molecular and Environmental Regulation of Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:465-488. [PMID: 30822115 DOI: 10.1146/annurev-arplant-050718-100423] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In order to optimally establish their root systems, plants are endowed with several mechanisms to use at distinct steps during their development. In this review, we zoom in on the major processes involved in root development and detail important new insights that have been generated in recent studies, mainly using the Arabidopsis root as a model. First, we discuss new insights in primary root development with the characterization of tissue-specific transcription factor complexes and the identification of non-cell-autonomous control mechanisms in the root apical meristem. Next, root branching is discussed by focusing on the earliest steps in the development of a new lateral root and control of its postemergence growth. Finally, we discuss the impact of phosphate, nitrogen, and water availability on root development and summarize current knowledge about the major molecular mechanisms involved.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium;
| |
Collapse
|
24
|
Muthert LWF, Izzo LG, van Zanten M, Aronne G. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. FRONTIERS IN PLANT SCIENCE 2019; 10:1807. [PMID: 32153599 PMCID: PMC7047216 DOI: 10.3389/fpls.2019.01807] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/24/2019] [Indexed: 05/12/2023]
Abstract
Root tropisms are important responses of plants, allowing them to adapt their growth direction. Research on plant tropisms is indispensable for future space programs that envisage plant-based life support systems for long-term missions and planet colonization. Root tropisms encompass responses toward or away from different environmental stimuli, with an underexplored level of mechanistic divergence. Research into signaling events that coordinate tropistic responses is complicated by the consistent coincidence of various environmental stimuli, often interacting via shared signaling mechanisms. On Earth the major determinant of root growth direction is the gravitational vector, acting through gravitropism and overruling most other tropistic responses to environmental stimuli. Critical advancements in the understanding of root tropisms have been achieved nullifying the gravitropic dominance with experiments performed in the microgravity environment. In this review, we summarize current knowledge on root tropisms to different environmental stimuli. We highlight that the term tropism must be used with care, because it can be easily confused with a change in root growth direction due to asymmetrical damage to the root, as can occur in apparent chemotropism, electrotropism, and magnetotropism. Clearly, the use of Arabidopsis thaliana as a model for tropism research contributed much to our understanding of the underlying regulatory processes and signaling events. However, pronounced differences in tropisms exist among species, and we argue that these should be further investigated to get a more comprehensive view of the signaling pathways and sensors. Finally, we point out that the Cholodny-Went theory of asymmetric auxin distribution remains to be the central and unifying tropistic mechanism after 100 years. Nevertheless, it becomes increasingly clear that the theory is not applicable to all root tropistic responses, and we propose further research to unravel commonalities and differences in the molecular and physiological processes orchestrating root tropisms.
Collapse
Affiliation(s)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- *Correspondence: Luigi Gennaro Izzo,
| | - Martijn van Zanten
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
25
|
MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca 2+ signal essential for root water tracking in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:8031-8036. [PMID: 30012618 PMCID: PMC6077737 DOI: 10.1073/pnas.1804130115] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ever since Darwin postulated that the tip of the root is sensitive to moisture differences and that it "transmits an influence to the upper adjoining part, which bends towards the source of moisture" [Darwin C, Darwin F (1880) The Power of Movement in Plants, pp 572-574], the signal underlying this tropic response has remained elusive. Using the FRET-based Cameleon Ca2+ sensor in planta, we show that a water potential gradient applied across the root tip generates a slow, long-distance asymmetric cytosolic Ca2+ signal in the phloem, which peaks at the elongation zone, where it is dispersed laterally and asymmetrically to peripheral cells, where cell elongation occurs. In addition, the MIZ1 protein, whose biochemical function is unknown but is required for root curvature toward water, is indispensable for generating the slow, long-distance Ca2+ signal. Furthermore, biochemical and genetic manipulations that elevate cytosolic Ca2+ levels, including mutants of the endoplasmic reticulum (ER) Ca2+-ATPase isoform ECA1, enhance root curvature toward water. Finally, coimmunoprecipitation of plant proteins and functional complementation assays in yeast cells revealed that MIZ1 directly binds to ECA1 and inhibits its activity. We suggest that the inhibition of ECA1 by MIZ1 changes the balance between cytosolic Ca2+ influx and efflux and generates the cytosolic Ca2+ signal required for water tracking.
Collapse
|
26
|
Dietrich D. Hydrotropism: how roots search for water. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2759-2771. [PMID: 29529239 DOI: 10.1093/jxb/ery034] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
Fresh water is an increasingly scarce resource for agriculture. Plant roots mediate water uptake from the soil and have developed a number of adaptive traits such as hydrotropism to aid water foraging. Hydrotropism modifies root growth to respond to a water potential gradient in soil and grow towards areas with a higher moisture content. Abscisic acid (ABA) and a small number of genes, including those encoding ABA signal transducers, MIZ2/GNOM, and the hydrotropism-specific MIZ1, are known to be necessary for the response in Arabidopsis thaliana, whereas the role of auxin in hydrotropism appears to vary depending on the plant species. This review will describe recent progress characterizing the hormonal regulation of hydrotropism. Recent advances in identifying the sites of hydrotropic perception and response, together with its interaction with gravitropism, will also be discussed. Finally, I will describe putative mechanisms for perception of the water potential gradient and a potential role for hydrotropism in acclimatizing plants to drought conditions.
Collapse
Affiliation(s)
- Daniela Dietrich
- Centre for Plant Integrative Biology and Plant & Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
27
|
Root-tip-mediated inhibition of hydrotropism is accompanied with the suppression of asymmetric expression of auxin-inducible genes in response to moisture gradients in cucumber roots. PLoS One 2018; 13:e0189827. [PMID: 29324818 PMCID: PMC5764274 DOI: 10.1371/journal.pone.0189827] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/01/2017] [Indexed: 11/23/2022] Open
Abstract
In cucumber seedlings, gravitropism interferes with hydrotropism, which results in the nearly complete inhibition of hydrotropism under stationary conditions. However, hydrotropic responses are induced when the gravitropic response in the root is nullified by clinorotation. Columella cells in the root cap sense gravity, which induces the gravitropic response. In this study, we found that removing the root tip induced hydrotropism in cucumber roots under stationary conditions. The application of auxin transport inhibitors to cucumber seedlings under stationary conditions suppressed the hydrotropic response induced by the removal of the root tip. To investigate the expression of genes related to hydrotropism in de-tipped cucumber roots, we conducted transcriptome analysis of gene expression by RNA-Seq using seedlings exhibiting hydrotropic and gravitropic responses. Of the 21 and 45 genes asymmetrically expressed during hydrotropic and gravitropic responses, respectively, five genes were identical. Gene ontology (GO) analysis indicated that the category auxin-inducible genes was significantly enriched among genes that were more highly expressed in the concave side of the root than the convex side during hydrotropic or gravitropic responses. Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis revealed that root hydrotropism induced under stationary conditions (by removing the root tip) was accompanied by the asymmetric expression of several auxin-inducible genes. However, intact roots did not exhibit the asymmetric expression patterns of auxin-inducible genes under stationary conditions, even in the presence of a moisture gradient. These results suggest that the root tip inhibits hydrotropism by suppressing the induction of asymmetric auxin distribution. Auxin transport and distribution not mediated by the root tip might play a role in hydrotropism in cucumber roots.
Collapse
|
28
|
Eapen D, Martínez-Guadarrama J, Hernández-Bruno O, Flores L, Nieto-Sotelo J, Cassab GI. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 265:87-99. [PMID: 29223345 DOI: 10.1016/j.plantsci.2017.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize.
Collapse
Affiliation(s)
- Delfeena Eapen
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Cuernavaca, Mor. 62210, Mexico.
| | - Jesús Martínez-Guadarrama
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Cuernavaca, Mor. 62210, Mexico
| | - Oralia Hernández-Bruno
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Cuernavaca, Mor. 62210, Mexico
| | - Leonardo Flores
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Cuernavaca, Mor. 62210, Mexico
| | - Jorge Nieto-Sotelo
- Laboratorio de Fisiología Molecular, Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Zona Deportiva s/n, Ciudad Universitaria, Ciudad de Mexico, 04510, Mexico
| | - Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México,Av. Universidad 2001, Cuernavaca, Mor. 62210, Mexico.
| |
Collapse
|
29
|
Morohashi K, Okamoto M, Yamazaki C, Fujii N, Miyazawa Y, Kamada M, Kasahara H, Osada I, Shimazu T, Fusejima Y, Higashibata A, Yamazaki T, Ishioka N, Kobayashi A, Takahashi H. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments. THE NEW PHYTOLOGIST 2017; 215:1476-1489. [PMID: 28722158 DOI: 10.1111/nph.14689] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/28/2017] [Indexed: 05/27/2023]
Abstract
Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (μG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under μG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and μG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in μG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity.
Collapse
Affiliation(s)
- Keita Morohashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Miki Okamoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Chiaki Yamazaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yutaka Miyazawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Faculty of Science, Yamagata University, 1-4-12, Kojirakawa-machi, Yamagata, 990-8560, Japan
| | - Motoshi Kamada
- Advanced Engineering Services Co. Ltd, 1-6-1 Takezono, Tsukuba, 305-0032, Japan
| | - Haruo Kasahara
- Japan Manned Space Systems Co., 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Ikuko Osada
- Japan Manned Space Systems Co., 1-6-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Toru Shimazu
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Yasuo Fusejima
- Japan Space Forum, 3-2-1 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Akira Higashibata
- JEM Utilization Center, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, 305-8505, Japan
| | - Takashi Yamazaki
- Graduate School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Noriaki Ishioka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 252-5210, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
30
|
Nakajima Y, Nara Y, Kobayashi A, Sugita T, Miyazawa Y, Fujii N, Takahashi H. Auxin transport and response requirements for root hydrotropism differ between plant species. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3441-3456. [PMID: 28633373 DOI: 10.1093/jxb/erx193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The direction of auxin transport changes in gravistimulated roots, causing auxin accumulation in the lower side of horizontally reoriented roots. This study found that auxin was similarly involved in hydrotropism and gravitropism in rice and pea roots, but hydrotropism in Lotus japonicus roots was independent of both auxin transport and response. Application of either auxin transport inhibitors or an auxin response inhibitor decreased both hydrotropism and gravitropism in rice roots, and reduced hydrotropism in pea roots. However, Lotus roots treated with these inhibitors showed reduced gravitropism but an unaltered or an enhanced hydrotropic response. Inhibiting auxin biosynthesis substantially reduced both tropisms in rice and Lotus roots. Removing the final 0.2 mm (including the root cap) from the root tip inhibited gravitropism but not hydrotropism in rice seedling roots. These results suggested that modes of auxin involvement in hydrotropism differed between plant species. In rice roots, although auxin transport and responses were required for both gravitropism and hydrotropism, the root cap was involved in the auxin regulation of gravitropism but not hydrotropism. Hydrotropism in Lotus roots, however, may be regulated by a novel mechanism that is independent of both auxin transport and the TIR1/AFBs auxin response pathway.
Collapse
Affiliation(s)
- Yusuke Nakajima
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yoshitaka Nara
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoki Sugita
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yutaka Miyazawa
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
31
|
Han EH, Petrella DP, Blakeslee JJ. 'Bending' models of halotropism: incorporating protein phosphatase 2A, ABCB transporters, and auxin metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3071-3089. [PMID: 28899081 DOI: 10.1093/jxb/erx127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Salt stress causes worldwide reductions in agricultural yields, a problem that is exacerbated by the depletion of global freshwater reserves and the use of contaminated or recycled water (i.e. effluent water). Additionally, salt stress can occur as cultivated areas are subjected to frequent rounds of irrigation followed by periods of moderate to severe evapotranspiration, which can result in the heterogeneous aggregation of salts in agricultural soils. Our understanding of the later stages of salt stress and the mechanisms by which salt is transported out of cells and roots has greatly improved over the last decade. The precise mechanisms by which plant roots perceive salt stress and translate this perception into adaptive, directional growth away from increased salt concentrations (i.e. halotropism), however, are not well understood. Here, we provide a review of the current knowledge surrounding the early responses to salt stress and the initiation of halotropism, including lipid signaling, protein phosphorylation cascades, and changes in auxin metabolism and/or transport. Current models of halotropism have focused on the role of PIN2- and PIN1-mediated auxin efflux in initiating and controlling halotropism. Recent studies, however, suggest that additional factors such as ABCB transporters, protein phosphatase 2A activity, and auxin metabolism should be included in the model of halotropic growth.
Collapse
Affiliation(s)
- Eun Hyang Han
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Dominic P Petrella
- Department of Horticulture and Crop Science, The Ohio State University/OARDC, Wooster, OH, USA
| | - Joshua J Blakeslee
- Department of Horticulture and Crop Science, OARDC Metabolite Analysis Cluster (OMAC), The Ohio State University/OARDC, Wooster, OH, USA
| |
Collapse
|
32
|
Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, Bhosale R, Antoni R, Nguyen T, Hiratsuka S, Fujii N, Miyazawa Y, Bae TW, Wells DM, Owen MR, Band LR, Dyson RJ, Jensen OE, King JR, Tracy SR, Sturrock CJ, Mooney SJ, Roberts JA, Bhalerao RP, Dinneny JR, Rodriguez PL, Nagatani A, Hosokawa Y, Baskin TI, Pridmore TP, De Veylder L, Takahashi H, Bennett MJ. Root hydrotropism is controlled via a cortex-specific growth mechanism. NATURE PLANTS 2017; 3:17057. [PMID: 28481327 DOI: 10.1038/nplants.2017.57] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/23/2017] [Indexed: 05/24/2023]
Abstract
Plants can acclimate by using tropisms to link the direction of growth to environmental conditions. Hydrotropism allows roots to forage for water, a process known to depend on abscisic acid (ABA) but whose molecular and cellular basis remains unclear. Here we show that hydrotropism still occurs in roots after laser ablation removed the meristem and root cap. Additionally, targeted expression studies reveal that hydrotropism depends on the ABA signalling kinase SnRK2.2 and the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing differential cell-length increases in the cortex, but not in other cell types. We conclude that root tropic responses to gravity and water are driven by distinct tissue-based mechanisms. In addition, unlike its role in root gravitropism, the elongation zone performs a dual function during a hydrotropic response, both sensing a water potential gradient and subsequently undergoing differential growth.
Collapse
Affiliation(s)
- Daniela Dietrich
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Lei Pang
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - John A Fozard
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Véronique Boudolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Rahul Bhosale
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Regina Antoni
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
| | - Tuan Nguyen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Sotaro Hiratsuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yutaka Miyazawa
- Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Tae-Woong Bae
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Darren M Wells
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Markus R Owen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Leah R Band
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Rosemary J Dyson
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - Oliver E Jensen
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - John R King
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Centre for Mathematical Medicine &Biology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Saoirse R Tracy
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Craig J Sturrock
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Sacha J Mooney
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Jeremy A Roberts
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Rishikesh P Bhalerao
- Department of Forest Genetics and Plant Physiology, SLU, S-901 83 Umea, Sweden
- College of Science, KSU, Riyadh, Saudi Arabia
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, ES-46022 Valencia, Spain
| | - Akira Nagatani
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichiroh Hosokawa
- Graduate School of Materials Science, Nara Institute of Science &Technology, Ikoma 630-0101, Japan
| | - Tobias I Baskin
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003-9297, USA
| | - Tony P Pridmore
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- School of Computer Science, University of Nottingham, Nottingham NG8 1BB, UK
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 927), 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 927), 9052 Ghent, Belgium
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, UK
- Plant &Crop Sciences, School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| |
Collapse
|
33
|
Salazar-Blas A, Noriega-Calixto L, Campos ME, Eapen D, Cruz-Vázquez T, Castillo-Olamendi L, Sepulveda-Jiménez G, Porta H, Dubrovsky JG, Cassab GI. Robust root growth in altered hydrotropic response1 (ahr1) mutant of Arabidopsis is maintained by high rate of cell production at low water potential gradient. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:102-114. [PMID: 27912083 DOI: 10.1016/j.jplph.2016.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/28/2016] [Accepted: 11/09/2016] [Indexed: 05/03/2023]
Abstract
Hydrotropism is the directional root growth response determined by water stimulus. In a water potential gradient system (WPGS) the roots of the Arabidopsis wild type have a diminished root growth compared to normal medium (NM). In contrast, the altered hydrotropic response1 (ahr1) mutant roots maintain their robust growth in the same WPGS. The aims of this work were to ascertain how ahr1 roots could sustain growth in the WPGS, with a special focus on the integration of cellular processes involved in the signaling that determines root growth during abiotic stress and their relation to hydrotropism. Cellular analysis of the root apical meristem of ahr1 mutant contrary to the wild type showed an absence of changes in the meristem length, the elongation zone length, the length of fully elongated cells, and the cell cycle duration. The robust and steady root growth of ahr1 seedlings in the WPGS is explained by the mutant capacity to maintain cell production and cell elongation at the same level as in the NM. Analysis of auxin response at a transcriptional level showed that roots of the ahr1 mutant had a lower auxin response when grown in the WPGS, compared to wild type, indicating that auxin signaling participates in attenuation of root growth under water stress conditions. Also, wild type plants exhibited a high increase in proline content while ahr1 mutants showed minimum changes in the Normal Medium→Water Stress Medium (NM→WSM), a lower water potential gradient system than the WPGS. Accordingly, in this condition, gene expression of Δ1-6 Pyrroline-5-Carboxylate Synthetase1 (P5CS1) involved in proline synthesis strongly increased in wild type but not in ahr1 seedlings. The ahr1 phenotype shows unique features since the mutant root cells continue to proliferate and grow in the presence of a progressively negative water potential gradient at a level comparable to wild type growing in the NM. As such, it represents an exceptional resource for understanding hydrotropism.
Collapse
Affiliation(s)
- Amed Salazar-Blas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Laura Noriega-Calixto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - María E Campos
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Delfeena Eapen
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Tania Cruz-Vázquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Luis Castillo-Olamendi
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gabriela Sepulveda-Jiménez
- Doctorado en Ciencias Biológicas, Facultad de Ciencias UNAM, Centro de Desarrollo de Productos Bióticos-IPN, Calle CeProBi No. 8, Col. San Isidro, Yautepec Morelos 62731, México
| | - Helena Porta
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Joseph G Dubrovsky
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México
| | - Gladys I Cassab
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Mor. 62250, México.
| |
Collapse
|
34
|
Shkolnik D, Fromm H. The Cholodny-Went theory does not explain hydrotropism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:400-403. [PMID: 27717476 DOI: 10.1016/j.plantsci.2016.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/10/2016] [Accepted: 09/12/2016] [Indexed: 05/11/2023]
Abstract
Optimization of water foraging by plants is partially achieved by the ability of roots to direct growth towards high water potential, a phenomenon termed hydrotropism. In contrast to gravitropism and phototropism, which require auxin redistribution, as suggested by the Cholodny-Went theory, hydrotropism is not mediated by the phytohormone auxin, which raises questions about the mechanism underlying this tropic response. Here we specify the open questions in this field of research and discuss the possible interactions of abscisic acid, calcium and reactive oxygen species as part of a dynamic system of sensing water potential in the root tip, transmission of the signal to the root elongation zone and promoting root curvature towards water. We conclude that root hydrotropism is mediated by inter-cellular signals that are not explained by the Cholodny-Went theory.
Collapse
Affiliation(s)
- Doron Shkolnik
- Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
| | - Hillel Fromm
- Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978 Israel.
| |
Collapse
|
35
|
Koevoets IT, Venema JH, Elzenga JTM, Testerink C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1335. [PMID: 27630659 PMCID: PMC5005332 DOI: 10.3389/fpls.2016.01335] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/18/2016] [Indexed: 05/18/2023]
Abstract
To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops.
Collapse
Affiliation(s)
- Iko T. Koevoets
- Swammerdam Institute for Life Sciences, Plant Cell Biology, University of AmsterdamAmsterdam, Netherlands
| | - Jan Henk Venema
- Genomics Research in Ecology and Evolution in Nature – Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - J. Theo. M. Elzenga
- Genomics Research in Ecology and Evolution in Nature – Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Christa Testerink
- Swammerdam Institute for Life Sciences, Plant Cell Biology, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
36
|
Shkolnik D, Krieger G, Nuriel R, Fromm H. Hydrotropism: Root Bending Does Not Require Auxin Redistribution. MOLECULAR PLANT 2016; 9:757-759. [PMID: 26911727 DOI: 10.1016/j.molp.2016.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/17/2015] [Accepted: 02/10/2016] [Indexed: 05/25/2023]
Affiliation(s)
- Doron Shkolnik
- Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gat Krieger
- Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roye Nuriel
- Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hillel Fromm
- Department of Molecular Biology & Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
37
|
Affiliation(s)
- Qian Gao
- Dept. of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian Province 361005 P.R. China
| | - Jie Xiao
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou Jiangsu Province 215123 P.R. China
| | - Xiao Dong Chen
- Dept. of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen Fujian Province 361005 P.R. China
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou Jiangsu Province 215123 P.R. China
| |
Collapse
|
38
|
Moriwaki T, Miyazawa Y, Fujii N, Takahashi H. GNOM regulates root hydrotropism and phototropism independently of PIN-mediated auxin transport. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:141-9. [PMID: 24388525 DOI: 10.1016/j.plantsci.2013.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/26/2013] [Accepted: 11/04/2013] [Indexed: 05/11/2023]
Abstract
Plant roots exhibit tropisms in response to gravity, unilateral light and moisture gradients. During gravitropism, an auxin gradient is established by PIN auxin transporters, leading to asymmetric growth. GNOM, a guanine nucleotide exchange factor of ARF GTPase (ARF-GEF), regulates PIN localization by regulating subcellular trafficking of PINs. Therefore, GNOM is important for gravitropism. We previously isolated mizu-kussei2 (miz2), which lacks hydrotropic responses; MIZ2 is allelic to GNOM. Since PIN proteins are not required for root hydrotropism in Arabidopsis, the role of GNOM in root hydrotropism should differ from that in gravitropism. To examine this possibility, we conducted genetic analysis of gnom(miz2) and gnom trans-heterozygotes. The mutant gnom(miz2), which lacks hydrotropic responses, was partially recovered by gnom(emb30-1), which lacks GEF activity, but not by gnom(B4049), which lacks heterotypic domain interactions. Furthermore, the phototropic response of gnom trans-heterozygotes differed from that of the pin2 mutant allele eir1-1. Moreover, defects in the polarities of PIN2 and auxin distribution in a severe gnom mutant were recovered by gnom(miz2). Therefore, an unknown GNOM-mediated vesicle trafficking system may mediate root hydrotropism and phototropism independently of PIN trafficking.
Collapse
Affiliation(s)
- Teppei Moriwaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yutaka Miyazawa
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan.
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
39
|
Kazan K. Auxin and the integration of environmental signals into plant root development. ANNALS OF BOTANY 2013; 112:1655-65. [PMID: 24136877 PMCID: PMC3838554 DOI: 10.1093/aob/mct229] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/12/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Auxin is a versatile plant hormone with important roles in many essential physiological processes. In recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of environmental adaptation in plants. SCOPE This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify their root system architecture when responding to diverse biotic and abiotic rhizosphere signals, including macro- and micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environment-mediated root development are also briefly highlighted. CONCLUSIONS The auxin pathway constitutes an essential component of the plant's biotic and abiotic stress tolerance mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately lead to the development of crops better adapted to stressful environments.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct (QBP), Brisbane, Queensland 4067, Australia
| |
Collapse
|
40
|
Meng ZB, You XD, Suo D, Chen YL, Tang C, Yang JL, Zheng SJ. Root-derived auxin contributes to the phosphorus-deficiency-induced cluster-root formation in white lupin (Lupinus albus). PHYSIOLOGIA PLANTARUM 2013; 148:481-9. [PMID: 23067249 DOI: 10.1111/j.1399-3054.2012.01715.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/01/2012] [Accepted: 10/08/2012] [Indexed: 05/20/2023]
Abstract
Formation of cluster roots is a typical morphological response to phosphorus (P) deficiency in white lupin (Lupinus albus), but its physiological and molecular mechanisms are still unclear. We investigated the role of auxin in the initiation of cluster roots by distinguishing the sources of auxin, measuring the longitudinal distribution patterns of free indole-3-acetic acid (IAA) along the root and the related gene expressions responsible for polar auxin transport (PAT) in different developmental stages of cluster roots. We found that removal of shoot apex or primary root apex and application of auxin-influx or -efflux transport inhibitors, 3-chloro-4-hydroxyphenylacetic acid, N-1-naphthylphthalamic acid and 2,3,5-triiodobenzoic acid, to the stem did not affect the number of cluster roots and the free-IAA concentration in the roots of P-deficient plants, but when these inhibitors were applied directly to the growth media, the cluster-root formation was greatly suppressed, suggesting the fundamental role of root-derived IAA in cluster-root formation. The concentration of free IAA in the roots was higher in P-deficient plants than in P-adequate ones, and the highest in the lateral-root apex and the lowest in the mature cluster roots. Meanwhile the expression patterns of LaAUX1, LaPIN1 and LaPIN3 transcripts related to PAT was consistent with concentrations of free IAA along the lateral root, indicating the contribution of IAA redistribution in the cluster-root development. We proposed that root-derived IAA plays a direct and important role in the P-deficiency-induced formation of cluster roots.
Collapse
Affiliation(s)
- Zhi Bin Meng
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Iwata S, Miyazawa Y, Fujii N, Takahashi H. MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions. ANNALS OF BOTANY 2013; 112:103-14. [PMID: 23658369 PMCID: PMC3690989 DOI: 10.1093/aob/mct098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/12/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Root hydrotropism is a response to water-potential gradients that makes roots bend towards areas of higher water potential. The gene MIZU-KUSSEI1 (MIZ1) that is essential for hydrotropism in Arabidopsis roots has previously been identified. However, the role of root hydrotropism in plant growth and survival under natural conditions has not yet been proven. This study assessed how hydrotropic response contributes to drought avoidance in nature. METHODS An experimental system was established for the study of Arabidopsis hydrotropism in soil. Characteristics of hydrotropism were analysed by comparing the responses of the miz1 mutant, transgenic plants overexpressing MIZ1 (MIZ1OE) and wild-type plants. KEY RESULTS Wild-type plants developed root systems in regions with higher water potential, whereas the roots of miz1 mutant plants did not show a similar response. This pattern of root distribution induced by hydrotropism was more pronounced in MIZ1OE plants than in wild-type plants. In addition, shoot biomass and the number of plants that survived under drought conditions were much greater in MIZ1OE plants. CONCLUSIONS These results show that hydrotropism plays an important role in root system development in soil and contributes to drought avoidance, which results in a greater yield and plant survival under water-limited conditions. The results also show that MIZ1 overexpression can be used for improving plant productivity in arid areas.
Collapse
Affiliation(s)
- Satoru Iwata
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yutaka Miyazawa
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata 990-8560, Japan
- For correspondence. E-mail or
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- For correspondence. E-mail or
| |
Collapse
|
42
|
Hong JH, Seah SW, Xu J. The root of ABA action in environmental stress response. PLANT CELL REPORTS 2013; 32:971-83. [PMID: 23571661 DOI: 10.1007/s00299-013-1439-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 05/05/2023]
Abstract
The growth and development of plants are influenced by the integration of diverse endogenous and environmental signals. Acting as a mediator of extrinsic signals, the stress hormone, abscisic acid (ABA), has been shown to regulate many aspects of plant development in response to unfavourable environmental stresses, allowing the plant to cope and survive in adverse conditions, such as drought, low or high temperature, or high salinity. Here, we summarize recent evidence on the roles of ABA in environmental stress responses in the Arabidopsis root; and on how ABA crosstalks with other phytohormones to modulate root development and growth in Arabidopsis. We also review literature findings showing that, in response to environmental stresses, ABA affects the root system architecture in other plant species, such as rice.
Collapse
Affiliation(s)
- Jing Han Hong
- Department of Biological Sciences and NUS Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | | | | |
Collapse
|
43
|
Toda Y, Tanaka M, Ogawa D, Kurata K, Kurotani KI, Habu Y, Ando T, Sugimoto K, Mitsuda N, Katoh E, Abe K, Miyao A, Hirochika H, Hattori T, Takeda S. RICE SALT SENSITIVE3 forms a ternary complex with JAZ and class-C bHLH factors and regulates jasmonate-induced gene expression and root cell elongation. THE PLANT CELL 2013; 25:1709-25. [PMID: 23715469 PMCID: PMC3694701 DOI: 10.1105/tpc.113.112052] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plasticity of root growth in response to environmental cues and stresses is a fundamental characteristic of land plants. However, the molecular basis underlying the regulation of root growth under stressful conditions is poorly understood. Here, we report that a rice nuclear factor, RICE SALT SENSITIVE3 (RSS3), regulates root cell elongation during adaptation to salinity. Loss of function of RSS3 only moderately inhibits cell elongation under normal conditions, but it provokes spontaneous root cell swelling, accompanied by severe root growth inhibition, under saline conditions. RSS3 is preferentially expressed in the root tip and forms a ternary complex with class-C basic helix-loop-helix (bHLH) transcription factors and JASMONATE ZIM-DOMAIN proteins, the latter of which are the key regulators of jasmonate (JA) signaling. The mutated protein arising from the rss3 allele fails to interact with bHLH factors, and the expression of a significant portion of JA-responsive genes is upregulated in rss3. These results, together with the known roles of JAs in root growth regulation, suggest that RSS3 modulates the expression of JA-responsive genes and plays a crucial role in a mechanism that sustains root cell elongation at appropriate rates under stressful conditions.
Collapse
Affiliation(s)
- Yosuke Toda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Maiko Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Daisuke Ogawa
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kyo Kurata
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken-ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yoshiki Habu
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Tsuyu Ando
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Kazuhiko Sugimoto
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan
| | - Etsuko Katoh
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Kiyomi Abe
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Akio Miyao
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Hirohiko Hirochika
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
| | - Tsukaho Hattori
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Shin Takeda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
- National Institute of Agrobiological Sciences, Kannondai, Tsukuba 305-8602, Japan
- Address correspondence to
| |
Collapse
|
44
|
Moriwaki T, Miyazawa Y, Kobayashi A, Takahashi H. Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae). AMERICAN JOURNAL OF BOTANY 2013; 100:25-34. [PMID: 23263156 DOI: 10.3732/ajb.1200419] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Roots show positive hydrotropism in response to moisture gradients, which is believed to contribute to plant water acquisition. This article reviews the recent advances of the physiological and molecular genetic studies on hydrotropism in seedling roots of Arabidopsis thaliana. We identified MIZU-KUSSEI1 (MIZ1) and MIZ2, essential genes for hydrotropism in roots; the former encodes a protein of unknown function, and the latter encodes an ARF-GEF (GNOM) protein involved in vesicle trafficking. Because both mutants are defective in hydrotropism but not in gravitropism, these mutations might affect a molecular mechanism unique to hydrotropism. MIZ1 is expressed in the lateral root cap and cortex of the root proper. It is localized as a soluble protein in the cytoplasm and in association with the cytoplasmic face of endoplasmic reticulum (ER) membranes in root cells. Light and ABA independently regulate MIZ1 expression, which influences the ultimate hydrotropic response. In addition, MIZ1 overexpression results in an enhancement of hydrotropism and an inhibition of lateral root formation. This phenotype is likely related to the alteration of auxin content in roots. Specifically, the auxin level in the roots decreases in the MIZ1 overexpressor and increases in the miz1 mutant. Unlike most gnom mutants, miz2 displays normal morphology, growth, and gravitropism, with normal localization of PIN proteins. It is probable that MIZ1 plays a crucial role in hydrotropic response by regulating the endogenous level of auxin in Arabidopsis roots. Furthermore, the role of GNOM/MIZ2 in hydrotropism is distinct from that of gravitropism.
Collapse
Affiliation(s)
- Teppei Moriwaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
45
|
Miyazawa Y, Moriwaki T, Uchida M, Kobayashi A, Fujii N, Takahashi H. Overexpression of MIZU-KUSSEI1 enhances the root hydrotropic response by retaining cell viability under hydrostimulated conditions in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1926-1933. [PMID: 23012350 DOI: 10.1093/pcp/pcs129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Because of their sessile nature, plants evolved several mechanisms to tolerate or avoid conditions where water is scarce. The molecular mechanisms contributing to drought tolerance have been studied extensively, whereas the molecular mechanism underlying drought avoidance is less understood despite its importance. Several lines of evidence showed that the roots sense the moisture gradient and grow toward the wet area: so-called hydrotropism. We previously identified MIZU-KUSSEI (MIZ) 1 and MIZ2/GNOM as genes responsible for this process. To gain new insight into the molecular mechanism of root hydrotropism, we generated overexpressors of MIZ1 (MIZ1OEs) and analyzed their hydrotropic response. MIZ1OEs had a remarkable enhancement of root hydrotropism. Furthermore, a greater number of MIZ1OE root cells remained viable under hydrostimulated conditions than those of the wild type, which might contribute to retaining root growth under hydrostimulated conditions. Although overexpression of MIZ1 also caused a slight decrease in the root gravitropic response, it was not attributable to the enhanced hydrotropic response. In addition, miz2 mutation or the auxin response inhibitor nullified the enhanced hydrotropic response in MIZ1OEs. Furthermore, the expression of MIZ1 did not alter the expression of typical genes involved in drought tolerance. These results suggest that MIZ1 positively regulates hydrotropism at an early stage and its overexpression results in an enhancement of signal transduction unique to root hydrotropism to increase the degree of hydrotropic root bending.
Collapse
Affiliation(s)
- Yutaka Miyazawa
- Graduate School of Life Sciences, Tohoku Unievrsity, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577 Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Nakayama M, Kaneko Y, Miyazawa Y, Fujii N, Higashitani N, Wada S, Ishida H, Yoshimoto K, Shirasu K, Yamada K, Nishimura M, Takahashi H. A possible involvement of autophagy in amyloplast degradation in columella cells during hydrotropic response of Arabidopsis roots. PLANTA 2012; 236:999-1012. [PMID: 22532286 DOI: 10.1007/s00425-012-1655-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/11/2012] [Indexed: 05/31/2023]
Abstract
Seedling roots display not only gravitropism but also hydrotropism, and the two tropisms interfere with one another. In Arabidopsis (Arabidopsis thaliana) roots, amyloplasts in columella cells are rapidly degraded during the hydrotropic response. Degradation of amyloplasts involved in gravisensing enhances the hydrotropic response by reducing the gravitropic response. However, the mechanism by which amyloplasts are degraded in hydrotropically responding roots remains unknown. In this study, the mechanistic aspects of the degradation of amyloplasts in columella cells during hydrotropic response were investigated by analyzing organellar morphology, cell polarity and changes in gene expression. The results showed that hydrotropic stimulation or systemic water stress caused dramatic changes in organellar form and positioning in columella cells. Specifically, the columella cells of hydrotropically responding or water-stressed roots lost polarity in the distribution of the endoplasmic reticulum (ER), and showed accelerated vacuolization and nuclear movement. Analysis of ER-localized GFP showed that ER redistributed around the developed vacuoles. Cells often showed decomposing amyloplasts in autophagosome-like structures. Both hydrotropic stimulation and water stress upregulated the expression of AtATG18a, which is required for autophagosome formation. Furthermore, analysis with GFP-AtATG8a revealed that both hydrotropic stimulation and water stress induced the formation of autophagosomes in the columella cells. In addition, expression of plastid marker, pt-GFP, in the columella cells dramatically decreased in response to both hydrotropic stimulation and water stress, but its decrease was much less in the autophagy mutant atg5. These results suggest that hydrotropic stimulation confers water stress in the roots, which triggers an autophagic response responsible for the degradation of amyloplasts in columella cells of Arabidopsis roots.
Collapse
Affiliation(s)
- Mayumi Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Moriwaki T, Miyazawa Y, Fujii N, Takahashi H. Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2012; 35:1359-68. [PMID: 22321255 DOI: 10.1111/j.1365-3040.2012.02493.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant roots undergo tropic growth in response to environmental cues, and each tropic response is affected by several environmental stimuli. Even its importance, molecular regulation of hydrotropism has not been largely uncovered. Tropic responses including hydrotropism were impacted by other environmental signal. We found that hydrotropism was reduced in dark-grown seedling. Moreover, we found that the expression of MIZ1, an essential gene for hydrotropism, was regulated by light signal. From our genetic analysis, phytochrome A (phyA)-, phyB- and HY5-mediated blue-light signalling play curial roles in light-mediated induction of MIZ1 and hydrotropism. In addition, we found that abscisic acid (ABA) also induced MIZ1 expression. ABA treatment could recover weak hydrotropism and MIZ1 expression level of hy5, and ABA synthesis inhibitor, abamineSG, further reduced hydrotropic curvature of hy5. In contrast, ABA treatment did not affect ahydrotropic phenotype of miz1. These results suggest that ABA signalling regulates MIZ1 expression independently from light signalling. Our results demonstrate that environmental signals, such as light and stresses mediated by ABA signalling, are integrated into MIZ1 expression and thus regulate hydrotropism. These machineries will allow plants to acquire sufficient amounts of water.
Collapse
Affiliation(s)
- Teppei Moriwaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|
48
|
Yamazaki T, Miyazawa Y, Kobayashi A, Moriwaki T, Fujii N, Takahashi H. MIZ1, an essential protein for root hydrotropism, is associated with the cytoplasmic face of the endoplasmic reticulum membrane in Arabidopsis
root cells. FEBS Lett 2012; 586:398-402. [DOI: 10.1016/j.febslet.2012.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/31/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
|
49
|
Strohm AK, Baldwin KL, Masson PH. Molecular mechanisms of root gravity sensing and signal transduction. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:276-85. [PMID: 23801441 DOI: 10.1002/wdev.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism.
Collapse
|
50
|
Abstract
Two essential functions are associated with the root tip: first of all, it ensures a sustained growth of the root system thanks to its role in protecting the stem cell zone responsible for cell division and differentiation. In addition, it is capable of detecting environmental changes at the root cap level, and this property provides a crucial advantage considering that this tissue is located at the forefront of soil exploration. Using results obtained mainly with the plant model Arabidopsis, we summarize the description of the structure of root cap and the known molecular mechanisms regulating its functioning. We briefly review the various responses of the root cap related to the interaction between the plant and its environment, such as phototropism, gravitropism, hydrotropism, mineral composition of the soil and protection against pathogens.
Collapse
Affiliation(s)
- Carole Arnaud
- UMR 6191 CEA, Centre National de la Recherche Scientifique, laboratoire de biologie du développement des plantes, université d'Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | | | | | | |
Collapse
|