1
|
Mei X, Zhu K, Yan D, Jia H, Luo W, Ye J, Deng X. Developing a simple and rapid method for cell-specific transcriptome analysis through laser microdissection: insights from citrus rind with broader implications. PLANT METHODS 2024; 20:113. [PMID: 39068421 PMCID: PMC11282741 DOI: 10.1186/s13007-024-01242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND With the rapid development of single-cell sequencing technology, histological studies are no longer limited to conventional homogenized tissues. Laser microdissection enables the accurate isolation of specific tissues or cells, and when combined with next-generation sequencing, it can reveal important biological processes at the cellular level. However, traditional laser microdissection techniques have often been complicated and time-consuming, and the quality of the RNA extracted from the collected samples has been inconsistent, limiting follow-up studies. Therefore, an improved, simple, and efficient laser microdissection method is urgently needed. RESULTS We omitted the sample fixation and cryoprotectant addition steps. Instead, fresh samples were embedded in Optimal Cutting Temperature medium within 1.5 ml centrifuge tube caps, rapidly frozen with liquid nitrogen, and immediately subjected to cryosectioning. A series of section thicknesses of citrus rind were tested for RNA extraction, which showed that 18 μm thickness yielded the highest quality RNA. By shortening the dehydration time to one minute per ethanol gradient and omitting the tissue clearing step, the resulting efficient dehydration and preserved morphology ensured high-quality RNA extraction. We also propose a set of laser microdissection parameters by adjusting the laser power to optimal values, reducing the aperture size, and lowering the pulse frequency. Both the epidermal and subepidermal cells from the citrus rind were collected, and RNA extraction was completed within nine hours. Using this efficient method, the transcriptome sequencing of the isolated tissues generated high-quality data with average Q30 values and mapping rates exceeding 91%. Moreover, the transcriptome analysis revealed significant differences between the cell layers, further confirming the effectiveness of our isolation approach. CONCLUSIONS We developed a simple and rapid laser microdissection method and demonstrated its effectiveness through a study based on citrus rind, from which we generated high-quality transcriptomic data. This fast and efficient method of cell isolation, combined with transcriptome sequencing not only contributes to precise histological studies at the cellular level in citrus but also provides a promising approach for cell-specific transcriptome analysis in a broader range of other plant tissues.
Collapse
Affiliation(s)
- Xuehan Mei
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kaijie Zhu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Danni Yan
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Huihui Jia
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wangyao Luo
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Junli Ye
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xiuxin Deng
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
2
|
Muniz Partida C, Walters E. A novel immunohistochemical protocol for paraffin embedded tissue sections using free-floating techniques. Front Neuroanat 2023; 17:1154568. [PMID: 37235185 PMCID: PMC10206034 DOI: 10.3389/fnana.2023.1154568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Immunohistochemistry (IHC) is a well-established and widely used protocol used to visualize tissue architecture, protein expression and localization. Free-floating methods for IHC employ tissue sections that are cut from a cryostat or vibratome. The limitations of these tissue sections are tissue fragility, poor morphology, and the need to use sections of 20-50 μm. In addition, there is a void of information regarding the use of free floating immunohistochemical techniques on paraffin embedded tissue. To address this, we developed a free-float IHC protocol with paraffin embedded tissue (PFFP) that saves time, resources, and tissues. PFFP localized GFAP, olfactory marker protein, tyrosine hydroxylase, and Nestin expression in mouse hippocampal, olfactory bulb, striatum, and cortical tissue. Successful localization of these antigens was achieved using PFFP with and without antigen retrieval, with subsequent chromogenic DAB (3,3'-diaminobenzidine) development and immunofluorescence detection methods. The application of the PFFP in combination with methodologies of in situ hybridization, protein/protein interactions, laser capture dissection, and pathological diagnosis expands the versatility of paraffin embedded tissues.
Collapse
|
3
|
Tadeo FR, Agustí J, Merelo P, Talón M. Laser Microdissection: A High-Precision Approach to Isolate Specific Cell Types from Any Plant Species for Downstream Molecular Analyses. Methods Mol Biol 2023; 2642:365-373. [PMID: 36944888 DOI: 10.1007/978-1-0716-3044-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plants display a great diversity of particular cell types that obviously perform functions and regulations that are essential for successful growth and development, whether under optimal or adverse conditions. The functions performed by each of these particular cell types must be associated with specific transcriptomic, proteomic, and metabolic profiles that cannot be disentangled by analyzing whole plant organs and tissues. Laser microdissection is a technique for the collection of specific cell types in plant organs and tissues comprising heterogeneous cell populations. It has been successfully used for physiological and molecular studies. Laser microdissection can be applied to any plant species as long as it is possible to reliably identify the cell types of interest. Here, we describe step by step, using citrus as a model plant, a fast, simple, easy to perform, and experimentally validated protocol to collect cells from the abscission zone, a specific tissue that is difficult to access and whose activity is important in the response of plants to adverse environmental conditions.
Collapse
Affiliation(s)
- Francisco R Tadeo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain.
| | - Javier Agustí
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Paz Merelo
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Manuel Talón
- Centro de Genómica, Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| |
Collapse
|
4
|
Cui X, Jun JH, Rao X, Bahr C, Chapman E, Temple S, Dixon RA. Leaf layer-based transcriptome profiling for discovery of epidermal-selective promoters in Medicago truncatula. PLANTA 2022; 256:31. [PMID: 35790623 DOI: 10.1007/s00425-022-03920-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Transcriptomics of manually dissected leaf layers from Medicago truncatula identifies genes with preferential expression in upper and/or lower epidermis. The promoters of these genes confer epidermal-specific expression of transgenes. Improving the quality and quantity of proanthocyanidins (PAs) in forage legumes has potential to improve the nitrogen nutrition of ruminant animals and protect them from the risk of pasture bloat, as well as parasites. However, ectopic constitutive accumulation of PAs in plants by genetic engineering can significantly inhibit growth. We selected the leaf epidermis as a candidate tissue for targeted engineering of PAs or other pathways. To identify gene promoters selectively expressed in epidermal tissues, we performed comparative transcriptomic analyses in the model legume Medicago truncatula, using five tissue samples representing upper epidermis, lower epidermis, whole leaf without upper epidermis, whole leaf without lower epidermis, and whole leaf. We identified 52 transcripts preferentially expressed in upper epidermis, most of which encode genes involved in flavonoid biosynthesis, and 53 transcripts from lower epidermis, with the most enriched category being anatomical structure formation. Promoters of the preferentially expressed genes were cloned from the M. truncatula genome and shown to direct tissue-selective promoter activities in transient assays. Expression of the PA pathway transcription factor TaMYB14 under control of several of the promoters in transgenic alfalfa resulted in only modest MYB14 transcript accumulation and low levels of PA production. Activity of a subset of promoters was confirmed by transcript analysis in field-grown alfalfa plants throughout the growing season, and revealed variable but consistent expression, which was generally highest 3-4 weeks after cutting. We conclude that, although the selected promoters show acceptable tissue-specificity, they may not drive high enough transcription factor expression to activate the PA pathway.
Collapse
Affiliation(s)
- Xin Cui
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
| | - Ji Hyung Jun
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- College of Life Sciences, Hubei University, Wuhan, 430068, Hubei, China
| | - Camille Bahr
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Elisabeth Chapman
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Stephen Temple
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA.
| |
Collapse
|
5
|
García-Coronado H, Tafolla-Arellano JC, Hernández-Oñate MÁ, Burgara-Estrella AJ, Robles-Parra JM, Tiznado-Hernández ME. Molecular Biology, Composition and Physiological Functions of Cuticle Lipids in Fleshy Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091133. [PMID: 35567134 PMCID: PMC9099731 DOI: 10.3390/plants11091133] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 05/27/2023]
Abstract
Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been hypothesized that the cuticle plays a role in the development, ripening, quality, resistance to pathogen attack and postharvest shelf life of fleshy fruits. The cuticle's structure and composition change in response to the fruit's developmental stage, fruit physiology and different postharvest treatments. This review summarizes current information on the physiology and molecular mechanism of cuticle biosynthesis and composition changes during the development, ripening and postharvest stages of fleshy fruits. A discussion and analysis of studies regarding the relationship between cuticle composition, water loss reduction and maintaining fleshy fruits' postharvest quality are presented. An overview of the molecular mechanism of cuticle biosynthesis and efforts to elucidate it in fleshy fruits is included. Enhancing our knowledge about cuticle biosynthesis mechanisms and identifying specific transcripts, proteins and lipids related to quality traits in fleshy fruits could contribute to the design of biotechnological strategies to improve the quality and postharvest shelf life of these important fruit crops.
Collapse
Affiliation(s)
- Heriberto García-Coronado
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Julio César Tafolla-Arellano
- Laboratorio de Biotecnología y Biología Molecular, Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, Saltillo 25315, Coahuila, Mexico;
| | - Miguel Ángel Hernández-Oñate
- CONACYT-Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Alexel Jesús Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Sonora, Mexico;
| | - Jesús Martín Robles-Parra
- Coordinación de Desarrollo Regional, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Martín Ernesto Tiznado-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo A.C., Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| |
Collapse
|
6
|
Velada I, Menéndez E, Teixeira RT, Cardoso H, Peixe A. Laser Microdissection of Specific Stem-Base Tissue Types from Olive Microcuttings for Isolation of High-Quality RNA. BIOLOGY 2021; 10:biology10030209. [PMID: 33801829 PMCID: PMC7999021 DOI: 10.3390/biology10030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary Only a small portion of the stem cells participate in the process of adventitious root formation and the cells/tissues types involved in this process is species-dependent. In olive, it is still unclear which type of cells acquire competence for rooting. Regardless, the entire stem nodal segment (containing a mixture of distinct cell types) continues to be used in studies related to the molecular mechanisms underlying this process. Laser microdissection (LM) technology has been applied to isolate specific tissue and cell types. However, it is difficult to find a standard LM protocol suitable for all plant species and cell types and, thus, LM procedures must be developed and optimized for each particular tissue. In this study, we aimed to evaluate the efficiency of a LM protocol in olive microcuttings stem-base samples. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types used for further high-quality RNA isolation. This will encourage future cell type-specific transcriptomic studies, contributing at deciphering rooting-competent cells in olive stems and to better understand the molecular mechanisms underlying the process of adventitious root formation. Abstract Higher plants are composed of different tissue and cell types. Distinct cells host different biochemical and physiological processes which is reflected in differences in gene expression profiles, protein and metabolite levels. When omics are to be carried out, the information provided by a specific cell type can be diluted and/or masked when using a mixture of distinct cells. Thus, studies performed at the cell- and tissue-type level are gaining increasing interest. Laser microdissection (LM) technology has been used to isolate specific tissue and cell types. However, this technology faces some challenges depending on the plant species and tissue type under analysis. Here, we show for the first time a LM protocol that proved to be efficient for harvesting specific tissue types (phloem, cortex and epidermis) from olive stem nodal segments and obtaining RNA of high quality. This is important for future transcriptomic studies to identify rooting-competent cells. Here, nodal segments were flash-frozen in liquid nitrogen-cooled isopentane and cryosectioned. Albeit the lack of any fixatives used to preserve samples’ anatomy, cryosectioned sections showed tissues with high morphological integrity which was comparable with that obtained with the paraffin-embedding method. Cells from the phloem, cortex and epidermis could be easily distinguished and efficiently harvested by LM. Total RNA isolated from these tissues exhibited high quality with RNA Quality Numbers (determined by a Fragment Analyzer System) ranging between 8.1 and 9.9. This work presents a simple, rapid and efficient LM procedure for harvesting specific tissue types of olive stems and obtaining high-quality RNA.
Collapse
Affiliation(s)
- Isabel Velada
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
- Correspondence:
| | - Esther Menéndez
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Rita Teresa Teixeira
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal;
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (E.M.); (H.C.)
| | - Augusto Peixe
- MED—Mediterranean Institute for Agriculture, Environment and Development and Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal;
| |
Collapse
|
7
|
Favaro MA, Molina MC, Roeschlin RA, Gadea J, Gariglio N, Marano MR. Different Responses in Mandarin Cultivars Uncover a Role of Cuticular Waxes in the Resistance to Citrus Canker. PHYTOPATHOLOGY 2020; 110:1791-1801. [PMID: 32573348 DOI: 10.1094/phyto-02-20-0053-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
'Okitsu' is a mandarin cultivar showing substantial resistance to X. citri subsp. citri (X. citri). We have previously shown that this cultivar has significantly lower canker incidence and severity than 'Clemenules', particularly during early stages of leaf development in the field. This differential response is only seen when the leaves are inoculated by spraying, suggesting that leaf surface contributes to resistance. In this work, we have studied structural and chemical properties of leaf surface barriers of both cultivars. Ultrastructural analysis showed a thicker cuticle covering epidermal surface and guard cells in young 'Okitsu' leaves than in 'Clemenules'. This thicker cuticle was associated with a smaller stomatal aperture and reduced cuticle permeability. These findings correlated with an accumulation of cuticular wax components, including primary alcohols, alkanes, and fatty acids. None of these differences were observed in mature leaves, where both cultivars are equally resistant to the bacterium. Remarkably, mechanical alteration of cuticular thickness of young 'Okitsu' leaves allows canker development. Furthermore, cuticular waxes extracted from young 'Okitsu' leaves have higher antibacterial activity against X. citri than 'Clemenules'. Taken together, these data suggest that a faster development of epicuticular waxes in 'Okitsu' leaves play a central role in its resistance to X. citri.
Collapse
Affiliation(s)
- María A Favaro
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2000FHN Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 590, S2002LRK Rosario, Argentina
- Instituto de Ciencias Agropecuarias del Litoral, Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Kreder 2805, 3080 HOF Esperanza, Santa Fe, Argentina
| | - María C Molina
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2000FHN Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 590, S2002LRK Rosario, Argentina
| | - Roxana A Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2000FHN Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 590, S2002LRK Rosario, Argentina
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-CSIC, Ingeniero Fausto Elio, S/N, 46022 Valencia, España
| | - Norberto Gariglio
- Instituto de Ciencias Agropecuarias del Litoral, Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Kreder 2805, 3080 HOF Esperanza, Santa Fe, Argentina
| | - María R Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Ocampo y Esmeralda S/N, S2000FHN Rosario, Argentina
- Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 590, S2002LRK Rosario, Argentina
| |
Collapse
|
8
|
Bonomelli C, Fernández V, Martiz J, Videla X, Arias MI, Rojas-Silva X, Nario A. Absorption and distribution of root, fruit, and foliar-applied 45 Ca in 'Clemenules' mandarin trees. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4643-4650. [PMID: 32399984 DOI: 10.1002/jsfa.10496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/21/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The mechanisms of calcium (Ca) absorption and transport in plants are still poorly understood. This study focused on assessing the absorption and distribution of Ca in different plant organs after root (soil), foliar, or fruit application to 6-year-old 'Clemenules' mandarin trees, grown in pots, using 45 Ca as a tracer. RESULTS The rate of 45 Ca absorption and transportation in plant tissues varied according to the treatment method. The fruit and shoot Ca supply led to a rate of 97% to 98% 45 Ca retention in such organs. In Ca-treated fruits, 22% of the applied 45 Ca moved to the pulp and 78% remained in the flavedo and albedo. The fruit peel was examined by scanning electron microscopy and transmission electron microscopy (SEM and TEM) and variations were observed during fruit development. Following 45 Ca soil treatment, approximately 56% of 45 Ca activity was measured in the soil, with 19.5% determined in the roots, 14.6% in the trunks (90% in bark and sapwood and only 10% in heartwood), 9.6% in shoots, and 0.3% in fruits. CONCLUSION Calcium mobility in 'Clemenules' mandarin trees is limited and depends on the mode of Ca fertilizer application. The distribution of Ca to and within the fruits may be limited during development because of structural and functional constraints. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Claudia Bonomelli
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victoria Fernández
- Forest Genetics and Ecophysiology Research Group, School of Forest and Natural Resources Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - Johanna Martiz
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ximena Videla
- División de Investigación y Desarrollo, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - María Ignacia Arias
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ximena Rojas-Silva
- División de Investigación y Desarrollo, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Adriana Nario
- División de Investigación y Desarrollo, Comisión Chilena de Energía Nuclear, Santiago, Chile
| |
Collapse
|
9
|
Balestrini R, Ghignone S, Quiroga G, Fiorilli V, Romano I, Gambino G. Long-Term Impact of Chemical and Alternative Fungicides Applied to Grapevine cv Nebbiolo on Berry Transcriptome. Int J Mol Sci 2020; 21:ijms21176067. [PMID: 32842492 PMCID: PMC7504522 DOI: 10.3390/ijms21176067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/11/2020] [Accepted: 08/20/2020] [Indexed: 11/16/2022] Open
Abstract
Viticulture is one of the horticultural systems in which antifungal treatments can be extremely frequent, with substantial economic and environmental costs. New products, such as biofungicides, resistance inducers and biostimulants, may represent alternative crop protection strategies respectful of the environmental sustainability and food safety. Here, the main purpose was to evaluate the systemic molecular modifications induced by biocontrol products as laminarin, resistance inducers (i.e., fosetyl-Al and potassium phosphonate), electrolyzed water and a standard chemical fungicide (i.e., metiram), on the transcriptomic profile of ‘Nebbiolo’ grape berries at harvest. In addition to a validation of the sequencing data through real-time polymerase chain reaction (PCR), for the first-time the expression of some candidate genes in different cell-types of berry skin (i.e., epidermal and hypodermal layers) was evaluated using the laser microdissection approach. Results showed that several considered antifungal treatments do not strongly affect the berry transcriptome profile at the end of season. Although some treatments do not activate long lasting molecular defense priming features in berry, some compounds appear to be more active in long-term responses. In addition, genes differentially expressed in the two-cell type populations forming the berry skin were found, suggesting a different function for the two-cell type populations.
Collapse
Affiliation(s)
- Raffaella Balestrini
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
- Correspondence: ; Tel.: +39-011-650-2927
| | - Stefano Ghignone
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Gabriela Quiroga
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Valentina Fiorilli
- Department of Life Science and Systems Biology, Turin University, 10125 Turin, Italy;
| | - Irene Romano
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| | - Giorgio Gambino
- National Research Council, Institute for Sustainable Plant Protection, 10125 Turin, Italy; (S.G.); (G.Q.); (I.R.); (G.G.)
| |
Collapse
|
10
|
Genome-Wide Association Study for Maize Leaf Cuticular Conductance Identifies Candidate Genes Involved in the Regulation of Cuticle Development. G3-GENES GENOMES GENETICS 2020; 10:1671-1683. [PMID: 32184371 PMCID: PMC7202004 DOI: 10.1534/g3.119.400884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cuticle, a hydrophobic layer of cutin and waxes synthesized by plant epidermal cells, is the major barrier to water loss when stomata are closed at night and under water-limited conditions. Elucidating the genetic architecture of natural variation for leaf cuticular conductance (gc) is important for identifying genes relevant to improving crop productivity in drought-prone environments. To this end, we conducted a genome-wide association study of gc of adult leaves in a maize inbred association panel that was evaluated in four environments (Maricopa, AZ, and San Diego, CA, in 2016 and 2017). Five genomic regions significantly associated with gc were resolved to seven plausible candidate genes (ISTL1, two SEC14 homologs, cyclase-associated protein, a CER7 homolog, GDSL lipase, and β-D-XYLOSIDASE 4). These candidates are potentially involved in cuticle biosynthesis, trafficking and deposition of cuticle lipids, cutin polymerization, and cell wall modification. Laser microdissection RNA sequencing revealed that all these candidate genes, with the exception of the CER7 homolog, were expressed in the zone of the expanding adult maize leaf where cuticle maturation occurs. With direct application to genetic improvement, moderately high average predictive abilities were observed for whole-genome prediction of gc in locations (0.46 and 0.45) and across all environments (0.52). The findings of this study provide novel insights into the genetic control of gc and have the potential to help breeders more effectively develop drought-tolerant maize for target environments.
Collapse
|
11
|
Angoy A, Ginies C, Goupy P, Bornard I, Ginisty P, Sommier A, Valat M, Chemat F. Development of a green innovative semi-industrial scale pilot combined microwave heating and centrifugal force to extract essential oils and phenolic compounds from orange peels. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Collins PP, O'donoghue EM, Rebstock R, Tiffin HR, Sutherland PW, Schröder R, McAtee PA, Prakash R, Ireland HS, Johnston JW, Atkinson RG, Schaffer RJ, Hallett IC, Brummell DA. Cell type-specific gene expression underpins remodelling of cell wall pectin in exocarp and cortex during apple fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6085-6099. [PMID: 31408160 DOI: 10.1093/jxb/erz370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In apple (Malus×domestica) fruit, the different layers of the exocarp (cuticle, epidermis, and hypodermis) protect and maintain fruit integrity, and resist the turgor-driven expansion of the underlying thin-walled cortical cells during growth. Using in situ immunolocalization and size exclusion epitope detection chromatography, distinct cell type differences in cell wall composition in the exocarp were revealed during apple fruit development. Epidermal cell walls lacked pectic (1→4)-β-d-galactan (associated with rigidity), whereas linear (1→5)-α-l-arabinan (associated with flexibility) was exclusively present in the epidermal cell walls in expanding fruit and then appeared in all cell types during ripening. Branched (1→5)-α-l-arabinan was uniformly distributed between cell types. Laser capture microdissection and RNA sequencing (RNA-seq) were used to explore transcriptomic differences controlling cell type-specific wall modification. The RNA-seq data indicate that the control of cell wall composition is achieved through cell-specific gene expression of hydrolases. In epidermal cells, this results in the degradation of galactan side chains by possibly five β-galactosidases (BGAL2, BGAL7, BGAL10, BGAL11, and BGAL103) and debranching of arabinans by α-arabinofuranosidases AF1 and AF2. Together, these results demonstrate that flexibility and rigidity of the different cell layers in apple fruit during development and ripening are determined, at least in part, by the control of cell wall pectin remodelling.
Collapse
Affiliation(s)
- Patrick P Collins
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Ria Rebstock
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Heather R Tiffin
- PFR, Food Industry Science Centre, Palmerston North, New Zealand
| | - Paul W Sutherland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Roswitha Schröder
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Peter A McAtee
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Roneel Prakash
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - Robert J Schaffer
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- PFR, Motueka, New Zealand
| | - Ian C Hallett
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
| | - David A Brummell
- The New Zealand Institute for Plant and Food Research Limited (PFR), Mount Albert Research Centre, Auckland, New Zealand
- PFR, Food Industry Science Centre, Palmerston North, New Zealand
| |
Collapse
|
13
|
Ying X, Wan M, Hu L, Zhang J, Li H, Lv D. Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. Int J Mol Sci 2019; 20:E5575. [PMID: 31717281 PMCID: PMC6888081 DOI: 10.3390/ijms20225575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. HLB is associated with the non-culturable bacterium, Candidatus Liberibacter asiaticus (CaLas) in the United States. The virulence mechanism of CaLas is largely unknown, partly because of the lack of a mutant library. In this study, Tobacco mosaic virus (TMV) and Nicotiana benthamiana (N. benthamiana) were used for large-scale screening of the virulence factors of CaLas. Agroinfiltration of 60 putative virulence factors in N. benthamiana led to the identification of four candidates that caused severe symptoms in N. benthamiana, such as growth inhibition and cell death. CLIBASIA_05150 and CLIBASIA_04065C (C-terminal of CLIBASIA_04065) could cause cell death in the infiltrated leaves at five days post infiltration. Two low-molecular-weight candidates, CLIBASIA_00470 and CLIBASIA_04025, could inhibit plant growth. By converting start codon to stop codon or frameshifting, the four genes lost their harmful effects to N. benthamiana. It indicated that the four virulence factors functioned at the protein level rather than at the RNA level. The subcellular localization of the four candidates was determined by confocal laser scanning microscope. CLIBASIA_05150 located in the Golgi apparatus; CLIBASIA_04065 located in the mitochondrion; CLIBASIA_00470 and CLIBASIA_04025 distributed in cells as free GFP. The host proteins interacting with the four virulence factors were identified by yeast two-hybrid. The host proteins interacting with CLIBASIA_00470 and CLIBASIA_04025 were overlapping. Based on the phenotypes, the subcellular localization and the host proteins identified by yeast two-hybrid, CLIBASIA_00470 and CLIBASIA_04025, functioned redundantly. The hypothesis of CaLas virulence was proposed. CaLas affects citrus development and suppresses citrus disease resistance, comprehensively, in a complicated manner. Ubiquitin-mediated protein degradation might play a vital role in CaLas virulence. Deep characterization of the interactions between the identified virulence factors and their prey will shed light on HLB. Eventually, it will help in developing HLB-resistant citrus and save the endangered citrus industry worldwide.
Collapse
Affiliation(s)
- Xiaobao Ying
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA;
| | - Mengyuan Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Linshuang Hu
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Jinghua Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Hui Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
| | - Dianqiu Lv
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
14
|
Romero P, Rose JK. A relationship between tomato fruit softening, cuticle properties and water availability. Food Chem 2019; 295:300-310. [DOI: 10.1016/j.foodchem.2019.05.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023]
|
15
|
Rett-Cadman S, Colle M, Mansfeld B, Barry CS, Wang Y, Weng Y, Gao L, Fei Z, Grumet R. QTL and Transcriptomic Analyses Implicate Cuticle Transcription Factor SHINE as a Source of Natural Variation for Epidermal Traits in Cucumber Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1536. [PMID: 31827480 PMCID: PMC6890859 DOI: 10.3389/fpls.2019.01536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/04/2019] [Indexed: 05/11/2023]
Abstract
The fruit surface is a unique tissue with multiple roles influencing fruit development, post-harvest storage and quality, and consumer acceptability. Serving as the first line of protection against herbivores, pathogens, and abiotic stress, the surface can vary markedly among species, cultivars within species, and developmental stage. In this study we explore developmental changes and natural variation of cucumber (Cucumis sativus L.) fruit surface properties using two cucumber lines which vary greatly for these traits and for which draft genomes and a single nucleotide polymorphism (SNP) array are available: Chinese fresh market type, Chinese Long '9930' (CL9930), and pickling type, 'Gy14'. Thin-section samples were prepared from the mid-region of fruit harvested at 0, 4, 8, 12, 16, 20, 24 and 30 days post pollination (dpp), stained with Sudan IV and evaluated for cuticle thickness, depth of wax intercalation between epidermal cells, epidermal cell size and shape, and number and size of lipid droplets. 'Gy14' is characterized by columnar shaped epidermal cells, a 2-3 fold thicker cuticular layer than CL9930, increased cuticular intercalations between cells and a larger number and larger sized lipid droplets. In both lines maximal deposition of cuticle and increase in epidermal size coincided with exponential fruit growth and was largely completed by approximately 16 dpp. Phenotyping and quantitative trait locus mapping (QTL) of fruit sampled from an F7:F8 Gy14 × CL9930 recombinant inbred line (RIL) population identified QTL regions on chromosomes 1, 4 and 5. Strong QTL for epidermal cell height, cuticle thickness, intercalation depth, and diameter of lipid droplets co-localized on chromosome 1. SSR markers on chromosome 1 were used to screen for recombinants in an extended RIL population to refine the QTL region. Further fine mapping by KASP assay combined with gene expression profiling suggested a small number of candidate genes. Tissue specificity, developmental analysis of expression, allelic diversity and gene function implicate the regulatory factor CsSHINE1/WIN1 as a source of natural variation for cucumber fruit epidermal traits.
Collapse
Affiliation(s)
- Stephanie Rett-Cadman
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Marivi Colle
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Ben Mansfeld
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Cornelius S. Barry
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin, Madison, WI, United States
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, United States
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI, United States
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, United States
| | - Lei Gao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rebecca Grumet
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Rebecca Grumet,
| |
Collapse
|
16
|
Kivivirta K, Herbert D, Lange M, Beuerlein K, Altmüller J, Becker A. A protocol for laser microdissection (LMD) followed by transcriptome analysis of plant reproductive tissue in phylogenetically distant angiosperms. PLANT METHODS 2019; 15:151. [PMID: 31889976 PMCID: PMC6913016 DOI: 10.1186/s13007-019-0536-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Plant development is controlled by the action of many, often connected gene regulatory networks. Differential gene expression controlled by internal and external cues is a major driver of growth and time specific differentiation in plants. Transcriptome analysis is the state-of-the-art method to detect spatio-temporal changes in gene expression during development. Monitoring changes in gene expression at early stages or in small plant organs and tissues requires an accurate technique of tissue isolation, which subsequently results in RNA of sufficient quality and quantity. Laser-microdissection enables such accurate dissection and collection of desired tissue from sectioned material at a microscopic level for RNA extraction and subsequent downstream analyses, such as transcriptome, proteome, genome or miRNA. RESULTS A protocol for laser-microdissection, RNA extraction and RNA-seq was optimized and verified for three distant angiosperm species: Arabidopsis thaliana (Brassicaceae), Oryza sativa (Poaceae) and Eschscholzia californica (Papaveraceae). Previously published protocols were improved in processing speed by reducing the vacuum intensity and incubation time during tissue fixation and incubation time and cryoprotection and by applying adhesive tape. The sample preparation and sectioning of complex and heterogenous flowers produced adequate histological quality and subsequent RNA extraction from micro-dissected gynoecia reliably generated samples of sufficient quality and quantity on all species for RNA-seq. Expression analysis of growth stage specific A. thaliana and O. sativa transcriptomes showed distinct patterns of expression of chromatin remodelers on different time points of gynoecium morphogenesis from the initiation of development to post-meiotic stages. CONCLUSION Here we describe a protocol for plant tissue preparation, cryoprotection, cryo-sectioning, laser microdissection and RNA sample preparation for Illumina sequencing of complex plant organs from three phyletically distant plant species. We are confident that this approach is widely applicable to other plant species to enable transcriptome analysis with high spatial resolution in non-model plant species. The protocol is rapid, produces high quality sections of complex organs and results in RNA of adequate quality well suited for RNA-seq approaches. We provide detailed description of each stage of sample preparation with the quality and quantity measurements as well as an analysis of generated transcriptomes.
Collapse
Affiliation(s)
- Kimmo Kivivirta
- Institute of Botany, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Denise Herbert
- Institute of Botany, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Matthias Lange
- Institute of Botany, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
- Present Address: Freelance Trial Monitor and Manager for Non-Interventional Studies, Grolmanstr. 22, 10623 Berlin, Germany
| | - Knut Beuerlein
- Rudolph-Buchheim-Institute of Pharmacology, Justus-Liebig-University Gießen, Schubertstraße 81, 35392 Gießen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
- Rudolph-Buchheim-Institute of Pharmacology, Justus-Liebig-University Gießen, Schubertstraße 81, 35392 Gießen, Germany
| |
Collapse
|
17
|
Ma J, Li J, Xu Z, Wang F, Xiong A. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Acta Biochim Biophys Sin (Shanghai) 2018; 50:481-490. [PMID: 29617714 DOI: 10.1093/abbs/gmy027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Carrot provides abundant carotenoid for human diet and is one of the most widely cultivated root vegetables in the world. However, the absence of the tissue-specific transcriptome of carrots hampers the investigation of the association of secondary metabolic mechanism with the different tissue types. In this study, we obtained 46,119,008/48,414,508 raw reads and 45,394,846/47,887,648 clean reads from the carrot leaf and root, respectively. Moreover, α- and β-carotene were found to accumulate in both tissues. Then, using Trinity assembly into contigs and mapped back to contigs, these reads were assembled to 56,267 and 62,427 leaf and root unigenes, respectively, after Ns removal and paired-end extension. In addition, a total of 18,354 DEGs were found between the carrot leaf and root unigenes, and 99 of these DEGs were found to be involved in carotenoid biosynthesis as revealed by integrated function annotation. In the carotenoid pathway DEGs, DcPSY1, DcZ-ISO, DcCISO2, DcLBCY, DcLECY, DcZEP1, DcZEP2, DcVDE1, DcVDE2, DcNSY1, DcNSY2, DcA8H-CYP707A1.2, DcAAO3a, DcCCD4, and DcMAX1 were expressed dramatically in the carrot leaf compared with in the root. This result was consistent with the results from the quantitative real-time PCR analysis of DEG expression profiles. Moreover, 67 more carotenoid biosynthesis-related genes were found in this transcriptome database. Most of these DEGs were up-regulated in the carrot leaf compared with those in the root. The expression of DEGs may be related to the higher carotenoid pathway flux in the carrot leaf than in the root. These results will help to further understand the carotenoid biosynthesis in carrot.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhisheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Cohen H, Szymanski J, Aharoni A, Dominguez E. Assimilation of 'omics' strategies to study the cuticle layer and suberin lamellae in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5389-5400. [PMID: 29040673 DOI: 10.1093/jxb/erx348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The assembly of the lipophilic cuticle layer and suberin lamellae, approximately 450 million years ago, was a major evolutionary development that enabled plants to colonize terrestrial habitats. The cuticle layer is composed of cutin polyester and embedded cuticular waxes, whereas the suberin lamellae consist of very long chain fatty acid derivatives, glycerol, and phenolics cross-linked with alkyl ferulate-embedded waxes. Due to their substantial biological roles in plant life, the mechanisms underlying the assembly of these structures have been extensively investigated. In the last decade, the introduction of 'omics' approaches, including genomics, transcriptomics, proteomics, and metabolomics, have been key in the identification of novel genetic and chemical elements involved in the formation and function of the cuticle layer and suberin lamellae. This review summarizes contemporary studies that utilized various large-scale, 'omics' strategies in combination with novel technologies to unravel how building blocks and polymers of these lipophilic barriers are made, and moreover linking structure to function along developmental programs and stress responses. We anticipate that the studies discussed here will inspire scientists studying lipophilic barriers to integrate complementary 'omics' approaches in their efforts to tackle as yet unresolved questions and engage the main challenges of the field to date.
Collapse
Affiliation(s)
- Hagai Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jedrzej Szymanski
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
19
|
Merelo P, Agustí J, Arbona V, Costa ML, Estornell LH, Gómez-Cadenas A, Coimbra S, Gómez MD, Pérez-Amador MA, Domingo C, Talón M, Tadeo FR. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus. FRONTIERS IN PLANT SCIENCE 2017; 8:126. [PMID: 28228766 PMCID: PMC5296326 DOI: 10.3389/fpls.2017.00126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield.
Collapse
Affiliation(s)
- Paz Merelo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Javier Agustí
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Vicent Arbona
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Mário L. Costa
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | | | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume ICastelló de la Plana, Spain
| | - Silvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | - María D. Gómez
- Departamento de Desarrollo y Acción Hormonal en Plantas, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Miguel A. Pérez-Amador
- Departamento de Desarrollo y Acción Hormonal en Plantas, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Concha Domingo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Manuel Talón
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Francisco R. Tadeo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
- *Correspondence: Francisco R. Tadeo
| |
Collapse
|
20
|
Laser microdissection of tomato fruit cell and tissue types for transcriptome profiling. Nat Protoc 2016; 11:2376-2388. [PMID: 27809311 DOI: 10.1038/nprot.2016.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This protocol enables transcriptome profiling of specific cell or tissue types that are isolated from tomato using laser microdissection (LM). To prepare tissue for LM, fruit samples are first fixed in optimal cutting temperature (OCT) medium and frozen in molds. The tissue is then sectioned using a cryostat before being dissected using an LM instrument. The RNAs contained in the harvested cells are purified and subjected to two rounds of amplification to yield sufficient quantities of RNA to generate cDNA libraries. Unlike several other techniques that are used to isolate specific cell types, LM has the advantage of being readily applied to any plant species without having to generate transgenic plants. Using the protocols described here, LM-mediated cell-type transcriptomic analysis of two samples requires ∼8 d from tissue harvest to RNA sequencing (RNA-seq), whereas each additional sample, up to a total of 12 samples, requires ∼1 additional day for the LM step. RNA obtained using this method has been successfully used for deep-coverage transcriptome profiling, which is a particularly effective strategy for identifying genes that are differentially expressed between cell or tissue types.
Collapse
|
21
|
Establés-Ortiz B, Romero P, Ballester AR, González-Candelas L, Lafuente MT. Inhibiting ethylene perception with 1-methylcyclopropene triggers molecular responses aimed to cope with cell toxicity and increased respiration in citrus fruits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:154-66. [PMID: 26990405 DOI: 10.1016/j.plaphy.2016.02.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 05/23/2023]
Abstract
The ethylene perception inhibitor 1-methylcyclopropene (1-MCP) has been critical in understanding the hormone's mode of action. However, 1-MCP may trigger other processes that could vary the interpretation of results related until now to ethylene, which we aim to understand by using transcriptomic analysis. Transcriptomic changes in ethylene and 1-MCP-treated 'Navelate' (Citrus sinensis L. Osbeck) oranges were studied in parallel with changes in ethylene production, respiration and peel damage. The effects of compounds modifying the levels of the ethylene co-product cyanide and nitric oxide (NO) on fruit physiology were also studied. Results suggested that: 1) The ethylene treatment caused sub-lethal stress since it induced stress-related responses and reduced peel damage; 2) 1-MCP induced ethylene-dependent and ethylene-independent responsive networks; 3) 1-MCP triggered ethylene overproduction, stress-related responses and metabolic shifts aimed to cope with cell toxicity, which mostly affected to the inner part of the peel (albedo); 4) 1-MCP increased respiration and drove metabolism reconfiguration for favoring energy conservation but up-regulated genes related to lipid and protein degradation and triggered the over-expression of genes associated with the plasma membrane cellular component; 5) Xenobiotics and/or reactive oxygen species (ROS) might act as signals for defense responses in the ethylene-treated fruit, while their uncontrolled generation would induce processes mimicking cell death and damage in 1-MCP-treated fruit; 6) ROS, the ethylene co-product cyanide and NO may converge in the toxic effects of 1-MCP.
Collapse
Affiliation(s)
- Beatriz Establés-Ortiz
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas, Av. Agustín Escardino, 7, 46980, Paterna-Valencia, Spain.
| | - Paco Romero
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas, Av. Agustín Escardino, 7, 46980, Paterna-Valencia, Spain.
| | - Ana-Rosa Ballester
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas, Av. Agustín Escardino, 7, 46980, Paterna-Valencia, Spain.
| | - Luis González-Candelas
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas, Av. Agustín Escardino, 7, 46980, Paterna-Valencia, Spain.
| | - María T Lafuente
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Consejo Superior de Investigaciones Científicas, Av. Agustín Escardino, 7, 46980, Paterna-Valencia, Spain.
| |
Collapse
|
22
|
Chan AC, Khan D, Girard IJ, Becker MG, Millar JL, Sytnik D, Belmonte MF. Tissue-specific laser microdissection of the Brassica napus funiculus improves gene discovery and spatial identification of biological processes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3561-71. [PMID: 27194740 PMCID: PMC4892738 DOI: 10.1093/jxb/erw179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The three primary tissue systems of the funiculus each undergo unique developmental programs to support the growth and development of the filial seed. To understand the underlying transcriptional mechanisms that orchestrate development of the funiculus at the globular embryonic stage of seed development, we used laser microdissection coupled with RNA-sequencing to produce a high-resolution dataset of the mRNAs present in the epidermis, cortex, and vasculature of the Brassica napus (canola) funiculus. We identified 7761 additional genes in these tissues compared with the whole funiculus organ alone using this technology. Differential expression and enrichment analyses were used to identify several biological processes associated with each tissue system. Our data show that cell wall modification and lipid metabolism are prominent in the epidermis, cell growth and modification occur in the cortex, and vascular tissue proliferation and differentiation occur in the central vascular strand. We provide further evidence that each of the three tissue systems of the globular stage funiculus are involved in specific biological processes that all co-ordinate to support seed development. The identification of genes and gene regulators responsible for tissue-specific developmental processes of the canola funiculus now serves as a valuable resource for seed improvement research.
Collapse
Affiliation(s)
- Ainsley C Chan
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Deirdre Khan
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Ian J Girard
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Michael G Becker
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Jenna L Millar
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - David Sytnik
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| | - Mark F Belmonte
- University of Manitoba, Department of Biological Sciences, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
23
|
Wang J, Sun L, Xie L, He Y, Luo T, Sheng L, Luo Y, Zeng Y, Xu J, Deng X, Cheng Y. Regulation of cuticle formation during fruit development and ripening in 'Newhall' navel orange (Citrus sinensis Osbeck) revealed by transcriptomic and metabolomic profiling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:131-44. [PMID: 26795158 DOI: 10.1016/j.plantsci.2015.12.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 05/18/2023]
Abstract
Fruit cuticle, which is composed of cutin and wax and biosynthesized during fruit development, plays important roles in the prevention of water loss and the resistance to pathogen infection during fruit development and postharvest storage. However, the key factors and mechanisms regarding the cuticle biosynthesis in citrus fruits are still unclear. Here, fruit cuticle of 'Newhall' navel orange (Citrus sinensis Osbeck) was studied from the stage of fruit expansion to postharvest storage from the perspectives of morphology, transcription and metabolism. The results demonstrated that cutin accumulation is synchronous with fruit expansion, while wax synthesis is synchronous with fruit maturation. Metabolic profile of fruits peel revealed that transition of metabolism of fruit peel occurred from 120 to 150 DAF and ABA was predicted to regulate citrus wax synthesis during the development of Newhall fruits. RNA-seq analysis of the peel from the above two stages manifested that the genes involved in photosynthesis were repressed, while the genes involved in the biosynthesis of wax, cutin and lignin were significantly induced at later stages. Further real-time PCR predicted that MYB transcription factor GL1-like regulates citrus fruits wax synthesis. These results are valuable for improving the fruit quality during development and storage.
Collapse
Affiliation(s)
- Jinqiu Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Li Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Li Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yizhong He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Tao Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Ling Sheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yi Luo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
24
|
Domínguez E, Heredia-Guerrero JA, Heredia A. Plant cutin genesis: unanswered questions. TRENDS IN PLANT SCIENCE 2015; 20:551-8. [PMID: 26115781 DOI: 10.1016/j.tplants.2015.05.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/13/2015] [Accepted: 05/23/2015] [Indexed: 05/08/2023]
Abstract
The genesis of cutin, the main lipid polymer present in the biosphere, has remained elusive for many years. Recently, two main approaches have attempted to explain the process of cutin polymerization. One describes the existence of an acyltransferase cutin synthase enzyme that links activated monomers of cutin in the outer cell wall, while the other shows that plant cutin is the final result of an extracellular nonenzymatic self-assembly and polymerizing process of cutin monomers. In this opinion article, we explain both models and suggest that they could be pieces of a more complex biological scenario. We also highlight their different characteristics and current limitations, and suggest a potential synergism of both hypotheses.
Collapse
Affiliation(s)
- Eva Domínguez
- IHSM-UMA-CSIC, Departamento de Mejora Genética y Biotecnología, E.E. La Mayora, Consejo Superior de Investigaciones Científicas, Algarrobo-Costa, E-29750 Málaga, Spain
| | | | - Antonio Heredia
- IHSM-UMA-CSIC, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, E-29071 Málaga, Spain.
| |
Collapse
|
25
|
Inoue T, Yoshinaga A, Takabe K, Yoshioka T, Ogawa K, Sakamoto M, Azuma JI, Honda Y. In situ detection and identification of hesperidin crystals in satsuma mandarin (Citrus unshiu) peel cells. PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:105-10. [PMID: 25376900 DOI: 10.1002/pca.2541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Hesperidin, a flavonoid known to have important pharmacological effects, accumulates particularly in the peels of satsuma mandarin (Citrus unshiu). Although histochemical studies have suggested that hesperidin forms crystals in some tissues of the Rutaceae and Umbelliferae, there has been no rigorous in situ detection or identification of hesperidin crystals in C. unshiu. OBJECTIVE To characterise the chemical component of the crystals found in C. unshiu peels using Raman microscopy. METHODS Sections of C. unshiu peels were made. The distribution and morphology of crystals in the sections were analysed microscopically. Raman microscopy was used to detect hesperidin in the sections directly. RESULTS The crystals were more abundant in immature peel and were observed particularly in areas surrounding vascular bundles, around the border between the flavedo and albedo layers and just below the epidermal cells. In the morphological analysis by scanning electron microscopy, needle-shaped crystals aggregated and formed clusters of spherical crystals. Spectra obtained by Raman microscopy of the crystals in the peel sections were consistent with those of the hesperidin standard. CONCLUSION This study showed the detailed distribution of crystals in C. unshiu peels and their main component was identified using Raman microscopy to be hesperidin for the first time.
Collapse
Affiliation(s)
- Tsuyoshi Inoue
- Division of Environmental Science and Technology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Martin LBB, Rose JKC. There's more than one way to skin a fruit: formation and functions of fruit cuticles. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4639-51. [PMID: 25028557 DOI: 10.1093/jxb/eru301] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As with all aerial plant organs, fleshy fruits are encased in a hydrophobic cuticle that must fulfil multiple functions, including limiting desiccation and preventing microbial infection, which in the case of fruits maintains palatability and promotes seed dispersal. Fruit cuticles have many features in common with those of vegetative organs, but also have unique characteristics, including the fact that they are often astomatous, thicker than those of most leaves, and can be relatively easily isolated. These attributes provide a valuable experimental system to address questions related to cuticle structure, function, and the relationships between composition, architecture, permeability, and biomechanical properties. Here we provide an overview of insights into cuticle biology that have resulted from studies of those of fleshy fruits, as well as the diversity and dynamic nature of fruit cuticle composition and architecture, the environmental factors that influence those features, and the roles that they play in fruit ontogeny.
Collapse
Affiliation(s)
| | - Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Pattison RJ, Csukasi F, Catalá C. Mechanisms regulating auxin action during fruit development. PHYSIOLOGIA PLANTARUM 2014; 151:62-72. [PMID: 24329770 DOI: 10.1111/ppl.12142] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 05/22/2023]
Abstract
Auxin controls many aspects of fruit development, including fruit set and growth, ripening and abscission. However, the mechanisms by which auxin regulates these processes are still poorly understood. While it is generally agreed that precise spatial and temporal control of auxin distribution and signaling are required for fruit development, the dynamics of auxin biosynthesis and the mechanisms for its transport to different fruit tissues are mostly unknown. Despite major advances in elucidating many aspects of auxin biology in vegetative tissues, until recently, the nature and importance of auxin metabolism, transport and signaling during fruit ontogeny remained obscure. In this review, we summarize recent research that has started to elucidate the molecular mechanisms by which auxin is produced and transported in the fruit and to unravel the complexity of auxin signaling during fruit development. We also discuss recent approaches used to reveal the genes and regulatory networks that mediate cell and tissue-specific control of auxin levels in the developing fruit.
Collapse
|
28
|
Wang YZ, Zhang S, Dai MS, Shi ZB. Pigmentation in sand pear (Pyrus pyrifolia) fruit: biochemical characterization, gene discovery and expression analysis with exocarp pigmentation mutant. PLANT MOLECULAR BIOLOGY 2014; 85:123-34. [PMID: 24445590 DOI: 10.1007/s11103-014-0173-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 01/11/2014] [Indexed: 05/09/2023]
Abstract
Exocarp color of sand pear is an important trait for the fruit production and has caused our concern for a long time. Our previous study explored the different expression genes between the two genotypes contrasting for exocarp color, which indicated the different suberin, cutin, wax and lignin biosynthesis between the russet- and green-exocarp. In this study, we carried out microscopic observation and Fourier transform infrared spectroscopy analysis to detect the differences of tissue structure and biochemical composition between the russet- and green-exocarp of sand pear. The green exocarp was covered with epidermis and cuticle which was replaced by a cork layer on the surface of russet exocarp, and the chemicals of the russet exocarp were characterized by lignin, cellulose and hemicellulose. We explored differential gene expression between the russet exocarp of 'Niitaka' and its green exocarp mutant cv. 'Suisho' using Illumina RNA-sequencing. A total of 559 unigenes showed different expression between the two types of exocarp, and 123 of them were common to the previous study. The quantitative real time-PCR analysis supports the RNA-seq-derived gene with different expression between the two types of exocarp and revealed the preferential expression of these genes in exocarp than in mesocarp and fruit core. Gene ontology enrichment analysis revealed divorced expression of lipid metabolic process genes, transport genes, stress responsive genes and other biological process genes in the two types of exocarp. Expression changes in lignin metabolism-related genes were consistent with the different pigmentation of russet and green exocarp. Increased transcripts of putative genes involved the suberin, cutin and wax biosynthesis in 'Suisho' exocarp could facilitate deposition of the chemicals and take a role in the mutant trait responsible for the green exocarp. In addition, the divorced expression of ATP-binding cassette transporters involved in the trans-membrane transport of lignin, cutin, and suberin precursors suggests that the transport process could also affect the composition of exocarp and take a role in the regulation of exocarp pigmentation. Results from this study provide a base for the analysis of the molecular mechanism underlying sand pear russet/green exocarp mutation, and presents a comprehensive list of candidate genes that could be used to further investigate the trait mutation at the molecular level.
Collapse
Affiliation(s)
- Yue-zhi Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang Province, China,
| | | | | | | |
Collapse
|
29
|
Alkio M, Jonas U, Declercq M, Van Nocker S, Knoche M. Transcriptional dynamics of the developing sweet cherry (Prunus avium L.) fruit: sequencing, annotation and expression profiling of exocarp-associated genes. HORTICULTURE RESEARCH 2014; 1:11. [PMID: 26504533 PMCID: PMC4591669 DOI: 10.1038/hortres.2014.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/17/2014] [Indexed: 05/24/2023]
Abstract
The exocarp, or skin, of fleshy fruit is a specialized tissue that protects the fruit, attracts seed dispersing fruit eaters, and has large economical relevance for fruit quality. Development of the exocarp involves regulated activities of many genes. This research analyzed global gene expression in the exocarp of developing sweet cherry (Prunus avium L., 'Regina'), a fruit crop species with little public genomic resources. A catalog of transcript models (contigs) representing expressed genes was constructed from de novo assembled short complementary DNA (cDNA) sequences generated from developing fruit between flowering and maturity at 14 time points. Expression levels in each sample were estimated for 34 695 contigs from numbers of reads mapping to each contig. Contigs were annotated functionally based on BLAST, gene ontology and InterProScan analyses. Coregulated genes were detected using partitional clustering of expression patterns. The results are discussed with emphasis on genes putatively involved in cuticle deposition, cell wall metabolism and sugar transport. The high temporal resolution of the expression patterns presented here reveals finely tuned developmental specialization of individual members of gene families. Moreover, the de novo assembled sweet cherry fruit transcriptome with 7760 full-length protein coding sequences and over 20 000 other, annotated cDNA sequences together with their developmental expression patterns is expected to accelerate molecular research on this important tree fruit crop.
Collapse
Affiliation(s)
- Merianne Alkio
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - Uwe Jonas
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - Myriam Declercq
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, D-30419 Hannover, Germany
| | - Steven Van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824-1325, USA
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, D-30419 Hannover, Germany
| |
Collapse
|
30
|
Wang YZ, Dai MS, Zhang SJ, Shi ZB. Exploring candidate genes for pericarp russet pigmentation of sand pear (Pyrus pyrifolia) via RNA-Seq data in two genotypes contrasting for pericarp color. PLoS One 2014; 9:e83675. [PMID: 24400075 PMCID: PMC3882208 DOI: 10.1371/journal.pone.0083675] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
Sand pear (Pyrus pyrifolia) russet pericarp is an important trait affecting both the quality and stress tolerance of fruits. This trait is controlled by a relative complex genetic process, with some fundamental biological questions such as how many and which genes are involved in the process remaining elusive. In this study, we explored differentially expressed genes between the russet- and green-pericarp offspring from the sand pear (Pyrus pyrifolia) cv. 'Qingxiang' × 'Cuiguan' F1 group by RNA-seq-based bulked segregant analysis (BSA). A total of 29,100 unigenes were identified and 206 of which showed significant differences in expression level (log2fold values>1) between the two types of pericarp pools. Gene Ontology (GO) analyses detected 123 unigenes in GO terms related to 'cellular_component' and 'biological_process', suggesting developmental and growth differentiations between the two types. GO categories associated with various aspects of 'lipid metabolic processes', 'transport', 'response to stress', 'oxidation-reduction process' and more were enriched with genes with divergent expressions between the two libraries. Detailed examination of a selected set of these categories revealed repressed expressions of candidate genes for suberin, cutin and wax biosynthesis in the russet pericarps.Genes encoding putative cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD) that are involved in the lignin biosynthesis were suggested to be candidates for pigmentation of sand pear russet pericarps. Nine differentially expressed genes were analyzed for their expressions using qRT-PCR and the results were consistent with those obtained from Illumina RNA-sequencing. This study provides a comprehensive molecular biology insight into the sand pear pericarp pigmentation and appearance quality formation.
Collapse
Affiliation(s)
- Yue-zhi Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Mei-song Dai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Shu-jun Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| | - Ze-bin Shi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, China
| |
Collapse
|
31
|
Wang J, Hao H, Liu R, Ma Q, Xu J, Chen F, Cheng Y, Deng X. Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression. Food Chem 2013; 153:177-85. [PMID: 24491718 DOI: 10.1016/j.foodchem.2013.12.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/28/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
Surface wax of mature Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) was analysed by crystal morphology, chemical composition, and gene expression levels. The epicuticular and total waxes of both citrus cultivars were mostly composed of aldehydes, alkanes, fatty acids and primary alcohols. The epicuticular wax accounted for 80% of the total wax in the Newhall fruits and was higher than that in the Satsuma fruits. Scanning electron microscopy showed that larger and more wax platelets were deposited on the surface of Newhall fruits than on the Satsuma fruits. Moreover, the expression levels of genes involved in the wax formation were consistent with the biochemical and crystal morphological analyses. These diversities of fruit wax between the two cultivars may contribute to the differences of fruit postharvest storage properties, which can provide important information for the production of synthetic wax for citrus fruits.
Collapse
Affiliation(s)
- Jinqiu Wang
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Haohao Hao
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Runsheng Liu
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qiaoli Ma
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, United States
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology(Ministry of Education), National Key Laboratory of Crop Genetic Improvement, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
32
|
Filippis I, Lopez-Cobollo R, Abbott J, Butcher S, Bishop GJ. Using a periclinal chimera to unravel layer-specific gene expression in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:1039-1049. [PMID: 23725542 PMCID: PMC4223383 DOI: 10.1111/tpj.12250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 05/18/2013] [Accepted: 05/24/2013] [Indexed: 05/29/2023]
Abstract
Plant organs are made from multiple cell types, and defining the expression level of a gene in any one cell or group of cells from a complex mixture is difficult. Dicotyledonous plants normally have three distinct layers of cells, L1, L2 and L3. Layer L1 is the single layer of cells making up the epidermis, layer L2 the single cell sub-epidermal layer and layer L3 constitutes the rest of the internal cells. Here we show how it is possible to harvest an organ and characterise the level of layer-specific expression by using a periclinal chimera that has its L1 layer from Solanum pennellii and its L2 and L3 layers from Solanum lycopersicum. This is possible by measuring the level of the frequency of species-specific transcripts. RNA-seq analysis enabled the genome-wide assessment of whether a gene is expressed in the L1 or L2/L3 layers. From 13 277 genes that are expressed in both the chimera and the parental lines and with at least one polymorphism between the parental alleles, we identified 382 genes that are preferentially expressed in L1 in contrast to 1159 genes in L2/L3. Gene ontology analysis shows that many genes preferentially expressed in L1 are involved in cutin and wax biosynthesis, whereas numerous genes that are preferentially expressed in L2/L3 tissue are associated with chloroplastic processes. These data indicate the use of such chimeras and provide detailed information on the level of layer-specific expression of genes.
Collapse
Affiliation(s)
- Ioannis Filippis
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | | | - James Abbott
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | - Sarah Butcher
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
| | - Gerard J Bishop
- Imperial College London, South Kensington CampusLondon, SW7 2AZ, UK
- East Malling ResearchEast Malling, Kent, ME19 6BJ, UK
| |
Collapse
|
33
|
Golubeva YG, Smith RM, Sternberg LR. Optimizing Frozen Sample Preparation for Laser Microdissection: Assessment of CryoJane Tape-Transfer System®. PLoS One 2013; 8:e66854. [PMID: 23805281 PMCID: PMC3689705 DOI: 10.1371/journal.pone.0066854] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/10/2013] [Indexed: 01/26/2023] Open
Abstract
Laser microdissection is an invaluable tool in medical research that facilitates collecting specific cell populations for molecular analysis. Diversity of research targets (e.g., cancerous and precancerous lesions in clinical and animal research, cell pellets, rodent embryos, etc.) and varied scientific objectives, however, present challenges toward establishing standard laser microdissection protocols. Sample preparation is crucial for quality RNA, DNA and protein retrieval, where it often determines the feasibility of a laser microdissection project. The majority of microdissection studies in clinical and animal model research are conducted on frozen tissues containing native nucleic acids, unmodified by fixation. However, the variable morphological quality of frozen sections from tissues containing fat, collagen or delicate cell structures can limit or prevent successful harvest of the desired cell population via laser dissection. The CryoJane Tape-Transfer System®, a commercial device that improves cryosectioning outcomes on glass slides has been reported superior for slide preparation and isolation of high quality osteocyte RNA (frozen bone) during laser dissection. Considering the reported advantages of CryoJane for laser dissection on glass slides, we asked whether the system could also work with the plastic membrane slides used by UV laser based microdissection instruments, as these are better suited for collection of larger target areas. In an attempt to optimize laser microdissection slide preparation for tissues of different RNA stability and cryosectioning difficulty, we evaluated the CryoJane system for use with both glass (laser capture microdissection) and membrane (laser cutting microdissection) slides. We have established a sample preparation protocol for glass and membrane slides including manual coating of membrane slides with CryoJane solutions, cryosectioning, slide staining and dissection procedure, lysis and RNA extraction that facilitated efficient dissection and high quality RNA retrieval from CryoJane preparations. CryoJane technology therefore has the potential to facilitate standardization of laser microdissection slide preparation from frozen tissues.
Collapse
Affiliation(s)
- Yelena G. Golubeva
- Pathology-Histotechnology Laboratory, Science Applications International Corporation-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Roberta M. Smith
- Pathology-Histotechnology Laboratory, Science Applications International Corporation-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lawrence R. Sternberg
- Pathology-Histotechnology Laboratory, Science Applications International Corporation-Frederick, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
34
|
Martin LBB, Fei Z, Giovannoni JJ, Rose JKC. Catalyzing plant science research with RNA-seq. FRONTIERS IN PLANT SCIENCE 2013; 4:66. [PMID: 23554602 PMCID: PMC3612697 DOI: 10.3389/fpls.2013.00066] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/10/2013] [Indexed: 05/18/2023]
Abstract
Next generation DNA sequencing technologies are driving increasingly rapid, affordable and high resolution analyses of plant transcriptomes through sequencing of their associated cDNA (complementary DNA) populations; an analytical platform commonly referred to as RNA-sequencing (RNA-seq). Since entering the arena of whole genome profiling technologies only a few years ago, RNA-seq has proven itself to be a powerful tool with a remarkably diverse range of applications, from detailed studies of biological processes at the cell type-specific level, to providing insights into fundamental questions in plant biology on an evolutionary time scale. Applications include generating genomic data for heretofore unsequenced species, thus expanding the boundaries of what had been considered "model organisms," elucidating structural and regulatory gene networks, revealing how plants respond to developmental cues and their environment, allowing a better understanding of the relationships between genes and their products, and uniting the "omics" fields of transcriptomics, proteomics, and metabolomics into a now common systems biology paradigm. We provide an overview of the breadth of such studies and summarize the range of RNA-seq protocols that have been developed to address questions spanning cell type-specific-based transcriptomics, transcript secondary structure and gene mapping.
Collapse
Affiliation(s)
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- Robert W. Holly Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research ServiceIthaca, NY, USA
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- Robert W. Holly Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research ServiceIthaca, NY, USA
| | | |
Collapse
|
35
|
Honaas LA, Wafula EK, Yang Z, Der JP, Wickett NJ, Altman NS, Taylor CG, Yoder JI, Timko MP, Westwood JH, dePamphilis CW. Functional genomics of a generalist parasitic plant: laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression. BMC PLANT BIOLOGY 2013; 13:9. [PMID: 23302495 PMCID: PMC3636017 DOI: 10.1186/1471-2229-13-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/17/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. RESULTS The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. CONCLUSIONS Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor's generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions.
Collapse
Affiliation(s)
- Loren A Honaas
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Eric K Wafula
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Zhenzhen Yang
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Joshua P Der
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Norman J Wickett
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Present address: Chicago Botanic Garden, Glencoe, IL, 60022, USA
| | - Naomi S Altman
- Department of Statistics and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christopher G Taylor
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH, 44691, USA
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, Davis, California, 95616, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Claude W dePamphilis
- Intercollege Graduate Program in Plant Biology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biology and Institute of Molecular Evolutionary Genetics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
36
|
Mustroph A, Zanetti ME, Girke T, Bailey-Serres J. Isolation and analysis of mRNAs from specific cell types of plants by ribosome immunopurification. Methods Mol Biol 2013; 959:277-302. [PMID: 23299683 DOI: 10.1007/978-1-62703-221-6_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multiple ribosomes assemble onto an individual mRNA to form a polyribosome (polysome) complex. The epitope tagging of specific ribosomal proteins can enable the immunopurification of polysomes from crude cell extracts derived from cryopreserved tissue samples. Through expression of the epitope-tagged ribosomal protein in cell-type and regional specific domains of Arabidopsis thaliana and other organisms it is feasible to quantitatively assess the mRNAs that are associated with ribosomes with cell-specific resolution. Here we present detailed methods for development of transgenics that express a FLAG-tagged version of ribosomal protein L18 (RPL18) under the direction of individual promoters with specific domains of expression, the immunopurification of ribosomes, and bioinformatic analyses of the resultant datasets obtained by microarray profiling. This methodology provides researchers with the opportunity to assess rapid changes at the organ, tissue, regional or cell-type specific level of mRNAs that are associated with ribosomes and therefore engaged in translation.
Collapse
Affiliation(s)
- Angelika Mustroph
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany.
| | | | | | | |
Collapse
|
37
|
González-Carranza ZH, Shahid AA, Zhang L, Liu Y, Ninsuwan U, Roberts JA. A novel approach to dissect the abscission process in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1342-56. [PMID: 22992509 PMCID: PMC3490599 DOI: 10.1104/pp.112.205955] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/16/2012] [Indexed: 05/20/2023]
Abstract
Abscission is the consequence of a specialized layer of cells undergoing a complex series of molecular and biochemical events. Analysis of the specific molecular changes associated with abscission is hampered by contamination from neighboring nonseparating tissues. Moreover, studies of abscission frequently involve the examination of events that take place in isolated segments of tissue exposed to nonphysiological concentrations of ethylene or indole-3-acetic acid for protracted periods (more than 24 h) of time. To resolve these problems, we have adopted the use of a transgenic line of Arabidopsis (Arabidopsis thaliana) where the promoter of an abscission-specific polygalacturonase gene (At2g41850/ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2) has been fused to a green fluorescent protein reporter. RNA was extracted from green fluorescent protein-tagged cells, released from abscising floral organs, and used to generate a complementary DNA library. This library was used to probe a microarray, and a population of abscission-related transcripts was studied in detail. Seven novel abscission-related genes were identified, four of which encode proteins of unknown function. Reverse transcription-polymerase chain reaction analyses and promoter fusions to the β-glucuronidase reporter gene confirmed the expression of these genes in the abscission zone and revealed other places of expression during seedling development. Three of these genes were studied further by crossing reporter lines to the abscission mutants inflorescence deficient in abscission (ida) and blade-on-petiole1 (bop1)/bop2 and an IDA-overexpressing line. Phenotypic analysis of an At3g14380 transfer DNA insertion line indicates that this gene plays a functional role in floral organ shedding. This strategy has enabled us to uncover new genes involved in abscission, and their possible contribution to the process is discussed.
Collapse
Affiliation(s)
- Zinnia Haydee González-Carranza
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, United Kingdom.
| | | | | | | | | | | |
Collapse
|
38
|
Girard AL, Mounet F, Lemaire-Chamley M, Gaillard C, Elmorjani K, Vivancos J, Runavot JL, Quemener B, Petit J, Germain V, Rothan C, Marion D, Bakan B. Tomato GDSL1 is required for cutin deposition in the fruit cuticle. THE PLANT CELL 2012; 24:3119-34. [PMID: 22805434 PMCID: PMC3426136 DOI: 10.1105/tpc.112.101055] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 05/29/2012] [Accepted: 06/26/2012] [Indexed: 05/18/2023]
Abstract
The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.
Collapse
Affiliation(s)
- Anne-Laure Girard
- Unité Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, F-44316 Nantes cedex 3, France
| | - Fabien Mounet
- Unité Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, F-44316 Nantes cedex 3, France
| | - Martine Lemaire-Chamley
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Cédric Gaillard
- Unité Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, F-44316 Nantes cedex 3, France
| | - Khalil Elmorjani
- Unité Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, F-44316 Nantes cedex 3, France
| | - Julien Vivancos
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Jean-Luc Runavot
- Unité Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, F-44316 Nantes cedex 3, France
| | - Bernard Quemener
- Unité Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, F-44316 Nantes cedex 3, France
| | - Johann Petit
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Véronique Germain
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Christophe Rothan
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- Université de Bordeaux, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Didier Marion
- Unité Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, F-44316 Nantes cedex 3, France
| | - Bénédicte Bakan
- Unité Biopolymères, Interactions, Assemblages, Institut National de la Recherche Agronomique, F-44316 Nantes cedex 3, France
- Address correspondence to
| |
Collapse
|
39
|
O'Donoghue EM, Sutherland PW. Cell wall polysaccharide distribution in Sandersonia aurantiaca flowers using immuno-detection. PROTOPLASMA 2012; 249:843-849. [PMID: 21822793 DOI: 10.1007/s00709-011-0307-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
The localization of cell wall polysaccharides of the fused petals of monocotyledonous Sandersonia aurantiaca flowers has been identified using antibodies directed to pectin and xyloglucan epitopes and detection by fluorescence microscopy. Cross sections of the petal tissue were taken from cut flowers in bud and at various stages of maturity and senescence. Patterns of esterification in pectin backbones were identified by JIM5 and 2F4 labelling. Pectic galactan and arabinan side branches were detected by LM5 and LM6, respectively, while fucosylated xyloglucan was identified by CCRC-M1. The labelling patterns highlighted compositional differences between walls of the outer/inner epidermis compared to the spongy parenchyma cells of the interior mesophyll for fucosylated xyloglucan and arabinan. Partially esterified homogalacturonan was present in the junction zones of the outer epidermis and points of contact between cells of the mesophyll, and persisted throughout senescence. Pectic galactans were ubiquitous in the outer and inner epidermal cell walls and walls of the interior mesophyll at flower opening, whereas pectic arabinan was found predominantly in the epidermal cells. Galactan was lost from walls of all cells as flowers began to senesce, while fucosylated xyloglucan appeared to increase over this time. Such differences in the location of polysaccharides and the timing of changes suggest distinct combinations of certain polysaccharides offer mechanical and rheological advantages that may assist with flower opening and senescence.
Collapse
Affiliation(s)
- Erin M O'Donoghue
- Plant & Food Research, Private Bag 11 600, Palmerston North, 4442, New Zealand.
| | | |
Collapse
|
40
|
Voo SS, Grimes HD, Lange BM. Assessing the biosynthetic capabilities of secretory glands in Citrus peel. PLANT PHYSIOLOGY 2012; 159:81-94. [PMID: 22452856 PMCID: PMC3375987 DOI: 10.1104/pp.112.194233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/19/2012] [Indexed: 05/17/2023]
Abstract
Epithelial cells (ECs) lining the secretory cavities of Citrus peel have been hypothesized to be responsible for the synthesis of essential oil, but direct evidence for such a role is currently sparse. We used laser-capture microdissection and pressure catapulting to isolate ECs and parenchyma cells (as controls not synthesizing oil) from the peel of young grapefruit (Citrus × paradisi 'Duncan'), isolated RNA, and evaluated transcript patterns based on oligonucleotide microarrays. A Gene Ontology analysis of these data sets indicated an enrichment of genes involved in the biosynthesis of volatile terpenoids and nonvolatile phenylpropanoids in ECs (when compared with parenchyma cells), thus indicating a significant metabolic specialization in this cell type. The gene expression patterns in ECs were consistent with the accumulation of the major essential oil constituents (monoterpenes, prenylated coumarins, and polymethoxylated flavonoids). Morphometric analyses demonstrated that secretory cavities are formed early during fruit development, whereas the expansion of cavities, and thus oil accumulation, correlates with later stages of fruit expansion. Our studies have laid the methodological and experimental groundwork for a vastly improved knowledge of the as yet poorly understood processes controlling essential oil biosynthesis in Citrus peel.
Collapse
Affiliation(s)
- Siau Sie Voo
- Institute of Biological Chemistry (S.S.V., B.M.L.), M.J. Murdock Metabolomics Laboratory (B.M.L.), and School of Molecular Biosciences (H.D.G.), Washington State University, Pullman, Washington 99164–6340
| | - Howard D. Grimes
- Institute of Biological Chemistry (S.S.V., B.M.L.), M.J. Murdock Metabolomics Laboratory (B.M.L.), and School of Molecular Biosciences (H.D.G.), Washington State University, Pullman, Washington 99164–6340
| | - B. Markus Lange
- Institute of Biological Chemistry (S.S.V., B.M.L.), M.J. Murdock Metabolomics Laboratory (B.M.L.), and School of Molecular Biosciences (H.D.G.), Washington State University, Pullman, Washington 99164–6340
| |
Collapse
|
41
|
Tissier A. Glandular trichomes: what comes after expressed sequence tags? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:51-68. [PMID: 22449043 DOI: 10.1111/j.1365-313x.2012.04913.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glandular trichomes cover the surface of many plant species. They exhibit tremendous diversity, be it in their shape or the compounds they secrete. This diversity is expressed between species but also within species or even individual plants. The industrial uses of some trichome secretions and their potential as a defense barrier, for example against arthropod pests, has spurred research into the biosynthesis pathways that lead to these specialized metabolites. Because complete biosynthesis pathways take place in the secretory cells, the establishment of trichome-specific expressed sequence tag libraries has greatly accelerated their elucidation. Glandular trichomes also have an important metabolic capacity and may be considered as true cell factories. To fully exploit the potential of glandular trichomes as breeding or engineering objects, several research areas will have to be further investigated, such as development, patterning, metabolic fluxes and transcription regulation. The purpose of this review is to provide an update on the methods and technologies which have been used to investigate glandular trichomes and to propose new avenues of research to deepen our understanding of these specialized structures.
Collapse
Affiliation(s)
- Alain Tissier
- Department of Metabolic and Cell Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), Germany.
| |
Collapse
|
42
|
Matas AJ, Yeats TH, Buda GJ, Zheng Y, Chatterjee S, Tohge T, Ponnala L, Adato A, Aharoni A, Stark R, Fernie AR, Fei Z, Giovannoni JJ, Rose JK. Tissue- and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation. THE PLANT CELL 2011; 23:3893-910. [PMID: 22045915 PMCID: PMC3246317 DOI: 10.1105/tpc.111.091173] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/13/2011] [Accepted: 10/18/2011] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) is the primary model for the study of fleshy fruits, and research in this species has elucidated many aspects of fruit physiology, development, and metabolism. However, most of these studies have involved homogenization of the fruit pericarp, with its many constituent cell types. Here, we describe the coupling of pyrosequencing technology with laser capture microdissection to characterize the transcriptomes of the five principal tissues of the pericarp from tomato fruits (outer and inner epidermal layers, collenchyma, parenchyma, and vascular tissues) at their maximal growth phase. A total of 20,976 high-quality expressed unigenes were identified, of which more than half were ubiquitous in their expression, while others were cell type specific or showed distinct expression patterns in specific tissues. The data provide new insights into the spatial distribution of many classes of regulatory and structural genes, including those involved in energy metabolism, source-sink relationships, secondary metabolite production, cell wall biology, and cuticle biogenesis. Finally, patterns of similar gene expression between tissues led to the characterization of a cuticle on the inner surface of the pericarp, demonstrating the utility of this approach as a platform for biological discovery.
Collapse
Affiliation(s)
- Antonio J. Matas
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Trevor H. Yeats
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Gregory J. Buda
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Yi Zheng
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Subhasish Chatterjee
- Department of Chemistry, City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, New York, New York 10031
| | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Avital Adato
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ruth Stark
- Department of Chemistry, City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, New York, New York 10031
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853
| | - Jocelyn K.C. Rose
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
43
|
Shockey J, Browse J. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:143-60. [PMID: 21443629 DOI: 10.1111/j.1365-313x.2011.04512.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In higher plants, the superfamily of carboxyl-CoA ligases and related proteins, collectively called acyl activating enzymes (AAEs), has evolved to provide enzymes for many pathways of primary and secondary metabolism and for the conjugation of hormones to amino acids. Across the superfamily there is only limited sequence similarity, but a series of highly conserved motifs, including the AMP-binding domain, make it easy to identify members. These conserved motifs are best understood in terms of the unique domain-rotation architecture that allows AAE enzymes to catalyze the two distinct steps of the CoA ligase reaction. Arabidopsis AAE sequences were used to identify the AAE gene families in the sequenced genomes of green algae, mosses, and trees; the size of the respective families increased with increasing degree of organismal cellular complexity, size, and generation time. Large-scale genome duplications and small-scale tandem gene duplications have contributed to AAE gene family complexity to differing extents in each of the multicellular species analyzed. Gene duplication and evolution of novel functions in Arabidopsis appears to have occurred rapidly, because acquisition of new substrate specificity is relatively easy in this class of proteins. Convergent evolution has also occurred between members of distantly related clades. These features of the AAE superfamily make it difficult to use homology searches and other genomics tools to predict enzyme function.
Collapse
Affiliation(s)
- Jay Shockey
- USDA-ARS, Southern Regional Research Center, Commodity Utilization Research Unit, New Orleans, LA 70124, USA.
| | | |
Collapse
|