1
|
Chen C, Yan Y, Li D, Dong W, Zhang Y, Tao P. Identification and Expression Profiling of the Cytokinin Synthesis Gene Family IPT in Maize. Genes (Basel) 2025; 16:415. [PMID: 40282375 PMCID: PMC12026980 DOI: 10.3390/genes16040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Isopentyltransferase (IPT) is a key rate-limiting enzyme in cytokinin synthesis, playing a crucial role in plant growth, development, and response to adverse conditions. Although the IPT gene family has been studied in various plants, comprehensive identification and functional characterization of IPT genes in maize (Zea mays) remain underexplored. In this study, ten IPT gene family members (ZmIPT1-ZmIPT10) were identified in the maize genome, and their gene structure, physicochemical properties, evolutionary relationships, expression patterns, and stress response characteristics were systematically analyzed. The ZmIPT genes were found to be unevenly distributed across six chromosomes, with most proteins predicted to be basic and localized primarily in chloroplasts. Phylogenetic analysis grouped the ZmIPT family into four subfamilies, showing close evolutionary relationships with rice IPT genes. Conserved motif and gene structure analyses indicated that the family members were structurally conserved, with five collinear gene pairs being identified. Ka/Ks analysis revealed that these gene pairs underwent strong purifying selection during evolution.Cis-element analysis of promoter regions suggested that ZmIPT genes are widely involved in hormone signaling and abiotic stress responses. Tissue-specific expression profiling showed that ZmIPT5, ZmIPT7, and ZmIPT8 were highly expressed in roots, with ZmIPT5 exhibiting consistently high expression under multiple abiotic stresses. qRT-PCR validation confirmed that ZmIPT5 expression peaked at 24 h after stress treatment, indicating its key role in long-term stress adaptation. Protein interaction analysis further revealed potential interactions between ZmIPT5 and cytokinin oxidases (CKX1, CKX5), as well as FPP/GGPP synthase family proteins, suggesting a regulatory role in cytokinin homeostasis and stress adaptation. Overall, this study provides comprehensive insights into the structure and function of the ZmIPT gene family and identifies ZmIPT5 as a promising candidate for improving stress tolerance in maize through molecular breeding.
Collapse
Affiliation(s)
- Congcong Chen
- College of Agriculture, Hebei Agricultural University, Baoding 071001, China; (C.C.); (Y.Y.); (D.L.)
| | - Yujie Yan
- College of Agriculture, Hebei Agricultural University, Baoding 071001, China; (C.C.); (Y.Y.); (D.L.)
| | - Dongxiao Li
- College of Agriculture, Hebei Agricultural University, Baoding 071001, China; (C.C.); (Y.Y.); (D.L.)
| | - Weixin Dong
- Teaching Support Department, Hebei Open University, Shijiazhuang 050080, China;
| | - Yuechen Zhang
- College of Agriculture, Hebei Agricultural University, Baoding 071001, China; (C.C.); (Y.Y.); (D.L.)
| | - Peijun Tao
- College of Agriculture, Hebei Agricultural University, Baoding 071001, China; (C.C.); (Y.Y.); (D.L.)
| |
Collapse
|
2
|
Mughal N, Shoaib N, Chen J, Li Y, He Y, Fu M, Li X, He Y, Guo J, Deng J, Yang W, Liu J. Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. CHEMOSPHERE 2024; 364:143189. [PMID: 39191348 DOI: 10.1016/j.chemosphere.2024.143189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/03/2024] [Accepted: 08/24/2024] [Indexed: 08/29/2024]
Abstract
Innovative agricultural strategies are essential for addressing the urgent challenge of food security in light of climate change, population growth, and various environmental stressors. Cytokinins (CKs) play a pivotal role in enhancing plant resilience and productivity. These compounds, which include isoprenoid and aromatic types, are synthesized through pathways involving key enzymes such as isopentenyl transferase and cytokinin oxidase. Under abiotic stress conditions, CKs regulate critical physiological processes by improving photosynthetic efficiency, enhancing antioxidant enzyme activity, and optimizing root architecture. They also reduce the levels of reactive oxygen species and malondialdehyde, resulting in improved plant performance and yield. CKs interact intricately with other phytohormones, including abscisic acid, ethylene, salicylic acid, and jasmonic acid, to modulate stress-responsive pathways. This hormonal cross-talk is vital for finely tuning plant responses to stress. Additionally, CKs influence nutrient uptake and enhance responses to heavy metal stress, thereby bolstering overall plant resilience. The application of CKs helps plants maintain higher chlorophyll levels, boost antioxidant systems, and promote root and shoot growth. The strategic utilization of CKs presents an adaptive approach for developing robust crops capable of withstanding diverse environmental stressors, thus contributing to sustainable agricultural practices and global food security. Ongoing research into the mechanisms of CK action and their interactions with other hormones is essential for maximizing their agricultural potential. This underscores the necessity for continued innovation and research in agricultural practices, in alignment with global goals of sustainable productivity and food security.
Collapse
Affiliation(s)
- Nishbah Mughal
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jianhua Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhong He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Man Fu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xingyun Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuanyuan He
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinya Guo
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Juncai Deng
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiang Liu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, 611130, China; College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
3
|
Sun Q, Li X, Sun L, Sun M, Xu H, Zhou X. Plant hormones and phenolic acids response to UV-B stress in Rhododendron chrysanthum pall. Biol Direct 2024; 19:40. [PMID: 38807240 PMCID: PMC11134694 DOI: 10.1186/s13062-024-00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Our study aims to identify the mechanisms involved in regulating the response of Rhodoendron Chrysanthum Pall. (R. chrysanthum) leaves to UV-B exposure; phosphorylated proteomics and metabolomics for phenolic acids and plant hormones were integrated in this study. The results showed that UV-B stress resulted in the accumulation of salicylic acid and the decrease of auxin, jasmonic acid, abscisic acid, cytokinin and gibberellin in R. chrysanthum. The phosphorylated proteins that changed in plant hormone signal transduction pathway and phenolic acid biosynthesis pathway were screened by comprehensive metabonomics and phosphorylated proteomics. In order to construct the regulatory network of R. chrysanthum leaves under UV-B stress, the relationship between plant hormones and phenolic acid compounds was analyzed. It provides a rationale for elucidating the molecular mechanisms of radiation tolerance in plants.
Collapse
Affiliation(s)
- Qi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiangqun Li
- Jilin Engineering Vocational College, Siping, China
| | - Li Sun
- Siping Central People's Hospital, Siping, China
| | - Mingyi Sun
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China.
| |
Collapse
|
4
|
Dawane A, Deshpande S, Vijayaraghavreddy P, Vemanna RS. Polysome-bound mRNAs and translational mechanisms regulate drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108513. [PMID: 38513519 DOI: 10.1016/j.plaphy.2024.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. Drought stress at the anthesis stage in rice affects productivity due to the inefficiency of protein synthesis machinery. The effect of translational mechanisms on different pathways involved in cellular tolerance plays an important role. We report differential responses of translation-associated mechanisms in rice using polysome bound mRNA sequencing at anthesis stage drought stress in resistant Apo and sensitive IR64 genotypes. Apo maintained higher polysomes with 60 S-to-40 S and polysome-to-monosome ratios which directly correlate with protein levels under stress. IR64 has less protein levels under stress due to defective translation machinery and reduced water potential. Many polysome-bound long non-coding RNAs (lncRNA) were identified in both genotypes under drought, influencing translation. Apo had higher levels of N6-Methyladenosine (m6A) mRNA modifications that contributed for sustained translation. Translation machinery in Apo could maintain higher levels of photosynthetic machinery-associated proteins in drought stress, which maintain gas exchange, photosynthesis and yield under stress. The protein stability and ribosome biogenesis mechanisms favoured improved translation in Apo. The phytohormone signalling and transcriptional responses were severely affected in IR64. Our results demonstrate that, the higher translation ability of Apo favours maintenance of photosynthesis and physiological responses that are required for drought stress adaptation.
Collapse
Affiliation(s)
- Akashata Dawane
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | - Sanjay Deshpande
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India
| | | | - Ramu S Vemanna
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, NCR Biotech Science Cluster, 3rd Milestone, Faridabad, Haryana, 121 001, India.
| |
Collapse
|
5
|
Xu Y, Ran S, Li S, Lu J, Huang W, Zheng J, Hou M, Zhong F. Genome-Wide Identification and Abiotic Stress Expression Analysis of CKX and IPT Family Genes in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:422. [PMID: 38337953 PMCID: PMC10856886 DOI: 10.3390/plants13030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Cytokinins (CKs) are among the hormones that regulate plants' growth and development, and the CKX and IPT genes, which are CK degradation and biosynthesis genes, respectively, play important roles in fine-tuning plants' cytokinin levels. However, the current research on the function of IPT and CKX in cucumber's growth, development, and response to abiotic stress is not specific enough, and their regulatory mechanisms are still unclear. In this study, we focused on the IPT and CKX genes in cucumber, analyzed the physiological and biochemical properties of their encoded proteins, and explored their expression patterns in different tissue parts and under low light, salt stress, and drought stress. Eight CsCKX and eight CsIPT genes were identified from the cucumber genome. We constructed a phylogenetic tree from the amino acid sequences and performed prediction analyses of the cis-acting elements of the CsCKX and CsIPT promoters to determine whether CsCKXs and CsIPTs are responsive to light, abiotic stress, and different hormones. We also performed expression analysis of these genes in different tissues, and we found that CsCKXs and CsIPTs were highly expressed in roots and male flowers. Thus, they are involved in the whole growth and development process of the plant. This paper provides a reference for further research on the biological functions of CsIPT and CsCKX in regulating the growth and development of cucumber and its response to abiotic stress.
Collapse
Affiliation(s)
- Yang Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | - Shengxiang Ran
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | - Shuhao Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | - Junyang Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | | | - Jingyuan Zheng
- Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China;
| | - Maomao Hou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| | - Fenglin Zhong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (S.R.); (J.L.)
| |
Collapse
|
6
|
Peterson H, Ahmad I, Barbercheck ME. Maize response to endophytic Metarhizium robertsii is altered by water stress. PLoS One 2023; 18:e0289143. [PMID: 38011108 PMCID: PMC10681223 DOI: 10.1371/journal.pone.0289143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 11/29/2023] Open
Abstract
To defend against damage from environmental stress, plants have evolved strategies to respond to stress efficiently. One such strategy includes forming mutualist relationships with endophytes which confer stress-alleviating plant defensive and growth promoting effects. Metarhizium robertsii is an entomopathogen and plant-protective and growth-promoting endophyte. To determine the context dependency of the relationship between M. robertsii and maize, we conducted a greenhouse experiment that imposed stress as deficit and excess soil moisture on maize plants which were inoculated or not inoculated with M. robertsii and measured plant growth and defense indicators. Maize height and endophytic root colonization by M. robertsii were positively correlated in the deficit water treatment, but not in the adequate or excess water treatments. The relative expression of ZmLOX1 in the jasmonic acid (JA) biosynthesis pathway was significantly greater in M. robertsii-inoculated than in non-inoculated plants, but water treatment had no effect. There was significant interaction between M. robertsii and water treatments on foliar concentrations of JA and jasmonoyl isoleucine (JA-ILE), suggesting that water stress impacts M. robertsii as a modulator of plant defense. Water stress, but not inoculation with M. robertsii, had a significant effect on the expression of MYB (p = 0.021) and foliar concentrations of abscisic acid (p<0.001), two signaling molecules associated with abiotic stress response. This study contributes toward understanding the highly sophisticated stress response signaling network and context dependency of endophytic mutualisms in crops.
Collapse
Affiliation(s)
- Hannah Peterson
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Imtiaz Ahmad
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| | - Mary E. Barbercheck
- Department of Entomology, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
7
|
Li T, Luo K, Wang C, Wu L, Pan J, Wang M, Liu J, Li Y, Yao J, Chen W, Zhu S, Zhang Y. GhCKX14 responding to drought stress by modulating antioxi-dative enzyme activity in Gossypium hirsutum compared to CKX family genes. BMC PLANT BIOLOGY 2023; 23:409. [PMID: 37658295 PMCID: PMC10474641 DOI: 10.1186/s12870-023-04419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Cytokinin oxidase/dehydrogenase (CKX) plays a vital role in response to abiotic stress through modulating the antioxidant enzyme activities. Nevertheless, the biological function of the CKX gene family has yet to be reported in cotton. RESULT In this study, a total of 27 GhCKXs were identified by the genome-wide investigation and distributed across 18 chromosomes. Phylogenetic tree analysis revealed that CKX genes were clustered into four clades, and most gene expansions originated from segmental duplications. The CKXs gene structure and motif analysis displayed remarkably well conserved among the four groups. Moreover, the cis-acting elements related to the abiotic stress, hormones, and light response were identified within the promoter regions of GhCKXs. Transcriptome data and RT-qPCR showed that GhCKX genes demonstrated higher expression levels in various tissues and were involved in cotton's abiotic stress and phytohormone response. The protein-protein interaction network indicates that the CKX family probably participated in redox regulation, including oxidoreduction or ATP levels, to mediate plant growth and development. Functionally identified via virus-induced gene silencing (VIGS) found that the GhCKX14 gene improved drought resistance by modulating the antioxidant-related activitie. CONCLUSIONS In this study, the CKX gene family members were analyzed by bioinformatics, and validates the response of GhCKX gene to various phytohormone treatment and abiotic stresses. Our findings established the foundation of GhCKXs in responding to abiotic stress and GhCKX14 in regulating drought resistance in cotton.
Collapse
Affiliation(s)
- Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Kun Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, Zhejiang, China
| | - Chenlei Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lanxin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jingwen Pan
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Mingyang Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou, 450001, China
| | - Jinwei Liu
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, Zhengzhou, 450001, China.
| |
Collapse
|
8
|
Salinas-Cornejo J, Madrid-Espinoza J, Verdugo I, Norambuena L, Ruiz-Lara S. A SNARE-like protein from Solanum lycopersicum increases salt tolerance by modulating vesicular trafficking in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1212806. [PMID: 37593042 PMCID: PMC10431929 DOI: 10.3389/fpls.2023.1212806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 08/19/2023]
Abstract
Intracellular vesicular trafficking ensures the exchange of lipids and proteins between endomembrane compartments. This is relevant under high salinity conditions, since both the removal of transporters and ion channels from the plasma membrane and the compartmentalization of toxic ions require the formation of vesicles, which can be maintained as multivesicular bodies or be fused to the central vacuole. SNARE proteins (Soluble N-ethylmaleimide-sensitive factor attachment receptor) participate in the vesicle fusion process and give specificity to their destination. Plant genome studies have revealed a superfamily of genes that encode for proteins called SNARE-like. These proteins appear to be participating in vesicular trafficking with similar functions to those of SNARE proteins. A SNARE-like, named SlSLSP6, in Solanum lycopersicum plants has been shown to be induced under high salinity conditions. A phylogenetic relationship of SlSLSP6 with SNARE-like proteins of salinity-tolerant plants, including Salicornia brachiata, Zostera marina and Solanum pennelli, was determined. Considering its amino acid sequence, a putative clathrin adapter complex domain and palmitoylation site was predicted. Subcellular localization analysis evidenced that SlSLSP6 is mostly localized in the plasma membrane. Using transgenic tomato plants, we identified that overexpression of SlSLSP6 increased tolerance to salt stress. This tolerance was evident when we quantified an improvement in physiological and biochemical parameters, such as higher chlorophyll content, performance index, efficiency of photosystem II and relative water content, and lower malondialdehyde content, compared to control plants. At the subcellular level, the overexpression of SlSLSP6 reduced the presence of H2O2 in roots and increased the compartmentalization of sodium in vacuoles during salt stress. These effects appear to be associated with the higher endocytic rate of FM4-64, determined in the plant root cells. Taken together, these results indicate that SlSLSP6 increases tolerance to salt stress by modulating vesicular trafficking through over-induction of the endocytic pathway. This work contributes to understanding the role of this type of SNARE-like protein during salt stress and could be a potential candidate in breeding programs for tolerance to salt stress in tomato plants.
Collapse
Affiliation(s)
- Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Isabel Verdugo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Lorena Norambuena
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
9
|
Quan J, Li X, Li Z, Wu M, Zhu B, Hong SB, Shi J, Zhu Z, Xu L, Zang Y. Transcriptomic Analysis of Heat Stress Response in Brassica rapa L. ssp. pekinensis with Improved Thermotolerance through Exogenous Glycine Betaine. Int J Mol Sci 2023; 24:ijms24076429. [PMID: 37047402 PMCID: PMC10094913 DOI: 10.3390/ijms24076429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Chinese cabbage (Brassica rapa L. ssp. pekinensis) is sensitive to high temperature, which will cause the B. rapa to remain in a semi-dormancy state. Foliar spray of GB prior to heat stress was proven to enhance B. rapa thermotolerance. In order to understand the molecular mechanisms of GB-primed resistance or adaptation towards heat stress, we investigated the transcriptomes of GB-primed and non-primed heat-sensitive B. rapa ‘Beijing No. 3’ variety by RNA-Seq analysis. A total of 582 differentially expressed genes (DEGs) were identified from GB-primed plants exposed to heat stress relative to non-primed plants under heat stress and were assigned to 350 gene ontology (GO) pathways and 69 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. The analysis of the KEGG enrichment pathways revealed that the most abundantly up-regulated pathways were protein processing in endoplasmic reticulum (14 genes), followed by plant hormone signal transduction (12 genes), ribosome (8 genes), MAPK signaling pathway (8 genes), homologous recombination (7 genes), nucleotide excision repair metabolism (5 genes), glutathione metabolism (4 genes), and ascorbate and aldarate metabolism (4 genes). The most abundantly down-regulated pathways were plant-pathogen interaction (14 genes), followed by phenylpropanoid biosynthesis (7 genes); arginine and proline metabolism (6 genes); cutin, suberine, and wax biosynthesis (4 genes); and tryptophan metabolism (4 genes). Several calcium sensing/transducing proteins, as well as transcription factors associated with abscisic acid (ABA), salicylic acid (SA), auxin, and cytokinin hormones were either up- or down-regulated in GB-primed B. rapa plants under heat stress. In particular, expression of the genes for antioxidant defense, heat shock response, and DNA damage repair systems were highly increased by GB priming. On the other hand, many of the genes involved in the calcium sensors and cell surface receptors involved in plant innate immunity and the biosynthesis of secondary metabolites were down-regulated in the absence of pathogen elicitors in GB-primed B. rapa seedlings. Overall GB priming activated ABA and SA signaling pathways but deactivated auxin and cytokinin signaling pathways while suppressing the innate immunity in B. rapa seedlings exposed to heat stress. The present study provides a preliminary understanding of the thermotolerance mechanisms in GB-primed plants and is of great importance in developing thermotolerant B. rapa cultivars by using the identified DEGs through genetic modification.
Collapse
|
10
|
Redox Signaling in Plant Heat Stress Response. Antioxidants (Basel) 2023; 12:antiox12030605. [PMID: 36978852 PMCID: PMC10045013 DOI: 10.3390/antiox12030605] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The increase in environmental temperature due to global warming is a critical threat to plant growth and productivity. Heat stress can cause impairment in several biochemical and physiological processes. Plants sense and respond to this adverse environmental condition by activating a plethora of defense systems. Among them, the heat stress response (HSR) involves an intricate network of heat shock factors (HSFs) and heat shock proteins (HSPs). However, a growing amount of evidence suggests that reactive oxygen species (ROS), besides potentially being responsible for cellular oxidative damage, can act as signal molecules in HSR, leading to adaptative responses. The role of ROS as toxic or signal molecules depends on the fine balance between their production and scavenging. Enzymatic and non-enzymatic antioxidants represent the first line of defense against oxidative damage and their activity is critical to maintaining an optimal redox environment. However, the HS-dependent ROS burst temporarily oxidizes the cellular environment, triggering redox-dependent signaling cascades. This review provides an overview of the redox-activated mechanisms that participate in the HSR.
Collapse
|
11
|
Hsieh CY, Hsieh LS. Cloning of Three Cytokinin Oxidase/Dehydrogenase Genes in Bambusa oldhamii. Curr Issues Mol Biol 2023; 45:1902-1913. [PMID: 36975493 PMCID: PMC10047441 DOI: 10.3390/cimb45030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Cytokinin oxidase/dehydrogenase (CKX) catalyzes the irreversible breakdown of active cytokinins, which are a class of plant hormones that regulate cell division. According to conserved sequences of CKX genes from monocotyledons, PCR primers were designed to synthesize a probe for screening a bamboo genomic library. Cloned results of three genes encoding cytokinin oxidase were named as follows: BoCKX1, BoCKX2, and BoCKX3. In comparing the exon-intron structures among the above three genes, there are three exons and two introns in BoCKX1 and BoCKX3 genes, whereas BoCKX2 contains four exons and three introns. The amino acid sequence of BoCKX2 protein shares 78% and 79% identity with BoCKX1 and BoCKX3 proteins, respectively. BoCKX1 and BoCKX3 genes are particularly closely related given that the amino acid and nucleotide sequence identities are more than 90%. These three BoCKX proteins carried putative signal peptide sequences typical of secretion pathway, and a GHS-motif was found at N-terminal flavin adenine dinucleotide (FAD) binding domain, suggesting that BoCKX proteins might covalently conjugate with an FAD cofactor through a predicted histidine residue.
Collapse
Affiliation(s)
- Chun-Yen Hsieh
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei City 11101, Taiwan
| | - Lu-Sheng Hsieh
- Department of Food Science, College of Agriculture, Tunghai University, Taichung 40704, Taiwan
- Correspondence: ; Tel.: +886-4-23590121 (ext. 37331)
| |
Collapse
|
12
|
Ge X, Du J, Zhang L, Qu G, Hu J. PeCLH2 Gene Positively Regulate Salt Tolerance in Transgenic Populus alba × Populus glandulosa. Genes (Basel) 2023; 14:genes14030538. [PMID: 36980811 PMCID: PMC10048402 DOI: 10.3390/genes14030538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Salt is an important environmental stress factor, which seriously affects the growth, development and distribution of plants. Chlorophyllase plays an important role in stress response. Nevertheless, little is known about the physiological and molecular mechanism of chlorophyll (Chlase, CLH) genes in plants. We cloned PeCLH2 from Populus euphratica and found that PeCLH2 was differentially expressed in different tissues, especially in the leaves of P. euphratica. To further study the role of PeCLH2 in salt tolerance, PeCLH2 overexpression and RNA interference transgenic lines were established in Populus alba × Populus glandulosa and used for salt stress treatment and physiologic indexes studies. Overexpressing lines significantly improved tolerance to salt treatment and reduced reactive oxygen species production. RNA interference lines showed the opposite. Transcriptome analysis was performed on leaves of control and transgenic lines under normal growth conditions and salt stress to predict genes regulated during salt stress. This provides a basis for elucidating the molecular regulation mechanism of PeCLH2 in response to salt stress and improving the tolerance of poplar under salt stress.
Collapse
Affiliation(s)
- Xiaolan Ge
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China
| | - Jiujun Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100091, China
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-10-62888862
| |
Collapse
|
13
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
14
|
Gambhir P, Singh V, Raghuvanshi U, Parida AP, Pareek A, Roychowdhury A, Sopory SK, Kumar R, Sharma AK. A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:518-548. [PMID: 36377315 DOI: 10.1111/pce.14493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In plants, glyoxalase enzymes are activated under stress conditions to mitigate the toxic effects of hyperaccumulated methylglyoxal (MG), a highly reactive carbonyl compound. Until recently, a glutathione-dependent bi-enzymatic pathway involving glyoxalase I (GLYI) and glyoxalase II (GLYII) was considered the primary MG-detoxification system. Recently, a new glutathione-independent glyoxalase III (GLYIII) mediated direct route was also reported in plants. However, the physiological significance of this new pathway remains to be elucidated across plant species. This study identified the full complement of 22 glyoxalases in tomato. Based on their strong induction under multiple abiotic stresses, SlGLYI4, SlGLYII2 and SlGLYIII2 were selected candidates for further functional characterisation. Stress-inducible overexpression of both glutathione-dependent (SlGLYI4 + SlGLYII2) and independent (SlGLYIII2) pathways led to enhanced tolerance in both sets of transgenic plants under abiotic stresses. However, SlGLYIII2 overexpression (OE) plants outperformed the SlGLYI4 + SlGLYII2 OE counterparts for their stress tolerance under abiotic stresses. Further, knockdown of SlGLYIII2 resulted in plants with exacerbated stress responses than those silenced for both SlGLYI4 and SlGLYII2. The superior performance of SlGLYIII2 OE tomato plants for better growth and yield under salt and osmotic treatments could be attributed to better GSH/GSSG ratio, lower reactive oxygen species levels, and enhanced antioxidant potential, indicating a prominent role of GLYIII MG-detoxification pathway in abiotic stress mitigation in this species.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Amit Pareek
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Sudhir K Sopory
- Department of Plant Molecular Biology, Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
15
|
Zarea MJ, Karimi N. Grain yield and quality of wheat are improved through post-flowering foliar application of zinc and 6- benzylaminopurine under water deficit condition. FRONTIERS IN PLANT SCIENCE 2023; 13:1068649. [PMID: 36714766 PMCID: PMC9879624 DOI: 10.3389/fpls.2022.1068649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Zinc (Zn) as an essential micronutrient and cytokinin as phytohormone not only regulate plant growth but also play fundamental roles in plant tolerance against drought stress. Understating the function and the role of cytokinin in combined with an essential micronutrient, Zn, could improve the choice of a sustainable strategy for improvement of plant drought stress. The objective of this field research was to determine the effect of post-flowering foliar application of ZnSO4 and 6-benzylaminopurine (6-BAP) on grain yield and quality of winter wheat under water deficit condition. METHODS Experiments were conducted under filed condition. Drought was imposed by with holding irrigation at the beginning of flowering till the signs of temporary wilting/leaf rolling appeared, after which all plots were irrigated to field capacity. The foliar treatment consisted of (1) foliar application of water, as control treatment; (2) foliar application of 10 g ha-1 6-BAP; (3) Foliar application of 20 g ha-1 6-BAP; (4) Foliar application of 10 g ha-1 6-BAP plus foliar application of 6 kg ha-1 ZnSO4 solution and (5) foliar application of 10 g ha-1 6-BAP plus foliar application of 6 kg ha-1 ZnSO4 solution 2 days before drought imposition. Data were collected on grain and straw yield, yield attributes, harvest index, flag leaf fresh matter and dry matter weight, TaCKX6-D1 expression, phytic acid content in grains, mycorrhiza colonization rate and succinate dehydrogenase (SD) activity. RESULTS According to ANOVA, the factor 'Zn' significantly affected leaf relative water content (p < 0.001). Relative water content for plants foliar applied with 6-BAP was not statistically significant. Applying Zn increased yield, straw dry weight, and kernel weight relative to plants sprayed with water alone. Increased grain yield due to foliar application of Zn was associated with decrease in cytokinin oxidase/dehydrogenase (TaCKX) and increase in kernel weight. Results showed that the drought stress significantly decreased 1000-grain weight that was accompanied with over-expression of cytokinin oxidase/dehydrogenase (TaCKX). Foliar application of Zn increased the concentration of Zn in grains. The experimental data on the zinc content of grain indicated no significant difference between the 6-BAP at 10 mg L-1 and control treatment. The phytate to Zn molar ratio was significantly affected by foliar applied Zn, but not significantly by applied 6-BAP. In the present study, SD activity of the hyphae of indigenous arbuscular mycorrhizal fungi (IAMF) associated with plant roots was also assayed. Results disclose that SD activity of IAMF was significantly affected by Zn treatments during grain filling stages. DISCUSSION In summary, both foliar applied Zn and 6-BAP had the significant effects on all measured parameters in winter wheat. However, spike number, harvest index and mycorrhizal colonization rate were neither significantly affected by Zn nor 6- BAP. Foliar application of Zn at 0.6% (6 kg ha-1) and higher 6-BAP (20 mg L-1 m-2) promoted wheat growth and performances under imposed drought stress condition. Plant that only foliar sprayed with water showed higher level of TaCKX6-D1 expression as compared to Zn treated plants, indicating these plants were more affected by imposed drought relative to those plants treated with Zn. The results of this study provides evidence that a combination of Zn and 6-BAP could be an effective in improvement of drought tolerance of wheat and prevents grain yield from further reduction in terms of quality and quantity due to drought stress.
Collapse
|
16
|
Du Y, Zhang Z, Gu Y, Li W, Wang W, Yuan X, Zhang Y, Yuan M, Du J, Zhao Q. Genome-wide identification of the soybean cytokinin oxidase/dehydrogenase gene family and its diverse roles in response to multiple abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1163219. [PMID: 37139113 PMCID: PMC10149856 DOI: 10.3389/fpls.2023.1163219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) irreversibly degrades cytokinin, regulates growth and development, and helps plants to respond to environmental stress. Although the CKX gene has been well characterized in various plants, its role in soybean remains elusive. Therefore, in this study, the evolutionary relationship, chromosomal location, gene structure, motifs, cis-regulatory elements, collinearity, and gene expression patterns of GmCKXs were analyzed using RNA-seq, quantitative real-time PCR (qRT-PCR), and bioinformatics. We identified 18 GmCKX genes from the soybean genome and grouped them into five clades, each comprising members with similar gene structures and motifs. Cis-acting elements involved in hormones, resistance, and physiological metabolism were detected in the promoter regions of GmCKXs. Synteny analysis indicated that segmental duplication events contributed to the expansion of the soybean CKX family. The expression profiling of the GmCKXs genes using qRT-PCR showed tissue-specific expression patterns. The RNA-seq analysis also indicated that GmCKXs play an important role in response to salt and drought stresses at the seedling stage. The responses of the genes to salt, drought, synthetic cytokinin 6-benzyl aminopurine (6-BA), and the auxin indole-3-acetic acid (IAA) at the germination stage were further evaluated by qRT-PCR. Specifically, the GmCKX14 gene was downregulated in the roots and the radicles at the germination stage. The hormones 6-BA and IAA repressed the expression levels of GmCKX1, GmCKX6, and GmCKX9 genes but upregulated the expression levels of GmCKX10 and GmCKX18 genes. The three abiotic stresses also decreased the zeatin content in soybean radicle but enhanced the activity of the CKX enzymes. Conversely, the 6-BA and IAA treatments enhanced the CKX enzymes' activity but reduced the zeatin content in the radicles. This study, therefore, provides a reference for the functional analysis of GmCKXs in soybean in response to abiotic stresses.
Collapse
Affiliation(s)
- Yanli Du
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Cereals Technology Engineering Research Center, Daqing, Heilongjiang, China
| | - Zhaoning Zhang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yanhua Gu
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Weijia Li
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Weiyu Wang
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Xiankai Yuan
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yuxian Zhang
- National Cereals Technology Engineering Research Center, Daqing, Heilongjiang, China
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, Heilongjiang, China
| | - Ming Yuan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China
| | - Jidao Du
- Agricultural College, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Cereals Technology Engineering Research Center, Daqing, Heilongjiang, China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, Heilongjiang, China
- *Correspondence: Jidao Du, ; Qiang Zhao,
| | - Qiang Zhao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Ministry of Agriculture and Rural Affairs of Soybean Mechanized Production, Daqing, Heilongjiang, China
- Research Center of Saline and Alkali Land Improvement Engineering Technology in Heilongjiang Province, Daqing, Heilongjiang, China
- *Correspondence: Jidao Du, ; Qiang Zhao,
| |
Collapse
|
17
|
Cytokinin Modulates Responses to Phytomelatonin in Arabidopsis thaliana under High Light Stress. Int J Mol Sci 2023; 24:ijms24010738. [PMID: 36614184 PMCID: PMC9821067 DOI: 10.3390/ijms24010738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Fine-tuned interactions between melatonin (MT) and hormones affected by environmental inputs are crucial for plant growth. Under high light (HL) conditions, melatonin reduced photodamage in Arabidopsis thaliana and contributed to the restoration of the expression of the cytokinin (CK) synthesis genes IPT3, IPT5 and LOG7 and genes for CK signal transduction AHK2,3 and ARR 1, 4, 5 and 12 which were downregulated by stress. However, CK signaling mutants displayed no significant changes in the expression of CK genes following HL + MT treatment, implying that a fully functional cytokinin signaling pathway is a prerequisite for MT-CK interactions. In turn, cytokinin treatment increased the expression of the key melatonin synthesis gene ASMT under both moderate and HL in wild-type plants. This upregulation was further accentuated in the ipt3,5,7 mutant which is highly sensitive to CK. In this mutant, in addition to ASMT, the melatonin synthesis genes SNAT and COMT, as well as the putative signaling genes CAND2 and GPA1, displayed elevated transcript levels. The results of the study suggest that melatonin acts synergistically with CK to cope with HL stress through melatonin-associated activation or repression of the respective hormonal genes.
Collapse
|
18
|
Pantoja-Benavides AD, Garces-Varon G, Restrepo-Díaz H. Foliar cytokinins or brassinosteroids applications influence the rice plant acclimatization to combined heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:983276. [PMID: 36618669 PMCID: PMC9815704 DOI: 10.3389/fpls.2022.983276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The effect of different foliar sprays numbers of cytokinins - (CK) and brassinosteroids - (BR) on the physiological, biochemical, and panicle parameters of rice plants subjected to combined heat stress (high day/night temperatures) were studied in three different experiments. The treatments established for the first (E1) and second (E2) experiments were the following: i) absolute control, ii) stress control, iii) heat stress + one foliar spray of CK, iv) heat stress + two foliar sprays of CK, v) heat stress + three foliar sprays of CK, vi) heat stress + one foliar spray of BR, vii) heat stress + two foliar sprays of BR, or viii) heat stress + three foliar sprays of BR. For the third experiment (E3), the treatments were the following: i) absolute control, ii) stress control, iii) heat stress + three foliar applications of CK, iv) heat stress + three foliar applications of BR. Rice-stressed plants and sprayed with three foliar sprays of CK or BR had a better stomatal conductance in E1 and E2 compared to their heat-stressed control. The relative tolerance index suggests that three CK or BR applications helped to mitigate the combined heat stress in both experiments. The foliar CK or BR applications at the flowering and grain-filling stages in rice-stressed plants increased Fv/Fm ratio and panicle characteristics (number of filled spikelets and the percentage of panicle blanking in E3). In conclusion, foliar applications of BR or CK can be considered an agronomic strategy to help improve the negative effect of combined heat stress conditions on the physiological behavior of rice plants during different phenological stages.
Collapse
Affiliation(s)
| | | | - Hermann Restrepo-Díaz
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Bogotá, Colombia
| |
Collapse
|
19
|
Nowicka B. Modifications of Phytohormone Metabolism Aimed at Stimulation of Plant Growth, Improving Their Productivity and Tolerance to Abiotic and Biotic Stress Factors. PLANTS (BASEL, SWITZERLAND) 2022; 11:3430. [PMID: 36559545 PMCID: PMC9781743 DOI: 10.3390/plants11243430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Due to the growing human population, the increase in crop yield is an important challenge for modern agriculture. As abiotic and biotic stresses cause severe losses in agriculture, it is also crucial to obtain varieties that are more tolerant to these factors. In the past, traditional breeding methods were used to obtain new varieties displaying demanded traits. Nowadays, genetic engineering is another available tool. An important direction of the research on genetically modified plants concerns the modification of phytohormone metabolism. This review summarizes the state-of-the-art research concerning the modulation of phytohormone content aimed at the stimulation of plant growth and the improvement of stress tolerance. It aims to provide a useful basis for developing new strategies for crop yield improvement by genetic engineering of phytohormone metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
20
|
Khoso MA, Hussain A, Ritonga FN, Ali Q, Channa MM, Alshegaihi RM, Meng Q, Ali M, Zaman W, Brohi RD, Liu F, Manghwar H. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1039329. [PMID: 36426143 PMCID: PMC9679293 DOI: 10.3389/fpls.2022.1039329] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
The WRKY transcription factor (TF) belongs to one of the major plant protein superfamilies. The WRKY TF gene family plays an important role in the regulation of transcriptional reprogramming associated with plant stress responses. Change in the expression patterns of WRKY genes or the modifications in their action; participate in the elaboration of numerous signaling pathways and regulatory networks. WRKY proteins contribute to plant growth, for example, gamete formation, seed germination, post-germination growth, stem elongation, root hair growth, leaf senescence, flowering time, and plant height. Moreover, they play a key role in many types of environmental signals, including drought, temperature, salinity, cold, and biotic stresses. This review summarizes the current progress made in unraveling the functions of numerous WRKY TFs under drought, salinity, temperature, and cold stresses as well as their role in plant growth and development.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
- Department of Life Science, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Amjad Hussain
- College of Plant Science and Technology, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | | | - Rana M. Alshegaihi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Qinglin Meng
- Department of Biology and Food Engineering, Bozhou University, Bozhou, China
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad Pakistan, Islamabad, Pakistan
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Rahim Dad Brohi
- Department of Animal Reproduction/Theriogenology, Faculty of Veterinary Science, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, China
| |
Collapse
|
21
|
Jain P, Singh A, Iquebal MA, Jaiswal S, Kumar S, Kumar D, Rai A. Genome-Wide Analysis and Evolutionary Perspective of the Cytokinin Dehydrogenase Gene Family in Wheat ( Triticum aestivum L.). Front Genet 2022; 13:931659. [PMID: 36061212 PMCID: PMC9437647 DOI: 10.3389/fgene.2022.931659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Cytokinin dehydrogenase (CKX; EC.1.5.99.12) regulates the level of cytokinin (CK) in plants and is involved in CK regulatory activities. In different plants, a small gene family encodes CKX proteins with varied numbers of members. These genes are expanded in the genome mainly due to segmental duplication events. Despite their biological importance, CKX genes in Triticum aestivum have yet to be studied in depth. A total of 11 CKX subfamilies were identified with similar gene structures, motifs, domains, cis-acting elements, and an average signal peptide of 25 amino acid length was found. Introns, ranging from one to four, were present in the coding regions at a similar interval in major CKX genes. Putative cis-elements such as abscisic acid, auxin, salicylic acid, and low-temperature-, drought-, and light-responsive cis-regulatory elements were found in the promoter region of majority CKX genes. Variation in the expression pattern of CKX genes were identified across different tissues in Triticum. Phylogenetic analysis shows that the same subfamily of CKX clustered into a similar clade that reflects their evolutionary relationship. We performed a genome-wide identification of CKX family members in the Triticum aestivum genome to get their chromosomal location, gene structure, cis-element, phylogeny, synteny, and tissue- and stage-specific expression along with gene ontology. This study has also elaborately described the tissue- and stage-specific expression and is the resource for further analysis of CKX in the regulation of biotic and abiotic stress resistance, growth, and development in Triticum and other cereals to endeavor for higher production and proper management.
Collapse
Affiliation(s)
- Priyanka Jain
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Singh
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,*Correspondence: Sarika Jaiswal,
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India,Department of Biotechnology, School of Interdisciplinary and Allied Sciences (SIAS), Central University of Haryana, Haryana, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
22
|
Mandal S, Ghorai M, Anand U, Samanta D, Kant N, Mishra T, Rahman MH, Jha NK, Jha SK, Lal MK, Tiwari RK, Kumar M, Radha, Prasanth DA, Mane AB, Gopalakrishnan AV, Biswas P, Proćków J, Dey A. Cytokinin and abiotic stress tolerance -What has been accomplished and the way forward? Front Genet 2022; 13:943025. [PMID: 36017502 PMCID: PMC9395584 DOI: 10.3389/fgene.2022.943025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022] Open
Abstract
More than a half-century has passed since it was discovered that phytohormone cytokinin (CK) is essential to drive cytokinesis and proliferation in plant tissue culture. Thereafter, cytokinin has emerged as the primary regulator of the plant cell cycle and numerous developmental processes. Lately, a growing body of evidence suggests that cytokinin has a role in mitigating both abiotic and biotic stress. Cytokinin is essential to defend plants against excessive light exposure and a unique kind of abiotic stress generated by an altered photoperiod. Secondly, cytokinin also exhibits multi-stress resilience under changing environments. Furthermore, cytokinin homeostasis is also affected by several forms of stress. Therefore, the diverse roles of cytokinin in reaction to stress, as well as its interactions with other hormones, are discussed in detail. When it comes to agriculture, understanding the functioning processes of cytokinins under changing environmental conditions can assist in utilizing the phytohormone, to increase productivity. Through this review, we briefly describe the biological role of cytokinin in enhancing the performance of plants growth under abiotic challenges as well as the probable mechanisms underpinning cytokinin-induced stress tolerance. In addition, the article lays forth a strategy for using biotechnological tools to modify genes in the cytokinin pathway to engineer abiotic stress tolerance in plants. The information presented here will assist in better understanding the function of cytokinin in plants and their effective investigation in the cropping system.
Collapse
Affiliation(s)
- Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Uttpal Anand
- CytoGene Research & Development LLP, Barabanki, Uttar Pradesh, India
| | - Dipu Samanta
- Department of Botany, Dr. Kanailal Bhattacharyya College, Howrah, West Bengal, India
| | - Nishi Kant
- School of Health and Allied Science, ARKA Jain University, Jamshedpur, Jharkhand, India
| | - Tulika Mishra
- Department of Botany, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, South Korea
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- Division of Crop Physiology, Biochemistry and Post Harvest Technology, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | | | - Abhijit Bhagwan Mane
- Department of Zoology, Dr. Patangrao Kadam Mahavidhyalaya (affiliated to Shivaji University Kolhapur), Ramanandnagar (Burli), Sangli, Maharashtra, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Protha Biswas
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
23
|
VEDENICHEVA N, SHCHERBATYUK M, KOSAKIVSKA I. Effect of low-temperature stress on the growth of plants of Secale cereale (Poaceae) and endogenous cytokinin content in roots and shoots. UKRAINIAN BOTANICAL JOURNAL 2022. [DOI: 10.15407/ukrbotj79.03.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phytohormones play a key role in the regulation of plant acclimation to low temperature. To elucidate the role of cytokinins in rye plant response to chilling, we studied the dynamics of these hormones in shoots and roots under short-term and prolonged cold stress. The 7-day-old plants were exposed to cold stress (2 °C) for 2 h (alarm phase of response) or for 6 h for two days (acclimation phase of response). Endogenous content of cytokinins was analyzed by HPLC-MS method. Low temperature had a differential effect on the content of individual cytokinins and their localization in rye plants. During the short-term stress, a decrease in the content of active cytokinins (trans-zeatin and trans-zeatin riboside) in the roots and an increase in the shoots were shown. Prolonged low-temperature stress declined the amount of cytokinins except trans-zeatin riboside, which was detected in both roots and shoots. Significant rise in trans-zeatin riboside content in roots and shoots in this period evidenced an important role of this cytokinin during cold acclimation of rye plants.
Collapse
|
24
|
Yan H, Wang Y, Chen B, Wang W, Sun H, Sun H, Li J, Zhao Q. OsCKX2 regulates phosphate deficiency tolerance by modulating cytokinin in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111257. [PMID: 35487665 DOI: 10.1016/j.plantsci.2022.111257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cytokinin oxidase/dehydrogenases (CKXs) are key enzymes that degrade cytokinins (CTKs) and play an essential role in plant growth and development. The present study analyzed the phenotypic and physiological characteristics of OsCKX2 overexpressing (OE) and knockout (KO) rice plants after exposure to phosphate (Pi) deficiency and the transcriptome and metabolome to investigate the function of OsCKX2 in response to Pi deficiency. OsCKX2 KO plants demonstrated higher endogenous CTK levels than wild-type (WT) under Pi deficiency. Further analysis indicated more robust tolerance of OsCKX2 KO plants to Pi deficiency, which exhibited higher phosphorus concentration, larger shoot biomass, and lesser leaf yellowing under Pi deficiency; whereas the opposite was observed for OsCKX2 OE plants. Transcriptome and metabolome analyses revealed that overexpression of OsCKX2 downregulated the transcriptional levels of genes related to Pi transporters, membrane lipid metabolism, and glycolysis, and reduced the consumption of metabolites in membrane lipid metabolism and glycolysis. On the contrary, knockout of OsCKX2 upregulated the expression of Pi transporters, and increased the consumption of metabolites in membrane lipid metabolism and glycolysis. These results indicated that OsCKX2 impacted Pi uptake, recycling, and plant growth via Pi transporters, phospholipid hydrolysis, and glycolysis under Pi deficiency. Overall, OsCKX2 negatively regulated Pi deficiency tolerance by modulating CTKs in rice.
Collapse
Affiliation(s)
- Huimin Yan
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yale Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bo Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weijie Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongzheng Sun
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huwei Sun
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
25
|
Mahto RK, Ambika, Singh C, Chandana BS, Singh RK, Verma S, Gahlaut V, Manohar M, Yadav N, Kumar R. Chickpea Biofortification for Cytokinin Dehydrogenase via Genome Editing to Enhance Abiotic-Biotic Stress Tolerance and Food Security. Front Genet 2022; 13:900324. [PMID: 35669196 PMCID: PMC9164125 DOI: 10.3389/fgene.2022.900324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Globally more than two billion people suffer from micronutrient malnutrition (also known as "hidden hunger"). Further, the pregnant women and children in developing nations are mainly affected by micronutrient deficiencies. One of the most important factors is food insecurity which can be mitigated by improving the nutritional values through biofortification using selective breeding and genetic enhancement techniques. Chickpea is the second most important legume with numerous economic and nutraceutical properties. Therefore, chickpea production needs to be increased from the current level. However, various kind of biotic and abiotic stresses hamper global chickpea production. The emerging popular targets for biofortification in agronomic crops include targeting cytokinin dehydrogenase (CKX). The CKXs play essential roles in both physiological and developmental processes and directly impact several agronomic parameters i.e., growth, development, and yield. Manipulation of CKX genes using genome editing tools in several crop plants reveal that CKXs are involved in regulation yield, shoot and root growth, and minerals nutrition. Therefore, CKXs have become popular targets for yield improvement, their overexpression and mutants can be directly correlated with the increased yield and tolerance to various stresses. Here, we provide detailed information on the different roles of CKX genes in chickpea. In the end, we discuss the utilization of genome editing tool clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) to engineer CKX genes that can facilitate trait improvement. Overall, recent advancements in CKX and their role in plant growth, stresses and nutrient accumulation are highlighted, which could be used for chickpea improvement.
Collapse
Affiliation(s)
| | - Ambika
- Department of Genetics and Plant Breeding, UAS, Bangalore, India
| | - Charul Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - B S. Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | | | - Shruti Verma
- NCoE-SAM, Department of Pediatrics, KSCH, Lady Hardinge Medical College, New Delhi, India
| | - Vijay Gahlaut
- Institute of Himalayan Bioresource Technology (CSIR), Palampur, India
| | - Murli Manohar
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Neelam Yadav
- Centre of Food Technology, University of Allahabad, Prayagraj, India
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
26
|
Camalle MD, Pěnčík A, Novák O, Zhao L, Zurgil U, Fait A, Tel-Zur N. Impairment of root auxin-cytokinins homeostasis induces collapse of incompatible melon grafts during fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac110. [PMID: 35795394 PMCID: PMC9252106 DOI: 10.1093/hr/uhac110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The factors underlying the plant collapse of certain melon-pumpkin graft combinations are not fully understood. Our working hypothesis was that impairment of photoassimilates transport in incompatible combinations induces an imbalance in the homeostasis of root auxin (indole-3-acetic acid; IAA) and of cytokinins, probably triggering plant collapse. Root IAA and cytokinins levels in the presence and absence of fruit and changes in root and scion metabolites were investigated in compatible and incompatible combinations. We showed elevated levels of IAA, 2-oxoindole-3-acetic acid (IAA catabolite), indole-3-acetylaspartate (IAA conjugate), and cis-zeatin-type cytokinins, but low levels of trans-zeatin-type cytokinins in the roots of plants of the incompatible combination during fruit ripening. Similarly, during fruit ripening, the expression of the YUCCA genes, YUC2, YUC6, and YUC11 (required for auxin biosynthesis), the GRETCHEN-HAGEN3 gene (required for auxin conjugation), and the cytokinin oxidase/dehydrogenase 7 (CKX7) gene (regulates the irreversible degradation of cytokinin) was enhanced in the roots of plants of the incompatible combination. Moreover, in the incompatible combination the fruiting process restricted transport of photoassimilates to the rootstock and induces their accumulation in the scion. In addition, high levels of hydrogen peroxide and malondialdehyde and reduced activity of antioxidant enzymes were observed in the roots of the incompatible graft. Our results showed that the collapse of the incompatible graft combination during fruit ripening is closely associated with a dramatic accumulation of IAA in the roots, which probably elicits oxidative damage and disturbs the balance of IAA and cytokinins that is of critical importance in melon-pumpkin graft compatibility.
Collapse
Affiliation(s)
- Maria Dolores Camalle
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, The Czech Academy of Sciences, Palacký University & Institute of Experimental Botany, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, The Czech Academy of Sciences, Palacký University & Institute of Experimental Botany, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lina Zhao
- The Albert Katz International School for Desert Studies, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 8499000, Israel
| | - Udi Zurgil
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, P.O.B. 653, Beer Sheva 84104000, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, P.O.B. 653, Beer Sheva 84104000, Israel
| | - Noemi Tel-Zur
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, P.O.B. 653, Beer Sheva 84104000, Israel
| |
Collapse
|
27
|
Yan T, Mei C, Song H, Shan D, Sun Y, Hu Z, Wang L, Zhang T, Wang J, Kong J. Potential roles of melatonin and ABA on apple dwarfing in semi-arid area of Xinjiang China. PeerJ 2022; 10:e13008. [PMID: 35382008 PMCID: PMC8977067 DOI: 10.7717/peerj.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
Dwarfing is a typic breeding trait for mechanical strengthening and relatively high yield in modern apple orchards. Clarification of the mechanisms associated with dwarfing is important for use of molecular technology to breed apple. Herein, we identified four dwarfing apple germplasms in semi-arid area of Xinjiang, China. The internodal distance of these four germplasms were significantly shorter than non-dwarfing control. Their high melatonin (MT) contents are negatively associated with their malondialdehyde (MDA) levels and oxidative damage. In addition, among the detected hormones including auxin (IAA), gibberellin (GA), brassinolide (BR), zeatin-riboside (ZR), and abscisic acid (ABA), only ABA and ZR levels were in good correlation with the dwarfing phenotype. The qPCR results showed that the expression of melatonin synthetic enzyme genes MdASMT1 and MdSNAT5, ABA synthetic enzyme gene MdAAO3 and degradative gene MdCYP707A, ZR synthetic enzyme gene MdIPT5 all correlated well with the enhanced levels of MT, ABA and the reduced level of of ZR in the dwarfing germplasms. Furthermore, the significantly higher expression of ABA marker genes (MdRD22 and MdRD29) and the lower expression of ZR marker genes (MdRR1 and MdRR2) in all the four dwarf germplasms were consistent with the ABA and ZR levels. Considering the yearly long-term drought occurring in Xinjiang, China, it seems that dwarfing with high contents of MT and ABA may be a good strategy for these germplasms to survive against drought stress. This trait of dwarfing may also benefit apple production and breeding in this semi-arid area.
Collapse
Affiliation(s)
- Tianci Yan
- College of Horticulture, China Agricultural University, Beijing, China,Sanya Institute of China Agricultural University, Sanya, Hainan, China
| | - Chuang Mei
- Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, Xinjiang Uygur Autonomous Region, China,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Handong Song
- College of Horticulture, China Agricultural University, Beijing, China
| | - Dongqian Shan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zehui Hu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lin Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jixun Wang
- Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, Xinjiang Uygur Autonomous Region, China,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, China,Sanya Institute of China Agricultural University, Sanya, Hainan, China
| |
Collapse
|
28
|
Arora K, Sen S. Cytokinin Oxygenase/Dehydrogenase Inhibitors: An Emerging Tool in Stress Biotechnology Employed for Crop Improvement. Front Genet 2022; 13:877510. [PMID: 35401687 PMCID: PMC8987495 DOI: 10.3389/fgene.2022.877510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 12/02/2022] Open
Abstract
In order to meet the global challenges of food security, one of the foremost solutions lies in enhancing the crop productivity. This can be attained by considering key plant hormones such as cytokinins as agrochemicals as cytokinins in particular are known to control the essential processes of the plants. Even though, it has already been established since 1980s that the enzyme, cytokinin oxidase/dehydrogenase (CKO/CKX) deactivates cytokinins; the potential applications of manipulating these enzymes have mostly been speculated to have a high potential in the biotechnology industry and spreads to agriculture, horticulture and agroforestry. The enzyme is critical in maintaining a balanced level of cytokinins in plants. However, it is yet to be fully established that inhibiting this enzyme can be the constant source of improvement in the productivity of plants, even though success has been obtained in some economically important plant species. Furthermore, the impact efficiency of this enzyme may vary from plant to plant, which needs to be evaluated employing tissue culture and other extrinsic applications. This review intends to cover the relevant studies addressing any biological activity of this enzyme in the current context and any associated biotechnological applications specific to enhanced grain yield, abiotic stress tolerance, delayed senescence and in vitro organogenesis among various plants and not only cereals. Moreover, our study will identify the present gaps in research with respect to many important food crops, which will be useful for researchers who are actively involved in providing a foundation for a variety of genetically improved plants achieved through this manner. In addition to this, other ways of engineering the amount of cytokinin levels appropriate for signaling also needs to be analyzed in order to extend the benefits of cytokinin biology to other crops too. The application of these inhibitors can be considered among the best alternates as well as addition to genetically modified plants for overcoming the gaps in crop demand.
Collapse
Affiliation(s)
- Kavita Arora
- Department of Botany, National P.G. College, Lucknow, India
- *Correspondence: Kavita Arora, ; Sangeeta Sen,
| | - Sangeeta Sen
- Bangalore, India
- *Correspondence: Kavita Arora, ; Sangeeta Sen,
| |
Collapse
|
29
|
Bhardwaj A, Devi P, Chaudhary S, Rani A, Jha UC, Kumar S, Bindumadhava H, Prasad PVV, Sharma KD, Siddique KHM, Nayyar H. 'Omics' approaches in developing combined drought and heat tolerance in food crops. PLANT CELL REPORTS 2022; 41:699-739. [PMID: 34223931 DOI: 10.1007/s00299-021-02742-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Anju Rani
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - H Bindumadhava
- Dr. Marri Channa Reddy Foundation (MCRF), Hyderabad, India
| | | | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
30
|
Tiwari M, Kumar R, Min D, Jagadish SVK. Genetic and molecular mechanisms underlying root architecture and function under heat stress-A hidden story. PLANT, CELL & ENVIRONMENT 2022; 45:771-788. [PMID: 35043409 DOI: 10.1111/pce.14266] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 05/22/2023]
Abstract
Heat stress events are resulting in a significant negative impact on global food production. The dynamics of cellular, molecular and physiological homoeostasis in aboveground parts under heat stress are extensively deciphered. However, root responses to higher soil/air temperature or stress signalling from shoot to root are limited. Therefore, this review presents a holistic view of root physio-morphological and molecular responses to adapt under hotter environments. Heat stress reprogrammes root cellular machinery, including crosstalk between genes, phytohormones, reactive oxygen species (ROS) and antioxidants. Spatio-temporal regulation and long-distance transport of phytohormones, such as auxin, cytokinin and abscisic acid (ABA) determine the root growth and development under heat stress. ABA cardinally integrates a signalling pathway involving heat shock factors, heat shock proteins and ROS to govern heat stress responses. Additionally, epigenetic modifications by transposable elements, DNA methylation and acetylation also regulate root growth under heat stress. Exogenous application of chemical compounds or biological agents such as ascorbic acid, metal ion chelators, fungi and bacteria can alleviate heat stress-induced reduction in root biomass. Future research should focus on the systemic effect of heat stress from shoot to root with more detailed investigations to decipher the molecular cues underlying the roots architecture and function.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | | |
Collapse
|
31
|
Kurepa J, Smalle JA. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int J Mol Sci 2022; 23:ijms23041933. [PMID: 35216049 PMCID: PMC8879491 DOI: 10.3390/ijms23041933] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective.
Collapse
|
32
|
Davoudi M, Song M, Zhang M, Chen J, Lou Q. Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications. HORTICULTURE RESEARCH 2022; 9:uhab033. [PMID: 35043177 PMCID: PMC8854630 DOI: 10.1093/hr/uhab033] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/21/2021] [Indexed: 06/01/2023]
Abstract
Grafting with pumpkin rootstock is commonly used not only to improve the quality of cucumber fruits but also to confer biotic or abiotic stress tolerance. However, the molecular mechanism of grafted cucumbers to drought stress and the possible roles of mobile mRNAs to improve stress tolerance have remained obscure. Hence, we conducted transcriptome sequencing and combined it with morpho-physiological experiments to compare the response of homografts (cucumber as scion and rootstock) (C) and heterografts (cucumber as scion and pumpkin as rootstock) (P) to drought stress. After applying drought stress, homografts and heterografts expressed 2960 and 3088 genes in response to drought stress, respectively. The identified DEGs in heterografts under drought stress were categorized into different stress-responsive groups, such as carbohydrate metabolism (involved in osmotic adjustment by sugar accumulation), lipid and cell wall metabolism (involved in cell membrane integrity by a reduction in lipid peroxidation), redox homeostasis (increased antioxidant enzymes activities), phytohormone (increased ABA content), protein kinases and transcription factors (TFs) using MapMan software. Earlier and greater H2O2 accumulation in xylem below the graft union was accompanied by leaf ABA accumulation in heterografts in response to drought stress. Greater leaf ABA helped heterografted cucumbers to sense and respond to drought stress earlier than homografts. The timely response of heterografts to drought stress led to maintain higher water content in the leaves even in the late stage of drought stress. The identified mobile mRNAs (mb-mRNAs) in heterografts were mostly related to photosynthesis which would be the possible reason for improved chlorophyll content and maximum photochemical efficiency of PSII (Fv/Fm). The existence of some stress-responsive pumpkin (rootstock) mRNAs in cucumber (scion), such as heat shock protein (HSP70, a well-known stress-responsive gene), led to the higher proline accumulation than homografts. The expression of the mobile and immobile stress-responsive mRNAs and timely response of heterografts to drought stress could improve drought tolerance in pumpkin-rooted plants.
Collapse
Affiliation(s)
- Marzieh Davoudi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street 13 No.1, Nanjing 210095, China
| |
Collapse
|
33
|
Identification and Functional Characterization of Apple MdCKX5.2 in Root Development and Abiotic Stress Tolerance. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytokinin oxidase/dehydrogenases (CKXs) are the key enzymes in cytokinin degradation and have been widely studied in model plants. Little is known about apple’s (Malus×domestica) CKX genes. Here, using genome-wide analysis, we identified 10 MdCKX genes in apple. The phylogenetics, chromosome locations, and genome structures were then tested. Expression analysis showed that MdCKX genes had different expression profiles in apple, pointing to the different roles. Meanwhile, relative expression analysis showed that these genes have different expression patterns in response to several exogenous cytokinin factors, including trans-zeatin (ZT), thidiazuron (TDZ), and N6-furfuryladenine (KT). Finally, we introduced the MdCKX5.2 gene into Arabidopsis to evaluate its functions, and the results suggested the transgenic Arabidopsis displayed phenotypes related to promoting primary root and lateral root development, response to exogenous ZT, and conferring to drought and salt tolerant. Taken together, our results provide insights on the possible application of the MdCKX5.2 gene for molecular breeding in apples.
Collapse
|
34
|
Mushtaq N, Wang Y, Fan J, Li Y, Ding J. Down-Regulation of Cytokinin Receptor Gene SlHK2 Improves Plant Tolerance to Drought, Heat, and Combined Stresses in Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020154. [PMID: 35050042 PMCID: PMC8779561 DOI: 10.3390/plants11020154] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 05/09/2023]
Abstract
Environmental stresses negatively affect the growth and development of plants. Several previous studies have elucidated the response mechanisms of plants to drought and heat applied separately; however, these two abiotic stresses often coincide in environmental conditions. The global climate change pattern has projected that combined drought and heat stresses will tend to increase in the near future. In this study, we down-regulated the expression of a cytokinin receptor gene SlHK2 using RNAi and investigated the role of this gene in regulating plant responses to individual drought, heat, and combined stresses (drought + heat) in tomato. Compared to the wild-type (WT), SlHK2 RNAi plants exhibited fewer stress symptoms in response to individual and combined stress treatments. The enhanced abiotic stress tolerance of SlHK2 RNAi plants can be associated with increased membrane stability, osmoprotectant accumulation, and antioxidant enzyme activities. Furthermore, photosynthesis machinery was also protected in SlHK2 RNAi plants. Collectively, our results show that down-regulation of the cytokinin receptor gene SlHK2, and consequently cytokinin signaling, can improve plant tolerance to drought, heat, and combined stress.
Collapse
Affiliation(s)
- Naveed Mushtaq
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.W.); (J.F.); (Y.L.)
| | - Yong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.W.); (J.F.); (Y.L.)
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Junmiao Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.W.); (J.F.); (Y.L.)
| | - Yi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.W.); (J.F.); (Y.L.)
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (N.M.); (Y.W.); (J.F.); (Y.L.)
- Correspondence:
| |
Collapse
|
35
|
Ghatak A, Schindler F, Bachmann G, Engelmeier D, Bajaj P, Brenner M, Fragner L, Varshney RK, Subbarao GV, Chaturvedi P, Weckwerth W. Root exudation of contrasting drought-stressed pearl millet genotypes conveys varying biological nitrification inhibition (BNI) activity. BIOLOGY AND FERTILITY OF SOILS 2022; 58:291-306. [PMID: 35399158 PMCID: PMC8938368 DOI: 10.1007/s00374-021-01578-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 05/09/2023]
Abstract
UNLABELLED Roots secrete a vast array of low molecular weight compounds into the soil broadly referred to as root exudates. It is a key mechanism by which plants and soil microbes interact in the rhizosphere. The effect of drought stress on the exudation process and composition is rarely studied, especially in cereal crops. This study focuses on comparative metabolic profiling of the exudates from sensitive and tolerant genotypes of pearl millet after a period of drought stress. We employed a combined platform of gas and liquid chromatography coupled to mass spectrometry to cover both primary and secondary metabolites. The results obtained demonstrate that both genotype and drought stress have a significant impact on the concentration and composition of root exudates. The complexity and function of these differential root exudates are discussed. To reveal the potential effect of root exudates on the soil microbial community after a period of drought stress, we also tested for biological nitrification inhibition (BNI) activity. The analysis revealed a genotype-dependent enhancement of BNI activity after a defined period of drought stress. In parallel, we observed a genotype-specific relation of elongated root growth and root exudation under drought stress. These data suggest that the drought stress-dependent change in root exudation can manipulate the microbial soil communities to adapt and survive under harsh conditions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00374-021-01578-w.
Collapse
Affiliation(s)
- Arindam Ghatak
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Florian Schindler
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Gert Bachmann
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Doris Engelmeier
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Martin Brenner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Lena Fragner
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
- State Agricultural Biotechnology Centre Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150 Australia
| | - Guntur Venkata Subbarao
- Crop, Livestock, and Environment Division, International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686 Japan
| | - Palak Chaturvedi
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
36
|
Trifunović-Momčilov M, Motyka V, Dobrev PI, Marković M, Milošević S, Jevremović S, Dragićević IČ, Subotić A. Phytohormone profiles in non-transformed and AtCKX transgenic centaury (Centaurium erythraea Rafn) shoots and roots in response to salinity stress in vitro. Sci Rep 2021; 11:21471. [PMID: 34728697 PMCID: PMC8563955 DOI: 10.1038/s41598-021-00866-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Plant hormones regulate numerous developmental and physiological processes. Abiotic stresses considerably affect production and distribution of phytohormones as the stress signal triggers. The homeostasis of plant hormones is controlled by their de novo synthesis and catabolism. The aim of this work was to analyse the contents of total and individual groups of endogenous cytokinins (CKs) as well as indole-3-acetic acid (IAA) in AtCKX overexpressing centaury plants grown in vitro on graded NaCl concentrations (0, 50, 100, 150, 200 mM). The levels of endogenous stress hormones including abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) were also detected. The elevated contents of total CKs were found in all analysed centaury shoots. Furthermore, increased amounts of all five CK groups, as well as enhanced total CKs were revealed on graded NaCl concentrations in non-transformed and AtCKX roots. All analysed AtCKX centaury lines exhibited decreased amounts of endogenous IAA in shoots and roots. Consequently, the IAA/bioactive CK forms ratios showed a significant variation in the shoots and roots of all AtCKX lines. In shoots and roots of both non-transformed and AtCKX transgenic centaury plants, salinity was associated with an increase of ABA and JA and a decrease of SA content.
Collapse
Affiliation(s)
- Milana Trifunović-Momčilov
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia.
| | - Václav Motyka
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502, Prague 6, Czech Republic
| | - Petre I Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502, Prague 6, Czech Republic
| | - Marija Marković
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Snežana Milošević
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Slađana Jevremović
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| | - Ivana Č Dragićević
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Angelina Subotić
- Department for Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, 11060, Serbia
| |
Collapse
|
37
|
Cheng Z, Luan Y, Meng J, Sun J, Tao J, Zhao D. WRKY Transcription Factor Response to High-Temperature Stress. PLANTS 2021; 10:plants10102211. [PMID: 34686020 PMCID: PMC8541500 DOI: 10.3390/plants10102211] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022]
Abstract
Plant growth and development are closely related to the environment, and high-temperature stress is an important environmental factor that affects these processes. WRKY transcription factors (TFs) play important roles in plant responses to high-temperature stress. WRKY TFs can bind to the W-box cis-acting elements of target gene promoters, thereby regulating the expression of multiple types of target genes and participating in multiple signaling pathways in plants. A number of studies have shown the important biological functions and working mechanisms of WRKY TFs in plant responses to high temperature. However, there are few reviews that summarize the research progress on this topic. To fully understand the role of WRKY TFs in the response to high temperature, this paper reviews the structure and regulatory mechanism of WRKY TFs, as well as the related signaling pathways that regulate plant growth under high-temperature stress, which have been described in recent years, and this paper provides references for the further exploration of the molecular mechanisms underlying plant tolerance to high temperature.
Collapse
Affiliation(s)
- Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Yuting Luan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China;
| | - Jiasong Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jing Sun
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.C.); (J.M.); (J.S.); (J.T.)
- Correspondence: ; Tel.: +86-514-87997219; Fax: +86-514-87347537
| |
Collapse
|
38
|
Mohanan MV, Pushpanathan A, Padmanabhan S, Sasikumar T, Jayanarayanan AN, Selvarajan D, Ramalingam S, Ram B, Chinnaswamy A. Overexpression of Glyoxalase III gene in transgenic sugarcane confers enhanced performance under salinity stress. JOURNAL OF PLANT RESEARCH 2021; 134:1083-1094. [PMID: 33886006 DOI: 10.1007/s10265-021-01300-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/02/2021] [Indexed: 05/27/2023]
Abstract
The glyoxalase pathway is a check point to monitor the elevation of methylglyoxal (MG) level in plants and is mediated by glyoxalase I (Gly I) and glyoxalase II (Gly II) enzymes in the presence of glutathione. Recent studies established the presence of unique DJ-1/PfpI domain containing protein named glyoxalase III (Gly III) in prokaryotes, involved in the detoxification of MG into D-lactic acid through a single step process. In the present study, eleven transgenic sugarcane events overexpressing EaGly III were assessed for salinity stress (100 mM and 200 mM NaCl) tolerance. Lipid peroxidation as well as cell membrane injury remained very minimal in all the transgenic events indicating reduced oxidative damage. Transgenic events exhibited significantly higher plant water status, gas exchange parameters, chlorophyll, carotenoid, and proline content, total soluble sugars, SOD and POD activity compared to wild type (WT) under salinity stress. Histological studies by taking the cross section showed a highly stable root system in transgenic events upon exposure to salinity stress. Results of the present study indicate that transgenic sugarcane events overexpressing EaGly III performed well and exhibited improved salinity stress tolerance.
Collapse
Affiliation(s)
| | - Anunanthini Pushpanathan
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641041, India
| | - Sarath Padmanabhan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Thelakat Sasikumar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641041, India
| | - Bakshi Ram
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007, India.
| |
Collapse
|
39
|
Yan Z, Wang J, Wang F, Xie C, Lv B, Yu Z, Dai S, Liu X, Xia G, Tian H, Li C, Ding Z. MPK3/6-induced degradation of ARR1/10/12 promotes salt tolerance in Arabidopsis. EMBO Rep 2021; 22:e52457. [PMID: 34402578 DOI: 10.15252/embr.202152457] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/18/2021] [Accepted: 07/30/2021] [Indexed: 11/09/2022] Open
Abstract
Cytokinins are phytohormones that regulate plant development, growth, and responses to stress. In particular, cytokinin has been reported to negatively regulate plant adaptation to high salinity; however, the molecular mechanisms that counteract cytokinin signaling and enable salt tolerance are not fully understood. Here, we provide evidence that salt stress induces the degradation of the cytokinin signaling components Arabidopsis (Arabidopisis thaliana) response regulator 1 (ARR1), ARR10 and ARR12. Furthermore, the stress-activated mitogen-activated protein kinase 3 (MPK3) and MPK6 interact with and phosphorylate ARR1/10/12 to promote their degradation in response to salt stress. As expected, salt tolerance is decreased in the mpk3/6 double mutant, but enhanced upon ectopic MPK3/MPK6 activation in an MKK5DD line. Importantly, salt hypersensitivity phenotypes of the mpk3/6 line were significantly alleviated by mutation of ARR1/12. The above results indicate that MPK3/6 enhance salt tolerance in part via their negative regulation of ARR1/10/12 protein stability. Thus, our work reveals a new molecular mechanism underlying salt-induced stress adaptation and the inhibition of plant growth, via enhanced degradation of cytokinin signaling components.
Collapse
Affiliation(s)
- Zhenwei Yan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Fengxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chuantian Xie
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bingsheng Lv
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-huai River Plain, Ministry of Agriculture, Jinan, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
40
|
Janda T, Prerostová S, Vanková R, Darkó É. Crosstalk between Light- and Temperature-Mediated Processes under Cold and Heat Stress Conditions in Plants. Int J Mol Sci 2021; 22:ijms22168602. [PMID: 34445308 PMCID: PMC8395339 DOI: 10.3390/ijms22168602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
Extreme temperatures are among the most important stressors limiting plant growth and development. Results indicate that light substantially influences the acclimation processes to both low and high temperatures, and it may affect the level of stress injury. The interaction between light and temperature in the regulation of stress acclimation mechanisms is complex, and both light intensity and spectral composition play an important role. Higher light intensities may lead to overexcitation of the photosynthetic electron transport chain; while different wavelengths may act through different photoreceptors. These may induce various stress signalling processes, leading to regulation of stomatal movement, antioxidant and osmoregulation capacities, hormonal actions, and other stress-related pathways. In recent years, we have significantly expanded our knowledge in both light and temperature sensing and signalling. The present review provides a synthesis of results for understanding how light influences the acclimation of plants to extreme low or high temperatures, including the sensing mechanisms and molecular crosstalk processes.
Collapse
Affiliation(s)
- Tibor Janda
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
- Correspondence:
| | - Sylva Prerostová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Radomíra Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague, Czech Republic; (S.P.); (R.V.)
| | - Éva Darkó
- Centre for Agricultural Research, Department of Plant Physiology and Metabolomics, Agricultural Institute, ELKH, H-2462 Martonvásár, Hungary;
| |
Collapse
|
41
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. PLANT CELL REPORTS 2021; 40:1305-1329. [PMID: 33751168 DOI: 10.1007/s00299-021-02683-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 05/23/2023]
Abstract
Phytohormones are ubiquitously involved in plant biological processes and regulate cellular signaling pertaining to unheralded environmental cues, such as salinity, drought, extreme temperature and nutrient deprivation. The association of phytohormones to nearly all the fundamental biological processes epitomizes the phytohormone syndicate as a candidate target for consideration during engineering stress endurance in agronomically important crops. The drought stress response is essentially driven by phytohormones and their intricate network of crosstalk, which leads to transcriptional reprogramming. This review is focused on the pivotal role of phytohormones in water deficit responses, including their manipulation for mitigating the effect of the stressor. We have also discussed the inherent complexity of existing crosstalk accrued among them during the progression of drought stress, which instigates the tolerance response. Therefore, in this review, we have highlighted the role and regulatory aspects of various phytohormones, namely abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, jasmonic acid, salicylic acid, ethylene and strigolactone, with emphasis on drought stress tolerance.
Collapse
Affiliation(s)
- Prafull Salvi
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India.
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Tanika Thakur
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Nishu Gandass
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
42
|
Pantoja-Benavides AD, Garces-Varon G, Restrepo-Díaz H. Foliar Growth Regulator Sprays Induced Tolerance to Combined Heat Stress by Enhancing Physiological and Biochemical Responses in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:702892. [PMID: 34367222 PMCID: PMC8343023 DOI: 10.3389/fpls.2021.702892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 05/11/2023]
Abstract
Rice yield has decreased due to climate variability and change in Colombia. Plant growth regulators have been used as a strategy to mitigate heat stress in different crops. Therefore, this study aimed to evaluate the effect of foliar applications of four growth regulators [auxins (AUX), brassinosteroids (BR), cytokinins (CK), or gibberellins (GA)] on physiological (stomatal conductance, total chlorophyll content, Fv/Fm ratio, plant canopy temperature, and relative water content) and biochemical (Malondialdehyde (MDA) and proline contents) variables in two commercial rice genotypes exposed to combined heat stress (high day and nighttime temperatures). Two separate experiments were carried out using plants of two rice genotypes, Fedearroz 67 ("F67") and Fedearroz 2000 ("F2000") for the first and second experiments, respectively. Both trials were analyzed together as a series of experiments. The established treatments were as follows: absolute control (AC) (rice plants grown under optimal temperatures (30/25°C day/nighttime temperatures), heat stress control (SC) [rice plants only exposed to combined heat stress (40/30°C)], and stressed rice plants and sprayed twice (5 days before and after heat stress) with a plant growth regulator (stress+AUX, stress+BR, stress+CK, or stress+GA). The results showed that foliar CK sprays enhanced the total chlorophyll content in both cultivars (3.25 and 3.65 mg g-1 fresh weight for "F67" and "F2000" rice plants, respectively) compared to SC plants (2.36 and 2.56 mg g-1 fresh weight for "F67," and "F2000" rice plants, respectively). Foliar CK application also improved stomatal conductance mainly in "F2000" rice plants compared to their heat stress control (499.25 vs.150.60 mmol m-2s-1). Foliar BR or CK sprays reduced plant canopy temperature between 2 and 3°C and MDA content in plants under heat stress. The relative tolerance index suggested that foliar CK (97.69%), and BR (60.73%) applications helped to mitigate combined heat stress mainly in "F2000" rice plants. In conclusion, foliar BR or CK applications can be considered an agronomic strategy to help to ameliorate the negative effect of combined heat stress conditions on the physiological behavior of rice plants.
Collapse
Affiliation(s)
| | | | - Hermann Restrepo-Díaz
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Bogotá, Colombia
| |
Collapse
|
43
|
Nguyen HN, Lai N, Kisiala AB, Emery RJN. Isopentenyltransferases as master regulators of crop performance: their function, manipulation, and genetic potential for stress adaptation and yield improvement. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1297-1313. [PMID: 33934489 PMCID: PMC8313133 DOI: 10.1111/pbi.13603] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/23/2021] [Accepted: 04/11/2021] [Indexed: 05/27/2023]
Abstract
Isopentenyltransferase (IPT) in plants regulates a rate-limiting step of cytokinin (CTK) biosynthesis. IPTs are recognized as key regulators of CTK homeostasis and phytohormone crosstalk in both biotic and abiotic stress responses. Recent research has revealed the regulatory function of IPTs in gene expression and metabolite profiles including source-sink modifications, energy metabolism, nutrient allocation and storage, stress defence and signalling pathways, protein synthesis and transport, and membrane transport. This suggests that IPTs play a crucial role in plant growth and adaptation. In planta studies of IPT-driven modifications indicate that, at a physiological level, IPTs improve stay-green characteristics, delay senescence, reduce stress-induced oxidative damage and protect photosynthetic machinery. Subsequently, these improvements often manifest as enhanced or stabilized crop yields and this is especially apparent under environmental stress. These mechanisms merit consideration of the IPTs as 'master regulators' of core cellular metabolic pathways, thus adjusting plant homeostasis/adaptive responses to altered environmental stresses, to maximize yield potential. If their expression can be adequately controlled, both spatially and temporally, IPTs can be a key driver for seed yield. In this review, we give a comprehensive overview of recent findings on how IPTs influence plant stress physiology and yield, and we highlight areas for future research.
Collapse
Affiliation(s)
| | - Nhan Lai
- School of BiotechnologyVietnam National UniversityHo Chi Minh CityVietnam
| | | | | |
Collapse
|
44
|
Xiang N, Hu JG, Yan S, Guo X. Plant Hormones and Volatiles Response to Temperature Stress in Sweet Corn ( Zea mays L.) Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6779-6790. [PMID: 34115469 DOI: 10.1021/acs.jafc.1c02275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work aims to emphasize on disclosing the regulative mechanism of sweet corn seedlings response to extreme temperature stress; transcriptomics and metabolomics for volatiles and plant hormones were integrated in this study. Results showed that low-temperature stress significantly impressed 20 volatiles; abscisic acid and salicylic acid accumulated, while auxin and jasmonic acid decreased. The regulatory patterns of vp14 and ABF for abscisic acid accumulation and signal transduction were elucidated in low-temperature stress. High-temperature stress influenced 31 volatiles and caused the reductions on zeatin, salicylic acid, jasmonic acid, and auxin. The up-regulation of an ARR-B gene emphasized its function on zeatin signal transduction under high-temperature stress. Correlations among gene modules, phytohormones, and volatiles were analyzed for building the regulative network of sweet corn seedlings under temperature stress. The attained result might build foundations for improving early development of sweet corn by biological intervention or genomic-level modulation.
Collapse
Affiliation(s)
- Nan Xiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guang Hu
- Key Laboratory of Crops Genetics Improvement of Guangdong Province, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shijuan Yan
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Xinbo Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
45
|
Urban MO, Planchon S, Hoštičková I, Vanková R, Dobrev P, Renaut J, Klíma M, Vítámvás P. The Resistance of Oilseed Rape Microspore-Derived Embryos to Osmotic Stress Is Associated With the Accumulation of Energy Metabolism Proteins, Redox Homeostasis, Higher Abscisic Acid, and Cytokinin Contents. FRONTIERS IN PLANT SCIENCE 2021; 12:628167. [PMID: 34177973 PMCID: PMC8231708 DOI: 10.3389/fpls.2021.628167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to investigate the response of rapeseed microspore-derived embryos (MDE) to osmotic stress at the proteome level. The PEG-induced osmotic stress was studied in the cotyledonary stage of MDE of two genotypes: Cadeli (D) and Viking (V), previously reported to exhibit contrasting leaf proteome responses under drought. Two-dimensional difference gel electrophoresis (2D-DIGE) revealed 156 representative protein spots that have been selected for MALDI-TOF/TOF analysis. Sixty-three proteins have been successfully identified and divided into eight functional groups. Data are available via ProteomeXchange with identifier PXD024552. Eight selected protein accumulation trends were compared with real-time quantitative PCR (RT-qPCR). Biomass accumulation in treated D was significantly higher (3-fold) than in V, which indicates D is resistant to osmotic stress. Cultivar D displayed resistance strategy by the accumulation of proteins in energy metabolism, redox homeostasis, protein destination, and signaling functional groups, high ABA, and active cytokinins (CKs) contents. In contrast, the V protein profile displayed high requirements of energy and nutrients with a significant number of stress-related proteins and cell structure changes accompanied by quick downregulation of active CKs, as well as salicylic and jasmonic acids. Genes that were suitable for gene-targeting showed significantly higher expression in treated samples and were identified as phospholipase D alpha, peroxiredoxin antioxidant, and lactoylglutathione lyase. The MDE proteome profile has been compared with the leaf proteome evaluated in our previous study. Different mechanisms to cope with osmotic stress were revealed between the genotypes studied. This proteomic study is the first step to validate MDE as a suitable model for follow-up research on the characterization of new crossings and can be used for preselection of resistant genotypes.
Collapse
Affiliation(s)
- Milan O. Urban
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Irena Hoštičková
- Department of Plant Production and Agroecology, University of South Bohemia in Ceské Budějovice, Ceské Budějovice, Czechia
| | - Radomira Vanková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, “Environmental Research and Innovation,” (ERIN) Department, Belvaux, Luxembourg
| | - Miroslav Klíma
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| | - Pavel Vítámvás
- Crop Research Institute, Plant Stress Biology and Biotechnology, Prague, Czechia
| |
Collapse
|
46
|
Jogawat A, Yadav B, Lakra N, Singh AK, Narayan OP. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. PHYSIOLOGIA PLANTARUM 2021; 172:1106-1132. [PMID: 33421146 DOI: 10.1111/ppl.13328] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/08/2020] [Accepted: 01/01/2021] [Indexed: 05/21/2023]
Abstract
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
Collapse
Affiliation(s)
| | - Bindu Yadav
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nita Lakra
- Department of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Amit Kumar Singh
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Om Prakash Narayan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
47
|
An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.plgene.2020.100264] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Prerostova S, Jarosova J, Dobrev PI, Hluskova L, Motyka V, Filepova R, Knirsch V, Gaudinova A, Kieber J, Vankova R. Heat Stress Targeting Individual Organs Reveals the Central Role of Roots and Crowns in Rice Stress Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:799249. [PMID: 35111178 PMCID: PMC8801461 DOI: 10.3389/fpls.2021.799249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 05/10/2023]
Abstract
Inter-organ communication and the heat stress (HS; 45°C, 6 h) responses of organs exposed and not directly exposed to HS were evaluated in rice (Oryza sativa) by comparing the impact of HS applied either to whole plants, or only to shoots or roots. Whole-plant HS reduced photosynthetic activity (F v /F m and QY_Lss ), but this effect was alleviated by prior acclimation (37°C, 2 h). Dynamics of HSFA2d, HSP90.2, HSP90.3, and SIG5 expression revealed high protection of crowns and roots. Additionally, HSP26.2 was strongly expressed in leaves. Whole-plant HS increased levels of jasmonic acid (JA) and cytokinin cis-zeatin in leaves, while up-regulating auxin indole-3-acetic acid and down-regulating trans-zeatin in leaves and crowns. Ascorbate peroxidase activity and expression of alternative oxidases (AOX) increased in leaves and crowns. HS targeted to leaves elevated levels of JA in roots, cis-zeatin in crowns, and ascorbate peroxidase activity in crowns and roots. HS targeted to roots increased levels of abscisic acid and auxin in leaves and crowns, cis-zeatin in leaves, and JA in crowns, while reducing trans-zeatin levels. The weaker protection of leaves reflects the growth strategy of rice. HS treatment of individual organs induced changes in phytohormone levels and antioxidant enzyme activity in non-exposed organs, in order to enhance plant stress tolerance.
Collapse
Affiliation(s)
- Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jana Jarosova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Petre I. Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Lucia Hluskova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Vaclav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Roberta Filepova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Vojtech Knirsch
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Alena Gaudinova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Joseph Kieber
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- *Correspondence: Radomira Vankova,
| |
Collapse
|
49
|
Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. Integration of reactive oxygen species and hormone signaling during abiotic stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:459-476. [PMID: 33015917 DOI: 10.1111/tpj.15010] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 05/03/2023]
Abstract
Each year, abiotic stress conditions such as drought, heat, salinity, cold and particularly their different combinations, inflict a heavy toll on crop productivity worldwide. The effects of these adverse conditions on plant productivity are becoming ever more alarming in recent years in light of the increased rate and intensity of global climatic changes. Improving crop tolerance to abiotic stress conditions requires a deep understanding of the response of plants to changes in their environment. This response is dependent on early and late signal transduction events that involve important signaling molecules such as reactive oxygen species (ROS), different plant hormones and other signaling molecules. It is the integration of these signaling events, mediated by an interplay between ROS and different plant hormones that orchestrates the plant response to abiotic stress and drive changes in transcriptomic, metabolic and proteomic networks that lead to plant acclimation and survival. Here we review some of the different studies that address hormone and ROS integration during the response of plants to abiotic stress. We further highlight the integration of ROS and hormone signaling during early and late phases of the plant response to abiotic stress, the key role of respiratory burst oxidase homologs in the integration of ROS and hormone signaling during these phases, and the involvement of hormone and ROS in systemic signaling events that lead to systemic acquired acclimation. Lastly, we underscore the need to understand the complex interactions that occur between ROS and different plant hormones during stress combinations.
Collapse
Affiliation(s)
- Amith R Devireddy
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Sara I Zandalinas
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Yosef Fichman
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
| | - Ron Mittler
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65201, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri, 1201 Rollins St, Columbia, MO, 65211, USA
| |
Collapse
|
50
|
Skalak J, Nicolas KL, Vankova R, Hejatko J. Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling. FRONTIERS IN PLANT SCIENCE 2021; 12:644823. [PMID: 33679861 PMCID: PMC7925916 DOI: 10.3389/fpls.2021.644823] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Plants growing in any particular geographical location are exposed to variable and diverse environmental conditions throughout their lifespan. The multifactorial environmental pressure resulted into evolution of plant adaptation and survival strategies requiring ability to integrate multiple signals that combine to yield specific responses. These adaptive responses enable plants to maintain their growth and development while acquiring tolerance to a variety of environmental conditions. An essential signaling cascade that incorporates a wide range of exogenous as well as endogenous stimuli is multistep phosphorelay (MSP). MSP mediates the signaling of essential plant hormones that balance growth, development, and environmental adaptation. Nevertheless, the mechanisms by which specific signals are recognized by a commonly-occurring pathway are not yet clearly understood. Here we summarize our knowledge on the latest model of multistep phosphorelay signaling in plants and the molecular mechanisms underlying the integration of multiple inputs including both hormonal (cytokinins, ethylene and abscisic acid) and environmental (light and temperature) signals into a common pathway. We provide an overview of abiotic stress responses mediated via MSP signaling that are both hormone-dependent and independent. We highlight the mutual interactions of key players such as sensor kinases of various substrate specificities including their downstream targets. These constitute a tightly interconnected signaling network, enabling timely adaptation by the plant to an ever-changing environment. Finally, we propose possible future directions in stress-oriented research on MSP signaling and highlight its potential importance for targeted crop breeding.
Collapse
Affiliation(s)
- Jan Skalak
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Katrina Leslie Nicolas
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czechia
- *Correspondence: Jan Hejatko,
| |
Collapse
|