1
|
Yang F, Zhang L, Lu Q, Wang Q, Zhou Y, Wang Q, Zhang L, Shi K, Ge S, Li X. Genome-Wide Identification and Expression Analysis of Phytosulfokine Peptide Hormone Genes in Camellia sinensis. Int J Mol Sci 2025; 26:2418. [PMID: 40141062 PMCID: PMC11942274 DOI: 10.3390/ijms26062418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Phytosulfokine (PSK) is a tyrosine-sulfated pentapeptide found throughout the plant kingdom, playing key roles in plant growth, development, and responses to biotic and abiotic stresses. However, there is still a lack of a comprehensive analysis of the CsPSK gene family in Camellia sinensis. In this study, we conducted a genome-wide identification and characterized 14 CsPSK genes in tea plants, which are unevenly distributed across seven chromosomes. CsPSK genes encode proteins ranging from 75 to 124 amino acids in length, all belonging to the PSK-α type and containing conserved PSK domains. A synteny analysis revealed that the expansion of the CsPSK gene family is primarily attributed to whole-genome duplication, with homology to Arabidopsis thaliana PSK genes. A promoter region analysis identified cis-regulatory elements related to hormone and stress responses. An expression profile analysis showed that CsPSK genes are highly expressed in roots, stems, flowers, and leaves, and are induced by both biotic and abiotic stresses. Furthermore, an RT-qPCR assay demonstrated that the expression levels of CsPSK8, CsPSK9, and CsPSK10 are significantly upregulated following Discula theae-sinensis infection. These findings establish a basis for further research into the role of the CsPSK gene family in tea plant disease resistance and underlying molecular mechanisms, offering valuable perspectives for developing novel antimicrobial peptides.
Collapse
Affiliation(s)
- Fengshui Yang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
| | - Lan Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
| | - Qiuying Lu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
| | - Qianying Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
| | - Yanjun Zhou
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
| | - Qiuhong Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
| | - Liping Zhang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, 230036 Hefei, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou 310018, China
| | - Shibei Ge
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, 230036 Hefei, China
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (F.Y.); (L.Z.)
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, 230036 Hefei, China
| |
Collapse
|
2
|
Liu D, Jelenska J, Morgan JM, Greenberg JT. Phytosulfokine downregulates defense-related WRKY transcription factors and attenuates pathogen-associated molecular pattern-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2367-2384. [PMID: 39661720 DOI: 10.1111/tpj.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024]
Abstract
Phytosulfokine (PSK) is a plant growth-promoting peptide hormone that is perceived by its cell surface receptors PSKR1 and PSKR2 in Arabidopsis. Plants lacking the PSK receptors show phenotypes consistent with PSK signaling repressing some plant defenses. To gain further insight into the PSK signaling mechanism, comprehensive transcriptional profiling of Arabidopsis treated with PSK was performed, and the effects of PSK treatment on plant defense readouts were monitored. Our study indicates that PSK's major effect is to downregulate defense-related genes; it has a more modest effect on the induction of growth-related genes. WRKY transcription factors (TFs) emerged as key regulators of PSK-responsive genes, sharing commonality with a pathogen-associated molecular pattern (PAMP) responses, flagellin 22 (flg22), but exhibiting opposite regulatory directions. These PSK-induced transcriptional changes were accompanied by biochemical and physiological changes that reduced PAMP responses, notably mitogen-activated protein kinase (MPK) phosphorylation (previously implicated in WRKY activation) and the cell wall modification of callose deposition. Comparison with previous studies using other growth stimuli (the sulfated plant peptide containing sulfated tyrosine [PSY] and Pseudomonas simiae strain WCS417) also reveals WRKY TFs' overrepresentations in these pathways, suggesting a possible shared mechanism involving WRKY TFs for plant growth-defense trade-off.
Collapse
Affiliation(s)
- Dian Liu
- Biochemistry and Molecular Biophysics, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Jessica M Morgan
- Biophysical Sciences, The University of Chicago, Chicago, Illinois, 60637, USA
| | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, 60637, USA
| |
Collapse
|
3
|
Ren G, Zhang Y, Chen Z, Xue X, Fan H. Research Progress of Small Plant Peptides on the Regulation of Plant Growth, Development, and Abiotic Stress. Int J Mol Sci 2024; 25:4114. [PMID: 38612923 PMCID: PMC11012589 DOI: 10.3390/ijms25074114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Small peptides in plants are typically characterized as being shorter than 120 amino acids, with their biologically active variants comprising fewer than 20 amino acids. These peptides are instrumental in regulating plant growth, development, and physiological processes, even at minimal concentrations. They play a critical role in long-distance signal transduction within plants and act as primary responders to a range of stress conditions, including salinity, alkalinity, drought, high temperatures, and cold. This review highlights the crucial roles of various small peptides in plant growth and development, plant resistance to abiotic stress, and their involvement in long-distance transport. Furthermore, it elaborates their roles in the regulation of plant hormone biosynthesis. Special emphasis is given to the functions and mechanisms of small peptides in plants responding to abiotic stress conditions, aiming to provide valuable insights for researchers working on the comprehensive study and practical application of small peptides.
Collapse
Affiliation(s)
- Guocheng Ren
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying 257000, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| | - Hai Fan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (G.R.); (Y.Z.); (Z.C.); (X.X.)
| |
Collapse
|
4
|
Pan X, Deng Z, Wu R, Yang Y, Akher SA, Li W, Zhang Z, Guo Y. Identification of CEP peptides encoded by the tobacco (Nicotiana tabacum) genome and characterization of their roles in osmotic and salt stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108525. [PMID: 38518396 DOI: 10.1016/j.plaphy.2024.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Members of the CEP (C-terminally Encoded Peptide) gene family have been shown to be involved in various developmental processes and stress responses in plants. In order to understand the roles of CEP peptides in stress response, a comprehensive bioinformatics approach was employed to identify NtCEP genes in tobacco (Nicotiana tabacum L.) and to analyze their potential roles in stress responses. Totally 21 NtCEP proteins were identified and categorized into two subgroups based on their CEP domains. Expression changes of the NtCEP genes in response to various abiotic stresses were analyzed via qRT-PCR and the results showed that a number of NtCEPs were significant up-regulated under drought, salinity, or temperature stress conditions. Furthermore, application of synthesized peptides derived from NtCEP5, NtCEP13, NtCEP14, and NtCEP17 enhanced plant tolerance to different salt stress treatments. NtCEP5, NtCEP9 and NtCEP14, and NtCEP17 peptides were able to promote osmotic tolerance of tobacco plants. The results from this study suggest that NtCEP peptides may serve as important signaling molecules in tobacco's response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaolu Pan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Zhichao Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Rongrong Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China; Qingdao Agricultural University, Qingdao, China
| | - Yalun Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China; Qingdao Agricultural University, Qingdao, China
| | - Sayed Abdul Akher
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China.
| |
Collapse
|
5
|
Fu B, Xu Z, Lei Y, Dong R, Wang Y, Guo X, Zhu H, Cao Y, Yan Z. A novel secreted protein, NISP1, is phosphorylated by soybean Nodulation Receptor Kinase to promote nodule symbiosis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1297-1311. [PMID: 36534458 DOI: 10.1111/jipb.13436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/15/2022] [Indexed: 05/13/2023]
Abstract
Nodulation Receptor Kinase (NORK) functions as a co-receptor of Nod factor receptors to mediate rhizobial symbiosis in legumes, but its direct phosphorylation substrates that positively mediate root nodulation remain to be fully identified. Here, we identified a GmNORK-Interacting Small Protein (GmNISP1) that functions as a phosphorylation target of GmNORK to promote soybean nodulation. GmNORKα directly interacted with and phosphorylated GmNISP1. Transcription of GmNISP1 was strongly induced after rhizobial infection in soybean roots and nodules. GmNISP1 encodes a peptide containing 90 amino acids with a "DY" consensus motif at its N-terminus. GmNISP1 protein was detected to be present in the apoplastic space. Phosphorylation of GmNISP1 by GmNORKα could enhance its secretion into the apoplast. Pretreatment with either purified GmNISP1 or phosphorylation-mimic GmNISP112D on the roots could significantly increase nodule numbers compared with the treatment with phosphorylation-inactive GmNISP112A . The data suggested a model that soybean GmNORK phosphorylates GmNISP1 to promote its secretion into the apoplast, which might function as a potential peptide hormone to promote root nodulation.
Collapse
Affiliation(s)
- Baolan Fu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhipeng Xu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutao Lei
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ru Dong
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanan Wang
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoli Guo
- State Key Lab of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhu
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangrong Cao
- State Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Yan
- National Key Facility for Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
Fedoreyeva LI. Molecular Mechanisms of Regulation of Root Development by Plant Peptides. PLANTS (BASEL, SWITZERLAND) 2023; 12:1320. [PMID: 36987008 PMCID: PMC10053774 DOI: 10.3390/plants12061320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
Peptides perform many functions, participating in the regulation of cell differentiation, regulating plant growth and development, and also involved in the response to stress factors and in antimicrobial defense. Peptides are an important class biomolecules for intercellular communication and in the transmission of various signals. The intercellular communication system based on the ligand-receptor bond is one of the most important molecular bases for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The intercellular communication system based on the receptor-ligand is one of the most important molecular foundations for creating complex multicellular organisms. Peptide-mediated intercellular communication plays a critical role in the coordination and determination of cellular functions in plants. The identification of peptide hormones, their interaction with receptors, and the molecular mechanisms of peptide functioning are important for understanding the mechanisms of both intercellular communications and for regulating plant development. In this review, we drew attention to some peptides involved in the regulation of root development, which implement this regulation by the mechanism of a negative feedback loop.
Collapse
Affiliation(s)
- Larisa I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia
| |
Collapse
|
7
|
Morales-Herrera S, Rubilar-Hernández C, Pérez-Henríquez P, Norambuena L. Endocytic trafficking induces lateral root founder cell specification in Arabidopsis thaliana in a process distinct from the auxin-induced pathway. FRONTIERS IN PLANT SCIENCE 2023; 13:1060021. [PMID: 36726665 PMCID: PMC9885164 DOI: 10.3389/fpls.2022.1060021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Plants can modify their body structure, such as their root architecture, post-embryonically. For example, Arabidopsis thaliana can develop lateral roots as part of an endogenous program or in response to biotic and abiotic stimuli. Root pericycle cells are specified to become lateral root founder cells, initiating lateral root organogenesis. We used the endocytic trafficking inducer Sortin2 to examine the role of endomembrane trafficking in lateral root founder cell specification. Our results indicate that Sortin2 stimulation turns on a de novo program of lateral root primordium formation that is distinct from the endogenous program driven by auxin. In this distinctive mechanism, extracellular calcium uptake and endocytic trafficking toward the vacuole are required for lateral root founder cell specification upstream of the auxin module led by AUX/IAA28. The auxin-dependent TIR1/AFB F-boxes and auxin polar transport are dispensable for the endocytic trafficking-dependent lateral root founder cell specification; however, a different set of F-box proteins and a functional SCF complex are required. The endocytic trafficking could constitute a convenient strategy for organogenesis in response to environmental conditions.
Collapse
|
8
|
Cheng X, Li X, Liao B, Xu J, Hu L. Improved performance of proteomic characterization for Panax ginseng by strong cation exchange extraction and liquid chromatography-mass spectrometry analysis. J Chromatogr A 2023; 1688:463692. [PMID: 36549145 DOI: 10.1016/j.chroma.2022.463692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Panax ginseng is a precious and ancient medicinal plant. The completion of its genome sequencing has laid the foundation for the study of proteome and peptidome. However, the high abundance of secondary metabolites in ginseng reduces the identification efficiency of proteins and peptides in mass spectrometry. In this report, strong cation exchange pretreatment was carried out to eliminate the interference of impurities. Based on the charge separation of proteolytic peptides and metabolites, the sensitivity of mass spectrometry detection was greatly improved. After pretreatment, 2322 and 2685 proteins were identified from the root and stem leaf extract. Further, the ginseng peptidome was analyzed based on this optimized strategy, where 970 and 653 endogenous peptides were identified from root and stem leaf extract, respectively. Functional analysis of proteins and endogenous peptides provided valuable information on the biological activities, metabolic processes, and ginsenoside biosynthesis pathways of ginseng.
Collapse
Affiliation(s)
- Xianhui Cheng
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaoying Li
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China
| | - Baosheng Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
9
|
Fairnie ALM, Yeo MTS, Gatti S, Chan E, Travaglia V, Walker JF, Moyroud E. Eco-Evo-Devo of petal pigmentation patterning. Essays Biochem 2022; 66:753-768. [PMID: 36205404 PMCID: PMC9750854 DOI: 10.1042/ebc20220051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Colourful spots, stripes and rings decorate the corolla of most flowering plants and fulfil important biotic and abiotic functions. Spatial differences in the pigmentation of epidermal cells can create these patterns. The last few years have yielded new data that have started to illuminate the mechanisms controlling the function, formation and evolution of petal patterns. These advances have broad impacts beyond the immediate field as pigmentation patterns are wonderful systems to explore multiscale biological problems: from understanding how cells make decisions at the microscale to examining the roots of biodiversity at the macroscale. These new results also reveal there is more to petal patterning than meets the eye, opening up a brand new area of investigation. In this mini-review, we summarise our current knowledge on the Eco-Evo-Devo of petal pigmentation patterns and discuss some of the most exciting yet unanswered questions that represent avenues for future research.
Collapse
Affiliation(s)
- Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| | - Stefano Gatti
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Emily Chan
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Valentina Travaglia
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| |
Collapse
|
10
|
Chen QJ, Zhang LP, Song SR, Wang L, Xu WP, Zhang CX, Wang SP, Liu HF, Ma C. vvi-miPEP172b and vvi-miPEP3635b increase cold tolerance of grapevine by regulating the corresponding MIRNA genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111450. [PMID: 36075277 DOI: 10.1016/j.plantsci.2022.111450] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As a kind of small molecular weight proteins, many peptides have been discovered, including peptides encoded by pri-miRNA (miPEPs). Similar as traditional phytohormone or signaling molecular, these peptides participate in numerous plant growth processes. MicroRNAs (miRNAs) play an important regulatory role in plant stress response. While the roles of miPEPs in response to abiotic stress has not been studied now. In this study, to explore whether miPEPs could contribute to low temperature (4ºC) tolerance of plants, the expression pattern of 23 different vvi-MIRs were analyzed by qRT-PCR in 'Thompson Seedless' (Vitis vinifera) plantlets under cold stress (4ºC) firstly, and vvi-MIR172b and vvi-MIR3635b which showed an elevated expression levels were selected to identify miPEPs. Through transient expression, one small open reading frame (sORF) in each of the two pri-miRNAs could increase the expression of corresponding vvi-MIR, and the amino acid sequences of sORFs were named vvi-miPEP172b and vvi-miPEP3635b, respectively. The synthetic vvi-miPEP172b and vvi-miPEP3635b were applied to the grape plantlets, and the tissue culture plantlets exhibited a higher cold tolerance compared with the control groups. These results revealed the effective roles of miPEPs in plant cold stress resistance for the first time, providing a theoretical basis for the future application of miPEPs to agricultural production.
Collapse
Affiliation(s)
- Qiu-Ju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Li-Peng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Shi-Ren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Ping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cai-Xi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Ping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huai-Feng Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Tian D, Xie Q, Deng Z, Xue J, Li W, Zhang Z, Dai Y, Zheng B, Lu T, De Smet I, Guo Y. Small secreted peptides encoded on the wheat ( triticum aestivum L.) genome and their potential roles in stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1000297. [PMID: 36212358 PMCID: PMC9532867 DOI: 10.3389/fpls.2022.1000297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Small secreted peptides (SSPs) are important signals for cell-to-cell communication in plant, involved in a variety of growth and developmental processes, as well as responses to stresses. While a large number of SSPs have been identified and characterized in various plant species, little is known about SSPs in wheat, one of the most important cereal crops. In this study, 4,981 putative SSPs were identified on the wheat genome, among which 1,790 TaSSPs were grouped into 38 known SSP families. The result also suggested that a large number of the putaitive wheat SSPs, Cys-rich peptides in particular, remained to be characterized. Several TaSSP genes were found to encode multiple SSP domains, including CLE, HEVEIN and HAIRPININ domains, and two potentially novel TaSSP family DYY and CRP8CI were identified manually among unpredicted TaSSPs. Analysis on the transcriptomic data showed that a great proportion of TaSSPs were expressed in response to abiotic stresses. Exogenous application of the TaCEPID peptide encoded by TraesCS1D02G130700 enhanced the tolerance of wheat plants to drought and salinity, suggesting porential roles of SSPs in regulating stress responses in wheat.
Collapse
Affiliation(s)
- Dongdong Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qi Xie
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jin Xue
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yifei Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Bo Zheng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
12
|
Sin WC, Lam HM, Ngai SM. Identification of Diverse Stress-Responsive Xylem Sap Peptides in Soybean. Int J Mol Sci 2022; 23:ijms23158641. [PMID: 35955768 PMCID: PMC9369194 DOI: 10.3390/ijms23158641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing evidence has revealed that plant secretory peptides are involved in the long-distance signaling pathways that help to regulate plant development and signal stress responses. In this study, we purified small peptides from soybean (Glycine max) xylem sap via o-chlorophenol extraction and conducted an in-depth peptidomic analysis using a mass spectrometry (MS) and bioinformatics approach. We successfully identified 14 post-translationally modified peptide groups belonging to the peptide families CEP (C-terminally encoded peptides), CLE (CLAVATA3/embryo surrounding region-related), PSY (plant peptides containing tyrosine sulfation), and XAP (xylem sap-associated peptides). Quantitative PCR (qPCR) analysis showed unique tissue expression patterns among the peptide-encoding genes. Further qPCR analysis of some of the peptide-encoding genes showed differential stress-response profiles toward various abiotic stress factors. Targeted MS-based quantification of the nitrogen deficiency-responsive peptides, GmXAP6a and GmCEP-XSP1, demonstrated upregulation of peptide translocation in xylem sap under nitrogen-deficiency stress. Quantitative proteomic analysis of GmCEP-XSP1 overexpression in hairy soybean roots revealed that GmCEP-XSP1 significantly impacts stress response-related proteins. This study provides new insights that root-to-shoot peptide signaling plays important roles in regulating plant stress-response mechanisms.
Collapse
|
13
|
Badola PK, Sharma A, Gautam H, Trivedi PK. MicroRNA858a, its encoded peptide, and phytosulfokine regulate Arabidopsis growth and development. PLANT PHYSIOLOGY 2022; 189:1397-1415. [PMID: 35325214 PMCID: PMC9237717 DOI: 10.1093/plphys/kiac138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 06/02/2023]
Abstract
Small molecules, such as peptides and miRNAs, are crucial regulators of plant growth. Here, we show the importance of cross-talk between miPEP858a (microRNA858a-encoded peptide)/miR858a and phytosulfokine (PSK4) in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana). Genome-wide expression analysis suggested modulated expression of PSK4 in miR858a mutants and miR858a-overexpressing (miR858aOX) plants. The silencing of PSK4 in miR858aOX plants compromised growth, whereas overexpression of PSK4 in the miR858a mutant rescued the developmental defects. The exogenous application of synthetic PSK4 further complemented the plant development in mutant plants. Exogenous treatment of synthetic miPEP858a in the PSK4 mutant led to clathrin-mediated internalization of the peptide; however, it did not enhance growth as is the case in wild-type plants. We also demonstrated that MYB3 is an important molecular component participating in the miPEP858a/miR858a-PSK4 module. Finally, our work highlights the signaling between miR858a/miPEP858a-MYB3-PSK4 in modulating the expression of key elements involved in auxin responses, leading to the regulation of growth.
Collapse
Affiliation(s)
| | | | - Himanshi Gautam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | |
Collapse
|
14
|
Short Peptides Induce Development of Root Hair Nicotiana tabacum. PLANTS 2022; 11:plants11070852. [PMID: 35406832 PMCID: PMC9002736 DOI: 10.3390/plants11070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Root hairs absorb soil nutrients and water, and anchor the plant in the soil. Treatment of tobacco (Nicotiana tabacum) roots with glycine (Gly) amino acid, and glycilglycine (GlyGly) and glycilaspartic acid (GlyAsp) dipeptides (10−7 M concentration) significantly increased the development of root hairs. In the root, peptide accumulation was tissue-specific, with predominant localization to the root cap, meristem, elongation zone, and absorption zone. Peptides penetrated the epidermal and cortical cell and showed greater localization to the nucleus than to the cytoplasm. Compared with the control, tobacco plants grown in the presence of Gly, GlyGly, and GlyAsp exhibited the activation of WER, CPC, bHLH54, and bHLH66 genes and suppression of GTL1 and GL2 genes during root hair lengthening. Although Gly, GlyGly, and GlyAsp have a similar structure, the mechanism of regulation of root hair growth in each case were different, and these differences are most likely due to the fact that neutral Gly and GlyGly and negatively charged GlyAsp bind to different motives of functionally important proteins. Short peptides site-specifically interact with DNA, and histones. The molecular mechanisms underlying the effect of exogenous peptides on cellular processes remain unclear. Since these compounds acted at low concentrations, gene expression regulation by short peptides is most likely of epigenetic nature.
Collapse
|
15
|
Ginanjar EF, Teh OK, Fujita T. Characterisation of rapid alkalinisation factors in Physcomitrium patens reveals functional conservation in tip growth. THE NEW PHYTOLOGIST 2022; 233:2442-2457. [PMID: 34954833 DOI: 10.1111/nph.17942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Small signalling peptides are key molecules for cell-to-cell communications in plants. The cysteine-rich signalling peptide, rapid alkalinisation factors (RALFs) family are involved in diverse developmental and stress responses and have expanded considerably during land plant evolution, implying neofunctionalisations in the RALF family. However, the ancestral roles of RALFs when land plant first acquired them remain unknown. Here, we functionally characterised two of the three RALFs in bryophyte Physcomitrium patens using loss-of-function mutants, overexpressors, as well as fluorescent proteins tagged reporter lines. We showed that PpRALF1 and PpRALF2 have overlapping functions in promoting protonema tip growth and elongation, showing a homologous function as the Arabidopsis RALF1 in promoting root hair tip growth. Although both PpRALFs are secreted to the plasma membrane on which PpRALF1 symmetrically localised, PpRALF2 showed a polarised localisation at the growing tip. Notably, proteolytic cleavage of PpRALF1 is necessary for its function. Our data reveal a possible evolutionary origin of the RALF functions and suggest that functional divergence of RALFs is essential to drive complex morphogenesis and to facilitate other novel processes in land plants.
Collapse
Affiliation(s)
| | - Ooi-Kock Teh
- Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaihdo University, Sapporo, 060-0817, Japan
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd, Nankang, Taipei, Taiwan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Hokkaido, 060-0810, Japan
| |
Collapse
|
16
|
Meng X, Li W, Shen R, Lan P. Ectopic expression of IMA small peptide genes confers tolerance to cadmium stress in Arabidopsis through activating the iron deficiency response. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126913. [PMID: 34419841 DOI: 10.1016/j.jhazmat.2021.126913] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Increasing cadmium (Cd) pollution severely affects plant growth and development, posing risks to human health via food chains. The Cd toxicity could be mitigated by improving Fe nutrient in plants. IMA1 and IMA3, two novel small peptides functionally epistatic to the key transcription factor bHLH39 but independent of bHLH104, were recently identified as the newest additions to the Fe regulatory cascade, but their roles in Cd uptake and toxicity remain not addressed. Here, the functions of two IMAs and two transcription factors related to Cd tolerance were verified. Overexpression of either bHLH39 or bHLH104 in Arabidopsis showed weak roles in Cd tolerance, but overexpression of IMAs, which activates the Fe-deficient response, significantly enhanced Cd tolerance, showing greater root elongation, biomass and chlorophyll contents. The Cd contents did not show significant difference among the overexpression lines. Further investigations revealed that the tolerance of transgenic plants to Cd mainly depended on higher Fe accumulation, which decreased the MDA contents and enhanced root elongation under Cd exposure, finally contributing to attenuating Cd toxicity. Taken together, the results suggest that increasing Fe accumulation is promising for improving plant tolerance to Cd toxicity and that IMAs are potential candidates for solving Cd toxicity problem.
Collapse
Affiliation(s)
- Xiangxiang Meng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Lyapina I, Ivanov V, Fesenko I. Peptidome: Chaos or Inevitability. Int J Mol Sci 2021; 22:13128. [PMID: 34884929 PMCID: PMC8658490 DOI: 10.3390/ijms222313128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Thousands of naturally occurring peptides differing in their origin, abundance and possible functions have been identified in the tissue and biological fluids of vertebrates, insects, fungi, plants and bacteria. These peptide pools are referred to as intracellular or extracellular peptidomes, and besides a small proportion of well-characterized peptide hormones and defense peptides, are poorly characterized. However, a growing body of evidence suggests that unknown bioactive peptides are hidden in the peptidomes of different organisms. In this review, we present a comprehensive overview of the mechanisms of generation and properties of peptidomes across different organisms. Based on their origin, we propose three large peptide groups-functional protein "degradome", small open reading frame (smORF)-encoded peptides (smORFome) and specific precursor-derived peptides. The composition of peptide pools identified by mass-spectrometry analysis in human cells, plants, yeast and bacteria is compared and discussed. The functions of different peptide groups, for example the role of the "degradome" in promoting defense signaling, are also considered.
Collapse
Affiliation(s)
| | | | - Igor Fesenko
- Department of Functional Genomics and Proteomics of Plants, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (I.L.); (V.I.)
| |
Collapse
|
18
|
Dubas E, Żur I, Moravčiková J, Fodor J, Krzewska M, Surówka E, Nowicka A, Gerši Z. Proteins, Small Peptides and Other Signaling Molecules Identified as Inconspicuous but Possibly Important Players in Microspores Reprogramming Toward Embryogenesis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.745865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we describe and integrate the latest knowledge on the signaling role of proteins and peptides in the stress-induced microspore embryogenesis (ME) in some crop plants with agricultural importance (i.e., oilseed rape, tobacco, barley, wheat, rice, triticale, rye). Based on the results received from the most advanced omix analyses, we have selected some inconspicuous but possibly important players in microspores reprogramming toward embryogenic development. We provide an overview of the roles and downstream effect of stress-related proteins (e.g., β-1,3-glucanases, chitinases) and small signaling peptides, especially cysteine—(e.g., glutathione, γ-thionins, rapid alkalinization factor, lipid transfer, phytosulfokine) and glycine-rich peptides and other proteins (e.g., fasciclin-like arabinogalactan protein) on acclimation ability of microspores and the cell wall reconstruction in a context of ME induction and haploids/doubled haploids (DHs) production. Application of these molecules, stimulating the induction and proper development of embryo-like structures and green plant regeneration, brings significant improvement of the effectiveness of DHs procedures and could result in its wider incorporation on a commercial scale. Recent advances in the design and construction of synthetic peptides–mainly cysteine-rich peptides and their derivatives–have accelerated the development of new DNA-free genome-editing techniques. These new systems are evolving incredibly fast and soon will find application in many areas of plant science and breeding.
Collapse
|
19
|
Kim NY, Jung HY, Kim JK. Identification and characterisation of a novel heptapeptide mackerel by-product hydrolysate, and its potential as a functional fertiliser component. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122881. [PMID: 34388601 DOI: 10.1016/j.jchromb.2021.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Functional fertilisers for hydroponics are in great demand. Herein, we isolated peptides from mackerel by-products, a valuable source of bioactive peptides. The pellet-phase fraction obtained after cold-acetone extraction exhibited plant growth-promoting activity in wheat hydroponics, and the presumed peptides were determined to be ≤ 1 kDa based on molecular weight cut-off and tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Size exclusion chromatography and matrix-assisted laser desorption ionisation time of flight mass spectrometry analysis were employed for peptide purification and identification. Finally, two peptides were identified, both with linear structures, consisting of amino acid sequences TCGGQGR and KEAGAFIDR. At 1 mg/mL, the heptapeptide performed better than the nonapeptide in terms of wheat growth and health, but neither peptide exhibited antimicrobial activity. Only the heptapeptide displayed significant antioxidant activity, and this activity bioaccumulated in wheat leaves after 7 days of hydroponic growth. The heptapeptide did not match any known metabolites in PepBank, BIOPEP, UniProt or METLIN databases, and is therefore a novel peptide with potential as a functional fertiliser component.
Collapse
Affiliation(s)
- Nan Young Kim
- Department of Biotechnology and Bioengineering, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 485137, Republic of Korea
| | - Hyun Yi Jung
- Department of Biotechnology and Bioengineering, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 485137, Republic of Korea
| | - Joong Kyun Kim
- Department of Biotechnology and Bioengineering, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 485137, Republic of Korea.
| |
Collapse
|
20
|
Fedoreyeva LI, Vanyushin BF. Gly, GlyGly, and GlyAsp Modulate Expression of Genes of the SNF2 Family and DNA Methyltransferases in Regenerants from Calluses of Tobacco Nicotiana tabacum. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021040087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lin H, Wang W, Chen X, Sun Z, Han X, Wang S, Li Y, Ye W, Yin Z. Molecular Traits and Functional Analysis of the CLAVATA3/Endosperm Surrounding Region-Related Small Signaling Peptides in Three Species of Gossypium Genus. FRONTIERS IN PLANT SCIENCE 2021; 12:671626. [PMID: 34149772 PMCID: PMC8213210 DOI: 10.3389/fpls.2021.671626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) small peptides are a group of C-terminally encoded and post-translationally modified signal molecules involved in regulating the growth and development of various plants. However, the function and evolution of these peptides have so far remained elusive in cotton. In this study, 55, 56, and 86 CLE genes were identified in the Gossypium raimondii, Gossypium arboreum, and Gossypium hirsutum genomes, respectively, and all members were divided into seven groups. These groups were distinctly different in their protein characteristics, gene structures, conserved motifs, and multiple sequence alignment. Whole genome or segmental duplications played a significant role in the expansion of the CLE family in cotton, and experienced purifying selection during the long evolutionary process in cotton. Cis-acting regulatory elements and transcript profiling revealed that the CLE genes of cotton exist in different tissues, developmental stages, and respond to abiotic stresses. Protein properties, structure prediction, protein interaction network prediction of GhCLE2, GhCLE33.2, and GhCLE28.1 peptides were, respectively, analyzed. In addition, the overexpression of GhCLE2, GhCLE33.2, or GhCLE28.1 in Arabidopsis, respectively, resulted in a distinctive shrub-like dwarf plant, slightly purple leaves, large rosettes with large malformed leaves, and lack of reproductive growth. This study provides important insights into the evolution of cotton CLEs and delineates the functional conservatism and divergence of CLE genes in the growth and development of cotton.
Collapse
Affiliation(s)
- Huan Lin
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Xiugui Chen
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhenting Sun
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiulan Han
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, China
| | - Shuai Wang
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wuwei Ye
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zujun Yin
- Research Base, Zhengzhou University, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
22
|
Lyapina I, Filippova A, Kovalchuk S, Ziganshin R, Mamaeva A, Lazarev V, Latsis I, Mikhalchik E, Panasenko O, Ivanov O, Ivanov V, Fesenko I. Possible role of small secreted peptides (SSPs) in immune signaling in bryophytes. PLANT MOLECULAR BIOLOGY 2021; 106:123-143. [PMID: 33713297 DOI: 10.1007/s11103-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Plants utilize a plethora of peptide signals to regulate their immune response. Peptide ligands and their cognate receptors involved in immune signaling share common motifs among many species of vascular plants. However, the origin and evolution of immune peptides is still poorly understood. Here, we searched for genes encoding small secreted peptides in the genomes of three bryophyte lineages-mosses, liverworts and hornworts-that occupy a critical position in the study of land plant evolution. We found that bryophytes shared common predicted small secreted peptides (SSPs) with vascular plants. The number of SSPs is higher in the genomes of mosses than in both the liverwort Marchantia polymorpha and the hornwort Anthoceros sp. The synthetic peptide elicitors-AtPEP and StPEP-specific for vascular plants, triggered ROS production in the protonema of the moss Physcomitrella patens, suggesting the possibility of recognizing peptide ligands from angiosperms by moss receptors. Mass spectrometry analysis of the moss Physcomitrella patens, both the wild type and the Δcerk mutant secretomes, revealed peptides that specifically responded to chitosan treatment, suggesting their role in immune signaling.
Collapse
Affiliation(s)
- Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Kovalchuk
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rustam Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Ivan Latsis
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Oleg Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Oleg Ivanov
- V.F. Kuprevich Institute of Experimental Botany of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
23
|
Khan SU, Khan MHU, Ahmar S, Fan C. Comprehensive study and multipurpose role of the CLV3/ESR-related (CLE) genes family in plant growth and development. J Cell Physiol 2020; 236:2298-2317. [PMID: 32864739 DOI: 10.1002/jcp.30021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 11/10/2022]
Abstract
The CLAVATA3/endosperm surrounding region-related (CLE) is one of the most important signaling peptides families in plants. These peptides signaling are common in the cell to cell communication and control various physiological and developmental processes, that is cell differentiation and proliferation, self-incompatibility, and the defense response. The CLE signaling systems are conserved across the plant kingdom but have a diverse mode of action in various developmental processes in different species. In this review, we concise various methods of peptides identification, structure, and molecular identity of the CLE family, the developmental role of CLE genes/peptides in plants, environmental stimuli, and CLE family and some other novel progress in CLE genes/peptides in various crops, and so forth. According to previous literature, about 1,628 CLE genes were identified in land plants, which deeply explained the tale of plant development. Nevertheless, some important queries need to be addressed to get clear insights into the CLE gene family in other organisms and their role in various physiological and developmental processes. Furthermore, we summarized the power of the CLE family around the environment as well as bifunctional activity and the crystal structure recognition mechanism of CLE peptides by their receptors and CLE clusters functions. We strongly believed that the discovery of the CLE family in other organisms would provide a significant breakthrough for future revolutionary and functional studies.
Collapse
Affiliation(s)
- Shahid U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Hafeez U Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Sunny Ahmar
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Fedoreyeva LI, Kononenko NV, Baranova EN, Dilovarova TA, Smirnova EA, Vanyushin BF. Dipeptides and Glycine Modulate Development of Seedlings and Regenerants of Tobacco Nicotiana tabacum L. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Luo L, Zhang Y, Xu G. How does nitrogen shape plant architecture? JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4415-4427. [PMID: 32279073 PMCID: PMC7475096 DOI: 10.1093/jxb/eraa187] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 05/20/2023]
Abstract
Plant nitrogen (N), acquired mainly in the form of nitrate and ammonium from soil, dominates growth and development, and high-yield crop production relies heavily on N fertilization. The mechanisms of root adaptation to altered supply of N forms and concentrations have been well characterized and reviewed, while reports concerning the effects of N on the architecture of vegetative and reproductive organs are limited and are widely dispersed in the literature. In this review, we summarize the nitrate and amino acid regulation of shoot branching, flowering, and panicle development, as well as the N regulation of cell division and expansion in shaping plant architecture, mainly in cereal crops. The basic regulatory steps involving the control of plant architecture by the N supply are auxin-, cytokinin-, and strigolactone-controlled cell division in shoot apical meristem and gibberellin-controlled inverse regulation of shoot height and tillering. In addition, transport of amino acids has been shown to be involved in the control of shoot branching. The N supply may alter the timing and duration of the transition from the vegetative to the reproductive growth phase, which in turn may affect cereal crop architecture, particularly the structure of panicles for grain yield. Thus, proper manipulation of N-regulated architecture can increase crop yield and N use efficiency.
Collapse
Affiliation(s)
- Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- China MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| |
Collapse
|
26
|
Nagar P, Kumar A, Jain M, Kumari S, Mustafiz A. Genome-wide analysis and transcript profiling of PSKR gene family members in Oryza sativa. PLoS One 2020; 15:e0236349. [PMID: 32701993 PMCID: PMC7377467 DOI: 10.1371/journal.pone.0236349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022] Open
Abstract
Peptide signalling is an integral part of cell-to-cell communication which helps to relay the information responsible for coordinating cell proliferation and differentiation. Phytosulfokine Receptor (PSKR) is a transmembrane LRR-RLK family protein with a binding site for small signalling peptide, phytosulfokine (PSK). PSK signalling through PSKR promotes normal growth and development and also plays a role in defense responses. Like other RLKs, these PSKRs might have a role in signal transduction pathways related to abiotic stress responses. Genome-wide analysis of phytosulfokine receptor gene family has led to the identification of fifteen putative members in the Oryza sativa genome. The expression analysis of OsPSKR genes done using RNA-seq data, showed that these genes were differentially expressed in different tissues and responded specifically to heat, salt, drought and cold stress. Furthermore, the real-time quantitative PCR for fifteen OsPSKR genes revealed temporally and spatially regulated gene expression corresponding to salinity and drought stress. Our results provide useful information for a better understanding of OsPSKR genes and provide the foundation for additional functional exploration of the rice PSKR gene family in development and stress response.
Collapse
Affiliation(s)
- Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Sumita Kumari
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, JK, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
27
|
Shen J, Diao W, Zhang L, Acharya BR, Wang M, Zhao X, Chen D, Zhang W. Secreted Peptide PIP1 Induces Stomatal Closure by Activation of Guard Cell Anion Channels in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1029. [PMID: 32733520 PMCID: PMC7360795 DOI: 10.3389/fpls.2020.01029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Plant stomata which consist of a pair of guard cells, are not only finely controlled to balance water loss as transpiration and CO2 absorption for photosynthesis, but also serve as the major sites to defend against pathogen attack, thus allowing plants to respond appropriately to abiotic and biotic stress conditions. The regulatory signaling network for stomatal movement is complex in nature, and plant peptides have been shown to be involved in signaling processes. Arabidopsis secreted peptide PIP1 was previously identified as an endogenous elicitor, which induced immune response through its receptor, RLK7. PIP1-RLK7 can activate stomatal immunity against the bacterial strain Pst DC3118. However, the molecular mechanism of PIP1 in stomatal regulation is still unclear and additional new factors need to be discovered. In this study, we further clarified that PIP1 could function as an important regulator in the induction of stomatal closure. The results showed that PIP1 could promote stomata to close in a certain range of concentrations and response time. In addition, we uncovered that PIP1-RLK7 signaling regulated stomatal response by activating S-type anion channel SLAC1. PIP1-induced stomatal closure was impaired in bak1, mpk3, and mpk6 mutants, indicating that BAK1 and MPK3/MPK6 were required for PIP1-regulated stomatal movement. Our research further deciphered that OST1 which acts as an essential ABA-signaling component, also played a role in PIP1-induced stomatal closure. In addition, ROS participated in PIP1-induced stomatal closure and PIP1 could activate Ca2+ permeable channels. In conclusion, we reveal the role of peptide PIP1 in triggering stomatal closure and the possible mechanism of PIP1 in the regulation of stomatal apertures. Our findings improve the understanding of the role of PIP1 in stomatal regulation and immune response.
Collapse
Affiliation(s)
- Jianlin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wenzhu Diao
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Linfang Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Biswa R. Acharya
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Donghua Chen, ; Wei Zhang,
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Donghua Chen, ; Wei Zhang,
| |
Collapse
|
28
|
Coppola M, Di Lelio I, Romanelli A, Gualtieri L, Molisso D, Ruocco M, Avitabile C, Natale R, Cascone P, Guerrieri E, Pennacchio F, Rao R. Tomato Plants Treated with Systemin Peptide Show Enhanced Levels of Direct and Indirect Defense Associated with Increased Expression of Defense-Related Genes. PLANTS 2019; 8:plants8100395. [PMID: 31623335 PMCID: PMC6843623 DOI: 10.3390/plants8100395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 01/11/2023]
Abstract
Plant defense peptides represent an important class of compounds active against pathogens and insects. These molecules controlling immune barriers can potentially be used as novel tools for plant protection, which mimic natural defense mechanisms against invaders. The constitutive expression in tomato plants of the precursor of the defense peptide systemin was previously demonstrated to increase tolerance against moth larvae and aphids and to hamper the colonization by phytopathogenic fungi, through the expression of a wealth of defense-related genes. In this work we studied the impact of the exogenous supply of systemin to tomato plants on pests to evaluate the use of the peptide as a tool for crop protection in non-transgenic approaches. By combining gene expression studies and bioassays with different pests we demonstrate that the exogenous supply of systemin to tomato plants enhances both direct and indirect defense barriers. Experimental plants, exposed to this peptide by foliar spotting or root uptake through hydroponic culture, impaired larval growth and development of the noctuid moth Spodoptera littoralis, even across generations, reduced the leaf colonization by the fungal pathogen Botrytis cinerea and were more attractive towards natural herbivore antagonists. The induction of these defense responses was found to be associated with molecular and biochemical changes under control of the systemin signalling cascade. Our results indicate that the direct delivery of systemin, likely characterized by a null effect on non-target organisms, represents an interesting tool for the sustainable protection of tomato plants.
Collapse
Affiliation(s)
- Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Alessandra Romanelli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Venezian 21, 20133 Milano, Italy;
| | | | - Donata Molisso
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Michelina Ruocco
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | | | - Roberto Natale
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Pasquale Cascone
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | - Emilio Guerrieri
- CNR-IPSP, Via Università 133, 80055 Portici, Italy; (L.G.); (M.R.)
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; (M.C.); (I.D.L.); (D.M.)
- Correspondence: ; Tel.: +39-081-2539204
| |
Collapse
|
29
|
Schwember AR, Schulze J, Del Pozo A, Cabeza RA. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. PLANTS (BASEL, SWITZERLAND) 2019; 8:E333. [PMID: 31489914 PMCID: PMC6784058 DOI: 10.3390/plants8090333] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
In most legume nodules, the di-nitrogen (N2)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N2 fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper. The carbonic anhydrase (CA)-phosphoenolpyruvate carboxylase (PEPC)-malate dehydrogenase (MDH) is a key pathway inside nodules involved in this regulation, and malate seems to play a crucial role in many aspects of symbiotic N2 fixation control. How legumes specifically sense N-status and how this stimulates all of the regulatory factors are key issues for understanding N2 fixation regulation on a whole-plant basis. This must be thoroughly studied in the future since there is no unifying theory that explains all of the aspects involved in regulating N2 fixation rates to date. Finally, high-throughput functional genomics and molecular tools (i.e., miRNAs) are currently very valuable for the identification of many regulatory elements that are good candidates for accurately dissecting the particular N2 fixation control mechanisms associated with physiological responses to abiotic stresses. In combination with existing information, utilizing these abundant genetic molecular tools will enable us to identify the specific mechanisms underlying the regulation of N2 fixation.
Collapse
Affiliation(s)
- Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 306-22, Chile.
| | - Joachim Schulze
- Department of Crop Science, Section for Plant Nutrition and Crop Physiology, Faculty of Agriculture, University of Goettingen, Carl-Sprengel-Weg 1, 37075 Goettingen, Germany.
| | - Alejandro Del Pozo
- Centro de Mejoramiento Genético y Fenómica Vegetal, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile.
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| | - Ricardo A Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Campus Talca, Talca 3460000, Chile.
| |
Collapse
|
30
|
Zhou Y, Sarker U, Neumann G, Ludewig U. The LaCEP1 peptide modulates cluster root morphology in Lupinus albus. PHYSIOLOGIA PLANTARUM 2019; 166:525-537. [PMID: 29984412 DOI: 10.1111/ppl.12799] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 05/26/2023]
Abstract
White lupin cluster roots are specialized brush-like root structures that are formed in some species under phosphorus (P)-deficient conditions. They intensely secrete protons and organic acid anions for solubilization and acquisition of sparingly soluble phosphates. Phytohormones and sucrose modulate cluster root number, but the molecular mechanisms of cluster root formation have been elusive. Here, a novel peptide phytohormone was identified that affects cluster root development. It belongs to the C-TERMINALLY-ENCODED PEPTIDE (CEP) family. Members of that family arrest root growth and modulate branching in model species. LaCEP1 was highly expressed in the pre-emergence zone of clusters. Over-expression of the gene encoding the LaCEP1 propeptide resulted in moderate inhibition of cluster root formation. The primary and lateral root lengths of lupin were little affected by the overexpression, but LaCEP1 reduced cluster rootlet and root hair elongation. Addition of a 15-mer core peptide derived from LaCEP1 similarly altered root morphology and modified cluster activity, suggesting that a core sequence of the propeptide is functionally sufficient. Stable overexpression in Arabidopsis confirmed the LaCEP1 function in root growth inhibition across species. Taken together, the root inhibitory effects of the LaCEP1 phytohormone suggest a role as of a regulatory module involved in cluster root development in white lupin.
Collapse
Affiliation(s)
- Yaping Zhou
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Upama Sarker
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Günter Neumann
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Stuttgart, D-70593, Germany
| |
Collapse
|
31
|
Le Marquer M, Bécard G, Frei Dit Frey N. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. THE NEW PHYTOLOGIST 2019; 222:1030-1042. [PMID: 30554405 DOI: 10.1111/nph.15643] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/07/2018] [Indexed: 05/03/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is a beneficial association established between land plants and the members of a subphylum of fungi, the Glomeromycotina. How the two symbiotic partners regulate their association is still enigmatic. Secreted fungal peptides are candidates for regulating this interaction. We searched for fungal peptides with similarities with known plant signalling peptides. We identified CLAVATA (CLV)/EMBRYO SURROUNDING REGION (ESR)-RELATED PROTEIN (CLE) genes in phylogenetically distant AM fungi: four Rhizophagus species and one Gigaspora species. These CLE genes encode a signal peptide for secretion and the conserved CLE C-terminal motif. They seem to be absent in the other fungal clades. Rhizophagus irregularis and Gigaspora rosea CLE genes (RiCLE1 and GrCLE1) are transcriptionally induced in symbiotic vs asymbiotic conditions. Exogenous application of synthetic RiCLE1 peptide on Medicago truncatula affects root architecture, by slowing the apical growth of primary roots and stimulating the formation of lateral roots. In addition, pretreatment of seedlings with RiCLE1 peptide stimulates mycorrhization. Our findings demonstrate for the first time that in addition to plants and nematodes, AM fungi also possess CLE genes. These results pave the way for deciphering new mechanisms by which AM fungi modulate plant cellular responses during the establishment of AM symbiosis.
Collapse
Affiliation(s)
- Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|
32
|
Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2019; 42:1033-1044. [PMID: 30378140 DOI: 10.1111/pce.13475] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 05/06/2023]
Abstract
CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss-of-function mutants were sensitivity to drought stress. CLE9-induced stomatal closure was impaired in abscisic acid (ABA)-deficient mutants, indicating that ABA is required for CLE9-medaited guard cell signalling. We further deciphered that two guard cell ABA-signalling components, OST1 and SLAC1, were responsible for CLE9-induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase-deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA-dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants.
Collapse
Affiliation(s)
- Luosha Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yutao Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jiajing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jingwei Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Wenqian Jiang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiangyu Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jingke Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xuening Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Lixia Pan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Shuo Lv
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Bing Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Jinbin Wu
- Laboratory of Phytopathology, Wageningen University, 6708PB, Wageningen, The Netherlands
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| | - Zhubing Hu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Junmin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
33
|
Yu Z, Xu Y, Liu L, Guo Y, Yuan X, Man X, Liu C, Yang G, Huang J, Yan K, Zheng C, Wu C, Zhang S. The Importance of Conserved Serine for C-Terminally Encoded Peptides Function Exertion in Apple. Int J Mol Sci 2019; 20:ijms20030775. [PMID: 30759748 PMCID: PMC6387203 DOI: 10.3390/ijms20030775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The C-terminally encoded peptide (CEP) family has been shown to play vital roles in plant growth. Although a genome-wide analysis of this family has been performed in Arabidopsis, little is known regarding CEPs in apple (Malus domestica). METHODS Here, a comprehensive bioinformatics approach was applied to identify MdCEPs in apple, and 12 MdCEP genes were identified and distributed on 6 chromosomes. RESULTS MdCEP1 peptide had an inhibitory effect on root growth of apple seedlings, indicating that MdCEP1 played a negative role in root development. In addition, the serine and glycine residues remained conserved within the CEP domains, and MdCEP1 lost its function after mutation of these two key amino acids, suggesting that Ser10 and Gly14 residues are crucial for MdCEPs-mediated root growth of apple. Encouragingly, multiple sequence alignment of 273 CEP domains showed that Ser10 residue was evolutionarily conserved in monocot and eudicot plants. MdCEP derivative (Ser to Cys) lost the ability to inhibit the root growth of Nicotiana benthamiana, Setaria italic, Samolous parviflorus, and Raphanus sativus L. and up-regulate the NO3- importer gene NRT2.1. CONCLUSION Taken together, Ser10 residue is crucial for CEP function exertion in higher land plants, at least in apple.
Collapse
Affiliation(s)
- Zipeng Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yang Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao 266100, China.
| | - Lin Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yarong Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Xisen Yuan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Xinyu Man
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA.
| | - Guodong Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Kang Yan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Changai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
34
|
Vergara-Pulgar C, Rothkegel K, González-Agüero M, Pedreschi R, Campos-Vargas R, Defilippi BG, Meneses C. De novo assembly of Persea americana cv. 'Hass' transcriptome during fruit development. BMC Genomics 2019; 20:108. [PMID: 30727956 PMCID: PMC6364401 DOI: 10.1186/s12864-019-5486-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/28/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Avocado (Persea americana Mill.) is a basal angiosperm from the Lauraceae family. This species has a diploid genome with an approximated size of ~ 920 Mbp and produces a climacteric, fleshy and oily fruit. The flowering and fruit set are particularly prolonged processes, lasting between one to three months, generating important differences in physiological ages of the fruit within the same tree. So far there is no detailed genomic information regarding this species, being the cultivar 'Hass' especially important for avocado growers worldwide. With the aim to explore the fruit avocado transcriptome and to identify candidate biomarkers to monitore fruit development, we carried out an RNA-Seq approach during 4 stages of 'Hass' fruit development: 150 days after fruit set (DAFS), 240 DAFS, 300 DAFS (harvest) and 390 DAFS (late-harvest). RESULTS The 'Hass' de novo transcriptome contains 62,203 contigs (x̅=988 bp, N50 = 1050 bp). We found approximately an 85 and 99% of complete ultra-conserved genes in eukaryote and plantae database using BUSCO (Benchmarking Universal Single-Copy Orthologs) and CEGMA (Core Eukaryotic Gene Mapping Approach), respectively. Annotation was performed with BLASTx, resulting in a 58% of annotated contigs (90% of differentially expressed genes were annotated). Differentially expressed genes analysis (DEG; with False Discovery Rate ≤ 0.01) found 8672 genes considering all developmental stages. From this analysis, genes were clustered according to their expression pattern and 1209 genes show correlation with the four developmental stages. CONCLUSIONS Candidate genes are proposed as possible biomarkers for monitoring the development of the 'Hass' avocado fruit associated with lipid metabolism, ethylene signaling pathway, auxin signaling pathway, and components of the cell wall.
Collapse
Affiliation(s)
- Cristian Vergara-Pulgar
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Avenida República 330, 8370035, Santiago, RM, Chile
| | - Karin Rothkegel
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Avenida República 330, 8370035, Santiago, RM, Chile
| | - Mauricio González-Agüero
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, La Pintana, 831314, Santiago, RM, Chile
| | - Romina Pedreschi
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Quillota, Chile
| | - Reinaldo Campos-Vargas
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Avenida República 330, 8370035, Santiago, RM, Chile
| | - Bruno G Defilippi
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santa Rosa 11610, La Pintana, 831314, Santiago, RM, Chile.
| | - Claudio Meneses
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Avenida República 330, 8370035, Santiago, RM, Chile.
- FONDAP Center for Genome Regulation, Santiago, Chile.
| |
Collapse
|
35
|
Dissecting the pathways coordinating patterning and growth by plant boundary domains. PLoS Genet 2019; 15:e1007913. [PMID: 30677017 PMCID: PMC6363235 DOI: 10.1371/journal.pgen.1007913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/05/2019] [Accepted: 12/21/2018] [Indexed: 12/18/2022] Open
Abstract
Boundary domains play important roles during morphogenesis in plants and animals, but how they contribute to patterning and growth coordination in plants is not understood. The CUC genes determine the boundary domains in the aerial part of the plants and, in particular, they have a conserved role in regulating leaf complexity across Angiosperms. Here, we used tooth formation at the Arabidopsis leaf margin controlled by the CUC2 transcription factor to untangle intertwined events during boundary-controlled morphogenesis in plants. Combining conditional restoration of CUC2 function with morphometrics as well as quantification of gene expression and hormone signaling, we first established that tooth morphogenesis involves a patterning phase and a growth phase. These phases can be separated, as patterning requires CUC2 while growth can occur independently of CUC2. Next, we show that CUC2 acts as a trigger to promote growth through the activation of three functional relays. In particular, we show that KLUH acts downstream of CUC2 to modulate auxin response and that expressing KLUH can compensate for deficient CUC2 expression during tooth growth. Together, we reveal a genetic and molecular network that allows coordination of patterning and growth by CUC2-defined boundaries during morphogenesis at the leaf margin. During organogenesis, patterning, the definition of functional subdomains, has to be strictly coordinated with growth. How this is achieved is still an open question. In plants, boundary domains are established between neighboring outgrowing structures and play a role not only in the separation of these structures but also in their formation. To further understand how these boundary domains control morphogenesis, we used as a model system the formation of small teeth along the leaf margin of Arabidopsis, which is controlled by the CUP-SHAPED COTYLEDON2 (CUC2) boundary gene. The CUC genes determine the boundary domains in the aerial part of the plants and in particular they have been shown to have a conserved role in regulating serration and leaflet formation across Angiosperms and thus are at the root of patterning in diverse leaf types. We manipulated the expression of this gene using an inducible gene expression that allowed restoration of CUC2 expression in its own domain at different developmental stages and for different durations, and followed the effects on patterning and growth. Thus, we showed that while CUC2 is required for patterning it is dispensable for sustained growth of the teeth, acting as a trigger for growth by the activation of several functional relays. We further showed that these findings are not specific to the inducible restoration of CUC2 function by analyzing multiple mutants.
Collapse
|
36
|
Fesenko I, Azarkina R, Kirov I, Kniazev A, Filippova A, Grafskaia E, Lazarev V, Zgoda V, Butenko I, Bukato O, Lyapina I, Nazarenko D, Elansky S, Mamaeva A, Ivanov V, Govorun V. Phytohormone treatment induces generation of cryptic peptides with antimicrobial activity in the Moss Physcomitrella patens. BMC PLANT BIOLOGY 2019; 19:9. [PMID: 30616513 PMCID: PMC6322304 DOI: 10.1186/s12870-018-1611-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/20/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Regina Azarkina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kirov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei Kniazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Ivan Butenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina Lyapina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Nazarenko
- Department of Analytical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Elansky
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Mamaeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
37
|
Qu X, Cao B, Kang J, Wang X, Han X, Jiang W, Shi X, Zhang L, Cui L, Hu Z, Zhang Y, Wang G. Fine-Tuning Stomatal Movement Through Small Signaling Peptides. FRONTIERS IN PLANT SCIENCE 2019; 10:69. [PMID: 30804962 PMCID: PMC6371031 DOI: 10.3389/fpls.2019.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/17/2019] [Indexed: 05/02/2023]
Abstract
As sessile organisms, plants are continuously exposed to a wide range of environmental stress. In addition to their crucial roles in plant growth and development, small signaling peptides are also implicated in sensing environmental stimuli. Notably, recent studies in plants have revealed that small signaling peptides are actively involved in controlling stomatal aperture to defend against biotic and abiotic stress. This review illustrates our growing knowledge of small signaling peptides in the modulation of stomatal aperture and highlights future challenges to decipher peptide signaling pathways in guard cells.
Collapse
Affiliation(s)
- Xinyun Qu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Bing Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jingke Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xuening Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiangyu Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Wenqian Jiang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Luosha Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Zhubing Hu
- State Key Laboratory of Cotton Biology, Department of Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Guodong Wang,
| |
Collapse
|
38
|
Brito MS, DePaoli HC, Cossalter V, Avanci NC, Ferreira PB, Azevedo MS, Strini EJ, Quiapim AC, Goldman GH, Peres LEP, Goldman MHS. A novel cysteine-rich peptide regulates cell expansion in the tobacco pistil and influences its final size. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:55-67. [PMID: 30466601 DOI: 10.1016/j.plantsci.2018.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 06/09/2023]
Abstract
Plant morphogenesis is dependent on cell proliferation and cell expansion, which are responsible for establishing final organ size and shape during development. Several genes have been described as encoding components of the plant cell development machinery, among which are the plant peptides. Here we describe a novel cysteine-rich plant peptide (68 amino acids), encoded by a small open reading frame gene (sORF). It is specifically expressed in the reproductive organs of Nicotiana tabacum and is developmentally regulated. N- and C-terminal translational fusions with GFP in protoplasts have demonstrated that the peptide is not secreted. Knockdown transgenic plants produced by RNAi exhibited enlarged pistils due to cell expansion and the gene was named Small Peptide Inhibitor of Cell Expansion (SPICE). Estimation of nuclear DNA content using flow cytometry has shown that cell expansion in pistils was not correlated with endoreduplication. Decreased SPICE expression also affected anther growth and pollen formation, resulting in male sterility in at least one transgenic plant. Our results revealed that SPICE is a novel reproductive organ specific gene that controls cell expansion, probably as a component of a signal transduction pathway.
Collapse
Affiliation(s)
- Michael S Brito
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil.
| | - Henrique C DePaoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | - Viviani Cossalter
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Nilton C Avanci
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Pedro B Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | | | - Edward J Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | - Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Brazil
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo, 13418-900, Brazil
| | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil.
| |
Collapse
|
39
|
Gutiérrez-Alanís D, Ojeda-Rivera JO, Yong-Villalobos L, Cárdenas-Torres L, Herrera-Estrella L. Adaptation to Phosphate Scarcity: Tips from Arabidopsis Roots. TRENDS IN PLANT SCIENCE 2018; 23:721-730. [PMID: 29764728 DOI: 10.1016/j.tplants.2018.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 05/21/2023]
Abstract
Phosphorus (P) availability is a limiting factor for plant growth and development. Root tip contact with low Pi media triggers diverse changes in the root architecture of Arabidopsis thaliana. The most conspicuous among these modifications is the inhibition of root growth, which is triggered by a shift from an indeterminate to a determinate root growth program. This phenomenon takes place in the root tip and involves a reduction in cell elongation, a decrease in cell proliferation, and the induction of premature cell differentiation, resulting in meristem exhaustion. Here, we review recent findings in the root response of A. thaliana to low Pi availability and discuss the cellular and genetic basis of the inhibition of root growth in Pi-deprived seedlings.
Collapse
Affiliation(s)
- Dolores Gutiérrez-Alanís
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México; These authors contributed equally to this manuscript
| | - Jonathan Odilón Ojeda-Rivera
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México; These authors contributed equally to this manuscript
| | - Lenin Yong-Villalobos
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México
| | - Luis Cárdenas-Torres
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, 62250, Morelos, México
| | - Luis Herrera-Estrella
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México.
| |
Collapse
|
40
|
Takahashi F, Suzuki T, Osakabe Y, Betsuyaku S, Kondo Y, Dohmae N, Fukuda H, Yamaguchi-Shinozaki K, Shinozaki K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 2018; 556:235-238. [PMID: 29618812 DOI: 10.1038/s41586-018-0009-2] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/23/2018] [Indexed: 11/09/2022]
Abstract
Mammalian peptide hormones propagate extracellular stimuli from sensing tissues to appropriate targets to achieve optimal growth maintenance 1 . In land plants, root-to-shoot signalling is important to prevent water loss by transpiration and to adapt to water-deficient conditions 2, 3 . The phytohormone abscisic acid has a role in the regulation of stomatal movement to prevent water loss 4 . However, no mobile signalling molecules have yet been identified that can trigger abscisic acid accumulation in leaves. Here we show that the CLAVATA3/EMBRYO-SURROUNDING REGION-RELATED 25 (CLE25) peptide transmits water-deficiency signals through vascular tissues in Arabidopsis, and affects abscisic acid biosynthesis and stomatal control of transpiration in association with BARELY ANY MERISTEM (BAM) receptors in leaves. The CLE25 gene is expressed in vascular tissues and enhanced in roots in response to dehydration stress. The root-derived CLE25 peptide moves from the roots to the leaves, where it induces stomatal closure by modulating abscisic acid accumulation and thereby enhances resistance to dehydration stress. BAM receptors are required for the CLE25 peptide-induced dehydration stress response in leaves, and the CLE25-BAM module therefore probably functions as one of the signalling molecules for long-distance signalling in the dehydration response.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan. .,Biomass Research Platform Team, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yuriko Osakabe
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.,Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Shigeyuki Betsuyaku
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Faculty of Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan. .,Biomass Research Platform Team, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan.
| |
Collapse
|
41
|
Oh E, Seo PJ, Kim J. Signaling Peptides and Receptors Coordinating Plant Root Development. TRENDS IN PLANT SCIENCE 2018; 23:337-351. [PMID: 29366684 DOI: 10.1016/j.tplants.2017.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 05/03/2023]
Abstract
Small peptides mediate cell-cell communication to coordinate a variety of plant developmental processes. Signaling peptides specifically bind to the extracellular domains of receptors that belong to the receptor-like kinase family, and the peptide-receptor interaction activates a range of biochemical and physiological processes. The plant root is crucial for the anchorage of plants in soil as well as for the uptake of water and nutrients. Over recent years great progress has been made in the identification of receptors, structural analysis of peptide-receptor pairs, and characterization of their signaling pathways during plant root development. We review here recent advances in the elucidation of the functions and molecular mechanisms of signaling peptides, the peptide-receptor pairs that activate signal initiation, and their signaling pathways during root development.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 61186, Korea; These authors contributed equally to this work
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea; These authors contributed equally to this work
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 61186, Korea.
| |
Collapse
|
42
|
Li N, Wei S, Chen J, Yang F, Kong L, Chen C, Ding X, Chu Z. OsASR2 regulates the expression of a defence-related gene, Os2H16, by targeting the GT-1 cis-element. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:771-783. [PMID: 28869785 PMCID: PMC5814579 DOI: 10.1111/pbi.12827] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/23/2017] [Indexed: 05/11/2023]
Abstract
The GT-1 cis-element widely exists in many plant gene promoters. However, the molecular mechanism that underlies the response of the GT-1 cis-element to abiotic and biotic stresses remains elusive in rice. We previously isolated a rice short-chain peptide-encoding gene, Os2H16, and demonstrated that it plays important roles in both disease resistance and drought tolerance. Here, we conducted a promoter assay of Os2H16 and identified GT-1 as an important cis-element that mediates Os2H16 expression in response to pathogen attack and osmotic stress. Using the repeated GT-1 as bait, we characterized an abscisic acid, stress and ripening 2 (ASR2) protein from yeast-one hybridization screening. Sequence alignments showed that the carboxy-terminal domain of OsASR2 containing residues 80-138 was the DNA-binding domain. Furthermore, we identified that OsASR2 was specifically bound to GT-1 and activated the expression of the target gene Os2H16, as well as GFP driven by the chimeric promoter of 2 × GT-1-35S mini construct. Additionally, the expression of OsASR2 was elevated by pathogens and osmotic stress challenges. Overexpression of OsASR2 enhanced the resistance against Xanthomonas oryzae pv. oryzae and Rhizoctonia solani, and tolerance to drought in rice. These results suggest that the interaction between OsASR2 and GT-1 plays an important role in the crosstalk of the response of rice to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Shutong Wei
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Jing Chen
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Fangfang Yang
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Lingguang Kong
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Cuixia Chen
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| | - Xinhua Ding
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
- Shandong Provincial Key Laboratory for Biology of Vegetable Disease and Insect PestsCollege of Plant ProtectionShandong Agricultural UniversityTaianShandongChina
| | - Zhaohui Chu
- State Key Laboratory of Crop BiologyCollege of AgronomyShandong Agricultural UniversityTaianShandongChina
| |
Collapse
|
43
|
Abstract
As the last stage of plant development, senescence can be regulated by a large number of signals such as aging, reproductive growth, nutrient availability, and stresses. Various plant hormones have been shown to be involved in regulating plant senescence. For example, ethylene, abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and strigolactones (SLs) promote senescence, whereas cytokinins (CKs) inhibit senescence. Different hormones regulate senescence via distinct pathways, while cross talks between signaling pathways exist. In senescence-related studies, treating plants with various hormones to alter senescence is a common practice. In this chapter, we summarize experimental procedures of treating detached Arabidopsis leaves with a number of senescence-regulating hormones including ABA, SLs, MeJA, SA peptide hormones.
Collapse
Affiliation(s)
- Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
44
|
Abstract
Plant peptides secreted as signal molecular to trigger cell-to-cell signaling are indispensable for plant growth and defense processes. Preciously, it is regraded some plant peptides function in plant growth and development, whereas others regulate defense response in plant-microbe interactions. However, this prejudice is got rid due to more and more evidence showed growth-related plant peptides also exhibit bifunctional roles in plant defense response against different microbial pathogens. Here we provide a mini-review of reported types of plant peptides, including their basic information, reported receptor ligands, and especially direct or indirect roles in plant immune responses.
Collapse
Affiliation(s)
- Z. Hu
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - H. Zhang
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| | - K. Shi
- Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
- CONTACT Kai Shi Department of Horticulture, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
45
|
Patel N, Mohd-Radzman NA, Corcilius L, Crossett B, Connolly A, Cordwell SJ, Ivanovici A, Taylor K, Williams J, Binos S, Mariani M, Payne RJ, Djordjevic MA. Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago truncatula Secreted Peptidome. Mol Cell Proteomics 2017; 17:160-174. [PMID: 29079721 DOI: 10.1074/mcp.ra117.000168] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Multigene families encoding diverse secreted peptide hormones play important roles in plant development. A need exists to efficiently elucidate the structures and post-translational-modifications of these difficult-to-isolate peptide hormones in planta so that their biological functions can be determined. A mass spectrometry and bioinformatics approach was developed to comprehensively analyze the secreted peptidome of Medicago hairy root cultures and xylem sap. We identified 759 spectra corresponding to the secreted products of twelve peptide hormones including four CEP (C-TERMINALLY ENCODED PEPTIDE), two CLE (CLV3/ENDOSPERM SURROUNDING REGION RELATED) and six XAP (XYLEM SAP ASSOCIATED PEPTIDE) peptides. The MtCEP1, MtCEP2, MtCEP5 and MtCEP8 peptides identified differed in post-translational-modifications. Most were hydroxylated at conserved proline residues but some MtCEP1 derivatives were tri-arabinosylated. In addition, many CEP peptides possessed unexpected N- and C-terminal extensions. The pattern of these extensions suggested roles for endo- and exoproteases in CEP peptide maturation. Longer than expected, hydroxylated and homogeneously modified mono- and tri-arabinosylated CEP peptides corresponding to their in vivo structures were chemically synthesized to probe the effect of these post-translational-modifications on function. The ability of CEP peptides to elevate root nodule number was increased by hydroxylation at key positions. MtCEP1 peptides with N-terminal extensions or with tri-arabinosylation modification, however, were unable to impart increased nodulation. The MtCLE5 and MtCLE17 peptides identified were of precise size, and inhibited main root growth and increased lateral root number. Six XAP peptides, each beginning with a conserved DY sulfation motif, were identified including MtXAP1a, MtXAP1b, MtXAP1c, MtXAP3, MtXAP5 and MtXAP7. MtXAP1a and MtXAP5 inhibited lateral root emergence. Transcriptional analyses demonstrated peptide hormone gene expression in the root vasculature and tip. Since hairy roots can be induced on many plants, their corresponding root cultures may represent ideal source materials to efficiently identify diverse peptide hormones in vivo in a broad range of species.
Collapse
Affiliation(s)
- Neha Patel
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Nadiatul A Mohd-Radzman
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Leo Corcilius
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Ben Crossett
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Angela Connolly
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia
| | - Stuart J Cordwell
- ¶Sydney Mass Spectrometry, The University of Sydney, Sydney, Australia.,‖Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Australia
| | - Ariel Ivanovici
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - Katia Taylor
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia
| | - James Williams
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Steve Binos
- **Thermo Fisher Scientific Pty. Ltd., 5 Caribbean Drive, Scoresby, VIC 3179, Australia
| | - Michael Mariani
- **Thermo Fisher Scientific Pty. Ltd., 5 Caribbean Drive, Scoresby, VIC 3179, Australia
| | - Richard J Payne
- §School of Chemistry, The University of Sydney, Sydney, Australia
| | - Michael A Djordjevic
- From the ‡Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and the Environment, The Australian National University, Canberra, ACT, Australia;
| |
Collapse
|
46
|
Fedoreyeva LI, Dilovarova TA, Ashapkin VV, Martirosyan YT, Khavinson VK, Kharchenko PN, Vanyushin BF. Short Exogenous Peptides Regulate Expression of CLE, KNOX1, and GRF Family Genes in Nicotiana tabacum. BIOCHEMISTRY. BIOKHIMIIA 2017; 82:521-528. [PMID: 28371610 DOI: 10.1134/s0006297917040149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exogenous short biologically active peptides epitalon (Ala-Glu-Asp-Gly), bronchogen (Ala-Glu-Asp-Leu), and vilon (Lys-Glu) at concentrations 10-7-10-9 M significantly influence growth, development, and differentiation of tobacco (Nicotiana tabacum) callus cultures. Epitalon and bronchogen, in particular, both increase growth of calluses and stimulate formation and growth of leaves in plant regenerants. Because the regulatory activity of the short peptides appears at low peptide concentrations, their action to some extent is like that of the activity of phytohormones, and it seems to have signaling character and epigenetic nature. The investigated peptides modulate in tobacco cells the expression of genes including genes responsible for tissue formation and cell differentiation. These peptides differently modulate expression of CLE family genes coding for known endogenous regulatory peptides, the KNOX1 genes (transcription factor genes) and GRF (growth regulatory factor) genes coding for respective DNA-binding proteins such as topoisomerases, nucleases, and others. Thus, at the level of transcription, plants have a system of short peptide regulation of formation of long-known peptide regulators of growth and development. The peptides studied here may be related to a new generation of plant growth regulators. They can be used in the experimental botany, plant molecular biology, biotechnology, and practical agronomy.
Collapse
Affiliation(s)
- L I Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Russian Academy of Sciences, Moscow, 127550, Russia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Vanyushin BF, Ashapkin VV, Aleksandrushkina NI. Regulatory Peptides in Plants. BIOCHEMISTRY (MOSCOW) 2017; 82:89-94. [PMID: 28320293 DOI: 10.1134/s0006297917020018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many different peptides regulating cell differentiation, growth, and development are found in plants. Peptides participate in regulation of plant ontogenesis starting from pollination, pollen tube growth, and the very early stages of embryogenesis, including formation of embryo and endosperm. They direct differentiation of meristematic stem cells, formation of tissues and individual organs, take part in regulation of aging, fruit maturation, and abscission of plant parts associated with apoptosis. Biological activity of peptides is observed at very low concentrations, and it has mainly signal nature and hormonal character. "Mature" peptides appear mainly due to processing of protein precursors with (or without) additional enzymatic modifications. Plant peptides differ in origin, structure, and functional properties. Their specific action is due to binding with respective receptors and interactions with various proteins and other factors. Peptides can also regulate physiological functions by direct peptide-protein interactions. Peptide action is coordinated with the action of known phytohormones (auxins, cytokinins, and others); thus, peptides control phytohormonal signal pathways.
Collapse
Affiliation(s)
- B F Vanyushin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
48
|
Doll NM, Depège-Fargeix N, Rogowsky PM, Widiez T. Signaling in Early Maize Kernel Development. MOLECULAR PLANT 2017; 10:375-388. [PMID: 28267956 DOI: 10.1016/j.molp.2017.01.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/26/2023]
Abstract
Developing the next plant generation within the seed requires the coordination of complex programs driving pattern formation, growth, and differentiation of the three main seed compartments: the embryo (future plant), the endosperm (storage compartment), representing the two filial tissues, and the surrounding maternal tissues. This review focuses on the signaling pathways and molecular players involved in early maize kernel development. In the 2 weeks following pollination, functional tissues are shaped from single cells, readying the kernel for filling with storage compounds. Although the overall picture of the signaling pathways regulating embryo and endosperm development remains fragmentary, several types of molecular actors, such as hormones, sugars, or peptides, have been shown to be involved in particular aspects of these developmental processes. These molecular actors are likely to be components of signaling pathways that lead to transcriptional programming mediated by transcriptional factors. Through the integrated action of these components, multiple types of information received by cells or tissues lead to the correct differentiation and patterning of kernel compartments. In this review, recent advances regarding the four types of molecular actors (hormones, sugars, peptides/receptors, and transcription factors) involved in early maize development are presented.
Collapse
Affiliation(s)
- Nicolas M Doll
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Nathalie Depège-Fargeix
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Peter M Rogowsky
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France
| | - Thomas Widiez
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 69342 Lyon, France.
| |
Collapse
|
49
|
Campbell L, Turner SR. A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. FRONTIERS IN PLANT SCIENCE 2017; 8:37. [PMID: 28174582 PMCID: PMC5258720 DOI: 10.3389/fpls.2017.00037] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 05/20/2023]
Abstract
Rapid Alkalinization Factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth. Although RALF peptides have been identified within many species, a single wide-ranging phylogenetic analysis of the family across the plant kingdom has not yet been undertaken. Here, we identified RALF proteins from 51 plant species that represent a variety of land plant lineages. The inferred evolutionary history of the 795 identified RALFs suggests that the family has diverged into four major clades. We found that much of the variation across the family exists within the mature peptide region, suggesting clade-specific functional diversification. Clades I, II, and III contain the features that have been identified as important for RALF activity, including the RRXL cleavage site and the YISY motif required for receptor binding. In contrast, members of clades IV that represent a third of the total dataset, is highly diverged and lacks these features that are typical of RALFs. Members of clade IV also exhibit distinct expression patterns and physico-chemical properties. These differences suggest a functional divergence of clades and consequently, we propose that the peptides within clade IV are not true RALFs, but are more accurately described as RALF-related peptides. Expansion of this RALF-related clade in the Brassicaceae is responsible for the large number of RALF genes that have been previously described in Arabidopsis thaliana. Future experimental work will help to establish the nature of the relationship between the true RALFs and the RALF-related peptides, and whether they function in a similar manner.
Collapse
|
50
|
Lee JS, De Smet I. Fine-Tuning Development Through Antagonistic Peptides: An Emerging Theme. TRENDS IN PLANT SCIENCE 2016; 21:991-993. [PMID: 27769751 DOI: 10.1016/j.tplants.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Peptide ligand-receptor kinase interactions have emerged as a key component of plant growth and development. Now, highly related small signaling peptides have been shown to act antagonistically on the same receptor kinase, providing new insights into how plants optimize developmental processes using competitive peptides.
Collapse
Affiliation(s)
- Jin Suk Lee
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada.
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium.
| |
Collapse
|