1
|
Zhao Y, Ma Y, Qiu H, Zhou L, He K, Ye Y. Wake up: the regulation of dormancy release and bud break in perennial plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1553953. [PMID: 40115948 PMCID: PMC11924409 DOI: 10.3389/fpls.2025.1553953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
In order to survive harsh winter conditions, perennial trees in the temperate and frigid regions enter a dormant state and cease growth in late summer after vigorous growth in spring and summer. After experiencing prolonged cold temperature and short days in winter, trees release their dormancy, and they resume growth to produce new buds in the following spring, a process known as bud break. The establishment/release of bud dormancy and bud break are crucial for the adaptations of woody plants and their survival in the natural environment. Photoperiod and temperature are key regulators in the bud dormancy and break cycle. In recent years, significant progress has been made in understanding the molecular mechanism for how photoperiod and temperature regulate seasonal growth and dormancy. Here, we summarized the regulatory network and mechanisms underlying the seasonal growth of perennial woody plants in the temperate and frigid regions, focusing on several molecular modules including the photoperiod, circadian clock, EARLY BUD BREAK 1 (EBB1) - SHORT VEGETATIVE PHASE Like (SVL) - EARLY BUD BREAK 3 (EBB3) module and hormone regulation. Through these modules, we will summarize how perennial trees release dormancy and bud break in order to better understand their differences and connections. By elucidating the interactions among these factors, we also point out the questions and challenges need to be addressed in understanding the bud dormancy and break cycle of perennial plants.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yahui Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Hanruo Qiu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Lijuan Zhou
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Kunrong He
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Key Laboratory for Poplar Germplasm Enhancement and Variety Improvement, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Zhan X, Li Z, Pang M, Yao G, Mao B. Comprehensive Omics Analysis Reveals Cold-Induced Metabolic Reprogramming and Alternative Splicing in Dendrobium officinale. PLANTS (BASEL, SWITZERLAND) 2025; 14:412. [PMID: 39942973 PMCID: PMC11820321 DOI: 10.3390/plants14030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025]
Abstract
Dendrobium officinale is an economically important orchid species that is sensitive to cold stress. Understanding the molecular and metabolic mechanisms underlying its response to cold is crucial for developing strategies to improve its cold tolerance. In this study, we constructed a comprehensive cold stress response dataset for D. officinale and characterized its regulatory landscape in response to varying cold stress conditions. The glycine metabolism-related genes Dca003913 and Dca022726 play pivotal roles in both cold and drought stress adaptation, and their expression is not upregulated by hormones or fungi infection. Carbohydrate metabolism showed specific dynamic changes in freezing injury cells, which involved a variety of hormonal responses. The abundance of sphingolipids was notably higher in the freezing treatment (FT) compared to the freezing recovery (FR) plants, indicating specialized metabolic adaptations at different cold intensities. An alternative splicing (AS) analysis identified 368 DAS genes, with spliceosome pathways significantly enriched. Three key ubiquitination proteins (PKU64802, XP_020672210, and PKU75555) were found to regulate splicing factors, which showed increased abundance in cold stress. This study highlights the roles of metabolic reprogramming and RNA splicing in cold adaptation, revealing a complex molecular network activated in response to cold stress.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biotechnology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China;
| | - Zhangqun Li
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China;
| | - Minxia Pang
- Zhejiang Jianjiuhe Group Co., Ltd., Ningbo 315000, China; (M.P.); (G.Y.)
| | - Guoxiang Yao
- Zhejiang Jianjiuhe Group Co., Ltd., Ningbo 315000, China; (M.P.); (G.Y.)
- Ningbo Shunyun Electroinic Co., Ltd., Ningbo 315000, China
| | - Bizeng Mao
- Institute of Biotechnology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Luo Y, Liu H, Han Y, Li W, Wei W, He N. Alternative splicing of the FLOWERING LOCUS C-like gene MaMADS33 is associated with endodormancy in mulberry. FORESTRY RESEARCH 2024; 4:e029. [PMID: 39524424 PMCID: PMC11524320 DOI: 10.48130/forres-0024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 11/16/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional process that generates multiple mRNA isoforms. FLOWERING LOCUS C (FLC) is a pivotal gene in both the vernalization and autonomous pathways of flowering plants, and MaMADS33 is one of the FLC homologs in white mulberry (Morus alba). Recent studies have revealed that MaMADS33 is involved in endodormancy, but the underlying molecular mechanism remains to be characterized. Here, a comparison of MaMADS33 expression among three mulberry cultivars with different degrees of dormancy revealed a positive association between MaMADS33 expression and dormancy. Further 3' and 5' rapid amplification of cDNA ends (RACE) analyses led to identifying four MaMADS33 isoforms derived from AS and designated MaMADS33-AS1-4. Analysis of their coding potential revealed that MaMADS33-AS1 was a long non-coding RNA. Expression profiling and splicing-efficiency analyses showed that cold stress during endodormancy induced AS of MaMADS33, resulting in a predominance of truncated isoforms, especially MaMADS33-AS1. MaMADS33-AS2 expression was upregulated during both endodormancy and ecodormancy, whereas MaMADS33-AS3 and MaMADS33-AS4 were endodormancy-associated isoforms that were upregulated during endodormancy and then downregulated during ecodormancy. MaMADS33-AS4 was used as bait for a yeast two-hybrid screen because its gene expression was higher than that of MaMADS33-AS3, and mulberry winter-accumulating 18 kDa protein (MaWAP18) was identified as an MaMADS33-AS4 interaction partner. The interaction between MaWAP18 and MaMADS33-AS4 was confirmed by a bimolecular fluorescence complementation assay. These findings offer insight into the role of FLC homologs in the endodormancy of woody plants.
Collapse
Affiliation(s)
- Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Hongjiang Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Yuanxiang Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wei Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Wuqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| |
Collapse
|
4
|
Lempe J, Moser M, Asquini E, Si-Ammour A, Flachowsky H. Functional evidence on the involvement of the MADS-box gene MdDAM4 in bud dormancy regulation in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1433865. [PMID: 39077511 PMCID: PMC11284153 DOI: 10.3389/fpls.2024.1433865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Over the course of the year, temperate trees experience extremes in temperature and day length. In order to protect themselves from frost damage in winter, they enter a dormant state with no visible growth where all leaves are shed and buds are dormant. Also the young floral tissues need to withstand harsh winter conditions, as temperature fruit trees like apple develop their flower buds in the previous year of fruit development. So far, the genetic control of induction and release of dormancy is not fully understood. However, the transcription factor family of DORMANCY-Associated MADS-box (DAM) genes plays a major role in the control of winter dormancy. One of these genes is MdDAM4. This gene is expressed in the early phase of bud dormancy, but little is known about its function. Six transgenic apple lines were produced to study the function of MdDAM4 in apple. For plant transformation, the binary plasmid vector p9oN-35s-MdDAM4 was used that contains the coding sequence of MdDAM4 driven by the 35S promoter. Transgenicity of the lines was proven by PCR and southern hybridization. Based on siRNA sequencing and phenotypic observations, it was concluded that line M2024 overexpresses MdDAM4 whereas the gene is silenced in all other lines. Phenotyping of the transgenic lines provided evidence that the overexpression of MdDAM4 leads to an earlier induction and a later release of dormancy. Silencing this gene had exactly the opposite effects and thereby led to an increased duration of the vegetation period. Expression experiments revealed genes that were either potentially repressed or activated by MdDAM4. Among the potentially suppressed genes were several homologs of the cytokinin oxidase 5 (CKX5), five LOX homologs, and several expansins, which may indicate a link between MdDAM4 and the control of leaf senescence. Among the potentially activated genes is MdDAM1, which is in line with observed expression patterns during winter dormancy. MdDAM2, which shows little expression during endodormancy also appears to be activated by MdDAM4. Overall, this study provides experimental evidence with transgenic apple trees for MdDAM4 being an important regulator of the onset of bud dormancy in apple.
Collapse
Affiliation(s)
- Janne Lempe
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Mirko Moser
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, TN, Italy
| | - Elisa Asquini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, TN, Italy
| | - Azeddine Si-Ammour
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige, TN, Italy
| | - Henryk Flachowsky
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
5
|
Watson AE, Guitton B, Soriano A, Rivallan R, Vignes H, Farrera I, Huettel B, Arnaiz C, Falavigna VDS, Coupel-Ledru A, Segura V, Sarah G, Dufayard JF, Sidibe-Bocs S, Costes E, Andrés F. Target enrichment sequencing coupled with GWAS identifies MdPRX10 as a candidate gene in the control of budbreak in apple. FRONTIERS IN PLANT SCIENCE 2024; 15:1352757. [PMID: 38455730 PMCID: PMC10918860 DOI: 10.3389/fpls.2024.1352757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024]
Abstract
The timing of floral budbreak in apple has a significant effect on fruit production and quality. Budbreak occurs as a result of a complex molecular mechanism that relies on accurate integration of external environmental cues, principally temperature. In the pursuit of understanding this mechanism, especially with respect to aiding adaptation to climate change, a QTL at the top of linkage group (LG) 9 has been identified by many studies on budbreak, but the genes underlying it remain elusive. Here, together with a dessert apple core collection of 239 cultivars, we used a targeted capture sequencing approach to increase SNP resolution in apple orthologues of known or suspected A. thaliana flowering time-related genes, as well as approximately 200 genes within the LG9 QTL interval. This increased the 275 223 SNP Axiom® Apple 480 K array dataset by an additional 40 857 markers. Robust GWAS analyses identified MdPRX10, a peroxidase superfamily gene, as a strong candidate that demonstrated a dormancy-related expression pattern and down-regulation in response to chilling. In-silico analyses also predicted the residue change resulting from the SNP allele associated with late budbreak could alter protein conformation and likely function. Late budbreak cultivars homozygous for this SNP allele also showed significantly up-regulated expression of C-REPEAT BINDING FACTOR (CBF) genes, which are involved in cold tolerance and perception, compared to reference cultivars, such as Gala. Taken together, these results indicate a role for MdPRX10 in budbreak, potentially via redox-mediated signaling and CBF gene regulation. Moving forward, this provides a focus for developing our understanding of the effects of temperature on flowering time and how redox processes may influence integration of external cues in dormancy pathways.
Collapse
Affiliation(s)
- Amy E. Watson
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Baptiste Guitton
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Alexandre Soriano
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Ronan Rivallan
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Hélène Vignes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Isabelle Farrera
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Bruno Huettel
- Genome Centre, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Catalina Arnaiz
- Centro de Biotecnología y Genómica de Plantas, Instituto de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Aude Coupel-Ledru
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Gautier Sarah
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jean-François Dufayard
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Stéphanie Sidibe-Bocs
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- French Institute of Bioinformatics (IFB) - South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
| | - Evelyne Costes
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Fernando Andrés
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
6
|
Song GQ, Liu Z, Zhong GY. Regulatory frameworks involved in the floral induction, formation and developmental programming of woody horticultural plants: a case study on blueberries. FRONTIERS IN PLANT SCIENCE 2024; 15:1336892. [PMID: 38410737 PMCID: PMC10894941 DOI: 10.3389/fpls.2024.1336892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Flowering represents a crucial stage in the life cycles of plants. Ensuring strong and consistent flowering is vital for maintaining crop production amidst the challenges presented by climate change. In this review, we summarized key recent efforts aimed at unraveling the complexities of plant flowering through genetic, genomic, physiological, and biochemical studies in woody species, with a special focus on the genetic control of floral initiation and activation in woody horticultural species. Key topics covered in the review include major flowering pathway genes in deciduous woody plants, regulation of the phase transition from juvenile to adult stage, the roles of CONSTANS (CO) and CO-like gene and FLOWERING LOCUS T genes in flower induction, the floral regulatory role of GA-DELLA pathway, and the multifunctional roles of MADS-box genes in flowering and dormancy release triggered by chilling. Based on our own research work in blueberries, we highlighted the central roles played by two key flowering pathway genes, FLOWERING LOCUS T and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, which regulate floral initiation and activation (dormancy release), respectively. Collectively, our survey shows both the conserved and diverse aspects of the flowering pathway in annual and woody plants, providing insights into the potential molecular mechanisms governing woody plants. This paves the way for enhancing the resilience and productivity of fruit-bearing crops in the face of changing climatic conditions, all through the perspective of genetic interventions.
Collapse
Affiliation(s)
- Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Zongrang Liu
- USDA Agricultural Research Services, Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Gan-Yuan Zhong
- USDA Agricultural Research Services, Grape Genetics Research Unit and Plant Genetic Resources Unit, Geneva, NY, United States
| |
Collapse
|
7
|
Sabir IA, Manzoor MA, Shah IH, Ahmad Z, Liu X, Alam P, Wang Y, Sun W, Wang J, Liu R, Jiu S, Zhang C. Unveiling the effect of gibberellin-induced iron oxide nanoparticles on bud dormancy release in sweet cherry (Prunus avium L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108222. [PMID: 38016371 DOI: 10.1016/j.plaphy.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zishan Ahmad
- Bambo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, 11942, Saudi Arabia
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Shurygin B, Konyukhov I, Khruschev S, Solovchenko A. Non-Invasive Probing of Winter Dormancy via Time-Frequency Analysis of Induced Chlorophyll Fluorescence in Deciduous Plants as Exemplified by Apple ( Malus × domestica Borkh.). PLANTS (BASEL, SWITZERLAND) 2022; 11:2811. [PMID: 36365263 PMCID: PMC9656017 DOI: 10.3390/plants11212811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Dormancy is a physiological state that confers winter hardiness to and orchestrates phenological phase progression in temperate perennial plants. Weather fluctuations caused by climate change increasingly disturb dormancy onset and release in plants including tree crops, causing aberrant growth, flowering and fruiting. Research in this field suffers from the lack of affordable non-invasive methods for online dormancy monitoring. We propose an automatic framework for low-cost, long-term, scalable dormancy studies in deciduous plants. It is based on continuous sensing of the photosynthetic activity of shoots via pulse-amplitude-modulated chlorophyll fluorescence sensors connected remotely to a data processing system. The resulting high-resolution time series of JIP-test parameters indicative of the responsiveness of the photosynthetic apparatus to environmental stimuli were subjected to frequency-domain analysis. The proposed approach overcomes the variance coming from diurnal changes of insolation and provides hints on the depth of dormancy. Our approach was validated over three seasons in an apple (Malus × domestica Borkh.) orchard by collating the non-invasive estimations with the results of traditional methods (growing of the cuttings obtained from the trees at different phases of dormancy) and the output of chilling requirement models. We discuss the advantages of the proposed monitoring framework such as prompt detection of frost damage along with its potential limitations.
Collapse
Affiliation(s)
- Boris Shurygin
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, 392036 Tambov, Russia
| | - Ivan Konyukhov
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Sergei Khruschev
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
| | - Alexei Solovchenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234 Moscow, Russia
- Institute of Natural Sciences, Derzhavin Tambov State University, 392036 Tambov, Russia
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia
| |
Collapse
|
9
|
Lempe J, Flachowsky H, Peil A. Exploring epigenetic variation for breeding climate resilient apple crops. PHYSIOLOGIA PLANTARUM 2022; 174:e13782. [PMID: 36151889 DOI: 10.1111/ppl.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/10/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Climate change with warmer winter and spring temperatures poses major challenges to apple fruit production. Long-term observations confirm the trend toward earlier flowering, which leads to an increased risk of frost damage. New breeding strategies are needed to generate cultivars that are able to stay largely unaffected by warmer temperatures. Recently, epigenetic variation has been proposed as a new resource for breeding purposes and seems suitable in principle for apple breeding. However, to serve as a new resource for apple breeding, it is necessary to clarify whether epigenetic variation can be induced by the environment, whether it can create phenotypic variation, and whether this variation is stable across generations. In this brief review, we summarize the impact of climate change on the timing of apple phenology, highlight how epigenetic variation can potentially support novel breeding strategies, and point out important features of epigenetic variation that are required for its application in breeding programs.
Collapse
Affiliation(s)
- Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Andreas Peil
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| |
Collapse
|
10
|
Chen W, Tamada Y, Yamane H, Matsushita M, Osako Y, Gao-Takai M, Luo Z, Tao R. H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1015-1031. [PMID: 35699670 DOI: 10.1111/tpj.15868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy helps woody perennials survive winter and activate robust plant development in the spring. For apple (Malus × domestica), short-term chilling induces bud dormancy in autumn, then prolonged chilling leads to dormancy release and a shift to a quiescent state in winter, with subsequent warm periods promoting bud break in spring. Epigenetic regulation contributes to seasonal responses such as vernalization. However, how histone modifications integrate seasonal cues and internal signals during bud dormancy in woody perennials remains largely unknown. Here, we show that H3K4me3 plays a key role in establishing permissive chromatin states during bud dormancy and bud break in apple. The global changes in gene expression strongly correlated with changes in H3K4me3, but not H3K27me3. High expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes, key regulators of dormancy, in autumn was associated with high H3K4me3 levels. In addition, known DAM/SHORT VEGETATIVE PHASE (SVP) target genes significantly overlapped with H3K4me3-modified genes as bud dormancy progressed. These data suggest that H3K4me3 contributes to the central dormancy circuit, consisting of DAM/SVP and abscisic acid (ABA), in autumn. In winter, the lower expression and H3K4me3 levels at DAMs and gibberellin metabolism genes control chilling-induced release of dormancy. Warming conditions in spring facilitate the expression of genes related to phytohormones, the cell cycle, and cell wall modification by increasing H3K4me3 toward bud break. Our study also revealed that activation of auxin and repression of ABA sensitivity in spring are conditioned at least partly through temperature-mediated epigenetic regulation in winter.
Collapse
Affiliation(s)
- Wenxing Chen
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya, Japan
- National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Miura-gun, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yutaro Osako
- Faculty of Agriculture, Shinshu University, Kamiina-gun, Japan
| | - Mei Gao-Takai
- Agricultural Experimental Station, Ishikawa Prefectural University, Nonoichi, Japan
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Kovaleski AP. Woody species do not differ in dormancy progression: Differences in time to budbreak due to forcing and cold hardiness. Proc Natl Acad Sci U S A 2022; 119:e2112250119. [PMID: 35500120 PMCID: PMC9171508 DOI: 10.1073/pnas.2112250119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Budbreak is one of the most observed and studied phenological phases in perennial plants, but predictions remain a challenge, largely due to our poor understanding of dormancy. Two dimensions of exposure to temperature are generally used to model budbreak: accumulation of time spent at low temperatures (chilling) and accumulation of heat units (forcing). These two effects have a well-established negative correlation; with more chilling, less forcing is required for budbreak. Furthermore, temperate plant species are assumed to vary in chilling requirements for dormancy completion allowing proper budbreak. Here, dormancy is investigated from the cold hardiness standpoint across many species, demonstrating that it should be accounted for to study dormancy and accurately predict budbreak. Most cold hardiness is lost prior to budbreak, but rates of cold hardiness loss (deacclimation) vary among species, leading to different times to budbreak. Within a species, deacclimation rate increases with accumulation of chill. When inherent differences between species in deacclimation rate are accounted for by normalizing rates throughout winter by the maximum rate observed, a standardized deacclimation potential is produced. Deacclimation potential is a quantitative measurement of dormancy progression based on responsiveness to forcing as chill accumulates, which increases similarly for all species, contradicting estimations of dormancy transition based on budbreak assays. This finding indicates that comparisons of physiologic and genetic control of dormancy require an understanding of cold hardiness dynamics. Thus, an updated framework for studying dormancy and its effects on spring phenology is suggested where cold hardiness in lieu of (or in addition to) budbreak is used.
Collapse
Affiliation(s)
- Al P. Kovaleski
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706
- Arnold Arboretum of Harvard University, Boston, MA 02131
| |
Collapse
|
12
|
Voogd C, Brian LA, Wu R, Wang T, Allan AC, Varkonyi-Gasic E. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. THE NEW PHYTOLOGIST 2022; 233:2111-2126. [PMID: 34907541 DOI: 10.1111/nph.17916] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Temperate perennials require exposure to chilling temperatures to resume growth in the following spring. Growth and dormancy cycles are controlled by complex genetic regulatory networks and are governed by epigenetic mechanisms, but the specific genes and mechanisms remain poorly understood. To understand how seasonal changes and chilling regulate dormancy and growth in the woody perennial vine kiwifruit (Ac, Actinidia chinensis), a transcriptome study of kiwifruit buds in the field and controlled conditions was performed. A MADS-box gene with homology to Arabidopsis FLOWERING LOCUS C (FLC) was identified and characterized. Elevated expression of AcFLC-like (AcFLCL) was detected during bud dormancy and chilling. A long noncoding (lnc) antisense transcript with an expression pattern opposite to AcFLCL and shorter sense noncoding RNAs were identified. Chilling induced an increase in trimethylation of lysine-4 of histone H3 (H3K4me3) in the 5' end of the gene, indicating multiple layers of epigenetic regulation in response to cold. Overexpression of AcFLCL in kiwifruit gave rise to plants with earlier budbreak, whilst gene editing using CRISPR-Cas9 resulted in transgenic lines with substantially delayed budbreak, suggesting a role in activation of growth. These results have implications for the future management and breeding of perennials for resilience to changing climate.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Rongmei Wu
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland, 1142, New Zealand
| |
Collapse
|
13
|
Lempe J, Peil A, Flachowsky H. Time-Resolved Analysis of Candidate Gene Expression and Ambient Temperature During Bud Dormancy in Apple. FRONTIERS IN PLANT SCIENCE 2022; 12:803341. [PMID: 35111181 PMCID: PMC8802299 DOI: 10.3389/fpls.2021.803341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Winter dormancy - a period of low metabolic activity and no visible growth - appears as an adaptation to harsh winter conditions and can be divided into different phases. It is tightly controlled by environmental cues, with ambient temperature playing a major role. During endodormancy, a cultivar-specific amount of cold needs to be perceived, and during ecodormancy, heat hours accumulate before bud burst and anthesis in spring. Expression analysis, performed in several key fruit tree species, proved to be very useful in elucidating the molecular control of onset and release of dormancy. However, the time resolution of these experiments has been limited. Therefore, in this study, dense time-series expression analysis was conducted for 40 candidate genes involved in dormancy control, under the cool-temperate climate conditions in Dresden. Samples were taken from the cultivars 'Pinova' and 'Gala,' which differ in flowering time. The set of candidate genes included well-established dormancy genes such as DAM genes, MdFLC-like, MdICE1, MdPRE 1, and MdPIF4. Furthermore, we tested genes from dormancy-associated pathways including the brassinosteroid, gibberellic acid, abscisic acid (ABA), cytokinin response, and respiratory stress pathways. The expression patterns of well-established dormancy genes were confirmed and could be associated with specific dormancy phases. In addition, less well-known transcription factors and genes of the ABA signaling pathway showed associations with dormancy progression. The three ABA signaling genes HAB1_chr15, HAI3, and ABF2 showed a local minimum of gene expression in proximity of the endodormancy to ecodormancy transition. The number of sampling points allowed us to correlate expression values with temperature data, which revealed significant correlations of ambient temperature with the expression of the Malus domestica genes MdICE1, MdPIF4, MdFLC-like, HAB1chr15, and the type-B cytokinin response regulator BRR9. Interestingly, the slope of the linear correlation of temperature with the expression of MdPIF4 differed between cultivars. Whether the strength of inducibility of MdPIF4 expression by low temperature differs between the 'Pinova' and 'Gala' alleles needs to be tested further.
Collapse
|
14
|
da Silveira Falavigna V, Severing E, Lai X, Estevan J, Farrera I, Hugouvieux V, Revers LF, Zubieta C, Coupland G, Costes E, Andrés F. Unraveling the role of MADS transcription factor complexes in apple tree dormancy. THE NEW PHYTOLOGIST 2021; 232:2071-2088. [PMID: 34480759 PMCID: PMC9292984 DOI: 10.1111/nph.17710] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
A group of MADS transcription factors (TFs) are believed to control temperature-mediated bud dormancy. These TFs, called DORMANCY-ASSOCIATED MADS-BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy-related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA-affinity purification sequencing (seq-DAP-seq) was performed to identify the genome-wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq-DAP-seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA-seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa-containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA-binding specificity and, therefore, the transcriptional regulation of its target genes.
Collapse
Affiliation(s)
- Vítor da Silveira Falavigna
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Edouard Severing
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Xuelei Lai
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | - Joan Estevan
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Isabelle Farrera
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | | | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et VégétaleUniversité Grenoble‐AlpesCNRSCEAINRAEIRIG‐DBSCI38000GrenobleFrance
| | - George Coupland
- Department of Plant Developmental BiologyMax Planck Institute for Plant Breeding Research50829CologneGermany
| | - Evelyne Costes
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| | - Fernando Andrés
- UMR AGAP InstitutUniv MontpellierCIRADINRAEInstitut AgroF‐34398MontpellierFrance
| |
Collapse
|
15
|
Lopez-Ortiz C, Peña-Garcia Y, Bhandari M, Abburi VL, Natarajan P, Stommel J, Nimmakayala P, Reddy UK. Identification of miRNAs and Their Targets Involved in Flower and Fruit Development across Domesticated and Wild Capsicum Species. Int J Mol Sci 2021; 22:ijms22094866. [PMID: 34064462 PMCID: PMC8125703 DOI: 10.3390/ijms22094866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) are regulators of the post-transcription stage of gene activity documented to play central roles in flower and fruit development in model plant species. However, little is known about their roles and differences in domesticated and wild Capsicum species. In this study, we used high-throughput sequencing to analyze the miRNA content at three developmental stages (flower, small fruit, and middle fruit) from two cultivated (C. baccatum and C. annuum) and two wild (C. chacoense and C. eximium) pepper species. This analysis revealed 22 known and 27 novel miRNAs differentially expressed across species and tissues. A number of stage- and species-specific miRNAs were identified, and Gene Ontology terms were assigned to 138 genes targeted by the miRNAs. Most Gene Ontology terms were for the categories "genetic information processing", "signaling and cellular processes", "amino acid metabolism", and "carbohydrate metabolism". Enriched KEGG analysis revealed the pathways amino acids, sugar and nucleotide metabolism, starch and sucrose metabolism, and fructose-mannose metabolism among the principal ones regulated by miRNAs during pepper fruit ripening. We predicted miRNA-target gene interactions regulating flowering time and fruit development, including miR156/157 with SPL genes, miR159 with GaMYB proteins, miR160 with ARF genes, miR172 with AP2-like transcription factors, and miR408 with CLAVATA1 gene across the different Capsicum species. In addition, novel miRNAs play an important role in regulating interactions potentially controlling plant pathogen defense and fruit quality via fructokinase, alpha-L-arabinofuranosidase, and aromatic and neutral amino acid transporter. Overall, the small RNA-sequencing results from this study represent valuable information that provides a solid foundation for uncovering the miRNA-mediated mechanisms of flower and fruit development between domesticated and wild Capsicum species.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Yadira Peña-Garcia
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Menuka Bhandari
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Venkata Lakshmi Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory, USDA, ARS, Beltsville, MD 20705, USA;
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, West Virginia, WV 25112, USA; (C.L.-O.); (Y.P.-G.); (M.B.); (V.L.A.); (P.N.); (P.N.)
- Correspondence:
| |
Collapse
|
16
|
Nishiyama S, Matsushita MC, Yamane H, Honda C, Okada K, Tamada Y, Moriya S, Tao R. Functional and expressional analyses of apple FLC-like in relation to dormancy progress and flower bud development. TREE PHYSIOLOGY 2021; 41:562-570. [PMID: 31728534 DOI: 10.1093/treephys/tpz111] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/22/2019] [Indexed: 05/26/2023]
Abstract
We previously identified the FLOWERING LOCUS C (FLC)-like gene, a MADS-box transcription factor gene that belongs to Arabidopsis thaliana L. FLC clade, in apple (Malus $\times$ domestica Borkh.), and its expression in dormant flower buds is positively correlated with cumulative cold exposure. To elucidate the role of the MdFLC-like in the dormancy process and flower development, we first characterized the phenotypes of MdFLC-like overexpressing lines with the Arabidopsis Columbia-0 background. The overexpression of MdFLC-like significantly delayed the bolting date and reduced the plant size, but it did not significantly affect the number of rosette leaves or flower organ formation. Thus, MdFLC-like may affect vegetative growth and development rather than flowering when expressed in Arabidopsis, which is not like Arabidopsis FLC that affects development of flowering. We compared seasonal expression patterns of MdFLC-like in low-chill 'Anna' and high-chill 'Fuji' and 'Tsugaru' apples collected from trees grown in a cold winter region in temperate zone and found an earlier upregulation in 'Anna' compared with 'Fuji' and 'Tsugaru'. Expression patterns were also compared in relation to developmental changes in the flower primordia during the chilling accumulation period. Overall, MdFLC-like was progressively upregulated during flower primordia differentiation and development in autumn to early winter and reached a maximum expression level at around the same time as the genotype-dependent chilling requirements were fulfilled in high-chill cultivars. Thus, we hypothesize MdFLC-like may be upregulated in response to cold exposure and flower primordia development during the progress of endodormancy. Our study also suggests MdFLC-like may have a growth-inhibiting function during the end of endodormancy and ecodormancy when the temperature is low and unfavorable for rapid bud outgrowth.
Collapse
Affiliation(s)
- Soichiro Nishiyama
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | | | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Chikako Honda
- Graduate School of Agricultural and Life Science, The University of Tokyo, Midori-Cho, Nishitokyo, Tokyo 188-0002, Japan
| | - Kazuma Okada
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Yosuke Tamada
- National Institute for Basic Biology, Okazaki 444-8585, Japan
- School of Life Science, Sokendai, Okazaki 444-8585, Japan
| | - Shigeki Moriya
- Apple Research Station, Institute of Fruit Tree and Tea Science, NARO, Morioka 020-0123, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Guillamón JG, Prudencio ÁS, Yuste JE, Dicenta F, Sánchez-Pérez R. Ascorbic acid and prunasin, two candidate biomarkers for endodormancy release in almond flower buds identified by a nontargeted metabolomic study. HORTICULTURE RESEARCH 2020; 7:203. [PMID: 33328455 PMCID: PMC7705690 DOI: 10.1038/s41438-020-00427-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 05/13/2023]
Abstract
Temperate fruit trees belonging to Prunus species have the ability to suspend (induce dormancy) and resume growth periodically in response to environmental and seasonal conditions. Endodormancy release requires the long-term accumulation of chill. Upon accumulation of cultivar-specific chill requirements, plants enter the state of ecodormancy, which means the ability to grow has been restored, depending on the fulfilment of heat requirements. As many different metabolic pathways are implicated in endodormancy release, we have performed a metabolomic analysis, using the ultra-high-performance liquid chromatography-quadrupole time-of-flying (UPLC-QToF) technique. We assayed flower buds in different stages of endodormancy in four almond cultivars with different flowering times: the extra-early Desmayo Largueta, the late Antoñeta, the extra-late Penta, and the ultra-late Tardona. An orthogonal projection to latent-structure discriminant-analysis model was created to observe differences between endodormant and ecodormant flower buds. The metabolites showing the most significant variation were searched against the Metlin, HMDB, and KEGG libraries, which allowed us to identify 87 metabolites. These metabolites were subsequently assigned to specific pathways, such as abscisic acid biosynthesis, phenylpropanoid biosynthesis, and D-sorbitol metabolism, among others. The two metabolites that exhibited the most significant variations in all the cultivars studied with fold changes of up to 6.49 were ascorbic acid and prunasin. For the first time, these two metabolites have been proposed as potential biomarkers for endodormancy release in almond. Given the high synteny present between the Rosaceae species, these results could be extrapolated to other important crops like peach, plum, cherry, or apricot, among others.
Collapse
Affiliation(s)
- Jesús Guillamón Guillamón
- Department of Plant Breeding. CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Espinardo, Spain
| | - Ángela Sánchez Prudencio
- Department of Plant Breeding. CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Espinardo, Spain
| | - José Enrique Yuste
- Metabolomics Platform of CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Espinardo, Spain
| | - Federico Dicenta
- Department of Plant Breeding. CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Espinardo, Spain
| | - Raquel Sánchez-Pérez
- Department of Plant Breeding. CEBAS-CSIC, Campus Universitario de Espinardo, 30100, Espinardo, Spain.
| |
Collapse
|
18
|
Li Z, Liu N, Zhang W, Wu C, Jiang Y, Ma J, Li M, Sui S. Integrated transcriptome and proteome analysis provides insight into chilling-induced dormancy breaking in Chimonanthus praecox. HORTICULTURE RESEARCH 2020; 7:198. [PMID: 33328461 PMCID: PMC7704649 DOI: 10.1038/s41438-020-00421-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Chilling has a critical role in the growth and development of perennial plants. The chilling requirement (CR) for dormancy breaking largely depends on the species. However, global warming is expected to negatively affect chilling accumulation and dormancy release in a wide range of perennial plants. Here, we used Chimonanthus praecox as a model to investigate the CR for dormancy breaking under natural and artificial conditions. We determined the minimum CR (570 chill units, CU) needed for chilling-induced dormancy breaking and analyzed the transcriptomes and proteomes of flowering and non-flowering flower buds (FBs, anther and ovary differentiation completed) with different CRs. The concentrations of ABA and GA3 in the FBs were also determined using HPLC. The results indicate that chilling induced an upregulation of ABA levels and significant downregulation of SHORT VEGETATIVE PHASE (SVP) and FLOWERING LOCUS T (FT) homologs at the transcript level in FBs when the accumulated CR reached 570 CU (IB570) compared to FBs in November (FB.Nov, CK) and nF16 (non-flowering FBs after treatment at 16 °C for -300 CU), which suggested that dormancy breaking of FBs could be regulated by the ABA-mediated SVP-FT module. Overexpression in Arabidopsis was used to confirm the function of candidate genes, and early flowering was induced in 35S::CpFT1 transgenic lines. Our data provide insight into the minimum CR (570 CU) needed for chilling-induced dormancy breaking and its underlying regulatory mechanism in C. praecox, which provides a new tool for the artificial regulation of flowering time and a rich gene resource for controlling chilling-induced blooming.
Collapse
Affiliation(s)
- Zhineng Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Ning Liu
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Wei Zhang
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Chunyu Wu
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Yingjie Jiang
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Jing Ma
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Mingyang Li
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China
| | - Shunzhao Sui
- Key Laboratory of Horticulture Science for Southern Mountains Regions, Ministry of Education, Chongqing Engineering Research Center for Floriculture, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, China.
| |
Collapse
|
19
|
Estevan J, Gómez‐Jiménez S, Falavigna VDS, Camuel A, Planel L, Costes E, Andrés F. An efficient protocol for functional studies of apple transcription factors using a glucocorticoid receptor fusion system. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11396. [PMID: 33163295 PMCID: PMC7598887 DOI: 10.1002/aps3.11396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 05/17/2023]
Abstract
PREMISE We report a protocol for studying the function of apple (Malus ×domestica) transcription factors based on the glucocorticoid receptor (GR) system, which allows the dexamethasone (DEX)-mediated activation of plant transcription factors to monitor the expression levels of their potential target genes. METHODS AND RESULTS Apple leaves are transformed with a vector that allows the expression of the studied transcription factor (i.e., FLOWERING LOCUS C [MdFLC]) fused to GR. Calli derived from the transformed leaves are treated with DEX and cycloheximide, a protein synthesis inhibitor. Compared with other methods, combining the GR system with cycloheximide treatments enables the differentiation between direct and indirect transcription factor target genes. Finally, the expression levels of putative MdFLC target genes are quantified using quantitative reverse transcription PCR. CONCLUSIONS We demonstrate the efficiency of our GR system to study the function of apple transcription factors. This method is accessible to any laboratory familiar with basic molecular cloning procedures and the apple leaf-mediated agro-transformation technique.
Collapse
Affiliation(s)
- Joan Estevan
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | | | - Vítor da Silveira Falavigna
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
- Present address:
Max Planck Institute for Plant Breeding ResearchCarl‐von‐Linne‐Weg 1050829CologneGermany
| | - Alicia Camuel
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | - Lisa Planel
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | - Evelyne Costes
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| | - Fernando Andrés
- AGAPUniversity of MontpellierCIRADINRAEInstitut AgroMontpellierFrance
| |
Collapse
|
20
|
Pecinka A, Chevalier C, Colas I, Kalantidis K, Varotto S, Krugman T, Michailidis C, Vallés MP, Muñoz A, Pradillo M. Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5205-5222. [PMID: 31626285 DOI: 10.1093/jxb/erz457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.
Collapse
Affiliation(s)
- Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Agricultural and Biotechnological Research, Olomouc, Czech Republic
| | | | - Isabelle Colas
- James Hutton Institute, Cell and Molecular Science, Pr Waugh's Lab, Invergowrie, Dundee, UK
| | - Kriton Kalantidis
- Department of Biology, University of Crete, and Institute of Molecular Biology Biotechnology, FoRTH, Heraklion, Greece
| | - Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment (DAFNAE) University of Padova, Agripolis viale dell'Università, Legnaro (PD), Italy
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Christos Michailidis
- Institute of Experimental Botany, Czech Acad Sci, Praha 6 - Lysolaje, Czech Republic
| | - María-Pilar Vallés
- Department of Genetics and Plant Breeding, Estación Experimental Aula Dei (EEAD), Spanish National Research Council (CSIC), Zaragoza, Spain
| | - Aitor Muñoz
- Department of Plant Molecular Genetics, National Center of Biotechnology/Superior Council of Scientific Research, Autónoma University of Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
21
|
Kagaya H, Ito N, Shibuya T, Komori S, Kato K, Kanayama Y. Characterization of FLOWERING LOCUS C Homologs in Apple as a Model for Fruit Trees. Int J Mol Sci 2020; 21:ijms21124562. [PMID: 32604952 PMCID: PMC7348945 DOI: 10.3390/ijms21124562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/29/2022] Open
Abstract
To elucidate the molecular mechanism of juvenility and annual flowering of fruit trees, FLOWERING LOCUS C (FLC), an integrator of flowering signals, was investigated in apple as a model. We performed sequence and expression analyses and transgenic experiments related to juvenility with annual flowering to characterize the apple FLC homologs MdFLC. The phylogenetic tree analysis, which included other MADS-box genes, showed that both MdFLC1 and MdFLC3 belong to the same FLC group. MdFLC1c from one of the MdFLC1 splice variants and MdFLC3 contain the four conserved motives of an MIKC-type MADS protein. The mRNA of variants MdFLC1a and MdFLC1b contain intron sequences, and their deduced amino acid sequences lack K- and C-domains. The expression levels of MdFLC1a, MdFLC1b, and MdFLC1c decreased during the flowering induction period in a seasonal expression pattern in the adult trees, whereas the expression level of MdFLC3 did not decrease during that period. This suggests that MdFLC1 is involved in flowering induction in the annual growth cycle of adult trees. In apple seedlings, because phase change can be observed in individuals, seedlings can be used for analysis of expression during phase transition. The expression levels of MdFLC1b, MdFLC1c, and MdFLC3 were high during the juvenile phase and low during the transitional and adult phases. Because the expression pattern of MdFLC3 suggests that it plays a specific role in juvenility, MdFLC3 was subjected to functional analysis by transformation of Arabidopsis. The results revealed the function of MdFLC3 as a floral repressor. In addition, MdFT had CArG box-like sequences, putative targets for the suppression of flowering by MdFLC binding, in the introns and promoter regions. These results indicate that apple homologs of FLC, which might play a role upstream of the flowering signals, could be involved in juvenility as well as in annual flowering. Apples with sufficient genome-related information are useful as a model for studying phenomena unique to woody plants such as juvenility and annual flowering.
Collapse
Affiliation(s)
- Hidenao Kagaya
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan; (H.K.); (N.I.)
| | - Naoko Ito
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan; (H.K.); (N.I.)
| | - Tomoki Shibuya
- Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan;
| | - Sadao Komori
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan;
| | - Kazuhisa Kato
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan; (H.K.); (N.I.)
- Correspondence: (K.K.); (Y.K.)
| | - Yoshinori Kanayama
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 980-8572, Japan; (H.K.); (N.I.)
- Correspondence: (K.K.); (Y.K.)
| |
Collapse
|
22
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
23
|
Moser M, Asquini E, Miolli GV, Weigl K, Hanke MV, Flachowsky H, Si-Ammour A. The MADS-Box Gene MdDAM1 Controls Growth Cessation and Bud Dormancy in Apple. FRONTIERS IN PLANT SCIENCE 2020; 11:1003. [PMID: 32733512 PMCID: PMC7358357 DOI: 10.3389/fpls.2020.01003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/19/2020] [Indexed: 05/14/2023]
Abstract
Apple trees require a long exposure to chilling temperature during winter to acquire competency to flower and grow in the following spring. Climate change or adverse meteorological conditions can impair release of dormancy and delay bud break, hence jeopardizing fruit production and causing substantial economic losses. In order to characterize the molecular mechanisms controlling bud dormancy in apple we focused our work on the MADS-box transcription factor gene MdDAM1. We show that MdDAM1 silencing is required for the release of dormancy and bud break in spring. MdDAM1 transcript levels are drastically reduced in the low-chill varieties 'Anna' and 'Dorsett Golden' compared to 'Golden Delicious' corroborating its role as a key genetic factor controlling the release of bud dormancy in Malus species. The functional characterization of MdDAM1 using RNA silencing resulted in trees unable to cease growth in winter and that displayed an evergrowing, or evergreen, phenotype several years after transgenesis. These trees lost their capacity to enter in dormancy and produced leaves and shoots regardless of the season. A transcriptome study revealed that apple evergrowing lines are a genocopy of 'Golden Delicious' trees at the onset of the bud break with the significant gene repression of the related MADS-box gene MdDAM4 as a major feature. We provide the first functional evidence that MADS-box transcriptional factors are key regulators of bud dormancy in pome fruit trees and demonstrate that their silencing results in a defect of growth cessation in autumn. Our findings will help producing low-chill apple variants from the elite commercial cultivars that will withstand climate change.
Collapse
Affiliation(s)
- Mirko Moser
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Elisa Asquini
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Giulia Valentina Miolli
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
| | - Kathleen Weigl
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Magda-Viola Hanke
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Henryk Flachowsky
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Azeddine Si-Ammour
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), San Michele all’Adige (TN), Italy
- *Correspondence: Azeddine Si-Ammour,
| |
Collapse
|
24
|
Yu J, Conrad AO, Decroocq V, Zhebentyayeva T, Williams DE, Bennett D, Roch G, Audergon JM, Dardick C, Liu Z, Abbott AG, Staton ME. Distinctive Gene Expression Patterns Define Endodormancy to Ecodormancy Transition in Apricot and Peach. FRONTIERS IN PLANT SCIENCE 2020; 11:180. [PMID: 32180783 PMCID: PMC7059448 DOI: 10.3389/fpls.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Dormancy is a physiological state that plants enter for winter hardiness. Environmental-induced dormancy onset and release in temperate perennials coordinate growth cessation and resumption, but how the entire process, especially chilling-dependent dormancy release and flowering, is regulated remains largely unclear. We utilized the transcriptome profiles of floral buds from fall to spring in apricot (Prunus armeniaca) genotypes with contrasting bloom dates and peach (Prunus persica) genotypes with contrasting chilling requirements (CR) to explore the genetic regulation of bud dormancy. We identified distinct gene expression programming patterns in endodormancy and ecodormancy that reproducibly occur between different genotypes and species. During the transition from endo- to eco-dormancy, 1,367 and 2,102 genes changed in expression in apricot and peach, respectively. Over 600 differentially expressed genes were shared in peach and apricot, including three DORMANCY ASSOCIATED MADS-box (DAM) genes (DAM4, DAM5, and DAM6). Of the shared genes, 99 are located within peach CR quantitative trait loci, suggesting these genes as candidates for dormancy regulation. Co-expression and functional analyses revealed that distinctive metabolic processes distinguish dormancy stages, with genes expressed during endodormancy involved in chromatin remodeling and reproduction, while the genes induced at ecodormancy were mainly related to pollen development and cell wall biosynthesis. Gene expression analyses between two Prunus species highlighted the conserved transcriptional control of physiological activities in endodormancy and ecodormancy and revealed genes that may be involved in the transition between the two stages.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
| | - Anna O. Conrad
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Véronique Decroocq
- UMR 1332 Biologie du Fruit et Pathologie, Equipe de Virologie, INRA, Universite de Bordeaux, Villenave d'Ornon, France
| | - Tetyana Zhebentyayeva
- Department of Ecosystem Science and Management, Schatz Center for Tree Molecular Genetics, the Pennsylvania State University, University Park, PA, United States
| | - Daniel E. Williams
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Dennis Bennett
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Guillaume Roch
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Jean-Marc Audergon
- GAFL Fruit and Vegetable Genetics and Breeding, INRA Centre PACA, Montfavet, France
| | - Christopher Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture—Agriculture Research Service, Kearneysville, WV, United States
| | - Albert G. Abbott
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY, United States
| | - Margaret E. Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, United States
- Department of Entomology and Plant Pathology, Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
- *Correspondence: Margaret E. Staton,
| |
Collapse
|
25
|
Vimont N, Fouché M, Campoy JA, Tong M, Arkoun M, Yvin JC, Wigge PA, Dirlewanger E, Cortijo S, Wenden B. From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy. BMC Genomics 2019; 20:974. [PMID: 31830909 PMCID: PMC6909552 DOI: 10.1186/s12864-019-6348-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Bud dormancy is a crucial stage in perennial trees and allows survival over winter to ensure optimal flowering and fruit production. Recent work highlighted physiological and molecular events occurring during bud dormancy in trees. However, they usually examined bud development or bud dormancy in isolation. In this work, we aimed to further explore the global transcriptional changes happening throughout bud development and dormancy onset, progression and release. Results Using next-generation sequencing and modelling, we conducted an in-depth transcriptomic analysis for all stages of flower buds in several sweet cherry (Prunus avium L.) cultivars that are characterized for their contrasted dates of dormancy release. We find that buds in organogenesis, paradormancy, endodormancy and ecodormancy stages are defined by the expression of genes involved in specific pathways, and these are conserved between different sweet cherry cultivars. In particular, we found that DORMANCY ASSOCIATED MADS-box (DAM), floral identity and organogenesis genes are up-regulated during the pre-dormancy stages while endodormancy is characterized by a complex array of signalling pathways, including cold response genes, ABA and oxidation-reduction processes. After dormancy release, genes associated with global cell activity, division and differentiation are activated during ecodormancy and growth resumption. We then went a step beyond the global transcriptomic analysis and we developed a model based on the transcriptional profiles of just seven genes to accurately predict the main bud dormancy stages. Conclusions Overall, this study has allowed us to better understand the transcriptional changes occurring throughout the different phases of flower bud development, from bud formation in the summer to flowering in the following spring. Our work sets the stage for the development of fast and cost effective diagnostic tools to molecularly define the dormancy stages. Such integrative approaches will therefore be extremely useful for a better comprehension of complex phenological processes in many species.
Collapse
Affiliation(s)
- Noémie Vimont
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France.,Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France.,The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Mathieu Fouché
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France
| | - José Antonio Campoy
- Universidad Politécnica de Cartagena, Cartagena, Spain.,Universidad de Murcia, Murcia, Spain.,Present address: Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Meixuezi Tong
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Mustapha Arkoun
- Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France
| | - Jean-Claude Yvin
- Agro Innovation International, Centre Mondial d'Innovation, Groupe Roullier, 35400, St Malo, France
| | - Philip A Wigge
- Leibniz-Institute für Gemüse- und Zierpflanzenbau (IGZ), Plant Adaptation, Grossbeeren, Germany
| | | | - Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK.
| | - Bénédicte Wenden
- INRA, UMR1332 BFP, Univ. Bordeaux, 33882, Villenave d'Ornon, Cedex, France.
| |
Collapse
|
26
|
Transcriptome analysis provides insights into the stress response crosstalk in apple (Malus × domestica) subjected to drought, cold and high salinity. Sci Rep 2019; 9:9071. [PMID: 31227734 PMCID: PMC6588687 DOI: 10.1038/s41598-019-45266-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Drought, cold, and high salinity are three major abiotic stresses effecting apple tree growth and fruit production. Understanding the genetic mechanisms of crosstalk between stress responses signalling networks and identifying the genes involved in apple has potential importance for crop improvement and breeding strategies. Here, the transcriptome profiling analysis of in vitro-grown apple plants subjected to drought, cold and high salinity stress, showed a total of 377 upregulated and 211 downregulated common differentially expressed genes (DEGs) to all 3 stress treatments compared with the control. Gene Ontology (GO) analysis indicated that these common DEGs were enriched in ‘metabolic process’ under the ‘biological process’ category, as well as in ‘binding’ and ‘catalytic activity’ under the ‘molecular function’ category. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that common DEGs were mainly belong to the ‘biological functions’ category and 17 DEGs were identified in ‘environmental information processing’ sub-category which may act as signal transduction components in response crosstalk regulation. Overexpression of 5 upregulated genes individually, out of these 17 common DEGs in apple calli promoted the consistent upregulation of DREB6, CBF1 and ZAT10 and increased the mass weight and antioxidase ability, implying these five common DEGs involved in multiple pathways and improved comprehensive resistance to stress.
Collapse
|
27
|
Zong X, Zhang Y, Walworth A, Tomaszewski EM, Callow P, Zhong GY, Song GQ. Constitutive Expression of an Apple FLC3-like Gene Promotes Flowering in Transgenic Blueberry under Nonchilling Conditions. Int J Mol Sci 2019; 20:ijms20112775. [PMID: 31174253 PMCID: PMC6600427 DOI: 10.3390/ijms20112775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023] Open
Abstract
MADS-box transcription factors FLOWERING LOCUS C (FLC) and APETALA1 (AP1)/CAULIFLOWER (CAL) have an opposite effect in vernalization-regulated flowering in Arabidopsis. In woody plants, a functional FLC-like gene has not been verified through reverse genetics. To reveal chilling-regulated flowering mechanisms in woody fruit crops, we conducted phylogenetic analysis of the annotated FLC-like proteins of apple and found that these proteins are grouped more closely to Arabidopsis AP1 than the FLC group. An FLC3-like MADS-box gene from columnar apple trees (Malus domestica) (MdFLC3-like) was cloned for functional analysis through a constitutive transgenic expression. The MdFLC3-like shows 88% identity to pear's FLC-like genes and 82% identity to blueberry's CAL1 gene (VcCAL1). When constitutively expressed in a highbush blueberry (Vaccinium corymbosum L.) cultivar 'Legacy', the MdFLC3-like induced expressions of orthologues of three MADS-box genes, including APETALA1, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, and CAL1. As a consequence, in contrast to the anticipated late flowering associated with an overexpressed FLC-like, the MdFLC3-like promoted flowering of transgenic blueberry plants under nonchilling conditions where nontransgenic 'Legacy' plants could not flower. Thus, the constitutively expressed MdFLC3-like in transgenic blueberries functioned likely as a blueberry's VcCAL1. The results are anticipated to facilitate future studies for revealing chilling-mediated flowering mechanisms in woody plants.
Collapse
Affiliation(s)
- Xiaojuan Zong
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
- Shandong Institute of Pomology, Shandong Academy of Agricultural Sciences, Taian 271000, China.
| | - Yugang Zhang
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Aaron Walworth
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Elise M Tomaszewski
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Pete Callow
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| | - Gan-Yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva, NY 14456, USA.
| | - Guo-Qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
28
|
Verma S, Gautam V, Sarkar AK. Improved laser capture microdissection (LCM)-based method for isolation of RNA, including miRNA and expression analysis in woody apple bud meristem. PLANTA 2019; 249:2015-2020. [PMID: 30976910 DOI: 10.1007/s00425-019-03127-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Isolation of high-quality RNA, including miRNA, from microscopic woody apple bud meristem using laser capture microdissection-based method. It is often challenging to study the expression of microRNAs (miRNAs) or genes in less accessible inner tissues of tree species rich in polyphenols or polysaccharides. Here, we report a laser capture microdissection (LCM)-based method for efficient and cost-effective isolation and expression analysis of miRNAs and genes in the meristem tissue of woody apple bud. The tissue fixation, processing, infiltration, and sectioning steps were optimized for LCM-based excision and subsequent RNA isolation. Further, we have confirmed that RNA isolated from LCM-derived apple bud meristem contained miRNAs and was of good quantity and quality, sufficient for downstream expression analysis.
Collapse
Affiliation(s)
- Swati Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
29
|
Peace CP, Bianco L, Troggio M, van de Weg E, Howard NP, Cornille A, Durel CE, Myles S, Migicovsky Z, Schaffer RJ, Costes E, Fazio G, Yamane H, van Nocker S, Gottschalk C, Costa F, Chagné D, Zhang X, Patocchi A, Gardiner SE, Hardner C, Kumar S, Laurens F, Bucher E, Main D, Jung S, Vanderzande S. Apple whole genome sequences: recent advances and new prospects. HORTICULTURE RESEARCH 2019; 6:59. [PMID: 30962944 PMCID: PMC6450873 DOI: 10.1038/s41438-019-0141-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
In 2010, a major scientific milestone was achieved for tree fruit crops: publication of the first draft whole genome sequence (WGS) for apple (Malus domestica). This WGS, v1.0, was valuable as the initial reference for sequence information, fine mapping, gene discovery, variant discovery, and tool development. A new, high quality apple WGS, GDDH13 v1.1, was released in 2017 and now serves as the reference genome for apple. Over the past decade, these apple WGSs have had an enormous impact on our understanding of apple biological functioning, trait physiology and inheritance, leading to practical applications for improving this highly valued crop. Causal gene identities for phenotypes of fundamental and practical interest can today be discovered much more rapidly. Genome-wide polymorphisms at high genetic resolution are screened efficiently over hundreds to thousands of individuals with new insights into genetic relationships and pedigrees. High-density genetic maps are constructed efficiently and quantitative trait loci for valuable traits are readily associated with positional candidate genes and/or converted into diagnostic tests for breeders. We understand the species, geographical, and genomic origins of domesticated apple more precisely, as well as its relationship to wild relatives. The WGS has turbo-charged application of these classical research steps to crop improvement and drives innovative methods to achieve more durable, environmentally sound, productive, and consumer-desirable apple production. This review includes examples of basic and practical breakthroughs and challenges in using the apple WGSs. Recommendations for "what's next" focus on necessary upgrades to the genome sequence data pool, as well as for use of the data, to reach new frontiers in genomics-based scientific understanding of apple.
Collapse
Affiliation(s)
- Cameron P. Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Luca Bianco
- Computational Biology, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Michela Troggio
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - Eric van de Weg
- Plant Breeding, Wageningen University and Research, Wageningen, 6708PB The Netherlands
| | - Nicholas P. Howard
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108 USA
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität, 26129 Oldenburg, Germany
| | - Amandine Cornille
- GQE – Le Moulon, Institut National de la Recherche Agronomique, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Charles-Eric Durel
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Sean Myles
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Zoë Migicovsky
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3 Canada
| | - Robert J. Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, Motueka, 7198 New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1142 New Zealand
| | - Evelyne Costes
- AGAP, INRA, CIRAD, Montpellier SupAgro, University of Montpellier, Montpellier, France
| | - Gennaro Fazio
- Plant Genetic Resources Unit, USDA ARS, Geneva, NY 14456 USA
| | - Hisayo Yamane
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Chris Gottschalk
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Fabrizio Costa
- Department of Genomics and Biology of Fruit Crops, Fondazione Edmund Mach, San Michele all’Adige, TN 38010 Italy
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | | | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Ltd (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4474 New Zealand
| | - Craig Hardner
- Queensland Alliance of Agriculture and Food Innovation, University of Queensland, St Lucia, 4072 Australia
| | - Satish Kumar
- New Cultivar Innovation, Plant and Food Research, Havelock North, 4130 New Zealand
| | - Francois Laurens
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
| | - Etienne Bucher
- Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, UMR 1345, 49071 Beaucouzé, France
- Agroscope, 1260 Changins, Switzerland
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Stijn Vanderzande
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
30
|
Miotto YE, Tessele C, Czermainski ABC, Porto DD, Falavigna VDS, Sartor T, Cattani AM, Delatorre CA, de Alencar SA, da Silva-Junior OB, Togawa RC, Costa MMDC, Pappas GJ, Grynberg P, de Oliveira PRD, Kvitschal MV, Denardi F, Buffon V, Revers LF. Spring Is Coming: Genetic Analyses of the Bud Break Date Locus Reveal Candidate Genes From the Cold Perception Pathway to Dormancy Release in Apple ( Malus × domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2019; 10:33. [PMID: 30930909 PMCID: PMC6423911 DOI: 10.3389/fpls.2019.00033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/10/2019] [Indexed: 05/26/2023]
Abstract
Chilling requirement (CR) for bud dormancy completion determines the time of bud break in apple (Malus × domestica Borkh.). The molecular control of bud dormancy is highly heritable, suggesting a strong genetic control of the trait. An available Infinium II SNP platform for genotyping containing 8,788 single nucleotide polymorphic markers was employed, and linkage maps were constructed in a F1 cross from the low CR M13/91 and the moderate CR cv. Fred Hough. These maps were used to identify quantitative trait loci (QTL) for bud break date as a trait related to dormancy release. A major QTL for bud break was detected at the beginning of linkage group 9 (LG9). This QTL remained stable during seven seasons in two different growing sites. To increase mapping efficiency in detecting contributing genes underlying this QTL, 182 additional SNP markers located at the locus for bud break were used. Combining linkage mapping and structural characterization of the region, the high proportion of the phenotypic variance in the trait explained by the QTL is related to the coincident positioning of Arabidopsis orthologs for ICE1, FLC, and PRE1 protein-coding genes. The proximity of these genes from the most explanatory markers of this QTL for bud break suggests potential genetic additive effects, reinforcing the hypothesis of inter-dependent mechanisms controlling dormancy induction and release in apple trees.
Collapse
Affiliation(s)
- Yohanna Evelyn Miotto
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carolina Tessele
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Vítor da Silveira Falavigna
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Sartor
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda Malvessi Cattani
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Carla Andrea Delatorre
- Department of Crop Science, Agronomy School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sérgio Amorim de Alencar
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | | | | | | | | | | | | | - Marcus Vinícius Kvitschal
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri – Estação Experimental de Caçador, Caçador, Brazil
| | - Frederico Denardi
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina – Epagri – Estação Experimental de Caçador, Caçador, Brazil
| | | | - Luís Fernando Revers
- Embrapa Uva e Vinho, Bento Gonçalves, Brazil
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Artlip T, McDermaid A, Ma Q, Wisniewski M. Differential gene expression in non-transgenic and transgenic "M.26" apple overexpressing a peach CBF gene during the transition from eco-dormancy to bud break. HORTICULTURE RESEARCH 2019; 6:86. [PMID: 31666956 PMCID: PMC6804898 DOI: 10.1038/s41438-019-0168-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
The CBF signal pathway is responsible for a significant portion of plant responses to low temperature and freezing. Overexpression of CBF genes in model organisms such as Arabidopsis thaliana enhances abiotic stress tolerance but also reduces growth. In addition to these effects, overexpression of the peach (Prunus persica [L.] Batsch) CBF1 gene in transgenic apple (Malus x domestica Borkh.) line T166 also results in early entry into and late exit from dormancy. Although the regulation of dormancy-induction and dormancy-release occur while the CBF regulon is operative in perennial, woody plants, how overexpression of CBF1 affects these dormancy-related changes in gene expression is incompletely understood. The objective of the present study was to characterize global changes in gene expression in peach CBF1-overexpressing and non-transformed apple bark tissues at different states of dormancy via RNA-seq. RNA-seq bioinformatics data was confirmed by RT-qPCR on a number of genes. Results indicate that the greatest number of significantly differentially expressed genes (DEGs) occurred in April when dormancy release and bud break normally occur but are delayed in Line T166. Genes involved in storage and inactivation of auxin, GA, and cytokinin were generally upregulated in T166 in April, while those for biosynthesis, uptake or signal transduction were generally downregulated in T166. Genes for cell division and cambial growth were also downregulated in T166 relative to the non-transformed line. These data suggest that overexpression of the peach CBF1 gene impacts growth hormone homeostasis and as a result the activation of growth in the spring, and most likely growth cessation in the fall as well.
Collapse
Affiliation(s)
- Timothy Artlip
- USDA-ARS-Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
| | - Adam McDermaid
- Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD 57007 USA
- Present Address: Imagenetics, Sanford Health, Sioux Falls, SD 57007 USA
| | - Qin Ma
- Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD 57007 USA
- Present Address: SBS-Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Michael Wisniewski
- USDA-ARS-Appalachian Fruit Research Station, Kearneysville, WV 25430 USA
| |
Collapse
|
32
|
Beauvieux R, Wenden B, Dirlewanger E. Bud Dormancy in Perennial Fruit Tree Species: A Pivotal Role for Oxidative Cues. FRONTIERS IN PLANT SCIENCE 2018; 9:657. [PMID: 29868101 PMCID: PMC5969045 DOI: 10.3389/fpls.2018.00657] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 05/07/2023]
Abstract
For perennial plants, bud dormancy is a crucial step as its progression over winter determines the quality of bud break, flowering, and fruiting. In the past decades, many studies, based on metabolic, physiological, subcellular, genetic, and genomic analyses, have unraveled mechanisms underlying bud dormancy progression. Overall, all the pathways identified are interconnected in a very complex manner. Here, we review early and recent findings on the dormancy processes in buds of temperate fruit trees species including hormonal signaling, the role of plasma membrane, carbohydrate metabolism, mitochondrial respiration and oxidative stress, with an effort to link them together and emphasize the central role of reactive oxygen species accumulation in the control of dormancy progression.
Collapse
|
33
|
Horikoshi HM, Sekozawa Y, Kobayashi M, Saito K, Kusano M, Sugaya S. Metabolomics analysis of 'Housui' Japanese pear flower buds during endodormancy reveals metabolic suppression by thermal fluctuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:134-141. [PMID: 29524800 DOI: 10.1016/j.plaphy.2018.02.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 05/26/2023]
Abstract
Dormancy is a complex phenomenon that allows plants to survive the winter season. Studies of dormancy have recently attracted more attention due to the expansion of temperate fruit production in areas under mild winters and due to climate changes. This study aimed to identify and characterize the metabolic changes induced by chilling temperatures, as well as during thermal fluctuation conditions that simulate mild winter and/or climate change scenarios. To do this, we compared the metabolic profile of Japanese pear flower buds exposed to constant chilling at 6 °C and thermal fluctuations of 6 °C/18 °C (150 h/150 h) during endodormancy. We detected 91 metabolites by gas chromatography paired with time-of-flight mass spectrometry (GC-TOF-MS) that could be classified into eight groups: amino acids, amino acid derivatives, organic acids, sugars and polyols, fatty acids and sterols, phenol lipids, phenylpropanoids, and other compounds. Metabolomics analysis revealed that the level of several amino acids decreased during endodormancy. Sugar and polyol levels increased during endodormancy during constant chilling and might be associated with chilling stress tolerance and providing an energy supply for resuming growth. In contrast, thermal fluctuations produced low levels of metabolites related to the pentose phosphate pathway, energy production, and tricarboxylic acid (TCA) cycle in flower buds, which may be associated with failed endodormancy release. This metabolic profile contributes to our understanding of the biological mechanism of dormancy during chilling accumulation and clarifies the metabolic changes during mild winters and future climate change scenarios.
Collapse
Affiliation(s)
| | - Yoshihiko Sekozawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan.
| | - Miyako Kusano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan.
| | - Sumiko Sugaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
34
|
Schilling S, Pan S, Kennedy A, Melzer R. MADS-box genes and crop domestication: the jack of all traits. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1447-1469. [PMID: 29474735 DOI: 10.1093/jxb/erx479] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 05/25/2023]
Abstract
MADS-box genes are key regulators of virtually every aspect of plant reproductive development. They play especially prominent roles in flowering time control, inflorescence architecture, floral organ identity determination, and seed development. The developmental and evolutionary importance of MADS-box genes is widely acknowledged. However, their role during flowering plant domestication is less well recognized. Here, we provide an overview illustrating that MADS-box genes have been important targets of selection during crop domestication and improvement. Numerous examples from a diversity of crop plants show that various developmental processes have been shaped by allelic variations in MADS-box genes. We propose that new genomic and genome editing resources provide an excellent starting point for further harnessing the potential of MADS-box genes to improve a variety of reproductive traits in crops. We also suggest that the biophysics of MADS-domain protein-protein and protein-DNA interactions, which is becoming increasingly well characterized, makes them especially suited to exploit coding sequence variations for targeted breeding approaches.
Collapse
Affiliation(s)
- Susanne Schilling
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Sirui Pan
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Alice Kennedy
- School of Biology and Environmental Science, University College Dublin, Irel
| | - Rainer Melzer
- School of Biology and Environmental Science, University College Dublin, Irel
| |
Collapse
|
35
|
Falavigna VDS, Guitton B, Costes E, Andrés F. I Want to (Bud) Break Free: The Potential Role of DAM and SVP-Like Genes in Regulating Dormancy Cycle in Temperate Fruit Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1990. [PMID: 30687377 PMCID: PMC6335348 DOI: 10.3389/fpls.2018.01990] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/20/2018] [Indexed: 05/18/2023]
Abstract
Bud dormancy is an adaptive process that allows trees to survive the hard environmental conditions that they experience during the winter of temperate climates. Dormancy is characterized by the reduction in meristematic activity and the absence of visible growth. A prolonged exposure to cold temperatures is required to allow the bud resuming growth in response to warm temperatures. In fruit tree species, the dormancy cycle is believed to be regulated by a group of genes encoding MADS-box transcription factors. These genes are called DORMANCY-ASSOCIATED MADS-BOX (DAM) and are phylogenetically related to the Arabidopsis thaliana floral regulators SHORT VEGETATIVE PHASE (SVP) and AGAMOUS-LIKE 24. The interest in DAM and other orthologs of SVP (SVP-like) genes has notably increased due to the publication of several reports suggesting their role in the control of bud dormancy in numerous fruit species, including apple, pear, peach, Japanese apricot, and kiwifruit among others. In this review, we briefly describe the physiological bases of the dormancy cycle and how it is genetically regulated, with a particular emphasis on DAM and SVP-like genes. We also provide a detailed report of the most recent advances about the transcriptional regulation of these genes by seasonal cues, epigenetics and plant hormones. From this information, we propose a tentative classification of DAM and SVP-like genes based on their seasonal pattern of expression. Furthermore, we discuss the potential biological role of DAM and SVP-like genes in bud dormancy in antagonizing the function of FLOWERING LOCUS T-like genes. Finally, we draw a global picture of the possible role of DAM and SVP-like genes in the bud dormancy cycle and propose a model that integrates these genes in a molecular network of dormancy cycle regulation in temperate fruit trees.
Collapse
|
36
|
Boher P, Soler M, Sánchez A, Hoede C, Noirot C, Paiva JAP, Serra O, Figueras M. A comparative transcriptomic approach to understanding the formation of cork. PLANT MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29143299 DOI: 10.1007/s11103-017-0682-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 05/09/2023]
Abstract
The transcriptome comparison of two oak species reveals possible candidates accounting for the exceptionally thick and pure cork oak phellem, such as those involved in secondary metabolism and phellogen activity. Cork oak, Quercus suber, differs from other Mediterranean oaks such as holm oak (Quercus ilex) by the thickness and organization of the external bark. While holm oak outer bark contains sequential periderms interspersed with dead secondary phloem (rhytidome), the cork oak outer bark only contains thick layers of phellem (cork rings) that accumulate until reaching a thickness that allows industrial uses. Here we compare the cork oak outer bark transcriptome with that of holm oak. Both transcriptomes present similitudes in their complexity, but whereas cork oak external bark is enriched with upregulated genes related to suberin, which is the main polymer responsible for the protective function of periderm, the upregulated categories of holm oak are enriched in abiotic stress and chromatin assembly. Concomitantly with the upregulation of suberin-related genes, there is also induction of regulatory and meristematic genes, whose predicted activities agree with the increased number of phellem layers found in the cork oak sample. Further transcript profiling among different cork oak tissues and conditions suggests that cork and wood share many regulatory mechanisms, probably reflecting similar ontogeny. Moreover, the analysis of transcripts accumulation during the cork growth season showed that most regulatory genes are upregulated early in the season when the cork cambium becomes active. Altogether our work provides the first transcriptome comparison between cork oak and holm oak outer bark, which unveils new regulatory candidate genes of phellem development.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Marçal Soler
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Anna Sánchez
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Claire Hoede
- PF Bioinfo GenoToul, MIAT, Université de Toulouse, INRA, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Céline Noirot
- PF Bioinfo GenoToul, MIAT, Université de Toulouse, INRA, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jorge Almiro Pinto Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Institute of Plant Genetics, Department of Integrative Plant Biology, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznan, Poland
| | - Olga Serra
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Mercè Figueras
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain.
| |
Collapse
|
37
|
Lloret A, Badenes ML, Ríos G. Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1368. [PMID: 30271422 PMCID: PMC6146825 DOI: 10.3389/fpls.2018.01368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/29/2018] [Indexed: 05/20/2023]
Abstract
During autumn perennial trees cease growth and form structures called buds in order to protect meristems from the unfavorable environmental conditions, including low temperature and desiccation. In addition to increased tolerance to these abiotic stresses, reproductive buds modulate developmental programs leading to dormancy induction to avoid premature growth resumption, and flowering pathways. Stress tolerance, dormancy, and flowering processes are thus physically and temporarily restricted to a bud, and consequently forced to interact at the regulatory level. We review recent genomic, genetic, and molecular contributions to the knowledge of these three processes in trees, highlighting the role of epigenetic modifications, phytohormones, and common regulatory factors. Finally, we emphasize the utility of transcriptomic approaches for the identification of key structural and regulatory genes involved in bud processes, illustrated with our own experience using peach as a model.
Collapse
|
38
|
Chen C, Zeng Z, Liu Z, Xia R. Small RNAs, emerging regulators critical for the development of horticultural traits. HORTICULTURE RESEARCH 2018; 5:63. [PMID: 30245834 PMCID: PMC6139297 DOI: 10.1038/s41438-018-0072-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/23/2018] [Accepted: 07/01/2018] [Indexed: 05/14/2023]
Abstract
Small RNAs (sRNAs) have been recently recognized as key genetic and epigenetic regulators in various organisms, ranging from the modification of DNA and histone methylations to the modulation of the abundance of coding or non-coding RNAs. In plants, major regulatory sRNAs are classified as respective microRNA (miRNA) and small interfering RNA (siRNA) species, with the former primarily engaging in posttranscriptional regulation while the latter in transcriptional one. Many of these characterized sRNAs are involved in regulation of diverse biological programs, processes, and pathways in response to developmental cues, environmental signals/stresses, pathogen infection, and pest attacks. Recently, sRNAs-mediated regulations have also been extensively investigated in horticultural plants, with many novel mechanisms unveiled, which display far more mechanistic complexity and unique regulatory features compared to those studied in model species. Here, we review the recent progress of sRNA research in horticultural plants, with emphasis on mechanistic aspects as well as their relevance to trait regulation. Given that major and pioneered sRNA research has been carried out in the model and other plants, we also discuss ongoing sRNA research on these plants. Because miRNAs and phased siRNAs (phasiRNAs) are the most studied sRNA regulators, this review focuses on their biogenesis, conservation, function, and targeted genes and traits as well as the mechanistic relation between them, aiming at providing readers comprehensive information instrumental for future sRNA research in horticulture crops.
Collapse
Affiliation(s)
- Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zongrang Liu
- Appalachian Fruit Research Station, Agricultural Research Service, United States Department of Agriculture, Kearneysville, WV 25430 USA
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
39
|
Saito T, Wang S, Ohkawa K, Ohara H, Ikeura H, Ogawa Y, Kondo S. Lipid droplet-associated gene expression and chromatin remodelling in LIPASE 5'-upstream region from beginning- to mid-endodormant bud in 'Fuji' apple. PLANT MOLECULAR BIOLOGY 2017; 95:441-449. [PMID: 29019094 DOI: 10.1007/s11103-017-0662-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/14/2017] [Indexed: 05/26/2023]
Abstract
We found that lipid accumulation in the meristem region and the expression of MdLIP2A, which appears to be regulated by chromatin remodeling, coincided with endodormancy induction in the 'Fuji' apple. In deciduous trees, including apples (Malus × domestica Borkh.), lipid accumulation in the meristem region towards endodormancy induction has been thought to be an important process for the acquisition of cold tolerance. In this study, we conducted histological staining of crude lipids in the meristem region of 'Fuji' apples and found that lipid accumulation coincided with endodormancy induction. Since a major component of lipid bodies (triacylglycerol) is esterified fatty acids, we analysed fatty acid-derived volatile compounds and genes encoding fatty acid-modifying enzymes (MdLOX1A and MdHPL2A); the reduction of lipid breakdown also coincided with endodormancy induction. We then characterised the expression patterns of lipid body-regulatory genes MdOLE1 and MdLIP2A during endodormancy induction and found that the expression of MdLIP2A correlated well with lipid accumulation towards endodormancy induction. Based on these results, we conducted chromatin remodelling studies and localized the cis-element in the 5'-upstream region of MdLIP2A to clarify its regulatory mechanism. Finally, we revealed that chromatin was concentrated - 764 to - 862 bp of the 5'-upstream region of MdLIP2A, which harbours the GARE [gibberellin responsive MYB transcription factor binding site] and CArG [MADS-box transcription factor binding site] motifs-meristem development-related protein-binding sites.
Collapse
Affiliation(s)
- Takanori Saito
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Shanshan Wang
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Katsuya Ohkawa
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Hitoshi Ohara
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa-no-ha, 277-0882, Japan
| | - Hiromi Ikeura
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki, 214-8571, Japan
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan
| | - Satoru Kondo
- Graduate School of Horticulture, Chiba University, Matsudo, 271-8510, Japan.
| |
Collapse
|
40
|
Wang R, Ming M, Li J, Shi D, Qiao X, Li L, Zhang S, Wu J. Genome-wide identification of the MADS-box transcription factor family in pear ( Pyrus bretschneideri) reveals evolution and functional divergence. PeerJ 2017; 5:e3776. [PMID: 28924499 PMCID: PMC5598432 DOI: 10.7717/peerj.3776] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/17/2017] [Indexed: 11/21/2022] Open
Abstract
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.
Collapse
Affiliation(s)
- Runze Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Meiling Ming
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiaming Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dongqing Shi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Leiting Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
41
|
Tarancón C, González-Grandío E, Oliveros JC, Nicolas M, Cubas P. A Conserved Carbon Starvation Response Underlies Bud Dormancy in Woody and Herbaceous Species. FRONTIERS IN PLANT SCIENCE 2017; 8:788. [PMID: 28588590 PMCID: PMC5440562 DOI: 10.3389/fpls.2017.00788] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/27/2017] [Indexed: 05/18/2023]
Abstract
Plant shoot systems give rise to characteristic above-ground plant architectures. Shoots are formed from axillary meristems and buds, whose growth and development is modulated by systemic and local signals. These cues convey information about nutrient and water availability, light quality, sink/source organ activity and other variables that determine the timeliness and competence to maintain development of new shoots. This information is translated into a local response, in meristems and buds, of growth or quiescence. Although some key genes involved in the onset of bud latency have been identified, the gene regulatory networks (GRNs) controlled by these genes are not well defined. Moreover, it has not been determined whether bud dormancy induced by environmental cues, such as a low red-to-far-red light ratio, shares genetic mechanisms with bud latency induced by other causes, such as apical dominance or a short-day photoperiod. Furthermore, the evolution and conservation of these GRNs throughout angiosperms is not well established. We have reanalyzed public transcriptomic datasets that compare quiescent and active axillary buds of Arabidopsis, with datasets of axillary buds of the woody species Vitis vinifera (grapevine) and apical buds of Populus tremula x Populus alba (poplar) during the bud growth-to-dormancy transition. Our aim was to identify potentially common GRNs induced during the process that leads to bud para-, eco- and endodormancy. In Arabidopsis buds that are entering eco- or paradormancy, we have identified four induced interrelated GRNs that correspond to a carbon (C) starvation syndrome, typical of tissues undergoing low C supply. This response is also detectable in poplar and grapevine buds before and during the transition to dormancy. In all eukaryotes, C-limiting conditions are coupled to growth arrest and latency like that observed in dormant axillary buds. Bud dormancy might thus be partly a consequence of the underlying C starvation syndrome triggered by environmental and endogenous cues that anticipate or signal conditions unfavorable for sustained shoot growth.
Collapse
Affiliation(s)
- Carlos Tarancón
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Eduardo González-Grandío
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Juan C. Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Michael Nicolas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Científicas), Campus Universidad Autónoma de MadridMadrid, Spain
| |
Collapse
|
42
|
Kumar G, Gupta K, Pathania S, Swarnkar MK, Rattan UK, Singh G, Sharma RK, Singh AK. Chilling Affects Phytohormone and Post-Embryonic Development Pathways during Bud Break and Fruit Set in Apple (Malus domestica Borkh.). Sci Rep 2017; 7:42593. [PMID: 28198417 PMCID: PMC5309832 DOI: 10.1038/srep42593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/11/2017] [Indexed: 01/10/2023] Open
Abstract
The availability of sufficient chilling during bud dormancy plays an important role in the subsequent yield and quality of apple fruit, whereas, insufficient chilling availability negatively impacts the apple production. The transcriptome profiling during bud dormancy release and initial fruit set under low and high chill conditions was performed using RNA-seq. The comparative high number of differentially expressed genes during bud break and fruit set under high chill condition indicates that chilling availability was associated with transcriptional reorganization. The comparative analysis reveals the differential expression of genes involved in phytohormone metabolism, particularly for Abscisic acid, gibberellic acid, ethylene, auxin and cytokinin. The expression of Dormancy Associated MADS-box, Flowering Locus C-like, Flowering Locus T-like and Terminal Flower 1-like genes was found to be modulated under differential chilling. The co-expression network analysis indentified two high chill specific modules that were found to be enriched for "post-embryonic development" GO terms. The network analysis also identified hub genes including Early flowering 7, RAF10, ZEP4 and F-box, which may be involved in regulating chilling-mediated dormancy release and fruit set. The results of transcriptome and co-expression network analysis indicate that chilling availability majorly regulates phytohormone-related pathways and post-embryonic development during bud break.
Collapse
Affiliation(s)
- Gulshan Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Khushboo Gupta
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.,ICAR-Indian Institute of Agricultural Biotechnology, PDU Campus, IINRG, Namkum, Ranchi-834010 (JH), India
| | - Shivalika Pathania
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Mohit Kumar Swarnkar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Usha Kumari Rattan
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Gagandeep Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Ram Kumar Sharma
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, India.,Academy of Scientific and Innovative Research, New Delhi, India.,ICAR-Indian Institute of Agricultural Biotechnology, PDU Campus, IINRG, Namkum, Ranchi-834010 (JH), India
| |
Collapse
|
43
|
Guo X, Ma Z, Zhang Z, Cheng L, Zhang X, Li T. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:873. [PMID: 28611800 PMCID: PMC5447065 DOI: 10.3389/fpls.2017.00873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/10/2017] [Indexed: 05/22/2023]
Abstract
Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.
Collapse
Affiliation(s)
- Xinwei Guo
- Department of Fruit Science, College of Horticulture, China Agricultural UniversityBeijing, China
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
| | - Zeyang Ma
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
| | - Zhonghui Zhang
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal UniversityGuangzhou, China
| | - Lailiang Cheng
- Department of Horticulture, Cornell UniversityIthaca, NY, United States
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
- *Correspondence: Xiuren Zhang
| | - Tianhong Li
- Department of Fruit Science, College of Horticulture, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit TreesBeijing, China
- Tianhong Li
| |
Collapse
|
44
|
Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton JM, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, Durel CE. Genome-Wide Association Mapping of Flowering and Ripening Periods in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:1923. [PMID: 29176988 PMCID: PMC5686452 DOI: 10.3389/fpls.2017.01923] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 05/17/2023]
Abstract
Deciphering the genetic control of flowering and ripening periods in apple is essential for breeding cultivars adapted to their growing environments. We implemented a large Genome-Wide Association Study (GWAS) at the European level using an association panel of 1,168 different apple genotypes distributed over six locations and phenotyped for these phenological traits. The panel was genotyped at a high-density of SNPs using the Axiom®Apple 480 K SNP array. We ran GWAS with a multi-locus mixed model (MLMM), which handles the putatively confounding effect of significant SNPs elsewhere on the genome. Genomic regions were further investigated to reveal candidate genes responsible for the phenotypic variation. At the whole population level, GWAS retained two SNPs as cofactors on chromosome 9 for flowering period, and six for ripening period (four on chromosome 3, one on chromosome 10 and one on chromosome 16) which, together accounted for 8.9 and 17.2% of the phenotypic variance, respectively. For both traits, SNPs in weak linkage disequilibrium were detected nearby, thus suggesting the existence of allelic heterogeneity. The geographic origins and relationships of apple cultivars accounted for large parts of the phenotypic variation. Variation in genotypic frequency of the SNPs associated with the two traits was connected to the geographic origin of the genotypes (grouped as North+East, West and South Europe), and indicated differential selection in different growing environments. Genes encoding transcription factors containing either NAC or MADS domains were identified as major candidates within the small confidence intervals computed for the associated genomic regions. A strong microsynteny between apple and peach was revealed in all the four confidence interval regions. This study shows how association genetics can unravel the genetic control of important horticultural traits in apple, as well as reduce the confidence intervals of the associated regions identified by linkage mapping approaches. Our findings can be used for the improvement of apple through marker-assisted breeding strategies that take advantage of the accumulating additive effects of the identified SNPs.
Collapse
Affiliation(s)
- Jorge Urrestarazu
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
- Department of Agricultural Sciences, Public University of Navarre, Pamplona, Spain
- *Correspondence: Jorge Urrestarazu
| | - Hélène Muranty
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Caroline Denancé
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Diane Leforestier
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Elisa Ravon
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Arnaud Guyader
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Rémi Guisnel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Laurence Feugey
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Sébastien Aubourg
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Jean-Marc Celton
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Nicolas Daccord
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Luca Dondini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Roberto Gregori
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Marc Lateur
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Patrick Houben
- Plant Breeding and Biodiversity, Centre Wallon de Recherches Agronomiques, Gembloux, Belgium
| | - Matthew Ordidge
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | | | - Jiri Sedlak
- Research and Breeding Institute of Pomology Holovousy Ltd., Horice, Czechia
| | - Hilde Nybom
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Kristianstad, Sweden
| | | | | | - Luca Bianco
- Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Charles Poncet
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Anthony Théron
- Plateforme Gentyane, INRA, UMR 1095 Genetics, Diversity and Ecophysiology of Cereals, Clermont-Ferrand, France
| | - Shigeki Moriya
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Apple Research Station, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Morioka, Japan
| | - Marco C. A. M. Bink
- Wageningen UR, Biometris, Wageningen, Netherlands
- Hendrix Genetics, Boxmeer, Netherlands
| | - François Laurens
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
| | - Stefano Tartarini
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Charles-Eric Durel
- Institut de Recherche en Horticulture et Semences UMR 1345, INRA, SFR 4207 QUASAV, Beaucouzé, France
- Charles-Eric Durel
| |
Collapse
|
45
|
Allard A, Bink MCAM, Martinez S, Kelner JJ, Legave JM, di Guardo M, Di Pierro EA, Laurens F, van de Weg EW, Costes E. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2875-88. [PMID: 27034326 PMCID: PMC4861029 DOI: 10.1093/jxb/erw130] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In temperate trees, growth resumption in spring time results from chilling and heat requirements, and is an adaptive trait under global warming. Here, the genetic determinism of budbreak and flowering time was deciphered using five related full-sib apple families. Both traits were observed over 3 years and two sites and expressed in calendar and degree-days. Best linear unbiased predictors of genotypic effect or interaction with climatic year were extracted from mixed linear models and used for quantitative trait locus (QTL) mapping, performed with an integrated genetic map containing 6849 single nucleotide polymorphisms (SNPs), grouped into haplotypes, and with a Bayesian pedigree-based analysis. Four major regions, on linkage group (LG) 7, LG10, LG12, and LG9, the latter being the most stable across families, sites, and years, explained 5.6-21.3% of trait variance. Co-localizations for traits in calendar days or growing degree hours (GDH) suggested common genetic determinism for chilling and heating requirements. Homologs of two major flowering genes, AGL24 and FT, were predicted close to LG9 and LG12 QTLs, respectively, whereas Dormancy Associated MADs-box (DAM) genes were near additional QTLs on LG8 and LG15. This suggests that chilling perception mechanisms could be common among perennial and annual plants. Progenitors with favorable alleles depending on trait and LG were identified and could benefit new breeding strategies for apple adaptation to temperature increase.
Collapse
Affiliation(s)
- Alix Allard
- Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France Montpellier SupAgro, UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| | - Marco C A M Bink
- Biometris, Wageningen University and Research centre, Droevendaalsesteeg 1, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Sébastien Martinez
- Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| | - Jean-Jacques Kelner
- Montpellier SupAgro, UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| | - Jean-Michel Legave
- Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| | - Mario di Guardo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Erica A Di Pierro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - François Laurens
- INRA, UMR1345, Institut de Recherche en Horticulture et Semences IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QUASAV, F-49071 Beaucouzé, France
| | - Eric W van de Weg
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Evelyne Costes
- Institut National de la Recherche Agronomique (INRA), UMR 1334, AGAP CIRAD-INRA-Montpellier SupAgro, F-34398 Montpellier, France
| |
Collapse
|
46
|
Kumar G, Arya P, Gupta K, Randhawa V, Acharya V, Singh AK. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica). Sci Rep 2016; 6:20695. [PMID: 26856238 PMCID: PMC4746589 DOI: 10.1038/srep20695] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/11/2016] [Indexed: 11/09/2022] Open
Abstract
The MADS-box transcription factors play essential roles in various processes of plant growth and development. In the present study, phylogenetic analysis of 142 apple MADS-box proteins with that of other dicotyledonous species identified six putative Dormancy-Associated MADS-box (DAM) and four putative Flowering Locus C-like (FLC-like) proteins. In order to study the expression of apple MADS-box genes, RNA-seq analysis of 3 apical and 5 spur bud stages during dormancy, 6 flower stages and 7 fruit development stages was performed. The dramatic reduction in expression of two MdDAMs, MdMADS063 and MdMADS125 and two MdFLC-like genes, MdMADS135 and MdMADS136 during dormancy release suggests their role as flowering-repressors in apple. Apple orthologs of Arabidopsis genes, FLOWERING LOCUS T, FRIGIDA, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 and LEAFY exhibit similar expression patterns as reported in Arabidopsis, suggesting functional conservation in floral signal integration and meristem determination pathways. Gene ontology enrichment analysis of predicted targets of DAM revealed their involvement in regulation of reproductive processes and meristematic activities, indicating functional conservation of SVP orthologs (DAM) in apple. This study provides valuable insights into the functions of MADS-box proteins during apple phenology, which may help in devising strategies to improve important traits in apple.
Collapse
Affiliation(s)
- Gulshan Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Preeti Arya
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Khushboo Gupta
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India
| | - Vinay Randhawa
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Vishal Acharya
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176 061 (HP), India.,Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
47
|
Ito A, Saito T, Sakamoto D, Sugiura T, Bai S, Moriguchi T. Physiological differences between bud breaking and flowering after dormancy completion revealed by DAM and FT/TFL1 expression in Japanese pear (Pyrus pyrifolia). TREE PHYSIOLOGY 2016; 36:109-20. [PMID: 26546364 DOI: 10.1093/treephys/tpv115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/02/2015] [Indexed: 05/04/2023]
Abstract
The regulatory mechanisms underlying bud breaking (scale leaf elongation) and flowering in the lateral flower buds of Japanese pear (Pyrus pyrifolia Nakai 'Kosui') are unknown. To more fully characterize these processes, we treated pear trees with different amounts of chilling initiated at different times. Chilling for ∼900 h at 6 °C always induced bud breaking (scale elongation in ≥70% lateral flower bud) when provided between October and February, whereas chilling provided earlier (between October and December) was less effective on flowering (floret growth and development) than later chilling and the flowering rate increased with longer chilling durations. During chilling, the expression of pear DAMs (PpMADS13-1, 13-2 and 13-3) in lateral flower buds decreased as chilling accumulated irrespective of the timing of chilling. In addition, pear TFL1 (PpTFL1-1a) in the lateral flower buds was expressed at higher levels when the time interval for chilling was earlier. On the other hand, during forcing at 15 °C after chilling, the expression pattern of all three PpMADS13 genes was similar among the treatments, and the expression levels seemed lower in the treatment where scale leaves of the lateral flower bud elongated faster, whereas pear FT (PpFT2a) was expressed at higher levels in the buds whose flower clusters elongated more vigorously during forcing. From these results, we infer that flowering time may be mediated via the balance of flowering-related genes FT and TFL1, whereas bud breaking may be regulated via the DAM genes in Japanese pear.
Collapse
Affiliation(s)
- Akiko Ito
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Takanori Saito
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan Present address: Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Daisuke Sakamoto
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Toshihiko Sugiura
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | - Songling Bai
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan Present address: Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, 2-1 Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| |
Collapse
|
48
|
Xing L, Zhang D, Song X, Weng K, Shen Y, Li Y, Zhao C, Ma J, An N, Han M. Genome-Wide Sequence Variation Identification and Floral-Associated Trait Comparisons Based on the Re-sequencing of the 'Nagafu No. 2' and 'Qinguan' Varieties of Apple (Malus domestica Borkh.). FRONTIERS IN PLANT SCIENCE 2016; 7:908. [PMID: 27446138 PMCID: PMC4921462 DOI: 10.3389/fpls.2016.00908] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/08/2016] [Indexed: 05/14/2023]
Abstract
Apple (Malus domestica Borkh.) is a commercially important fruit worldwide. Detailed information on genomic DNA polymorphisms, which are important for understanding phenotypic traits, is lacking for the apple. We re-sequenced two elite apple varieties, 'Nagafu No. 2' and 'Qinguan,' which have different characteristics. We identified many genomic variations, including 2,771,129 single nucleotide polymorphisms (SNPs), 82,663 structural variations (SVs), and 1,572,803 insertion/deletions (INDELs) in 'Nagafu No. 2' and 2,262,888 SNPs, 63,764 SVs, and 1,294,060 INDELs in 'Qinguan.' The 'SNP,' 'INDEL,' and 'SV' distributions were non-random, with variation-rich or -poor regions throughout the genomes. In 'Nagafu No. 2' and 'Qinguan' there were 171,520 and 147,090 non-synonymous SNPs spanning 23,111 and 21,400 genes, respectively; 3,963 and 3,196 SVs in 3,431 and 2,815 genes, respectively; and 1,834 and 1,451 INDELs in 1,681 and 1,345 genes, respectively. Genetic linkage maps of 190 flowering genes associated with multiple flowering pathways in 'Nagafu No. 2,' 'Qinguan,' and 'Golden Delicious,' identified complex regulatory mechanisms involved in floral induction, flower bud formation, and flowering characteristics, which might reflect the genetic variation of the flowering genes. Expression profiling of key flowering genes in buds and leaves suggested that the photoperiod and autonomous flowering pathways are major contributors to the different floral-associated traits between 'Nagafu No. 2' and 'Qinguan.' The genome variation data provided a foundation for the further exploration of apple diversity and gene-phenotype relationships, and for future research on molecular breeding to improve apple and related species.
Collapse
|
49
|
Falavigna VDS, Miotto YE, Porto DD, Anzanello R, Santos HPD, Fialho FB, Margis-Pinheiro M, Pasquali G, Revers LF. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy. PHYSIOLOGIA PLANTARUM 2015; 155:315-329. [PMID: 25809953 DOI: 10.1111/ppl.12338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/06/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Dehydrins (DHN) are proteins involved in plant adaptive responses to abiotic stresses, mainly dehydration. Several studies in perennial crops have linked bud dormancy progression, a process characterized by the inability to initiate growth from meristems under favorable conditions, with DHN gene expression. However, an in-depth characterization of DHNs during bud dormancy progression is still missing. An extensive in silico characterization of the apple DHN gene family was performed. Additionally, we used five different experiments that generated samples with different dormancy status, including genotypes with contrasting dormancy traits, to analyze how DHN genes are being regulated during bud dormancy progression in apple by real-time quantitative polymerase chain reaction (RT-qPCR). Duplication events took place in the diversification of apple DHN family. Additionally, MdDHN genes presented tissue- and bud dormant-specific expression patterns. Our results indicate that MdDHN genes are highly divergent in function, with overlapping levels, and that their expressions are fine-tuned by the environment during the dormancy process in apple.
Collapse
Affiliation(s)
- Vítor da Silveira Falavigna
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yohanna Evelyn Miotto
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Diogo Denardi Porto
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Rafael Anzanello
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Henrique Pessoa dos Santos
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Flávio Bello Fialho
- Laboratory of Plant Physiology, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| | - Márcia Margis-Pinheiro
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Giancarlo Pasquali
- Graduate Program in Cell and Molecular Biology, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luís Fernando Revers
- Laboratory of Plant Molecular Genetics, Centro Nacional de Pesquisa de Uva e Vinho, Empresa Brasileira de Pesquisa Agropecuária, Bento Gonçalves, Brazil
| |
Collapse
|