1
|
Arce RC, Demarchi M, Figueroa N, Delprato ML, Hajirezaei MR, Mayta ML, Lodeyro AF, Krapp AR, Carrillo N. Light and chloroplast redox state modulate the progression of tobacco leaf infection by Pseudomonas syringae pv tabaci. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112512. [PMID: 40221050 DOI: 10.1016/j.plantsci.2025.112512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/14/2025]
Abstract
Light influences plant stress responses, with chloroplasts playing a pivotal role as both energy providers and light sensors. They communicate with the nucleus through multiple retrograde signals, including secondary metabolites and reactive oxygen species (ROS). To investigate the contribution of chloroplast redox biochemistry during biotic interactions, we studied the response of tobacco leaves expressing the alternative electron shuttle flavodoxin to Pseudomonas syringae pathovars displaying different types of plant-pathogen interactions under light and dark conditions. Flavodoxin is reported to limit light-dependent ROS propagation and over-reduction of the photosynthetic electron transport system under stress. Light intensified localized cell death (LCD) in response to the incompatible pathovar tomato (Pto), but slowed disease progression caused by infective pathovar tabaci (Pta). Flavodoxin mitigated light responses during both interactions, including decreased ROS levels, reduced stromule occurrence, and lower phytoalexin production. Similar metabolic profiles were observed in the dark for both strains, with a general up-regulation of sugars, metabolic intermediates, and amino acids. In the light, instead, Pta increased hexoses and intermediates, while Pto decreased them. The results suggest that LCD-like lesions are elicited in the light even during virulent interactions, and that light effects are related to signals originating from the photosynthetic machinery.
Collapse
Affiliation(s)
- Rocío C Arce
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina.
| | - Mariana Demarchi
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina
| | - Nicolás Figueroa
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina
| | - María Laura Delprato
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Corrensstrasse, Seeland 06466, Germany
| | - Martín L Mayta
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina
| | - Anabella F Lodeyro
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina
| | - Adriana R Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina.
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR-UNR/CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario 2000, Argentina.
| |
Collapse
|
2
|
Lin CH, Lee BY, Ou YT, Chiang MJ, Chen CY. Salicylic Acid, Hypersensitive Response and RBOHD-Mediated Hydrogen Peroxide Accumulation Play Key Roles in Black Rot Resistance of Crucifers. PLANT, CELL & ENVIRONMENT 2025; 48:4286-4300. [PMID: 39945095 DOI: 10.1111/pce.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/21/2024] [Accepted: 01/23/2025] [Indexed: 05/06/2025]
Abstract
Black rot caused by hemibiotrophic Xanthomonas campestris pv. campestris (Xcc) is a great problem in crucifer crop production. Various host responses are activated upon Xcc attack; however, their roles in black rot resistance remain ambiguous. In this study, a highly black rot resistance of host plants was achieved by applying a field-screened systemic resistance-eliciting Bacillus velezensis strain 37-1. The contributions of strain 37-1-altered host responses to Xcc resistance were then investigated in Arabidopsis. Hypersensitive response and hydrogen peroxide accumulation were demonstrated beneficial for Xcc infection by using nrg1 and rbohd mutants, histochemical staining against host cell death and reactive oxygen species, detection of antioxidant enzyme activity and RT-qPCR assay. By contrast, salicylic acid was proven essential for black rot suppression by using NahG transformant, mutants impaired in defence hormone synthesis and signalling pathway, and RT-qPCR assay. Additionally, both isochorismate synthase and phenylalanine ammonia-lyase pathways for salicylic acid biosynthesis were found to be involved in resistance to Xcc. These findings improve the knowledge of host defence responses crucial for fighting off hemibiotrophic Xcc.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Bo-Yi Lee
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yun-Ting Ou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Min-Jui Chiang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
3
|
Li S, Zhao T, Chang N, Chen Y, Wang Q, Wang Z, Wei C, Ma J, Zhang Y, Zhang X, Li H. H 2O 2-Dependent Methyl Jasmonate Regulates H 2S-Induced Resistance to Fusarium oxysporum f. sp. niveum Race 2 in Citrullus lanatus. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40421722 DOI: 10.1111/pce.15654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/28/2025]
Abstract
Fusarium wilt, caused by Fusarium oxysporum (Fo), is a destructive fungal disease that reduces crop yield and quality. Hydrogen sulphide (H2S), a critical signalling molecule, modulates plant defence responses; however, its role and mechanism in combating Fo remain elusive. This study reveals that exogenous NaHS (an H2S donor) enhances watermelon resistance to Fusarium oxysporum f. sp. niveum race 2 (FON2), accompanied by elevated hydrogen peroxide (H2O2) and methyl jasmonate (MeJA) levels. Exogenous H2O2 and MeJA also enhance FON2 resistance. Conversely, silencing respiratory burst oxidase homologue F (ClRBOHF) and jasmonic acid carboxyl methyltransferase (ClJMT), key genes for H2O2 and MeJA biosynthesis, respectively, inhibits NaHS-induced resistance to FON2. Deletion of l-cysteine desulfhydrase (ClLCD), a pivotal gene for H2S generation, reduces FON2 resistance, but this reduction is restored by H2O2 or MeJA supplementation. Upon FON2 infection, exogenous H2O2 elevates MeJA levels; however, silencing ClRBOHF suppresses NaHS-induced MeJA accumulation. Furthermore, silencing ClClJMT inhibits H2O2-induced FON2 resistance, while MeJA supplementation rescues the reduced resistance caused by ClRBOHF silencing. Collectively, these findings demonstrate that H2O2-dependent MeJA plays a crucial role in regulating H2S-induced watermelon resistance to FON2. The growing focus on reducing pesticide use highlights the potential of this mechanism for combating Fo sustainably.
Collapse
Affiliation(s)
- Shiyu Li
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Tongshu Zhao
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Ning Chang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yi Chen
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Qi Wang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Zhongyuan Wang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Chunhua Wei
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Jianxiang Ma
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Xian Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
| | - Hao Li
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Joshi S, Joshi R. Quantifying redox signalling regulatory transcriptional dynamics in Nardostachys jatamansi under abiotic stress response. Biochim Biophys Acta Gen Subj 2025; 1869:130788. [PMID: 40054786 DOI: 10.1016/j.bbagen.2025.130788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 04/29/2025]
Abstract
Understanding the responses of Himalayan medicinal plants to multifactorial stresses is crucial in the face of increasing environmental challenges, primarily characterised by frequent temperature and water availability fluctuations. The present study investigates the physiological, biochemical, and transcript variations in the critically endangered Himalayan medicinal plant Nardostachys jatamansi subjected to cold (15 °C and 10 °C for 30 days), drought (6 % PEG for 30 days), and heat stress (30 °C for 24 h). The primary impact of stress was observed through reduced plant biomass and chlorophyll fluorescence. The effects of abiotic stresses were also evident in the modulation of electrolyte leakage, MDA content and H2O2 accumulation. Accumulation of reactive oxygen species was confirmed through DAB and NBT staining, alongside increased DPPH and ABTS radical scavenging activity. Differential expression profiling of the RBOH family transcripts further substantiated the production of ROS. Enhanced enzymatic and non-enzymatic activities were observed under each abiotic stress condition. Additionally, genes specific to the regulatory mevalonate (MVA) pathway (TPS9; HMGR) and the methylerythritol phosphate (MEP) pathway (DXS1; DXR) were found to be differentially regulated. Moreover, differential expression profiling of abiotic stress signalling regulatory transcripts CRLK1, CRLK2, CaM6 and ICE1 was also discovered. These findings provide valuable insights into the physiological and biochemical profiling of N. jatamansi in response to extreme environmental conditions, significantly aiding our understanding of the adaptation strategies of alpine vegetation for their conservation.
Collapse
Affiliation(s)
- Shubham Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
5
|
Yang R, Su C, Xue Z, Wei H, Wang Z, Zhu J, Meng J, Luan Y. Combination of PAMP-induced peptide signaling and its regulator SpWRKY65 boosts tomato resistance to Phytophthora infestans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70098. [PMID: 40089908 DOI: 10.1111/tpj.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/02/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), seriously compromises tomato growth and yield. PAMP-induced peptides (PIPs) are secreted peptides that act as endogenous elicitors, triggering plant immune responses. Our previous research indicated that the exogenous application of PIP1 from Solanum pimpinelifolium L3708, named SpPIP1, enhances tomato resistance to P. infestans. However, little is known about the roles of additional family members in tomato resistance to P. infestans. In addition, there remains a significant gap in understanding the receptors of SpPIPs and the transcription factors (TFs) that regulate SpPIPs signaling in tomato defense, and the combination of SpPIPs signaling and TFs in defending against pathogens is rarely studied. This study demonstrates that the exogenous application of SpPIP-LIKE1 (SpPIPL1) also strengthens tomato resistance by affecting the phenylpropanoid biosynthesis pathway. Both SpPIP1 and SpPIPL1 trigger plant defense responses in a manner dependent on RLK7L. Tomato plants overexpressing the precursors of SpPIP1 and SpPIPL1 (SpprePIP1 and SpprePIPL1) exhibited enhanced expression of pathogenesis-related genes, elevated H2O2 and ABA levels, and increased lignin accumulation. Notably, SpWRKY65 was identified as a transcriptional activator of SpprePIP1 and SpprePIPL1. Disease resistance assays and gene expression analyses revealed that overexpression of SpWRKY65 (OEWRKY65) confers tomato resistance to P. infestans, while wrky65 knockout led to the opposite effect. Intriguingly, transgenic tomato studies showed that either spraying OEWRKY65 with SpPIPs or co-overexpressing SpprePIP1 and SpWRKY65 further augmented tomato resistance, underscoring the potential of gene stacking in enhancing disease resistance. In summary, this study offers new perspectives on controlling late blight and developing tomato varieties with improved resistance. The results emphasize the potential of exogenous SpPIPs application as an eco-friendly strategy for crop protection, laying a theoretical foundation for advancing crop breeding.
Collapse
Affiliation(s)
- Ruirui Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Chenglin Su
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhiyuan Xue
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongbo Wei
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Zhengjie Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiaxuan Zhu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Su GM, Chu LW, Chien CC, Liao PS, Chiu YC, Chang CH, Chu TH, Li CH, Wu CS, Wang JF, Cheng YS, Chang CH, Cheng CP. Tomato NADPH oxidase SlWfi1 interacts with the effector protein RipBJ of Ralstonia solanacearum to mediate host defence. PLANT, CELL & ENVIRONMENT 2024; 47:5007-5020. [PMID: 39132878 DOI: 10.1111/pce.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Reactive oxygen species (ROS) play a crucial role in regulating numerous functions in organisms. Among the key regulators of ROS production are NADPH oxidases, primarily referred to as respiratory burst oxidase homologues (RBOHs). However, our understanding of whether and how pathogens directly target RBOHs has been limited. In this study, we revealed that the effector protein RipBJ, originating from the phytopathogenic bacterium Ralstonia solanacearum, was present in low- to medium-virulence strains but absent in high-virulence strains. Functional genetic assays demonstrated that the expression of ripBJ led to a reduction in bacterial infection. In the plant, RipBJ expression triggered plant cell death and the accumulation of H2O2, while also enhancing host defence against R. solanacearum by modulating multiple defence signalling pathways. Through protein interaction and functional studies, we demonstrated that RipBJ was associated with the plant's plasma membrane and interacted with the tomato RBOH known as SlWfi1, which contributed positively to RipBJ's effects on plants. Importantly, SlWfi1 expression was induced during the early stages following R. solanacearum infection and played a key role in defence against this bacterium. This research uncovers the plant RBOH as an interacting target of a pathogen's effector, providing valuable insights into the mechanisms of plant defence.
Collapse
Affiliation(s)
- Guan-Ming Su
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Wen Chu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chien
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Liao
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chuan Chiu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chi-Hsin Chang
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tai-Hsiang Chu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-Hui Li
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chien-Sheng Wu
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jaw-Fen Wang
- Bacteriology Unit, AVRDC-The World Vegetable Center, Tainan, Taiwan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan
- Global Agriculture Technology and Genomic Science Master Program, International College, National Taiwan University, Taipei, Taiwan
- Master Program for Plant Medicine, College of Bio-Resources & Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Liu S, Wang X, Tang X, Fang W. Histone deacetylase HDAC3 regulates ergosterol production for oxidative stress tolerance in the entomopathogenic and endophytic fungus Metarhizium robertsii. mSystems 2024; 9:e0095324. [PMID: 39287372 PMCID: PMC11494875 DOI: 10.1128/msystems.00953-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Oxidative stress is encountered by fungi in almost all niches, resulting in fungal degeneration or even death. Fungal tolerance to oxidative stress has been extensively studied, but the current understanding of the mechanisms regulating oxidative stress tolerance in fungi remains limited. The entomopathogenic and endophytic fungus Metarhizium robertsii encounters oxidative stress when it infects insects and develops a symbiotic relationship with plants, and we found that host reactive oxygen species (ROSs) greatly limited fungal growth in both insects and plants. We identified a histone H3 deacetylase (HDAC3) that catalyzed the deacetylation of lysine 56 of histone H3. Deleting Hdac3 significantly reduced the tolerance of M. robertsii to oxidative stress from insects and plants, thereby decreasing fungal ability to colonize the insect hemocoel and plant roots. HDAC3 achieved this by regulating the expression of three genes in the ergosterol biosynthesis pathway, which includes the lanosterol synthase gene Las1. The deletion of Hdac3 or Las1 reduced the ergosterol content and impaired cell membrane integrity. This resulted in an increase in ROS accumulation in fungal cells that were thus more sensitive to oxidative stress. We further showed that HDAC3 regulated the expression of the three ergosterol biosynthesis genes in an indirect manner. Our work significantly advances insights into the epigenetic regulation of oxidative stress tolerance and the interactions between M. robertsii and its plant and insect hosts.IMPORTANCEOxidative stress is a common challenge encountered by fungi that have evolved sophisticated mechanisms underlying tolerance to this stress. Although fungal tolerance to oxidative stress has been extensively investigated, the current understanding of the mechanisms for fungi to regulate oxidative stress tolerance remains limited. In the model entomopathogenic and plant symbiotic fungus Metarhizium robertsii, we found that the histone H3 deacetylase HDAC3 regulates the production of ergosterol, an essential cell membrane component. This maintains the cell membrane integrity to resist the oxidative stress derived from the insect and plant hosts for successful infection of insects and development of symbiotic associates with plants. Our work provides significant insights into the regulation of oxidative stress tolerance in M. robertsii and its interactions with insects and plants.
Collapse
Affiliation(s)
- Shuxing Liu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xinmiao Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Xingyuan Tang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Nguyen TH, Kim MJ, Kim J. The transcription factor LBD10 sustains pollen tube growth and integrity by modulating reactive oxygen species homeostasis via the regulation of flavonol biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:131-146. [PMID: 39113420 DOI: 10.1111/nph.20029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/11/2024] [Indexed: 09/17/2024]
Abstract
Reproduction in angiosperms relies on the precise growth of pollen tubes, facilitating the delivery of sperm cells to the ovule for double fertilization. LATERAL ORGAN BOUNDARIES DOMAIN10 (LBD10), a plant-specific transcription factor, plays a pivotal role in Arabidopsis pollen development. Here, we uncovered LBD10's function in sustaining pollen tube growth and integrity. The lbd10 mutant exhibited elevated levels of reactive oxygen species (ROS) and hydrogen peroxide (H2O2) in both pollen grains and tubes, leading to compromised pollen tube growth. The inhibition of ROS synthesis and scavenging of excess ROS with an antioxidant treatment each alleviated these defects in lbd10. The lbd10 mutant displayed reduced flavonol accumulation in both pollen grains and tubes. All the altered phenotypes of lbd10 were complemented by expressing LBD10 under its native promoter. Exogenous application of flavonoids recused the defects in pollen tube growth and integrity in lbd10, along with reducing the excess levels of ROS and H2O2. LBD10 directly binds the promoters of key flavonol biosynthesis genes in chromatin and promotes reporter gene expression in Arabidopsis mesophyll protoplasts. Our findings indicate that LBD10 modulates ROS homeostasis by transcriptionally activating genes crucial for flavonol biosynthesis, thereby maintaining pollen tube growth and integrity.
Collapse
Affiliation(s)
- Thu-Hien Nguyen
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
| | - Min Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
| | - Jungmook Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| |
Collapse
|
9
|
Wang R, Li J, Liang Y. Role of ROS signaling in the plant defense against vascular pathogens. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102617. [PMID: 39163783 DOI: 10.1016/j.pbi.2024.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Reactive oxygen species (ROS) is a collective term for highly reactive oxygen derivatives, including singlet oxygen, hydroxyl radicals, superoxide anions, and hydrogen peroxide. In plants, ROS are produced in apoplasts, chloroplasts, mitochondria, and peroxisomes. Although ROS are toxic when their levels exceed a certain threshold, low-concentration ROS can serve as essential signaling molecules for plant growth and development, as well as plant responses to abiotic and biotic stresses. Various aspects of the role of ROS in plants have been discussed in previous reviews. In this review, we first summarize recent progress in the regulatory mechanisms of apoplastic ROS signaling and then propose its potential roles in plant defense against vascular pathogens to provide new ideas for the prevention and control of vascular diseases.
Collapse
Affiliation(s)
- Ran Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianwei Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory for Agricultural Microbiome of the Ministry of Agriculture and Rural Affairs, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Giulietti S, Bigini V, Savatin DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4512-4534. [PMID: 37950493 DOI: 10.1093/jxb/erad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Plants continuously monitor the environment to detect changing conditions and to properly respond, avoiding deleterious effects on their fitness and survival. An enormous number of cell surface and intracellular immune receptors are deployed to perceive danger signals associated with microbial infections. Ligand binding by cognate receptors represents the first essential event in triggering plant immunity and determining the outcome of the tissue invasion attempt. Reactive oxygen and nitrogen species (ROS/RNS) are secondary messengers rapidly produced in different subcellular localizations upon the perception of immunogenic signals. Danger signal transduction inside the plant cells involves cytoskeletal rearrangements as well as several organelles and interactions between them to activate key immune signaling modules. Such immune processes depend on ROS and RNS accumulation, highlighting their role as key regulators in the execution of the immune cellular program. In fact, ROS and RNS are synergic and interdependent intracellular signals required for decoding danger signals and for the modulation of defense-related responses. Here we summarize current knowledge on ROS/RNS production, compartmentalization, and signaling in plant cells that have perceived immunogenic danger signals.
Collapse
Affiliation(s)
- Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
11
|
Kim H, Lee N, Kim Y, Choi G. The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins. THE PLANT CELL 2024; 36:2778-2797. [PMID: 38593049 PMCID: PMC11289632 DOI: 10.1093/plcell/koae110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Zhang Y, Yuan Y, Xi H, Zhang Y, Gao C, Ma M, Huang Q, Li F, Yang Z. Promotion of apoplastic oxidative burst by artificially selected GhCBSX3A enhances Verticillium dahliae resistance in upland cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2154-2168. [PMID: 38558071 DOI: 10.1111/tpj.16736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Verticillium wilt (VW) is a devasting disease affecting various plants, including upland cotton, a crucial fiber crop. Despite its impact, the genetic basis underlying cotton's susceptibility or defense against VW remains unclear. Here, we conducted a genome-wide association study on VW phenotyping in upland cotton and identified a locus on A13 that is significantly associated with VW resistance. We then identified a cystathionine β-synthase domain gene at A13 locus, GhCBSX3A, which was induced by Verticillium dahliae. Functional analysis, including expression silencing in cotton and overexpression in Arabidopsis thaliana, confirmed that GhCBSX3A is a causal gene at the A13 locus, enhancing SAR-RBOHs-mediated apoplastic oxidative burst. We found allelic variation on the TATA-box of GhCBSX3A promoter attenuated its expression in upland cotton, thereby weakening VW resistance. Interestingly, we discovered that altered artificial selection of GhCBSX3A_R (an elite allele for VW) under different VW pressures during domestication and other improved processes allows specific human needs to be met. Our findings underscore the importance of GhCBSX3A in response to VW, and we propose a model for defense-associated genes being selected depending on the pathogen's pressure. The identified locus and gene serve as promising targets for VW resistance enhancement in cotton through genetic engineering.
Collapse
Affiliation(s)
- Yihao Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center and Center for Crop Genome Engineering, Zhengzhou, 450001, Henan, China
| | - Yuan Yuan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hongfang Xi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yaning Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenxu Gao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Meng Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qian Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Zhaoen Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| |
Collapse
|
13
|
Chien CC, Chang CH, Ting HM. A novel lectin receptor kinase gene, AtG-LecRK-I.2, enhances bacterial pathogen resistance through regulation of stomatal immunity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112071. [PMID: 38508495 DOI: 10.1016/j.plantsci.2024.112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/24/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
The S-locus lectin receptor kinases (G-LecRKs) have been suggested as receptors for microbe/damage-associated molecular patterns (MAMPs/DAMPs) and to be involved in the pathogen defense responses, but the functions of most G-LecRKs in biotic stress response have not been characterized. Here, we identified a member of this family, G-LecRK-I.2, that positively regulates flg22- and Pseudomonas syringae pv. tomato (Pst) DC3000-induced stomatal closure. G-LecRK-I.2 was rapidly phosphorylated under flg22 treatment and could interact with the FLS2/BAK1 complex. Two T-DNA insertion lines, glecrk-i.2-1 and glecrk-i.2-2, had lower levels of reactive oxygen species (ROS) and nitric oxide (NO) production in guard cells, as compared with the wild-type Col-0, under Pst DC3000 infection. Also, the immunity marker genes CBP60g and PR1 were induced at lower levels under Pst DC3000 hrcC- infection in glecrk-i.2-1 and glecrk-i.2-2. The GUS reporter system also revealed that G-LecRK-I.2 was expressed only in guard cells. We also found that G-LecRK-I.2 could interact H+-ATPase AHA1 to regulate H+-ATPase activity in the guard cells. Taken together, our results show that G-LecRK-I.2 plays an important role in regulating stomatal closure under flg22 and Pst DC3000 treatments and in ROS and NO signaling specifically in guard cells.
Collapse
Affiliation(s)
- Chih-Cheng Chien
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei, Taiwan; Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
| | - Chuan-Hsin Chang
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Hieng-Ming Ting
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Ang MCY, Saju JM, Porter TK, Mohaideen S, Sarangapani S, Khong DT, Wang S, Cui J, Loh SI, Singh GP, Chua NH, Strano MS, Sarojam R. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun 2024; 15:2943. [PMID: 38580637 PMCID: PMC10997764 DOI: 10.1038/s41467-024-47082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jolly Madathiparambil Saju
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Thomas K Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sayyid Mohaideen
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Sreelatha Sarangapani
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Rajani Sarojam
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
15
|
Berlanga DJ, Molina A, Torres MÁ. Mitogen-activated protein kinase phosphatase 1 controls broad spectrum disease resistance in Arabidopsis thaliana through diverse mechanisms of immune activation. FRONTIERS IN PLANT SCIENCE 2024; 15:1374194. [PMID: 38576784 PMCID: PMC10993396 DOI: 10.3389/fpls.2024.1374194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Arabidopsis thaliana Mitogen-activated protein Kinase Phosphatase 1 (MKP1) negatively balances production of reactive oxygen species (ROS) triggered by Microbe-Associated Molecular Patterns (MAMPs) through uncharacterized mechanisms. Accordingly, ROS production is enhanced in mkp1 mutant after MAMP treatment. Moreover, mkp1 plants show a constitutive activation of immune responses and enhanced disease resistance to pathogens with distinct colonization styles, like the bacterium Pseudomonas syringae pv. tomato DC3000, the oomycete Hyaloperonospora arabidopsidis Noco2 and the necrotrophic fungus Plectosphaerella cucumerina BMM. The molecular basis of this ROS production and broad-spectrum disease resistance controlled by MKP1 have not been determined. Here, we show that the enhanced ROS production in mkp1 is not due to a direct interaction of MKP1 with the NADPH oxidase RBOHD, nor is it the result of the catalytic activity of MKP1 on RBHOD phosphorylation sites targeted by BOTRYTIS INDUCED KINASE 1 (BIK1) protein, a positive regulator of RBOHD-dependent ROS production. The analysis of bik1 mkp1 double mutant phenotypes suggested that MKP1 and BIK1 targets are different. Additionally, we showed that phosphorylation residues stabilizing MKP1 are essential for its functionality in immunity. To further decipher the molecular basis of disease resistance responses controlled by MKP1, we generated combinatory lines of mkp1-1 with plants impaired in defensive pathways required for disease resistance to pathogen: cyp79B2 cyp79B3 double mutant defective in synthesis of tryptophan-derived metabolites, NahG transgenic plant that does not accumulate salicylic acid, aba1-6 mutant impaired in abscisic acid (ABA) biosynthesis, and abi1 abi2 hab1 triple mutant impaired in proteins described as ROS sensors and that is hypersensitive to ABA. The analysis of these lines revealed that the enhanced resistance displayed by mkp1-1 is altered in distinct mutant combinations: mkp1-1 cyp79B2 cyp79B3 fully blocked mkp1-1 resistance to P. cucumerina, whereas mkp1-1 NahG displays partial susceptibility to H. arabidopsidis, and mkp1-1 NahG, mkp1-1 aba1-6 and mkp1-1 cyp79B2 cyp79B3 showed compromised resistance to P. syringae. These results suggest that MKP1 is a component of immune responses that does not directly interact with RBOHD but rather regulates the status of distinct defensive pathways required for disease resistance to pathogens with different lifestyles.
Collapse
Affiliation(s)
- Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
- Center of Excellence for Plant Environment Interactions (CEPEI), Madrid, Spain
| |
Collapse
|
16
|
Robuschi L, Mariani O, Perk EA, Cerrudo I, Villarreal F, Laxalt AM. Arabidopsis thaliana phosphoinositide-specific phospholipase C 2 is required for Botrytis cinerea proliferation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111971. [PMID: 38160760 DOI: 10.1016/j.plantsci.2023.111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Phospholipase C (PLC) plays a key role in lipid signaling during plant development and stress responses. PLC activation is one of the earliest responses during pathogen perception. Arabidopsis thaliana contains seven PLC encoding genes (AtPLC1 to AtPLC7) and two pseudogenes (AtPLC8 and AtPLC9), being AtPLC2 the most abundant isoform with constitutive expression in all plant organs. PLC has been linked to plant defense signaling, in particular to the production of reactive oxygen species (ROS). Previously, we demonstrated that AtPLC2 is involved in ROS production via the NADPH oxidase isoforms RBOHD activation during stomata plant immunity. Here we studied the role of AtPLC2 on plant resistance against the necrotrophic fungus Botrytis cinerea, a broad host-range and serious agricultural pathogen. We show that the AtPLC2-silenced (amiR PLC2) or null mutant (plc2-1) plants developed smaller B. cinerea lesions. Moreover, plc2-1 showed less ROS production and an intensified SA-dependent signaling upon infection, indicating that B. cinerea uses AtPLC2-triggered responses for a successful proliferation. Therefore, AtPLC2 is a susceptibility (S) gene that facilitates B. cinerea infection and proliferation.
Collapse
Affiliation(s)
- Luciana Robuschi
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Oriana Mariani
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse, 06120 Halle (Saale), Germany
| | - Enzo A Perk
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Ignacio Cerrudo
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Fernando Villarreal
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina.
| |
Collapse
|
17
|
Sharma Y, Ishu, Shumayla, Dixit S, Singh K, Upadhyay SK. Decoding the features and potential roles of respiratory burst oxidase homologs in bread wheat. CURRENT PLANT BIOLOGY 2024; 37:100315. [DOI: 10.1016/j.cpb.2023.100315] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
18
|
Begum K, Das A, Ahmed R, Akhtar S, Kulkarni R, Banu S. Genome-wide analysis of respiratory burst oxidase homolog ( Rboh) genes in Aquilaria species and insight into ROS-mediated metabolites biosynthesis and resin deposition. FRONTIERS IN PLANT SCIENCE 2024; 14:1326080. [PMID: 38405033 PMCID: PMC10893762 DOI: 10.3389/fpls.2023.1326080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/18/2023] [Indexed: 02/27/2024]
Abstract
Respiratory burst oxidase homolog (Rboh) generates reactive oxygen species (ROS) as a defense response during biotic and abiotic stress. In Aquilaria plants, wounding and fungal infection result in biosynthesis and deposition of secondary metabolites as defense responses, which later form constituents of fragrant resinous agarwood. During injury and fungal invasion, Aquilaria tree generates ROS species via the Rboh enzymes. Despite the implication of Rboh genes in agarwood formation, no comprehensive genomic-level study of the Rboh gene family in Aquilaria is present. A systematic illustration of their role during stress and involvement in initiating signal cascades for agarwood metabolite biosynthesis is missing. In this study, 14 Rboh genes were retrieved from genomes of two Aquilaria species, A. agallocha and A. sinensis, and were classified into five groups. The promoter regions of the genes had abundant of stress-responsive elements. Protein-protein network and in silico expression analysis suggested their functional association with MAPK proteins and transcription factors such as WRKY and MYC2. The study further explored the expression profiles of Rboh genes and found them to be differentially regulated in stress-induced callus and stem tissue, suggesting their involvement in ROS generation during stress in Aquilaria. Overall, the study provides in-depth insight into two Rboh genes, AaRbohC and AaRbohA, highlighting their role in defense against fungal and abiotic stress, and likely during initiation of agarwood formation through modulation of genes involved in secondary metabolites biosynthesis. The findings presented here offer valuable information about Rboh family members, which can be leveraged for further investigations into ROS-mediated regulation of agarwood formation in Aquilaria species.
Collapse
Affiliation(s)
- Khaleda Begum
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Ankur Das
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Raja Ahmed
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Suraiya Akhtar
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sofia Banu
- Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
19
|
Goto Y, Maki N, Sklenar J, Derbyshire P, Menke FLH, Zipfel C, Kadota Y, Shirasu K. The phagocytosis oxidase/Bem1p domain-containing protein PB1CP negatively regulates the NADPH oxidase RBOHD in plant immunity. THE NEW PHYTOLOGIST 2024; 241:1763-1779. [PMID: 37823353 DOI: 10.1111/nph.19302] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Perception of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors activates RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) through direct phosphorylation by BOTRYTIS-INDUCED KINASE 1 (BIK1) and induces the production of reactive oxygen species (ROS). RBOHD activity must be tightly controlled to avoid the detrimental effects of ROS, but little is known about RBOHD downregulation. To understand the regulation of RBOHD, we used co-immunoprecipitation of RBOHD with mass spectrometry analysis and identified PHAGOCYTOSIS OXIDASE/BEM1P (PB1) DOMAIN-CONTAINING PROTEIN (PB1CP). PB1CP negatively regulates RBOHD and the resistance against the fungal pathogen Colletotrichum higginsianum. PB1CP competes with BIK1 for binding to RBOHD in vitro. Furthermore, PAMP treatment enhances the PB1CP-RBOHD interaction, thereby leading to the dissociation of phosphorylated BIK1 from RBOHD in vivo. PB1CP localizes at the cell periphery and PAMP treatment induces relocalization of PB1CP and RBOHD to the same small endomembrane compartments. Additionally, overexpression of PB1CP in Arabidopsis leads to a reduction in the abundance of RBOHD protein, suggesting the possible involvement of PB1CP in RBOHD endocytosis. We found PB1CP, a novel negative regulator of RBOHD, and revealed its possible regulatory mechanisms involving the removal of phosphorylated BIK1 from RBOHD and the promotion of RBOHD endocytosis.
Collapse
Affiliation(s)
- Yukihisa Goto
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Noriko Maki
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Frank L H Menke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Yasuhiro Kadota
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science (CSRS), Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
20
|
Zhang H, Yang Z, Cheng G, Luo T, Zeng K, Jiao W, Zhou Y, Huang G, Zhang J, Xu J. Sugarcane mosaic virus employs 6K2 protein to impair ScPIP2;4 transport of H2O2 to facilitate virus infection. PLANT PHYSIOLOGY 2024; 194:715-731. [PMID: 37930811 DOI: 10.1093/plphys/kiad567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Sugarcane mosaic virus (SCMV), one of the main pathogens causing sugarcane mosaic disease, is widespread in sugarcane (Saccharum spp. hybrid) planting areas and causes heavy yield losses. RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) NADPH oxidases and plasma membrane intrinsic proteins (PIPs) have been associated with the response to SCMV infection. However, the underlying mechanism is barely known. In the present study, we demonstrated that SCMV infection upregulates the expression of ScRBOHs and the accumulation of hydrogen peroxide (H2O2), which inhibits SCMV replication. All eight sugarcane PIPs (ScPIPs) interacted with SCMV-encoded protein 6K2, whereby two PIP2s (ScPIP2;1 and ScPIP2;4) were verified as capable of H2O2 transport. Furthermore, we revealed that SCMV-6K2 interacts with ScPIP2;4 via transmembrane domain 5 to interfere with the oligomerization of ScPIP2;4, subsequently impairing ScPIP2;4 transport of H2O2. This study highlights a mechanism adopted by SCMV to employ 6K2 to counteract the host resistance mediated by H2O2 to facilitate virus infection and provides potential molecular targets for engineering sugarcane resistance against SCMV.
Collapse
Affiliation(s)
- Hai Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Zongtao Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Guangyuan Cheng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Tingxu Luo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Kang Zeng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Wendi Jiao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Yingshuan Zhou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Guoqiang Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning 530005, P. R. China
| | - Jingsheng Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
| |
Collapse
|
21
|
Yi SY, Nekrasov V, Ichimura K, Kang SY, Shirasu K. Plant U-box E3 ligases PUB20 and PUB21 negatively regulate pattern-triggered immunity in Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 114:7. [PMID: 38265485 DOI: 10.1007/s11103-023-01409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
KEY MESSAGE Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs. Here, we show that both PUB20 and PUB21 negatively regulate innate immunity in plants. Loss of PUB20 and PUB21 function leads to enhanced resistance to surface inoculation with the virulent bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the resistance levels remain unaffected after infiltration inoculation, suggesting that PUB20 and PUB21 primarily function during the early defense stages. The enhanced resistance to Pst DC3000 in PUB mutant plants (pub20-1, pub21-1, and pub20-1/pub21-1) correlates with extensive flg22-triggered reactive oxygen production, strong MPK3 activation, and enhanced transcriptional activation of early immune response genes. Additionally, PUB mutant plants (except pub21-1) exhibit constitutive stomatal closure after Pst DC3000 inoculation, implying the significant role of PUB20 in stomatal immunity. Comparative analyses of flg22 responses between PUB mutants and wild-type plants reveals that the robust activation of the pattern-induced immune responses may enhance resistance against Pst DC3000. Notably, the hypersensitivity responses triggered by RPM1/avrRpm1 and RPS2/avrRpt2 are independent of PUB20 and PUB21. These results suggest that PUB20 and PUB21 knockout mutations affect bacterial invasion, likely during the early stages, acting as negative regulators of plant immunity.
Collapse
Affiliation(s)
- So Young Yi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, 32439, Republic of Korea.
| | - Vladimir Nekrasov
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, UK
| | - Kazuya Ichimura
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, 32439, Republic of Korea.
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, 32439, Republic of Korea.
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
22
|
Wu R, Pan X, Li W, Zhang Z, Guo Y. Phosphorylation of Thr-225 and Ser-262 on ERD7 Promotes Age-Dependent and Stress-Induced Leaf Senescence through the Regulation of Hydrogen Peroxide Accumulation in Arabidopsis thaliana. Int J Mol Sci 2024; 25:1328. [PMID: 38279327 PMCID: PMC10815956 DOI: 10.3390/ijms25021328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
As the final stage of leaf development, leaf senescence is affected by a variety of internal and external signals including age and environmental stresses. Although significant progress has been made in elucidating the mechanisms of age-dependent leaf senescence, it is not clear how stress conditions induce a similar process. Here, we report the roles of a stress-responsive and senescence-induced gene, ERD7 (EARLY RESPONSIVE TO DEHYDRATION 7), in regulating both age-dependent and stress-induced leaf senescence in Arabidopsis. The results showed that the leaves of erd7 mutant exhibited a significant delay in both age-dependent and stress-induced senescence, while transgenic plants overexpressing the gene exhibited an obvious accelerated leaf senescence. Furthermore, based on the results of LC-MS/MS and PRM quantitative analyses, we selected two phosphorylation sites, Thr-225 and Ser-262, which have a higher abundance during senescence, and demonstrated that they play a key role in the function of ERD7 in regulating senescence. Transgenic plants overexpressing the phospho-mimetic mutant of the activation segment residues ERD7T225D and ERD7T262D exhibited a significantly early senescence, while the inactivation segment ERD7T225A and ERD7T262A displayed a delayed senescence. Moreover, we found that ERD7 regulates ROS accumulation by enhancing the expression of AtrbohD and AtrbohF, which is dependent on the critical residues, i.e., Thr-225 and Ser-262. Our findings suggest that ERD7 is a positive regulator of senescence, which might function as a crosstalk hub between age-dependent and stress-induced leaf senescence.
Collapse
Affiliation(s)
- Rongrong Wu
- College of Agriculture, Qingdao Agricultural University, Qingdao 266000, China;
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; (X.P.); (W.L.)
| | - Xiaolu Pan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; (X.P.); (W.L.)
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; (X.P.); (W.L.)
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; (X.P.); (W.L.)
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266000, China; (X.P.); (W.L.)
| |
Collapse
|
23
|
Zhu Y, Su H, Liu XX, Sun JF, Xiang L, Liu YJ, Hu ZW, Xiong XY, Yang XM, Bhutto SH, Li GB, Peng YY, Wang H, Shen X, Zhao ZX, Zhang JW, Huang YY, Fan J, Wang WM, Li Y. Identification of NADPH Oxidase Genes Crucial for Rice Multiple Disease Resistance and Yield Traits. RICE (NEW YORK, N.Y.) 2024; 17:1. [PMID: 38170415 PMCID: PMC10764683 DOI: 10.1186/s12284-023-00678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.
Collapse
Affiliation(s)
- Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Fen Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Jing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhang-Wei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sadam Hussain Bhutto
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan-Ying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
24
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
25
|
Dobrogojski J, Nguyen VH, Kowalska J, Borek S, Pietrowska-Borek M. The Plasma Membrane Purinoreceptor P2K1/DORN1 Is Essential in Stomatal Closure Evoked by Extracellular Diadenosine Tetraphosphate (Ap 4A) in Arabidopsis thaliana. Int J Mol Sci 2023; 24:16688. [PMID: 38069010 PMCID: PMC10706190 DOI: 10.3390/ijms242316688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Dinucleoside polyphosphates (NpnNs) are considered novel signalling molecules involved in the induction of plant defence mechanisms. However, NpnN signal recognition and transduction are still enigmatic. Therefore, the aim of our research was the identification of the NpnN receptor and signal transduction pathways evoked by these nucleotides. Earlier, we proved that purine and pyrimidine NpnNs differentially affect the phenylpropanoid pathway in Vitis vinifera suspension-cultured cells. Here, we report, for the first time, that both diadenosine tetraphosphate (Ap4A) and dicytidine tetraphosphate (Cp4C)-induced stomatal closure in Arabidopsis thaliana. Moreover, we showed that plasma membrane purinoreceptor P2K1/DORN1 (does not respond to nucleotide 1) is essential for Ap4A-induced stomata movements but not for Cp4C. Wild-type Col-0 and the dorn1-3 A. thaliana knockout mutant were used. Examination of the leaf epidermis dorn1-3 mutant provided evidence that P2K1/DORN1 is a part of the signal transduction pathway in stomatal closure evoked by extracellular Ap4A but not by Cp4C. Reactive oxygen species (ROS) are involved in signal transduction caused by Ap4A and Cp4C, leading to stomatal closure. Ap4A induced and Cp4C suppressed the transcriptional response in wild-type plants. Moreover, in dorn1-3 leaves, the effect of Ap4A on gene expression was impaired. The interaction between P2K1/DORN1 and Ap4A leads to changes in the transcription of signalling hubs in signal transduction pathways.
Collapse
Affiliation(s)
- Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Van Hai Nguyen
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (V.H.N.); (J.K.)
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland; (V.H.N.); (J.K.)
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| |
Collapse
|
26
|
Truong TTT, Chiu CC, Chen JY, Su PY, Nguyen TP, Trinh NN, Mimura T, Lee RH, Chang CH, Huang HJ. Uncovering molecular mechanisms involved in microbial volatile compounds-induced stomatal closure in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2023; 113:143-155. [PMID: 37985583 DOI: 10.1007/s11103-023-01379-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/18/2023] [Indexed: 11/22/2023]
Abstract
Microbial volatile compounds (mVCs) may cause stomatal closure to limit pathogen invasion as part of plant innate immune response. However, the mechanisms of mVC-induced stomatal closure remain unclear. In this study, we co-cultured Enterobacter aerogenes with Arabidopsis (Arabidopsis thaliana) seedlings without direct contact to initiate stomatal closure. Experiments using the reactive oxygen species (ROS)-sensitive fluorescent dye, H2DCF-DA, showed that mVCs from E. aerogenes enhanced ROS production in guard cells of wild-type plants. The involvement of ROS in stomatal closure was then demonstrated in an ROS production mutant (rbohD). In addition, we identified two stages of signal transduction during E. aerogenes VC-induced stomatal closure by comparing the response of wild-type Arabidopsis with a panel of mutants. In the early stage (3 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and receptor-like kinase THESEUS1 mutant (the1-1) but not in rbohD, plant hormone-related mutants (nced3, erf4, jar1-1), or MAPK kinase mutants (mkk1 and mkk3). However, in the late stage (24 h exposure), E. aerogenes VCs induced stomatal closure in wild-type and rbohD but not in nced3, erf4, jar1-1, the1-1, mkk1 or mkk3. Taken together, our results suggest that E. aerogenes mVC-induced plant immune responses modulate stomatal closure in Arabidopsis by a multi-phase mechanism.
Collapse
Affiliation(s)
- Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Faculty of Technology, The University of Danang-Campus in Kontum, The University of Danang, Kon Tum City, 580000, Vietnam
| | - Chi-Chou Chiu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Ngoc-Nam Trinh
- Industrial University of Ho Chi Minh City, No. 12, Nguyen Van Bao, Ho Chi Minh City, Vietnam
| | - Tetsuro Mimura
- Kyoto University of Advanced Science, Kameoka, Kyoto, 621-8555, Japan
| | - Ruey-Hua Lee
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Ching-Han Chang
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan, 701, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University and Academia Sinica, No. 1, University Road, Tainan, 701, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
| |
Collapse
|
27
|
Arnaud D, Deeks MJ, Smirnoff N. RBOHF activates stomatal immunity by modulating both reactive oxygen species and apoplastic pH dynamics in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:404-415. [PMID: 37421599 PMCID: PMC10952706 DOI: 10.1111/tpj.16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Stomatal defences are important for plants to prevent pathogen entry and further colonisation of leaves. Apoplastic reactive oxygen species (ROS) generated by NADPH oxidases and apoplastic peroxidases play an important role in activating stomatal closure upon perception of bacteria. However, downstream events, particularly the factors influencing cytosolic hydrogen peroxide (H2 O2 ) signatures in guard cells are poorly understood. We used the H2 O2 sensor roGFP2-Orp1 and a ROS-specific fluorescein probe to study intracellular oxidative events during stomatal immune response using Arabidopsis mutants involved in the apoplastic ROS burst. Surprisingly, the NADPH oxidase mutant rbohF showed over-oxidation of roGFP2-Orp1 by a pathogen-associated molecular pattern (PAMP) in guard cells. However, stomatal closure was not tightly correlated with high roGFP2-Orp1 oxidation. In contrast, RBOHF was necessary for PAMP-mediated ROS production measured by a fluorescein-based probe in guard cells. Unlike previous reports, the rbohF mutant, but not rbohD, was impaired in PAMP-triggered stomatal closure resulting in defects in stomatal defences against bacteria. Interestingly, RBOHF also participated in PAMP-induced apoplastic alkalinisation. The rbohF mutants were also partly impaired in H2 O2 -mediated stomatal closure at 100 μm while higher H2 O2 concentration up to 1 mm did not promote stomatal closure in wild-type plants. Our results provide novel insights on the interplay between apoplastic and cytosolic ROS dynamics and highlight the importance of RBOHF in plant immunity.
Collapse
Affiliation(s)
- Dominique Arnaud
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterEX4 4QDUK
| | - Michael J. Deeks
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterEX4 4QDUK
| | - Nicholas Smirnoff
- Biosciences, Faculty of Health and Life SciencesUniversity of ExeterExeterEX4 4QDUK
| |
Collapse
|
28
|
Ali S, Tyagi A, Bae H. ROS interplay between plant growth and stress biology: Challenges and future perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108032. [PMID: 37757722 DOI: 10.1016/j.plaphy.2023.108032] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
In plants, reactive oxygen species (ROS) have emerged as a multifunctional signaling molecules that modulate diverse stress and growth responses. Earlier studies on ROS in plants primarily focused on its toxicity and ROS-scavenging processes, but recent findings are offering new insights on its role in signal perception and transduction. Further, the interaction of cell wall receptors, calcium channels, HATPase, protein kinases, and hormones with NADPH oxidases (respiratory burst oxidase homologues (RBOHs), provides concrete evidence that ROS regulates major signaling cascades in different cellular compartments related to stress and growth responses. However, at the molecular level there are many knowledge gaps regarding how these players influence ROS signaling and how ROS regulate them during growth and stress events. Furthermore, little is known about how plant sensors or receptors detect ROS under various environmental stresses and induce subsequent signaling cascades. In light of this, we provided an update on the role of ROS signaling in plant growth and stress biology. First, we focused on ROS signaling, its production and regulation by cell wall receptor like kinases. Next, we discussed the interplay between ROS, calcium and hormones, which forms a major signaling trio regulatory network of signal perception and transduction. We also provided an overview on ROS and nitric oxide (NO) crosstalk. Furthermore, we emphasized the function of ROS signaling in biotic, abiotic and mechanical stresses, as well as in plant growth and development. Finally, we conclude by highlighting challenges and future perspectives of ROS signaling in plants that warrants future investigation.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
29
|
Vetoshkina D, Borisova-Mubarakshina M. Reversible protein phosphorylation in higher plants: focus on state transitions. Biophys Rev 2023; 15:1079-1093. [PMID: 37974979 PMCID: PMC10643769 DOI: 10.1007/s12551-023-01116-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.
Collapse
Affiliation(s)
- D.V. Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| | - M.M. Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| |
Collapse
|
30
|
Wang H, Gao Z, Chen X, Li E, Li Y, Zhang C, Hou X. BcWRKY22 Activates BcCAT2 to Enhance Catalase (CAT) Activity and Reduce Hydrogen Peroxide (H 2O 2) Accumulation, Promoting Thermotolerance in Non-Heading Chinese Cabbage ( Brassica campestris ssp . chinensis). Antioxidants (Basel) 2023; 12:1710. [PMID: 37760013 PMCID: PMC10525746 DOI: 10.3390/antiox12091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
WRKY transcription factors (TFs) participate in plant defense mechanisms against biological and abiotic stresses. However, their regulatory role in heat resistance is still unclear in non-heading Chinese cabbage. Here, we identified the WRKY-IIe gene BcWRKY22(BraC09g001080.1), which is activated under high temperatures and plays an active role in regulating thermal stability, through transcriptome analysis. We further discovered that the BcWRKY22 protein is located in the nucleus and demonstrates transactivation activity in both the yeast and plant. Additionally, our studies showed that the transient overexpression of BcWRKY22 in non-heading Chinese cabbage activates the expression of catalase 2 (BcCAT2), enhances CAT enzyme activity, and reduces Hydrogen Peroxide (H2O2) accumulation under heat stress conditions. In addition, compared to its wild-type (WT) counterparts, Arabidopsis thaliana heterologously overexpresses BcWRKY22, improving thermotolerance. When the BcWRKY22 transgenic root was obtained, under heat stress, the accumulation of H2O2 was reduced, while the expression of catalase 2 (BcCAT2) was upregulated, thereby enhancing CAT enzyme activity. Further analysis revealed that BcWRKY22 directly activates the expression of BcCAT2 (BraC08g016240.1) by binding to the W-box element distributed within the promoter region of BcCAT2. Collectively, our findings suggest that BcWRKY22 may serve as a novel regulator of the heat stress response in non-heading Chinese cabbage, actively contributing to the establishment of thermal tolerance by upregulating catalase (CAT) activity and downregulating H2O2 accumulation via BcCAT2 expression.
Collapse
Affiliation(s)
- Haiyan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Z.G.); (X.C.); (E.L.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Zhanyuan Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Z.G.); (X.C.); (E.L.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Xiaoshan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Z.G.); (X.C.); (E.L.); (Y.L.)
| | - Entong Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Z.G.); (X.C.); (E.L.); (Y.L.)
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Z.G.); (X.C.); (E.L.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Z.G.); (X.C.); (E.L.); (Y.L.)
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (Z.G.); (X.C.); (E.L.); (Y.L.)
- Nanjing Suman Plasma Engineering Research Institute Co., Ltd., Nanjing 211162, China
| |
Collapse
|
31
|
Su T, Wang W, Wang Z, Li P, Xin X, Yu Y, Zhang D, Zhao X, Wang J, Sun L, Jin G, Zhang F, Yu S. BrMYB108 confers resistance to Verticillium wilt by activating ROS generation in Brassica rapa. Cell Rep 2023; 42:112938. [PMID: 37552600 DOI: 10.1016/j.celrep.2023.112938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Increasing plant resistance to Verticillium wilt (VW), which causes massive losses of Brassica rapa crops, is a challenge worldwide. However, few causal genes for VW resistance have been identified by forward genetic approaches, resulting in limited application in breeding. We combine a genome-wide association study in a natural population and quantitative trait locus mapping in an F2 population and identify that the MYB transcription factor BrMYB108 regulates plant resistance to VW. A 179 bp insertion in the BrMYB108 promoter alters its expression pattern during Verticillium longisporum (VL) infection. High BrMYB108 expression leads to high VL resistance, which is confirmed by disease resistance tests using BrMYB108 overexpression and loss-of-function mutants. Furthermore, we verify that BrMYB108 confers VL resistance by regulating reactive oxygen species (ROS) generation through binding to the promoters of respiratory burst oxidase genes (Rboh). A loss-of-function mutant of AtRbohF in Arabidopsis shows significant susceptibility to VL. Thus, BrMYB108 and its target ROS genes could be used as targets for genetic engineering for VL resistance of B. rapa.
Collapse
Affiliation(s)
- Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Zheng Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China.
| |
Collapse
|
32
|
Zhao Q, Liu F, Song C, Zhai T, He Z, Ma L, Zhao X, Jia Z, Song S. Diffusible signal factor primes plant immunity against Xanthomonas campestris pv. campestris ( Xcc) via JA signaling in Arabidopsis and Brassica oleracea. Front Cell Infect Microbiol 2023; 13:1203582. [PMID: 37404719 PMCID: PMC10315614 DOI: 10.3389/fcimb.2023.1203582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/16/2023] [Indexed: 07/06/2023] Open
Abstract
Background Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. Methods Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. Results We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. Conclusion These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea.
Collapse
Affiliation(s)
- Qian Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Fang Liu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Cong Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Tingting Zhai
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Ziwei He
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Limei Ma
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Xuemeng Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Hebei Technology Innovation Center of Microbiological Control on Main Crop Disease, Shijiazhuang, China
| |
Collapse
|
33
|
Otulak-Kozieł K, Kozieł E, Treder K, Király L. Glutathione Contribution in Interactions between Turnip mosaic virus and Arabidopsis thaliana Mutants Lacking Respiratory Burst Oxidase Homologs D and F. Int J Mol Sci 2023; 24:ijms24087128. [PMID: 37108292 PMCID: PMC10138990 DOI: 10.3390/ijms24087128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Respiratory burst oxidase homologs (Rbohs) play crucial and diverse roles in plant tissue-mediated production of reactive oxygen species during the development, growth, and response of plants to abiotic and biotic stress. Many studies have demonstrated the contribution of RbohD and RbohF in stress signaling in pathogen response differentially modulating the immune response, but the potential role of the Rbohs-mediated response in plant-virus interactions remains unknown. The present study analyzed, for the first time, the metabolism of glutathione in rbohD-, rbohF-, and rbohD/F-transposon-knockout mutants in response to Turnip mosaic virus (TuMV) infection. rbohD-TuMV and Col-0-TuMV interactions were characterized by susceptible reaction to TuMV, associated with significant activity of GPXLs (glutathione peroxidase-like enzymes) and induction of lipid peroxidation in comparison to mock-inoculated plants, with reduced total cellular and apoplastic glutathione content observed at 7-14 dpi and dynamic induction of apoplast GSSG (oxidized glutathione) at 1-14 dpi. Systemic virus infection resulted in the induction of AtGSTU1 and AtGSTU24, which was highly correlated with significant downregulation of GSTs (glutathione transferases) and cellular and apoplastic GGT (γ-glutamyl transferase) with GR (glutathione reductase) activities. On the contrary, resistant rbohF-TuMV reactions, and especially enhanced rbohD/F-TuMV reactions, were characterized by a highly dynamic increase in total cellular and apoplastic glutathione content, with induction of relative expression of AtGGT1, AtGSTU13, and AtGSTU19 genes. Moreover, virus limitation was highly correlated with the upregulation of GSTs, as well as cellular and apoplastic GGT with GR activities. These findings clearly indicate that glutathione can act as a key signaling factor in not only susceptible rbohD reaction but also the resistance reaction presented by rbohF and rbohD/F mutants during TuMV interaction. Furthermore, by actively reducing the pool of glutathione in the apoplast, GGT and GR enzymes acted as a cell first line in the Arabidopsis-TuMV pathosystem response, protecting the cell from oxidative stress in resistant interactions. These dynamically changed signal transductions involved symplast and apoplast in mediated response to TuMV.
Collapse
Affiliation(s)
- Katarzyna Otulak-Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Edmund Kozieł
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Krzysztof Treder
- Laboratory of Molecular Diagnostic and Biochemistry, Bonin Research Center, Plant Breeding and Acclimatization Institute-National Research Institute, 76-009 Bonin, Poland
| | - Lóránt Király
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), 15 Herman Ottó Str., H-1022 Budapest, Hungary
| |
Collapse
|
34
|
Fichman Y, Xiong H, Sengupta S, Morrow J, Loog H, Azad RK, Hibberd JM, Liscum E, Mittler R. Phytochrome B regulates reactive oxygen signaling during abiotic and biotic stress in plants. THE NEW PHYTOLOGIST 2023; 237:1711-1727. [PMID: 36401805 DOI: 10.1111/nph.18626] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) and the photoreceptor protein phytochrome B (phyB) play a key role in plant acclimation to stress. However, how phyB that primarily functions in the nuclei impacts ROS signaling mediated by respiratory burst oxidase homolog (RBOH) proteins that reside on the plasma membrane, during stress, is unknown. Arabidopsis thaliana and Oryza sativa mutants, RNA-Seq, bioinformatics, biochemistry, molecular biology, and whole-plant ROS imaging were used to address this question. Here, we reveal that phyB and RBOHs function as part of a key regulatory module that controls apoplastic ROS production, stress-response transcript expression, and plant acclimation in response to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol and that phyB, respiratory burst oxidase protein D (RBOHD), and respiratory burst oxidase protein F (RBOHF) coregulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating apoplastic ROS production, possibly while at the cytosol, and that phyB and RBOHD/RBOHF function in the same regulatory pathway.
Collapse
Affiliation(s)
- Yosef Fichman
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Haiyan Xiong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Soham Sengupta
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Johanna Morrow
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
- Department of Biology and Environmental Sciences, Westminster College, 501 Westminster Ave, Fulton, MO, 65251, USA
| | - Hailey Loog
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Rajeev K Azad
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
- Department of Mathematics, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Emmanuel Liscum
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
| | - Ron Mittler
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Department of Surgery, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, University of Missouri, Columbia, MO, 65211-7310, USA
| |
Collapse
|
35
|
Fichman Y, Xiong H, Sengupta S, Morrow J, Loog H, Azad RK, Hibberd JM, Liscum E, Mittler R. Phytochrome B regulates reactive oxygen signaling during abiotic and biotic stress in plants. THE NEW PHYTOLOGIST 2023. [PMID: 36401805 DOI: 10.1101/2021.11.29.470478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS) and the photoreceptor protein phytochrome B (phyB) play a key role in plant acclimation to stress. However, how phyB that primarily functions in the nuclei impacts ROS signaling mediated by respiratory burst oxidase homolog (RBOH) proteins that reside on the plasma membrane, during stress, is unknown. Arabidopsis thaliana and Oryza sativa mutants, RNA-Seq, bioinformatics, biochemistry, molecular biology, and whole-plant ROS imaging were used to address this question. Here, we reveal that phyB and RBOHs function as part of a key regulatory module that controls apoplastic ROS production, stress-response transcript expression, and plant acclimation in response to excess light stress. We further show that phyB can regulate ROS production during stress even if it is restricted to the cytosol and that phyB, respiratory burst oxidase protein D (RBOHD), and respiratory burst oxidase protein F (RBOHF) coregulate thousands of transcripts in response to light stress. Surprisingly, we found that phyB is also required for ROS accumulation in response to heat, wounding, cold, and bacterial infection. Our findings reveal that phyB plays a canonical role in plant responses to biotic and abiotic stresses, regulating apoplastic ROS production, possibly while at the cytosol, and that phyB and RBOHD/RBOHF function in the same regulatory pathway.
Collapse
Affiliation(s)
- Yosef Fichman
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Haiyan Xiong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Soham Sengupta
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Johanna Morrow
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
- Department of Biology and Environmental Sciences, Westminster College, 501 Westminster Ave, Fulton, MO, 65251, USA
| | - Hailey Loog
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Rajeev K Azad
- Department of Biological Sciences, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
- Department of Mathematics, College of Science, University of North Texas, Denton, TX, 76203-5017, USA
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Emmanuel Liscum
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Division of Biological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211-7400, USA
| | - Ron Mittler
- Division of Plant Sciences & Technology, College of Agricultural, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Department of Surgery, Christopher S. Bond Life Sciences Center, University of Missouri School of Medicine, University of Missouri, Columbia, MO, 65211-7310, USA
| |
Collapse
|
36
|
Zhang H, Wang X, Yan A, Deng J, Xie Y, Liu S, Liu D, He L, Weng J, Xu J. Evolutionary Analysis of Respiratory Burst Oxidase Homolog (RBOH) Genes in Plants and Characterization of ZmRBOHs. Int J Mol Sci 2023; 24:3858. [PMID: 36835269 PMCID: PMC9965149 DOI: 10.3390/ijms24043858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The respiratory burst oxidase homolog (RBOH), as the key producer of reactive oxygen species (ROS), plays an essential role in plant development. In this study, a bioinformatic analysis was performed on 22 plant species, and 181 RBOH homologues were identified. A typical RBOH family was identified only in terrestrial plants, and the number of RBOHs increased from non-angiosperms to angiosperms. Whole genome duplication (WGD)/segmental duplication played a key role in RBOH gene family expansion. Amino acid numbers of 181 RBOHs ranged from 98 to 1461, and the encoded proteins had molecular weights from 11.1 to 163.6 kDa, respectively. All plant RBOHs contained a conserved NADPH_Ox domain, while some of them lacked the FAD_binding_8 domain. Plant RBOHs were classified into five main subgroups by phylogenetic analysis. Most RBOH members in the same subgroup showed conservation in both motif distribution and gene structure composition. Fifteen ZmRBOHs were identified in maize genome and were positioned in eight maize chromosomes. A total of three pairs of orthologous genes were found in maize, including ZmRBOH6/ZmRBOH8, ZmRBOH4/ZmRBOH10 and ZmRBOH15/ZmRBOH2. A Ka/Ks calculation confirmed that purifying selection was the main driving force in their evolution. ZmRBOHs had typical conserved domains and similar protein structures. cis-element analyses together with the expression profiles of the ZmRBOH genes in various tissues and stages of development suggested that ZmRBOH was involved in distinct biological processes and stress responses. Based on the RNA-Seq data and qRT-PCR analysis, the transcriptional response of ZmRBOH genes was examined under various abiotic stresses, and most of ZmRBOH genes were up-regulated by cold stress. These findings provide valuable information for further revealing the biological roles of ZmRBOH genes in plant development and abiotic stress responses.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xu Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - An Yan
- College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jie Deng
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanping Xie
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shiyuan Liu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Debin Liu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lin He
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Jingyu Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
37
|
Martín-Dacal M, Fernández-Calvo P, Jiménez-Sandoval P, López G, Garrido-Arandía M, Rebaque D, Del Hierro I, Berlanga DJ, Torres MÁ, Kumar V, Mélida H, Pacios LF, Santiago J, Molina A. Arabidopsis immune responses triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a group of leucine-rich repeat malectin receptor kinases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:833-850. [PMID: 36582174 DOI: 10.1111/tpj.16088] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 05/20/2023]
Abstract
The plant immune system perceives a diversity of carbohydrate ligands from plant and microbial cell walls through the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs), which activate pattern-triggered immunity (PTI). Among these ligands are oligosaccharides derived from mixed-linked β-1,3/β-1,4-glucans (MLGs; e.g. β-1,4-D-(Glc)2 -β-1,3-D-Glc, MLG43) and cellulose (e.g. β-1,4-D-(Glc)3 , CEL3). The mechanisms behind carbohydrate perception in plants are poorly characterized except for fungal chitin oligosaccharides (e.g. β-1,4-d-(GlcNAc)6 , CHI6), which involve several receptor kinase proteins (RKs) with LysM-ECDs. Here, we describe the isolation and characterization of Arabidopsis thaliana mutants impaired in glycan perception (igp) that are defective in PTI activation mediated by MLG43 and CEL3, but not by CHI6. igp1-igp4 are altered in three RKs - AT1G56145 (IGP1), AT1G56130 (IGP2/IGP3) and AT1G56140 (IGP4) - with leucine-rich-repeat (LRR) and malectin (MAL) domains in their ECDs. igp1 harbors point mutation E906K and igp2 and igp3 harbor point mutation G773E in their kinase domains, whereas igp4 is a T-DNA insertional loss-of-function mutant. Notably, isothermal titration calorimetry (ITC) assays with purified ECD-RKs of IGP1 and IGP3 showed that IGP1 binds with high affinity to CEL3 (with dissociation constant KD = 1.19 ± 0.03 μm) and cellopentaose (KD = 1.40 ± 0.01 μM), but not to MLG43, supporting its function as a plant PRR for cellulose-derived oligosaccharides. Our data suggest that these LRR-MAL RKs are components of a recognition mechanism for both cellulose- and MLG-derived oligosaccharide perception and downstream PTI activation in Arabidopsis.
Collapse
Affiliation(s)
- Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Pedro Jiménez-Sandoval
- University of Lausanne (UNIL), Biophore Building, Départament de Biologie Moléculaire Végétale (DBMV), UNIL Sorge, CH-1015, Lausanne, Switzerland
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - María Garrido-Arandía
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Diego Rebaque
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Irene Del Hierro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Varun Kumar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Julia Santiago
- University of Lausanne (UNIL), Biophore Building, Départament de Biologie Moléculaire Végétale (DBMV), UNIL Sorge, CH-1015, Lausanne, Switzerland
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
38
|
Fraudentali I, Pedalino C, D’Incà R, Tavladoraki P, Angelini R, Cona A. Distinct role of AtCuAOβ- and RBOHD-driven H 2O 2 production in wound-induced local and systemic leaf-to-leaf and root-to-leaf stomatal closure. FRONTIERS IN PLANT SCIENCE 2023; 14:1154431. [PMID: 37152169 PMCID: PMC10160378 DOI: 10.3389/fpls.2023.1154431] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Polyamines (PAs) are ubiquitous low-molecular-weight aliphatic compounds present in all living organisms and essential for cell growth and differentiation. The developmentally regulated and stress-induced copper amine oxidases (CuAOs) oxidize PAs to aminoaldehydes producing hydrogen peroxide (H2O2) and ammonia. The Arabidopsis thaliana CuAOβ (AtCuAOβ) was previously reported to be involved in stomatal closure and early root protoxylem differentiation induced by the wound-signal MeJA via apoplastic H2O2 production, suggesting a role of this enzyme in water balance, by modulating xylem-dependent water supply and stomata-dependent water loss under stress conditions. Furthermore, AtCuAOβ has been shown to mediate early differentiation of root protoxylem induced by leaf wounding, which suggests a whole-plant systemic coordination of water supply and loss through stress-induced stomatal responses and root protoxylem phenotypic plasticity. Among apoplastic ROS generators, the D isoform of the respiratory burst oxidase homolog (RBOH) has been shown to be involved in stress-mediated modulation of stomatal closure as well. In the present study, the specific role of AtCuAOβ and RBOHD in local and systemic perception of leaf and root wounding that triggers stomatal closure was investigated at both injury and distal sites exploiting Atcuaoβ and rbohd insertional mutants. Data evidenced that AtCuAOβ-driven H2O2 production mediates both local and systemic leaf-to-leaf and root-to-leaf responses in relation to stomatal movement, Atcuaoβ mutants being completely unresponsive to leaf or root wounding. Instead, RBOHD-driven ROS production contributes only to systemic leaf-to-leaf and root-to-leaf stomatal closure, with rbohd mutants showing partial unresponsiveness in distal, but not local, responses. Overall, data herein reported allow us to hypothesize that RBOHD may act downstream of and cooperate with AtCuAOβ in inducing the oxidative burst that leads to systemic wound-triggered stomatal closure.
Collapse
Affiliation(s)
| | | | | | - Paraskevi Tavladoraki
- Department of Science, University Roma Tre, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
| | - Riccardo Angelini
- Department of Science, University Roma Tre, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Alessandra Cona
- Department of Science, University Roma Tre, Rome, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), Rome, Italy
- *Correspondence: Alessandra Cona,
| |
Collapse
|
39
|
Nguyen NK, Wang J, Liu D, Hwang BK, Jwa NS. Rice iron storage protein ferritin 2 (OsFER2) positively regulates ferroptotic cell death and defense responses against Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1019669. [PMID: 36352872 PMCID: PMC9639352 DOI: 10.3389/fpls.2022.1019669] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that regulates iron homeostasis and oxidative stress in plants. Iron plays an important role in ferroptotic cell death response of rice (Oryza sativa) to Magnaporthe oryzae infection. Here, we report that rice ferritin 2, OsFER2, is required for iron- and reactive oxygen species (ROS)-dependent ferroptotic cell death and defense response against the avirulent M. oryzae INA168. The full-length ferritin OsFER2 and its transit peptide were localized to the chloroplast, the most Fe-rich organelle for photosynthesis. This suggests that the transit peptide acts as a signal peptide for the rice ferritin OsFER2 to move into chloroplasts. OsFER2 expression is involved in rice resistance to M. oryzae infection. OsFER2 knock-out in wild-type rice HY did not induce ROS and ferric ion (Fe3+) accumulation, lipid peroxidation and hypersensitive response (HR) cell death, and also downregulated the defense-related genes OsPAL1, OsPR1-b, OsRbohB, OsNADP-ME2-3, OsMEK2 and OsMPK1, and vacuolar membrane transporter OsVIT2 expression. OsFER2 complementation in ΔOsfer2 knock-out mutants restored ROS and iron accumulation and HR cell death phenotypes during infection. The iron chelator deferoxamine, the lipid-ROS scavenger ferrostatin-1, the actin microfilament polymerization inhibitor cytochalasin E and the redox inhibitor diphenyleneiodonium suppressed ROS and iron accumulation and HR cell death in rice leaf sheaths. However, the small-molecule inducer erastin did not trigger iron-dependent ROS accumulation and HR cell death induction in ΔOsfer2 mutants. These combined results suggest that OsFER2 expression positively regulates iron- and ROS-dependent ferroptotic cell death and defense response in rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Dongping Liu
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
| |
Collapse
|
40
|
Concerted actions of PRR- and NLR-mediated immunity. Essays Biochem 2022; 66:501-511. [PMID: 35762737 DOI: 10.1042/ebc20220067] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022]
Abstract
Plants utilise cell-surface immune receptors (functioning as pattern recognition receptors, PRRs) and intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) to detect pathogens. Perception of pathogens by these receptors activates immune signalling and resistance to infections. PRR- and NLR-mediated immunity have primarily been considered parallel processes contributing to disease resistance. Recent studies suggest that these two pathways are interdependent and converge at multiple nodes. This review summarises and provides a perspective on these convergent points.
Collapse
|
41
|
Chen Y, Wang J, Nguyen NK, Hwang BK, Jwa NS. The NIN-Like Protein OsNLP2 Negatively Regulates Ferroptotic Cell Death and Immune Responses to Magnaporthe oryzae in Rice. Antioxidants (Basel) 2022; 11:antiox11091795. [PMID: 36139868 PMCID: PMC9495739 DOI: 10.3390/antiox11091795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Nodule inception (NIN)-like proteins (NLPs) have a central role in nitrate signaling to mediate plant growth and development. Here, we report that OsNLP2 negatively regulates ferroptotic cell death and immune responses in rice during Magnaporthe oryzae infection. OsNLP2 was localized to the plant cell nucleus, suggesting that it acts as a transcription factor. OsNLP2 expression was involved in susceptible disease development. ΔOsnlp2 knockout mutants exhibited reactive oxygen species (ROS) and iron-dependent ferroptotic hypersensitive response (HR) cell death in response to M. oryzae. Treatments with the iron chelator deferoxamine, lipid-ROS scavenger ferrostatin-1, actin polymerization inhibitor cytochalasin A, and NADPH oxidase inhibitor diphenyleneiodonium suppressed the accumulation of ROS and ferric ions, lipid peroxidation, and HR cell death, which ultimately led to successful M. oryzae colonization in ΔOsnlp2 mutants. The loss-of-function of OsNLP2 triggered the expression of defense-related genes including OsPBZ1, OsPIP-3A, OsWRKY104, and OsRbohB in ΔOsnlp2 mutants. ΔOsnlp2 mutants exhibited broad-spectrum, nonspecific resistance to diverse M. oryzae strains. These combined results suggest that OsNLP2 acts as a negative regulator of ferroptotic HR cell death and defense responses in rice, and may be a valuable gene source for molecular breeding of rice with broad-spectrum resistance to blast disease.
Collapse
Affiliation(s)
- Yafei Chen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- State Key Laboratory of Agricultural Microbiology and Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Wang
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Nam Khoa Nguyen
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Byung Kook Hwang
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 06213, Korea
| | - Nam Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul 05006, Korea
- Correspondence:
| |
Collapse
|
42
|
Jaskulak M, Rostami S, Zorena K, Vandenbulcke F. Transcriptome sequencing of Brassica napus highlights the complex issues with soil supplementation with sewage sludge. CHEMOSPHERE 2022; 298:134321. [PMID: 35306057 DOI: 10.1016/j.chemosphere.2022.134321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The soil supplementation with sewage sludge (SS) has become a widespread method to improve soil quality, but its long-term possible consequences are still relatively unknown. SS may contain several groups of contaminants to which the biological responses of the organisms are still poorly understood mainly due to the mixture toxicity. In this context, RNA-seq has been used to assess the impact of the exposure to sewage sludge supplemented soil at the whole-transcriptome level in the Brassica napus (B. napus). Although the municipal sewage sludge passed all safety regulations set by the EU commission (86/278/EEC), soil supplementation with SS caused a significant (p < 0.05) increase in the content of lead (by 68.8%, 71.4% in plant shoots and roots, respectively), zinc (by 22.4% and 31.2%), nickel (by 67.0% and 30.2%), and copper (by 33.1% and 39.2%). The de-novo assembled transcriptome of B. napus identified 555 differently expressed genes (DEGs) in a response to sewage sludge supplementation at the false detection rate below 0.001 (FDR <0.001). Among them, 313 genes were up-regulated and 242 genes were down-regulated. The gene ontology analysis (GO) had shown, that significantly enriched GO groups included genes involved in photosynthesis, carbohydrate metabolism and photosystems repair (41 genes), response to oxidative stress (50 genes), response to pathogens (36 genes), response to xenobiotics (15 genes), and heavy metals (41 genes), cell death (8 genes), cell wall structure (15 genes). These results suggest a significant impact of contaminants in sewage sludge on plants transcriptome. The transcriptomic approach facilitated a better understanding of the molecular level of the potential toxicity of sewage sludge in B. napus. RNA-seq allowed for the identification of potential novel early-warning molecular markers of environmental contamination. This work highlights the crucial necessity for rapid legislation change concerning the allowable levels of contaminants in sewage sludge applied on land, to mitigate the possible adverse outcomes in the ecosystem after its use as a fertilizer.
Collapse
Affiliation(s)
- Marta Jaskulak
- University of Lille, IMT Lille Douai, University of Artois, Yncrea Hauts-de-France, ULR4515, LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France; Department of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, Poland; Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland.
| | - Saeid Rostami
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, Poland
| | - Franck Vandenbulcke
- University of Lille, IMT Lille Douai, University of Artois, Yncrea Hauts-de-France, ULR4515, LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| |
Collapse
|
43
|
Zafari S, Vanlerberghe GC, Igamberdiev AU. The Role of Alternative Oxidase in the Interplay between Nitric Oxide, Reactive Oxygen Species, and Ethylene in Tobacco ( Nicotiana tabacum L.) Plants Incubated under Normoxic and Hypoxic Conditions. Int J Mol Sci 2022; 23:7153. [PMID: 35806157 PMCID: PMC9266549 DOI: 10.3390/ijms23137153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
The transgenic tobacco (Nicotiana tabacum L.) plants with the modified levels of alternative oxidase (AOX) were used to evaluate the physiological roles of AOX in regulating nitro-oxidative stress and metabolic changes after exposing plants to hypoxia for 6 h. Under normoxia, AOX expression resulted in the decrease of nitric oxide (NO) levels and of the rate of protein S-nitrosylation, while under hypoxia, AOX overexpressors exhibited higher NO and S-nitrosylation levels than knockdowns. AOX expression was essential in avoiding hypoxia-induced superoxide and H2O2 levels, and this was achieved via higher activities of catalase and glutathione reductase and the reduced expression of respiratory burst oxidase homolog (Rboh) in overexpressors as compared to knockdowns. The AOX overexpressing lines accumulated less pyruvate and exhibited the increased transcript and activity levels of pyruvate decarboxylase and alcohol dehydrogenase under hypoxia. This suggests that AOX contributes to the energy state of hypoxic tissues by stimulating the increase of pyruvate flow into fermentation pathways. Ethylene biosynthesis genes encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, ACC oxidase, and ethylene-responsive factors (ERFs) were induced during hypoxia and correlated with AOX and NO levels. We conclude that AOX controls the interaction of NO, reactive oxygen species, and ethylene, triggering a coordinated downstream defensive response against hypoxia.
Collapse
Affiliation(s)
- Somaieh Zafari
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada;
- Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Abir U. Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
44
|
Janků M, Jedelská T, Činčalová L, Sedlář A, Mikulík J, Luhová L, Lochman J, Petřivalský M. Structure-activity relationships of oomycete elicitins uncover the role of reactive oxygen and nitrogen species in triggering plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111239. [PMID: 35487652 DOI: 10.1016/j.plantsci.2022.111239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Elicitins are proteinaceous elicitors that induce the hypersensitive response and plant resistance against diverse phytopathogens. Elicitin recognition by membrane receptors or high-affinity sites activates a variety of fast responses including the production of reactive oxygen species (ROS) and nitric oxide (NO), leading to induction of plant defense genes. Beta-cryptogein (CRY) is a basic β-elicitin secreted by the oomycete Phytophthora cryptogea that shows high necrotic activity in some plant species, whereas infestin 1 (INF1) secreted by the oomycete P. infestans belongs to acidic α-elicitins with a significantly weaker capacity to induce necrosis. We compared several mutated forms of β-CRY and INF1 with a modulated capacity to trigger ROS and NO production, bind plant sterols and induce cell death responses in cell cultures of Nicotiana tabacum L. cv. Xanthi. We evidenced a key role of the lysine residue in position 13 in basic elicitins for their biological activity and enhancement of necrotic effects of acidic INF1 by the replacement of the valine residue in position 84 by larger phenylalanine. Studied elicitins activated in differing intensity signaling pathways of ROS, NO and phytohormones jasmonic acid, ethylene and salicylic acid, known to be involved in triggering of hypersensitive response and establishment of systemic resistance.
Collapse
Affiliation(s)
- Martina Janků
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lucie Činčalová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Antonín Sedlář
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jaromír Mikulík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany AS CR, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Masaryk University, Faculty of Science, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
45
|
Yang Y, Zhao Y, Zhang Y, Niu L, Li W, Lu W, Li J, Schäfer P, Meng Y, Shan W. A mitochondrial RNA processing protein mediates plant immunity to a broad spectrum of pathogens by modulating the mitochondrial oxidative burst. THE PLANT CELL 2022; 34:2343-2363. [PMID: 35262740 PMCID: PMC9134091 DOI: 10.1093/plcell/koac082] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Mitochondrial function depends on the RNA processing of mitochondrial gene transcripts by nucleus-encoded proteins. This posttranscriptional processing involves the large group of nuclear-encoded pentatricopeptide repeat (PPR) proteins. Mitochondrial processes represent a crucial part in animal immunity, but whether mitochondria play similar roles in plants remains unclear. Here, we report the identification of RESISTANCE TO PHYTOPHTHORA PARASITICA 7 (AtRTP7), a P-type PPR protein, in Arabidopsis thaliana and its conserved function in immunity to diverse pathogens across distantly related plant species. RTP7 affects the levels of mitochondrial reactive oxygen species (mROS) by participating in RNA splicing of nad7, which encodes a critical subunit of the mitochondrial respiratory chain Complex I, the largest of the four major components of the mitochondrial oxidative phosphorylation system. The enhanced resistance of rtp7 plants to Phytophthora parasitica is dependent on an elevated mROS burst, but might be independent from the ROS burst associated with plasma membrane-localized NADPH oxidases. Our study reveals the immune function of RTP7 and the defective processing of Complex I subunits in rtp7 plants resulted in enhanced resistance to both biotrophic and necrotrophic pathogens without affecting overall plant development.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yingqi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Lihua Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wanyue Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jinfang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Patrick Schäfer
- Institute of Molecular Botany, Ulm University, Ulm 89069, Germany
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | | |
Collapse
|
46
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
47
|
Lukan T, Coll A. Intertwined Roles of Reactive Oxygen Species and Salicylic Acid Signaling Are Crucial for the Plant Response to Biotic Stress. Int J Mol Sci 2022; 23:5568. [PMID: 35628379 PMCID: PMC9147500 DOI: 10.3390/ijms23105568] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
One of the earliest hallmarks of plant immune response is production of reactive oxygen species (ROS) in different subcellular compartments, which regulate plant immunity. A suitable equilibrium, which is crucial to prevent ROS overaccumulation leading to oxidative stress, is maintained by salicylic acid (SA), a chief regulator of ROS. However, ROS not only act downstream of SA signaling, but are also proposed to be a central component of a self-amplifying loop that regulates SA signaling as well as the interaction balance between different phytohormones. The exact role of this crosstalk, the position where SA interferes with ROS signaling and ROS interferes with SA signaling and the outcome of this regulation, depend on the origin of ROS but also on the pathosystem. The precise spatiotemporal regulation of organelle-specific ROS and SA levels determine the effectiveness of pathogen arrest and is therefore crucial for a successful immune response. However, the regulatory interplay behind still remains poorly understood, as up until now, the role of organelle-specific ROS and SA in hypersensitive response (HR)-conferred resistance has mostly been studied by altering the level of a single component. In order to address these aspects, a sophisticated combination of research methods for monitoring the spatiotemporal dynamics of key players and transcriptional activity in plants is needed and will most probably consist of biosensors and precision transcriptomics.
Collapse
Affiliation(s)
- Tjaša Lukan
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
48
|
Zhang HY, Hou ZH, Zhang Y, Li ZY, Chen J, Zhou YB, Chen M, Fu JD, Ma YZ, Zhang H, Xu ZS. A soybean EF-Tu family protein GmEF8, an interactor of GmCBL1, enhances drought and heat tolerance in transgenic Arabidopsis and soybean. Int J Biol Macromol 2022; 205:462-472. [PMID: 35122805 DOI: 10.1016/j.ijbiomac.2022.01.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
A soybean elongation factor Tu family (EF-Tu) protein, GmEF8, was determined to interact with GmCBL1, and GmEF8 expression was found to be induced by various abiotic stresses such as drought and heat. An ortholog of GmEF8 was identified in Arabidopsis, a T-DNA knockout line for which exhibited hypersensitivity to drought and heat stresses. Complementation with GmEF8 rescued the sensitivity of the Arabidopsis mutant to drought and heat stresses, and GmEF8 overexpression conferred drought and heat tolerance to transgenic Arabidopsis plants. In soybean, plants with GmEF8-overexpressing hairy roots (OE-GmEF8) exhibited enhanced drought and heat tolerance and had higher proline levels compared to plants with RNAi GmEF8-knockdown hairy roots (MR-GmEF8) and control hairy roots (EV). A number of drought-responsive genes, such as GmRD22 and GmP5CS, were induced in the OE-GmEF8 line compared to MR-GmEF8 and EV under normal growth conditions. These results suggest that GmEF8 has a positive role in regulating drought and heat stresses in Arabidopsis and soybean. This study reveals a potential role of the soybean GmEF8 gene in response to abiotic stresses, providing a foundation for further investigation into the complexities of stress signal transduction pathways.
Collapse
Affiliation(s)
- Hui-Yuan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Ze-Hao Hou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Qingdao 266101, China.
| | - Zhi-Yong Li
- SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Hui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
49
|
Burian M, Podgórska A, Ostaszewska-Bugajska M, Szal B. Respiratory Burst Oxidase Homolog D as a Modulating Component of Oxidative Response under Ammonium Toxicity. Antioxidants (Basel) 2022; 11:antiox11040703. [PMID: 35453389 PMCID: PMC9031508 DOI: 10.3390/antiox11040703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Delayed growth, a visible phenotypic component of the so-called ammonium syndrome, occurs when ammonium is the sole inorganic nitrogen source. Previously, we have shown that modification of apoplastic reactive oxygen species (apROS) metabolism is a key factor contributing to plant growth retardation under ammonium nutrition. Here, we further analyzed the changes in apROS metabolism in transgenic plants with disruption of the D isoform of the respiratory burst oxidase homolog (RBOH) that is responsible for apROS production. Ammonium-grown Arabidopsisrbohd plants are characterized by up to 50% lower contents of apoplastic superoxide and hydrogen peroxide. apROS sensing markers such as OZF1 and AIR12 were downregulated, and the ROS-responsive signaling pathway, including MPK3, was also downregulated in rbohd plants cultivated using ammonium as the sole nitrogen source. Additionally, the expression of the cell-wall-integrity marker FER and peroxidases 33 and 34 was decreased. These modifications may contribute to phenomenon wherein ammonium inhibited the growth of transgenic plants to a greater extent than that of wild-type plants. Overall, this study indicated that due to disruption of apROS metabolism, rbohd plants cannot adjust to ammonium toxicity and are more sensitive to these conditions.
Collapse
|
50
|
Zhang Y, Yang X, Nvsvrot T, Huang L, Cai G, Ding Y, Ren W, Wang N. The transcription factor WRKY75 regulates the development of adventitious roots, lateral buds and callus by modulating hydrogen peroxide content in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1483-1498. [PMID: 34791155 DOI: 10.1093/jxb/erab501] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) plays important roles in plant development. Adventitious roots (AR), lateral buds (LB) and callus formation are important traits for plants. Here, a gene encoding RESPIRATORY BURST OXIDASE HOMOLOG B (PdeRBOHB) from poplar line 'NL895' (Populus. deltoides × P. euramericana) was predicted to be involved in H2O2 accumulation, and lines with reduced expression were generated. H2O2 content was decreased, and the development of adventitious roots, lateral buds, and callus was inhibited in reduced expression PdeRBOHB lines. A gene encoding PdeWRKY75 was identified as the upstream transcription factor positively regulating PdeRBOHB. This regulation was confirmed by dual luciferase reporter assay, GUS transient expression analysis and electrophoretic mobility shift assay. In the reduced expression PdeWRKY75 lines, H2O2 content was decreased and the development of adventitious roots, lateral buds, and callus development was inhibited, while in the overexpression lines, H2O2 content was increased and the development of adventitious roots and lateral buds was inhibited, but callus formation was enhanced. Additionally, reduced expression PdeRBOHB lines showed lowered expression of PdeWRKY75, while exogenous application of H2O2 showed the opposite effect. Together, these results suggest that PdeWRKY75 and PdeRBOHB are part of a regulatory module in H2O2 accumulation, which is involved in the regulation of multiple biological processes.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoqing Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liyu Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guanghua Cai
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwei Ding
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenyu Ren
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|