1
|
Morales LO, Shapiguzov A, Rai N, Aphalo PJ, Brosché M. Protection of Photosynthesis by UVR8 and Cryptochromes in Arabidopsis Under Blue and UV Radiation. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40350778 DOI: 10.1111/pce.15608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Photosynthesis in plants is negatively affected by high light intensity and UV radiation. The photoreceptors UV RESISTANCE LOCUS 8 (UVR8) and CRYPTOCHROMES (CRYs) mediate perception and acclimation of plants to UV-B/UV-A2 (290-340 nm) and UV-A1/blue light (350-500 nm), respectively. However, their roles in photoprotection of photosynthesis across different wavebands of the spectrum remain unclear. Using chlorophyll fluorescence and LED lighting we studied the roles of UVR8 and CRYs in maintaining photosynthetic capacity in Arabidopsis exposed to UV-B, UV-A1, and blue light. Analysis of quantum yield of Photosystem II, nonphotochemical quenching, and LHCII phosphorylation demonstrated that CRYs preserve photosynthetic performance in plants exposed to UV-B, UV-A1, and blue light. UVR8 and CRYs exhibit partially redundant functions in maintaining photosynthetic activity under UV-B, UV-A1, and blue light, and in preventing photodamage under high UV-A1 irradiance. Impaired UVR8 and CRY signalling reduced epidermal flavonol accumulation in leaves, which further compromised photoprotection. These findings provide valuable insights into how UV and blue light perception contribute to photoprotection, with broad implications for plant performance both in natural and managed environments.
Collapse
Affiliation(s)
- Luis Orlando Morales
- School of Science and Technology, The Life Science Center-Biology, Örebro University, Örebro, Sweden
| | - Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Piikkiö, Finland
| | - Neha Rai
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Pedro José Aphalo
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Hong Y, Zhou S, Zhang J, Lv Y, Yao N, Liu X. CtWD40-6 enhances the UV-B tolerance of safflower by regulating flavonoid accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109476. [PMID: 39765125 DOI: 10.1016/j.plaphy.2025.109476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025]
Abstract
Moderate UV-B promotes plant growth, but excessive UV-B inhibits plant development. The induction mechanism of how CtWD40-6 responds to UV-B is still unclear in safflower. Our results showed that CtWD40-6 is expressed at the top of safflower leaves and is strongly induced by UV-B. To further understand the function of the CtWD40-6 gene, we overexpressed the CtWD40-6 gene in safflower or Arabidopsis. First, different transgenic materials were treated with UV-B, and we found that the survival rate of plants overexpressing CtWD40-6 was significantly higher than that of the WT type. In contrast, the survival rate of wd40-6 mutant plants was significantly decreased compared with WT type. Then DAB, NBT and Trypan Blue staining were performed on different transgenic plants before and after UV-B treatment and the results showed that the staining of mutant and WT was significantly higher than that of overexpressing CtWD40-6. By comparing the data before and after UV-B stress, we found that the flavonoid content, antioxidant enzyme activity, chlorophyll content and photosynthetic rate of transgenic plants overexpressing CtWD40-6 were higher than those of WT and mutants, thereby obtaining better UV-B tolerance. Finally, we used yeast two-hybrid and luciferase complementation experiments to prove that CtWD40-6 increases the content of safflower flavonoids by interacting with CtANS1/CtCHS1/Ct4CL1/CtFLS1, thereby enhancing the plant's UV-B tolerance. The above results provide a theoretical basis for preliminary analysis of how safflower responds to UV-B stress through the transcriptional regulation of CtWD40-6.
Collapse
Affiliation(s)
- Yingqi Hong
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Institute for Safflower Industry Research / Pharmacy School of Shihezi University, Shihezi, 832003, China.
| | - Shiwen Zhou
- College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jianyi Zhang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanxi Lv
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Na Yao
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| | - Xiuming Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China; Institute for Safflower Industry Research / Pharmacy School of Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
3
|
Sun C, Zhao C, Wang G, Han R. Cerium oxide nanoparticles ameliorate Arabidopsis thaliana root damage under UV-B stress by modulating the cell cycle and auxin pathways. PROTOPLASMA 2025:10.1007/s00709-025-02038-0. [PMID: 39907780 DOI: 10.1007/s00709-025-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Cerium oxide nanoparticles (CeO2-NPs) have been widely applied worldwide. In the field of agriculture, they have gained attention for their ability to promote seed germination, root elongation, and biomass accumulation in plants, as well as to increase plant resistance to various abiotic stresses. However, the underlying molecular mechanisms remain to be elucidated. Limited research has been conducted on whether CeO2-NPs can help plants mitigate damage caused by UV-B stress. In this study, Arabidopsis thaliana was selected as the research subject to investigate the effects of CeO2-NPs on the resistance of plant roots to UV-B stress at both the physiological and molecular levels. Our findings demonstrated that 120 mg/mL CeO2-NPs significantly alleviated UV-B-induced damage to the root system of Arabidopsis thaliana. Specifically, CeO2-NPs increased the activities of the root tip antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), reducing oxidative stress. The results from GUS staining and GFP fluorescence assays conducted on the transgenic lines CYCB1;1-GUS, DR5-GUS, QC25-GUS, and WOX5-GFP indicated that CeO2-NPs could increase the cell division activity, auxin accumulation, and stem cell niche activity of Arabidopsis thaliana root tips under UV-B stress. Furthermore, observations of GFP fluorescence in the transgenic lines PIN1-GFP, PIN2-GFP, and PIN7-GFP revealed that CeO2-NPs promoted root growth by inducing the accumulation of auxin transporters. Quantitative real-time PCR (qRT-PCR) analysis revealed that under UV-B stress, CeO2-NPs upregulated the expression of genes related to antioxidant enzymes, the cell cycle and auxin biosynthesis-related genes in Arabidopsis thaliana root tips while downregulating the expression of genes related to DNA damage repair and stress response. Therefore, CeO2-NPs have potential value for promoting plant growth and mitigating UV-B stress.
Collapse
Affiliation(s)
- Cheng Sun
- College of Chemistry and Materials Science, Shanxi Normal University, Taiyuan, 030000, China
- Shanxi Provincial Key Laboratory of Plant Macromolecular Adversity Response, Shanxi Normal University, Taiyuan, 030000, China
| | - Chen Zhao
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, China
- Shanxi Provincial Key Laboratory of Plant Macromolecular Adversity Response, Shanxi Normal University, Taiyuan, 030000, China
| | - Guohua Wang
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, China
- Shanxi Provincial Key Laboratory of Plant Macromolecular Adversity Response, Shanxi Normal University, Taiyuan, 030000, China
| | - Rong Han
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, China.
- Shanxi Provincial Key Laboratory of Plant Macromolecular Adversity Response, Shanxi Normal University, Taiyuan, 030000, China.
| |
Collapse
|
4
|
Yu W, Zhou X, Meng J, Zhou X, Xu H. Multi-Omics Research Reveals the Effects of the ABA-Regulated Phenylpropanoid Biosynthesis Pathway on the UV-B Response in Rhododendron chrysanthum Pall. PLANTS (BASEL, SWITZERLAND) 2025; 14:101. [PMID: 39795361 PMCID: PMC11723134 DOI: 10.3390/plants14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Rhododendron chrysanthum Pall. (R. chrysanthum) to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences R. chrysanthum's metabolic responses under UV-B stress. R. chrysanthum was treated with UV-B radiation and exogenous ABA for widely targeted metabolomics, transcriptomics, and proteomics assays, and relevant chlorophyll fluorescence parameters were also determined. It was observed that UV-B stress negatively impacts the plant's photosynthetic machinery, disrupting multiple metabolic processes. Multi-omics analysis revealed that ABA application mitigates the detrimental effects of UV-B on photosynthesis and bolsters the plant's antioxidant defenses. Additionally, both UV-B exposure and ABA treatment significantly influenced the phenylpropanoid biosynthesis pathway, activating key enzyme genes, such as 4CL, CCR, and HCT. The study also highlighted the MYB-bHLH-WD40 (MBW) complex's role in regulating this pathway and its interaction with ABA signaling components. These findings underscore ABA's crucial function in improving plant resistance to UV-B stress and offer novel insights into plant stress biology.
Collapse
Affiliation(s)
| | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (W.Y.); (X.Z.)
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (W.Y.); (X.Z.)
| |
Collapse
|
5
|
Mmbando GS. Variation in ultraviolet-B (UV-B)-induced DNA damage repair mechanisms in plants and humans: an avenue for developing protection against skin photoaging. Int J Radiat Biol 2024; 100:1505-1516. [PMID: 39231421 DOI: 10.1080/09553002.2024.2398081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The increasing amounts of ultraviolet-B (UV-B) light in our surroundings have sparked worries about the possible effects on humans and plants. The detrimental effects of heightened UV-B exposure on these two vital elements of terrestrial life are different due to their unique and concurrent nature. Understanding common vulnerabilities and distinctive adaptations of UV-B radiation by exploring the physiological and biochemical responses of plants and the effects on human health is of huge importance. The comparative effects of UV-B radiation on plants and animals, however, are poorly studied. This review sheds light on the sophisticated web of UV-B radiation effects by navigating the complex interaction between botanical and medical perspectives, drawing upon current findings. CONCLUSION By providing a comprehensive understanding of the complex effects of heightened UV-B radiation on plants and humans, this study summarizes relevant adaptation strategies to the heightened UV-B radiation stress, which offer new approaches for improving human cellular resilience to environmental stressors.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- College of Natural and Mathematical Sciences, Department of Biology, The University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
6
|
Crestani G, Večeřová K, Cunningham N, Badmus UO, Urban O, Jansen MAK. Comprehensive Modulation of Secondary Metabolites in Terpenoid-Accumulating Mentha spicata L. via UV Radiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1746. [PMID: 38999586 PMCID: PMC11243551 DOI: 10.3390/plants13131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Kristýna Večeřová
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Uthman O. Badmus
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Marcel A. K. Jansen
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
7
|
Wu J, Chen Y, Xu Y, An Y, Hu Z, Xiong A, Wang G. Effects of Jasmonic Acid on Stress Response and Quality Formation in Vegetable Crops and Their Underlying Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:1557. [PMID: 38891365 PMCID: PMC11175075 DOI: 10.3390/plants13111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.
Collapse
Affiliation(s)
- Jiaqi Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yangyang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yujie Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yahong An
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Zhenzhu Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaian 223003, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanglong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaian 223003, China
| |
Collapse
|
8
|
Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Proline accumulation and antioxidant response are crucial for citrus tolerance to UV-B light-induced stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:521-531. [PMID: 38568875 DOI: 10.1111/plb.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Plants face a wide range of biotic and abiotic stress conditions, which are further intensified by climate change. Among these stressors, increased irradiation in terms of intensity and wavelength range can lead to detrimental effects, such as chlorophyll degradation, destruction of the PSII reaction center, generation of ROS, alterations to plant metabolism, and even plant death. Here, we investigated the responses of two citrus genotypes, Citrus macrophylla (CM), and Troyer citrange (TC) to UV-B light-induced stress, by growing plants of both genotypes under control and UV-B stress conditions for 5 days to evaluate their tolerance mechanisms. TC seedlings had higher sensitivity to UV-B light than CM seedlings, as they showed more damage and increased levels of oxidative harm (indicated by the accumulation of MDA). In contrast, CM seedlings exhibited specific adaptive mechanisms, including accumulation of higher levels of proline under stressful conditions, and enhanced antioxidant capacity, as evidenced by increased ascorbate peroxidase activity and upregulation of the CsAPX2 gene. Phytohormone accumulation patterns were similar in both genotypes, with a decrease in ABA content in response to UV-B light. Furthermore, expression of genes involved in light perception and response was specifically affected in the tolerant CM seedlings, which exhibited higher expression of CsHYH/CsHY5 and CsRUP1-2 genes. These findings underscore the importance of the antioxidant system in citrus plants subjected to UV-B light-induced stress and suggest that CsHYH/CsHY5 and CsRUP1-2 could be considered genes associated with tolerance to such challenging conditions.
Collapse
Affiliation(s)
- V Vives-Peris
- Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castelló de la Plana, Spain
| | - A Gómez-Cadenas
- Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castelló de la Plana, Spain
| | - R M Pérez-Clemente
- Department of Biology, Biochemistry and Natural Sciences, Jaume I University, Castelló de la Plana, Spain
| |
Collapse
|
9
|
Molina-Montenegro MA, Egas C, Ballesteros G, Acuña-Rodríguez IS, San Martín F, Gianoli E. Sunspot activity influences tree growth: Molecular evidence and ecological implications. Mol Ecol 2024; 33:e16813. [PMID: 36479720 DOI: 10.1111/mec.16813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Solar activity has a significant influence on Earth's climate and may drive many biological processes. Here, we measured growth in 11 tree species distributed along an ≈600-km latitudinal gradient in South-Central Chile, recording the width of their growth-rings among periods of maximum (highest number of sunspots) and minimum (lowest number of sunspots) solar activity. In one of these species, Quillaja saponaria, we experimentally assessed three ecophysiological traits (CO2 fixation through photosynthesis [Amax], growth and leaf production) as well as the expression of five genes related to cell wall elongation and expansion following exposure to high and low levels of UV-B radiation, simulating scenarios of maximum and minimum solar activity, respectively. We found lower tree growth during the periods of maximum solar activity, with this trend being more evident at lower latitudes, where UV-B radiation is higher. Exposure of Q. saponaria to higher levels of UV-B affected the ecophysiological parameters, revealing a decrease in Amax, growth and leaf production. In addition, higher levels of UV-B led to repression in four of the five genes studied. Our results may help foresee environmental scenarios for different plant species associated with solar activity.
Collapse
Affiliation(s)
- Marco A Molina-Montenegro
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
- Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Claudia Egas
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Gabriel Ballesteros
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Ian S Acuña-Rodríguez
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Filoromo San Martín
- Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
10
|
Mmbando GS. The recent possible strategies for breeding ultraviolet-B-resistant crops. Heliyon 2024; 10:e27806. [PMID: 38509919 PMCID: PMC10950674 DOI: 10.1016/j.heliyon.2024.e27806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
The sensitivity of crops to ultraviolet B (UVB, 280-315 nm) radiation varies significantly. Plants' sensitivity to UVB is heavily influenced by the activity of the enzyme cyclobutane pyrimidine dimer (CPD) photolyase, which fixes UVB-induced CPDs. Crops grown in tropical areas with high level of UVB radiation, like O. glaberrima from Africa and O. sativa ssp. indica rice from Bengal, are more sensitive to UVB radiation and could suffer more as a result of rising UVB levels on the earth's surface. Therefore, creating crops that can withstand high UVB is crucial in tropical regions. There is, however, little information on current techniques for breeding UVB-resistant plants. The most recent techniques for producing UVB-resistant crops are presented in this review. The use of DNA methylation, boosting the antioxidant system, regulating the expression of micro-RNA396, and overexpressing CPD photolyase in transgenic plants are some of the methods that are discussed. CPD photolyase overexpression in transgenic plants is the most popular technique for producing UVB-resistant rice. The study also offers several strategies for creating UVB-resistant plants using gene editing techniques. To feed the world's rapidly expanding population, researchers can use the information from this study to improve food production.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma P. O. BOX 259, Dodoma, Tanzania
| |
Collapse
|
11
|
Shoaib N, Pan K, Mughal N, Raza A, Liu L, Zhang J, Wu X, Sun X, Zhang L, Pan Z. Potential of UV-B radiation in drought stress resilience: A multidimensional approach to plant adaptation and future implications. PLANT, CELL & ENVIRONMENT 2024; 47:387-407. [PMID: 38058262 DOI: 10.1111/pce.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/08/2023]
Abstract
The escalating impact of climate change and ultraviolet (UV) radiation is subjecting plants to unique combinations of UV-B and drought stress. These combined stressors could have additive, synergistic, or antagonistic effects, but the precise nature of these impacts remains uncertain, hampering our ability to predict plant adaptations approach towards stressors. Our analysis of various studies shows that UV-B or drought conditions detrimentally influence plant growth and health metrics by the enhanced generation of reactive oxygen species causing damage to lipids, proteins, carbohydrates and DNA. Further reducing biomass accumulation, plant height, photosynthetic efficiency, leaf area, and water transpiration, while enhancing stress-related symptoms. In response to UV-B radiation and drought stress, plants exhibit a notable up-regulation of specific acclimation-associated metabolites, including proline, flavonoids, anthocyanins, unsaturated fatty acids, and antioxidants. These metabolites play a pivotal role in conferring protection against environmental stresses. Their biosynthesis and functional roles are potentially modulated by signalling molecules such as hydrogen peroxide, abscisic acid, jasmonic acid, salicylic acid, and ethylene, all of which have associated genetic markers that further elucidate their involvement in stress response pathways. In comparison to single stress, the combination of UV-B and drought induces the plant defence responses and growth retardation which are less-than-additive. This sub-additive response, consistent across different study environments, suggests the possibility of a cross-resistance mechanism. Our outlines imply that the adverse effects of increased drought and UV-B could potentially be mitigated by cross-talk between UV-B and drought regimes utilizing a multidimensional approach. This crucial insight could contribute significantly to refining our understanding of stress tolerance in the face of ongoing global climate change.
Collapse
Affiliation(s)
- Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nishbah Mughal
- Engineering Research Centre for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Ali Raza
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liling Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
12
|
Yang W, Dai H, Wei S, Skuza L. The effect of exogenous plant growth regulators on elevated Cd phytoremediation by Solanum nigrum L. in contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3964-3975. [PMID: 38097832 DOI: 10.1007/s11356-023-31420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024]
Abstract
Maximizing amendment potential is an emphasis in the HM-contaminated field of phytoremediation by hyperaccumulators due to the low bioavailability of HMs in soils and small biomass yields of plants. This study investigated the influence of different types and concentrations of plant growth regulators on Cd phytoremediation by Solanum nigrum in contaminated soil. Our conclusions showed that the shoot Cd extractions (μg plant-1) and the root and shoot biomasses at all the treatments remarkedly increased compared with that of the CK (p < 0.05), while the Cd concentrations at root and aboveground parts by S. nigrum, the extractable Cd concentrations, and pH value of soils did not change significantly compared with the CK (p < 0.05). Furthermore, correlation analysis showed that the shoot Cd phytoaccumulation and the root and aboveground biomasses of S. nigrum were particularly dependent upon the application of CTK and GA3 concentration gradient (p < 0.05). Moreover, some related physicochemical indexes were determined for supervising the growth conditions of plants, and these results pointed out that after exogenous PGRs treatments, the chlorophyll content and antioxidative enzymes POD and SOD activities in vivo of plants clearly advanced, while the H2O2 and MDA contents and CAT apparently declined. These consequence demonstrated that the exogenous PGR addition prominently reinforced the Cd phytoextraction capacity of S. nigrum in contaminated soil by stimulating plant growth and increasing shoot yields.
Collapse
Affiliation(s)
- Wei Yang
- Academy of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang, 110159, Liaoning, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Department of Molecular Biology and Cytology, Institute for Research On Biodiversity, University of Szczecin, 71-415, Szczecin, Poland
| |
Collapse
|
13
|
Mmbando GS. The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses. PLANT SIGNALING & BEHAVIOR 2023; 18:2191463. [PMID: 36934364 PMCID: PMC10730183 DOI: 10.1080/15592324.2023.2191463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet-B radiation (UVB; 280-315 nm) is a significant environmental factor that alters plant development, changes interactions between species, and reduces the prevalence of pests and diseases. While UVB radiation has negative effects on plant growth and performance at higher doses, at lower and ambient doses, UVB radiation acts as a non-chemical method for managing biotic stresses by having positive effects on disease resistance and genes that protect plants from pests. Understanding the recent relationship between UVB radiation and plants' biotic stresses is crucial for the development of crops that are resistant to UVB and biotic stresses. However, little is known about the recent interactions between UVB radiation and biotic stresses in plants. This review discusses the most recent connections between UVB radiation and biotic stresses in crops, including how UVB radiation affects a plant's resistance to disease and pests. The interaction of UVB radiation with pathogens and herbivores has been the subject of the most extensive research of these. This review also discusses additional potential strategies for conferring multiple UVB-biotic stress resistance in crop plants, such as controlling growth inhibition, miRNA 396 and 398 modulations, and MAP kinase. This study provides crucial knowledge and methods for scientists looking to develop multiple resistant crops that will improve global food security.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma (UDOM), Dodoma, Tanzania
| |
Collapse
|
14
|
Cui L, Li M, Zhang X, Guo Z, Li K, Shi Y, Wang Q, Guo H. Enhanced UV-B Radiation in Potato Stems and Leaves Promotes the Accumulation of Anthocyanins in Tubers. Curr Issues Mol Biol 2023; 45:9943-9960. [PMID: 38132467 PMCID: PMC10742819 DOI: 10.3390/cimb45120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Enhanced ultraviolet-B (UV-B) radiation promotes anthocyanin biosynthesis in leaves, flowers and fruits of plants. However, the effects and underlying mechanisms of enhanced UV-B radiation on the accumulation of anthocyanins in the tubers of potatoes (Solanum tuberosum L.) remain unclear. Herein, reciprocal grafting experiments were first conducted using colored and uncolored potatoes, demonstrating that the anthocyanins in potato tubers were synthesized in situ, and not transported from the leaves to the tubers. Furthermore, the enhanced UV-B radiation (2.5 kJ·m-2·d-1) on potato stems and leaves significantly increased the contents of total anthocyanin and monomeric pelargonidin and peonidin in the red-fleshed potato '21-1' tubers, compared to the untreated control. A comparative transcriptomic analysis showed that there were 2139 differentially expressed genes (DEGs) under UV-B treatment in comparison to the control, including 1724 up-regulated and 415 down-regulated genes. The anthocyanin-related enzymatic genes in the tubers such as PAL, C4H, 4CL, CHS, CHI, F3H, F3'5'H, ANS, UFGTs, and GSTs were up-regulated under UV-B treatment, except for a down-regulated F3'H. A known anthocyanin-related transcription factor StbHLH1 also showed a significantly higher expression level under UV-B treatment. Moreover, six differentially expressed MYB transcription factors were remarkably correlated to almost all anthocyanin-related enzymatic genes. Additionally, a DEGs enrichment analysis suggested that jasmonic acid might be a potential UV-B signaling molecule involved in the UV-B-induced tuber biosynthesis of anthocyanin. These results indicated that enhanced UV-B radiation in potato stems and leaves induced anthocyanin accumulation in the tubers by regulating the enzymatic genes and transcription factors involved in anthocyanin biosynthesis. This study provides novel insights into the mechanisms of enhanced UV-B radiation that regulate the anthocyanin biosynthesis in potato tubers.
Collapse
Affiliation(s)
- Lingyan Cui
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Maoxing Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Xing Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Zongming Guo
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Kaifeng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Yuhan Shi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
| | - Qiong Wang
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| | - Huachun Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (L.C.); (M.L.); (X.Z.); (K.L.); (Y.S.)
- Yunnan Engineering Research Center of Tuber and Root Crop Bio-Breeding and Healthy Seed Propagation, Yunnan Agricultural University, Kunming 650201, China
- Tuber and Root Crops Research Institute, Yunnan Agricultural University, Kunming 650201, China;
| |
Collapse
|
15
|
Gamit HA, Amaresan N. Methylobacterium spp. mitigation of UV stress in mung bean (Vigna radiata L.). Photochem Photobiol Sci 2023; 22:2839-2850. [PMID: 37838625 DOI: 10.1007/s43630-023-00490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Methylotrophs are a diverse group of bacteria that abundantly colonize the phyllosphere and have great potential to withstand UV irradiation because of their pigmented nature and ability to promote plant growth through various mechanisms. The present study investigated the effects of UVB radiation on plant growth-promoting (PGP) properties of methylotrophic bacteria and the growth of Vigna radiata L. A total of 55 methylotrophic bacteria were isolated from desert plants, and 15 methylotrophs were resistant to UVB radiation for 4 h. All UVB-resistant methylotrophs possess a methyldehydrogenase gene. Identification based on 16S rRNA gene sequencing revealed that all 15 UVB-resistant methylotrophs belonged to the genera Methylorubrum (07), Methylobacterium (07), and Rhodococcus (01). Screening of methylotrophs for PGP activity in the presence and absence of UVB radiation revealed that all isolates showed ACC deaminase activity and growth on a nitrogen-free medium. Furthermore, the production of IAA-like substances ranged from 8.62 to 85.76 µg/mL, siderophore production increased from 3.47 to 65.75% compared to the control. Seed germination assay with V. radiata L. (mung bean) exposed to UVB radiation revealed that methylotrophs improved seed germination, root length, and shoot length compared to the control. The present findings revealed that the isolates SD3, SD2, KD1, KD5, UK1, and UK3 reduced the deleterious effects of UVB radiation on mung bean plants and can be used to protect seedlings from UVB radiation for sustainable agriculture.
Collapse
Affiliation(s)
- Harshida A Gamit
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, 394 350, Gujarat, India
| | - Natarajan Amaresan
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Maliba Campus, Bardoli, Surat, 394 350, Gujarat, India.
| |
Collapse
|
16
|
Depaepe T, Vanhaelewyn L, Van Der Straeten D. UV-B responses in the spotlight: Dynamic photoreceptor interplay and cell-type specificity. PLANT, CELL & ENVIRONMENT 2023; 46:3194-3205. [PMID: 37554043 DOI: 10.1111/pce.14680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Plants are constantly exposed to a multitude of external signals, including light. The information contained within the full spectrum of light is perceived by a battery of photoreceptors, each with specific and shared signalling outputs. Recently, it has become clear that UV-B radiation is a vital component of the electromagnetic spectrum, guiding growth and being crucial for plant fitness. However, given the large overlap between UV-B specific signalling pathways and other photoreceptors, understanding how plants can distinguish UV-B specific signals from other light components deserves more scrutiny. With recent evidence, we propose that UV-B signalling and other light signalling pathways occur within distinct tissues and cell-types and that the contribution of each pathway depends on the type of response and the developmental stage of the plant. Elucidating the precise site(s) of action of each molecular player within these signalling pathways is key to fully understand how plants are able to orchestrate coordinated responses to light within the whole plant body. Focusing our efforts on the molecular study of light signal interactions to understand plant growth in natural environments in a cell-type specific manner will be a next step in the field of photobiology.
Collapse
Affiliation(s)
- Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | - Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
- Department of Agricultural Economics, Ghent University, Coupure Links 653 B-9000, Ghent, Belgium
| | | |
Collapse
|
17
|
Banerjee G, Singh D, Pandey C, Jonwal S, Basu U, Parida SK, Pandey A, Sinha AK. Rice Mitogen-Activated Protein Kinase regulates serotonin accumulation and interacts with cell cycle regulators under prolonged UV-B exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108078. [PMID: 37832368 DOI: 10.1016/j.plaphy.2023.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/12/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
Stress conditions such as UV-B exposure activates MAPKs in Arabidopsis and rice. UV-B radiation is hazardous to plant as it causes photosystem disruption, DNA damage and ROS generation. Here we report its effect on biological pathways by studying the global changes in transcript profile in rice seedling exposed to UV-B radiation for 1 h and 16 h. Short UV-B exposure (1 h) led to moderate changes, while a drastic change in transcript landscape was observed after long term UV-B exposure (16 h) in rice seedlings. Prolonged UV-B exposure negatively impacts the expression of cell cycle regulating genes and several other metabolic pathways in developing seedlings. MAP kinase signaling cascade gets activated upon UV-B exposure similar to reports in Arabidopsis indicating conservation of its function in both dicot and monocot. Expression analysis in inducible overexpression transgenic lines of MPK3 and MPK6 shows higher transcript abundance of phytoalexin biosynthesis gene like Oryzalexin D synthase and Momilactone A synthase, along with serotonin biosynthesis genes. An accumulation of serotonin was observed upon UV-B exposure and its abundance positively correlates with the MPK3 and MPK6 transcript level in the respective over-expression lines. Interestingly, multiple cell cycle inhibitor proteins including WEE1 and SMR1 interact with MPK3 and MPK6 thus, implying a major role of this pathway in cell cycle regulation under stress condition. Overall overexpression of MPK3 and MPK6 found to be detrimental for rice as overexpression lines shows higher cell death and compromised tolerance to UV-B.
Collapse
Affiliation(s)
- Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Chandana Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Sarvesh Jonwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
18
|
Crestani G, Cunningham N, Csepregi K, Badmus UO, Jansen MAK. From stressor to protector, UV-induced abiotic stress resistance. Photochem Photobiol Sci 2023; 22:2189-2204. [PMID: 37270745 PMCID: PMC10499975 DOI: 10.1007/s43630-023-00441-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/20/2023] [Indexed: 06/05/2023]
Abstract
Plants are continuously exposed to combinations of abiotic and biotic stressors. While much is known about responses to individual stressors, understanding of plant responses to combinations of stressors is limited. The effects of combined exposure to drought and UV radiation are particularly relevant in the context of climate change. In this study it was explored whether UV-exposure can be used as a tool to prime stress-resistance in plants grown under highly protected culture conditions. It was hypothesised that priming mint plantlets (Mentha spicata L.) with a low-dose of UV irradiance can alleviate the drought effect caused by a change in humidity upon transplanting. Plants were grown for 30 days on agar in sealed tissue culture containers. During this period, plants were exposed to ~ 0.22 W m-2 UV-B for 8 days, using either UV-blocking or UV- transmitting filters. Plants were then transplanted to soil and monitored for a further 7 days. It was found that non-UV exposed mint plants developed necrotic spots on leaves, following transfer to soil, but this was not the case for plants primed with UV. Results showed that UV induced stress resistance is associated with an increase in antioxidant capacity, as well as a decrease in leaf area. UV-induced stress resistance can be beneficial in a horticultural setting, where priming plants with UV-B can be used as a tool in the production of commercial crops.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland.
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| | - Kristóf Csepregi
- Department of Plant Biology, Institute of Biology, University of Pécs, Ifjúság u. 6, Pécs, 7624, Hungary
| | - Uthman O Badmus
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Science and Environmental Research Institute, University College Cork, North Mall Campus, Cork, T23 TK30, Ireland
| |
Collapse
|
19
|
Qian M, Kalbina I, Rosenqvist E, Jansen MAK, Strid Å. Supplementary UV-A and UV-B radiation differentially regulate morphology in Ocimum basilicum. Photochem Photobiol Sci 2023; 22:2219-2230. [PMID: 37310640 DOI: 10.1007/s43630-023-00443-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
UV-A- or UV-B-enriched growth light was given to basil plants at non-stress-inducing intensities. UV-A-enriched growth light gave rise to a sharp rise in the expression of PAL and CHS genes in leaves, an effect that rapidly declined after 1-2 days of exposure. On the other hand, leaves of plants grown in UV-B-enriched light had a more stable and long-lasting increase in the expression of these genes and also showed a stronger increase in leaf epidermal flavonol content. UV supplementation of growth light also led to shorter more compact plants with a stronger UV effect the younger the tissue. The effect was more prominent in plants grown under UV-B-enriched light than in those grown under UV-A. Parameters particularly affected were internode lengths, petiole lengths and stem stiffness. In fact, the bending angle of the 2nd internode was found to increase as much as 67% and 162% for plants grown in the UV-A- and UV-B-enriched treatments, respectively. The decreased stem stiffness was probably caused by both an observed smaller internode diameter and a lower specific stem weight, as well as a possible decline in lignin biosynthesis due to competition for precursors by the increased flavonoid biosynthesis. Overall, at the intensities used, UV-B wavelengths are stronger regulators of morphology, gene expression and flavonoid biosynthesis than UV-A wavelengths.
Collapse
Affiliation(s)
- Minjie Qian
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182, Örebro, Sweden
- School of Horticulture, Hainan University, Haikou, 570228, China
| | - Irina Kalbina
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182, Örebro, Sweden
| | - Eva Rosenqvist
- Section of Crop Sciences, Department of Plant and Environmental Sciences, University of Copenhagen, Hoejbakkegaard Allé 9, 2630, Taastrup, Denmark
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, Cork, T23 TK30, Ireland
| | - Åke Strid
- Örebro Life Science Center, School of Science and Technology, Örebro University, 70182, Örebro, Sweden.
| |
Collapse
|
20
|
Zhao J, Bo K, Pan Y, Li Y, Yu D, Li C, Chang J, Wu S, Wang Z, Zhang X, Gu X, Weng Y. Phytochrome-interacting factor PIF3 integrates phytochrome B and UV-B signaling pathways to regulate gibberellin- and auxin-dependent growth in cucumber hypocotyls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4520-4539. [PMID: 37201922 DOI: 10.1093/jxb/erad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, the photoreceptors phytochrome B (PhyB) and UV-B resistance 8 (UVR8) mediate light responses that play a major role in regulating photomorphogenic hypocotyl growth, but how they crosstalk to coordinate this process is not well understood. Here we report map-based cloning and functional characterization of an ultraviolet (UV)-B-insensitive, long-hypocotyl mutant, lh1, and a wild-type-like mutant, lh2, in cucumber (Cucumis sativus), which show defective CsPhyB and GA oxidase2 (CsGA20ox-2), a key gibberellic acid (GA) biosynthesis enzyme, respectively. The lh2 mutation was epistatic to lh1 and partly suppressed the long-hypocotyl phenotype in the lh1lh2 double mutant. We identified phytochrome interacting factor (PIF) CsPIF3 as playing a critical role in integrating the red/far-red and UV-B light responses for hypocotyl growth. We show that two modules, CsPhyB-CsPIF3-CsGA20ox-2-DELLA and CsPIF3-auxin response factor 18 (CsARF18), mediate CsPhyB-regulated hypocotyl elongation through GA and auxin pathways, respectively, in which CsPIF3 binds to the G/E-box motifs in the promoters of CsGA20ox-2 and CsARF18 to regulate their expression. We also identified a new physical interaction between CsPIF3 and CsUVR8 mediating CsPhyB-dependent, UV-B-induced hypocotyl growth inhibition. Our work suggests that hypocotyl growth in cucumber involves a complex interplay of multiple photoreceptor- and phytohormone-mediated signaling pathways that show both conservation with and divergence from those in Arabidopsis.
Collapse
Affiliation(s)
- Jianyu Zhao
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
| | - Kailiang Bo
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yupeng Pan
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- College of Horticulture, Northwest A& F University, Yangling 712100, China
| | - Yuhong Li
- College of Horticulture, Northwest A& F University, Yangling 712100, China
| | - Daoliang Yu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuang Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiang Chang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongyi Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaolan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingfang Gu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison WI 53706, USA
- USDA-ARS Vegetable Crops Research Unit, Madison, WI 53705, USA
| |
Collapse
|
21
|
Mata-Pérez C, Sánchez-Vicente I, Arteaga N, Gómez-Jiménez S, Fuentes-Terrón A, Oulebsir CS, Calvo-Polanco M, Oliver C, Lorenzo Ó. Functions of nitric oxide-mediated post-translational modifications under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1158184. [PMID: 37063215 PMCID: PMC10101340 DOI: 10.3389/fpls.2023.1158184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Environmental conditions greatly impact plant growth and development. In the current context of both global climate change and land degradation, abiotic stresses usually lead to growth restriction limiting crop production. Plants have evolved to sense and respond to maximize adaptation and survival; therefore, understanding the mechanisms involved in the different converging signaling networks becomes critical for improving plant tolerance. In the last few years, several studies have shown the plant responses against drought and salinity, high and low temperatures, mechanical wounding, heavy metals, hypoxia, UV radiation, or ozone stresses. These threats lead the plant to coordinate a crosstalk among different pathways, highlighting the role of phytohormones and reactive oxygen and nitrogen species (RONS). In particular, plants sense these reactive species through post-translational modification (PTM) of macromolecules such as nucleic acids, proteins, and fatty acids, hence triggering antioxidant responses with molecular implications in the plant welfare. Here, this review compiles the state of the art about how plant systems sense and transduce this crosstalk through PTMs of biological molecules, highlighting the S-nitrosylation of protein targets. These molecular mechanisms finally impact at a physiological level facing the abiotic stressful traits that could lead to establishing molecular patterns underlying stress responses and adaptation strategies.
Collapse
|
22
|
Zhou H, Yu L, Liu S, Zhu A, Yang Y, Chen C, Yang A, Liu L, Yu F. Transcriptome comparison analyses in UV-B induced AsA accumulation of Lactuca sativa L. BMC Genomics 2023; 24:61. [PMID: 36737693 PMCID: PMC9896689 DOI: 10.1186/s12864-023-09133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) cultivated in facilities display low vitamin C (L-ascorbic acid (AsA)) contents which require augmentation. Although UV-B irradiation increases the accumulation of AsA in crops, processes underlying the biosynthesis as well as metabolism of AsA induced by UV-B in lettuce remain unclear. RESULTS UV-B treatment increased the AsA content in lettuce, compared with that in the untreated control. UV-B treatment significantly increased AsA accumulation in a dose-dependent manner up until a certain dose.. Based on optimization experiments, three UV-B dose treatments, no UV-B (C), medium dose 7.2 KJ·m- 2·d- 1 (U1), and high dose 12.96 KJ·m- 2·d- 1 (U2), were selected for transcriptome sequencing (RNA-Seq) in this study. The results showed that C and U1 clustered in one category while U2 clustered in another, suggesting that the effect exerted on AsA by UV-B was dose dependent. MIOX gene in the myo-inositol pathway and APX gene in the recycling pathway in U2 were significantly different from the other two treatments, which was consistent with AsA changes seen in the three treatments, indicating that AsA accumulation caused by UV-B may be associated with these two genes in lettuce. UVR8 and HY5 were not significantly different expressed under UV-B irradiation, however, the genes involved in plant growth hormones and defence hormones significantly decreased and increased in U2, respectively, suggesting that high UV-B dose may regulate photomorphogenesis and response to stress via hormone regulatory pathways, although such regulation was independent of the UVR8 pathway. CONCLUSIONS Our results demonstrated that studying the application of UV-B irradiation may enhance our understanding of the response of plant growth and AsA metabolism-related genes to UV-B stress, with particular reference to lettuce.
Collapse
Affiliation(s)
- Hua Zhou
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Lei Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shujuan Liu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Anfan Zhu
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, China
| | - Yanfang Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Caihui Chen
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Aihong Yang
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Lipan Liu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Faxin Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China.
| |
Collapse
|
23
|
Liu M, Sun W, Ma Z, Guo C, Chen J, Wu Q, Wang X, Chen H. Integrated network analyses identify MYB4R1 neofunctionalization in the UV-B adaptation of Tartary buckwheat. PLANT COMMUNICATIONS 2022; 3:100414. [PMID: 35923114 PMCID: PMC9700134 DOI: 10.1016/j.xplc.2022.100414] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A hallmark of adaptive evolution is innovation in gene function, which is associated with the development of distinct roles for genes during plant evolution; however, assessing functional innovation over long periods of time is not trivial. Tartary buckwheat (Fagopyrum tataricum) originated in the Himalayan region and has been exposed to intense UV-B radiation for a long time, making it an ideal species for studying novel UV-B response mechanisms in plants. Here, we developed a workflow to obtain a co-functional network of UV-B responses using data from more than 10,000 samples in more than 80 projects with multi-species and multi-omics data. Dissecting the entire network revealed that flavonoid biosynthesis was most significantly related to the UV-B response. Importantly, we found that the regulatory factor MYB4R1, which resides at the core of the network, has undergone neofunctionalization. In vitro and in vivo experiments demonstrated that MYB4R1 regulates flavonoid and anthocyanin accumulation in response to UV-B in buckwheat by binding to L-box motifs in the FtCHS, FtFLS, and FtUFGT promoters. We used deep learning to develop a visual discrimination model of buckwheat flavonoid content based on natural populations exposed to global UV-B radiation. Our study highlights the critical role of gene neofunctionalization in UV-B adaptation.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaocheng Guo
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiyin Wang
- School of Life Science, North China University of Science and Technology, Tangshan 063210, China.
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
24
|
Nie WF, Chen Y, Tao J, Li Y, Liu J, Zhou Y, Yang Y. Identification of the 12-oxo-phytoeienoic acid reductase (OPR) gene family in pepper (Capsicum annuum L.) and functional characterization of CaOPR6 in pepper fruit development and stress response. Genome 2022; 65:537-545. [PMID: 35944282 DOI: 10.1139/gen-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 12-oxo-phytoeienoic acid reductase (OPR) is a kind of enzyme in octadecanoid biosynthesis pathway, which determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR encoding genes in Capsicum annuum plants. In this study, seven OPR family genes (CaOPR1-7) were identified from the C. annuum genome. The physical and chemical properties of CaOPR1-7 were further analyzed, including gene expression patterns, promoter elements and chromosomal locations. The results showed that the seven CaOPR homologous could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in Arabidopsis. The expression of CaOPR6 was significantly induced by various stresses such as cold, salt and pathogen infection, indicating that CaOPR6 plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of CaOPR6 in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in Solanaceae vegetables.
Collapse
Affiliation(s)
| | - Yue Chen
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Junjie Tao
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Yu Li
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Jianping Liu
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| | - Yong Zhou
- Jiangxi Agricultural University, Nanchang, China;
| | - Youxin Yang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China;
| |
Collapse
|
25
|
Mironov VL. Unknown effects of daily-scale solar activity on the plant growth: Data from 6-year growth monitoring of Sphagnum riparium. PHYSIOLOGIA PLANTARUM 2022; 174:e13733. [PMID: 35699602 DOI: 10.1111/ppl.13733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The influence of solar activity on plant growth has been studied for over 100 years, however, this phenomenon is still poorly understood on a daily scale. The data from extensive monitoring of the growth of peat moss Sphagnum riparium, which we are conducting in the mires of Karelia (Russia), may shed light on this issue. During the 6 years of observation, 161,190 shoots were measured, and 1075 growth rates were obtained. Considering together the growth rates with the sunspot number and involving data on seasonal temperature, we found previously unknown effects of daily-scale solar activity on plant growth. It was found that the sunspot number weakly but significantly inhibits the growth of Sphagnum. The extreme sunspot number in the 4 days before the growth rate values have a stronger influence. The involvement of temperature data showed that inhibition in growth is observed only in the temperature range from 6.7°C to 15.3°C and disappears beyond these limits. In addition, the data obtained showed that the influence of sunspot number on the growth of Sphagnum is progressively increasing along the gradient from the minimum to the maximum of the 11-year solar cycle. The study provides one of the first results on the effect of solar activity on plant growth on a daily scale. The results expand our knowledge of the biological effects of solar activity. Indirectly, they can also be useful to better our understanding of the ozone layer's involvement in this process.
Collapse
Affiliation(s)
- Victor L Mironov
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
26
|
Peng T, Wang Y, Yang T, Wang F, Luo J, Zhang Y. Physiological and Biochemical Responses, and Comparative Transcriptome Profiling of Two Angelica sinensis Cultivars Under Enhanced Ultraviolet-B Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:805407. [PMID: 34975996 PMCID: PMC8718920 DOI: 10.3389/fpls.2021.805407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In this study, we explored the adaptive mechanism of two varieties of Angelica sinensis exposed to enhanced Ultraviolet-B (UV-B) radiation. The radiation had different effects on the biomass, photosynthetic performance, oxidative damage, antioxidant defense system, and levels of bioactive compounds of Mingui 1 (C1) and Mingui 2 (C2). C2 outperformed C1 under enhanced UV-B radiation, compared to natural light. Using the Illumina RNA-seq, we obtained 6,326 and 2,583 DEGs in C1 and C2, respectively. Under enhanced UV-B radiation, the mRNA levels of genes involved in photosynthesis, antennae protein synthesis, carbon fixation, chlorophyll synthesis, and carotenoid synthesis were decreased in C1 but stable in C2, involving few DEGs. TFs were widely involved in the response of C1 to enhanced UV-B radiation; almost all bHLH and MYB coding genes were downregulated whereas almost all genes encoded WRKY22, WRKY50, WRKY72, NCF, and HSF were upregulated. These results indicate that enhanced UV-B radiation was not conducive to the synthesis of flavonoids, while disease resistance was enhanced. Regarding the ROS scavenging system, upregulated DEGs were mainly found in the AsA-GSH cycle and PrxR/Trx pathways. Remarkably, DEGs that those encoding biosynthetic key enzymes, including ferulic acid (CHS, CHI, DFR, and ANS) and flavonoid (CHS, CHI, DFR, and ANS), most upregulation in C2, leading to increased accumulation of ferulic acid and flavonoids and adversely affecting C1. Genes encoding key enzymes involved in the synthesis of lactone components (ACX, PXG) were mostly up-regulated in C1, increasing the content of lactone components. Our results reveal the DEGs present between C1 and C2 under enhanced UV-B radiation and are consistent with the observed differences in physiological and biochemical indexes. C1 was more sensitive to enhanced UV-B radiation, and C2 was more tolerant to it under moderate enhanced UV-B radiation stress. In addition, the large amount of A. sinensis transcriptome data generated here will serve as a source for finding effective ways to mitigate UV-B enhancement, and also contribute to the well-established lack of genetic information for non-model plant species.
Collapse
Affiliation(s)
- Tong Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yinquan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Lanzhou, China
| | - Tao Yang
- Key Laboratory of Microbial Resources Exploitation and Application, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Fusheng Wang
- Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Jun Luo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yali Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
27
|
Kataria S, Jain M, Rastogi A, Brestic M. Static magnetic field treatment enhanced photosynthetic performance in soybean under supplemental ultraviolet-B radiation. PHOTOSYNTHESIS RESEARCH 2021; 150:263-278. [PMID: 34075565 DOI: 10.1007/s11120-021-00850-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The study was performed to analyze the impact of seed pretreatment by static magnetic field (SMF) of 200 mT for 1 h on photosynthetic performance of soybean (Glycine max) seedlings under ambient (aUV-B) and supplemental ultraviolet-B (a+sUV-B) stress. Ambient and supplemental UV-B were found to decrease the plant growth, chlorophyll concentration, PSII efficiency, selected JIP-test parameters such as Fv/Fm, φEo, ΔV(I-P), PIABS, PItotal, and rate of photosynthesis in the leaves of soybean seedlings emerged from untreated (UT) seeds. aUV-B and a+sUV-B were observed to increase the synthesis of UV-B-absorbing substances (UAS), reactive oxygen species (ROS) like superoxide radical (O2·-) and hydrogen peroxide (H2O2), antioxidants like ascorbic acid and α-tocopherol and decrease the nitrate reductase (NR) activity; subsequently, it results in a decreased rate of photosynthesis, biomass accumulation, and yield. However, our results provided evidence that SMF pretreatment increased the tolerance of soybean seedlings to UV-B radiation by increased NO content and NR activity; higher efficiency of PSII, higher values of φEo, ΔV(I-P), PIABS, and PItotal, decreased intercellular CO2 concentration, lower amount of UAS, ROS, and antioxidants that consequently improve the yield of soybean plants under aUV-B as well as a+sUV-B stress. Thus, our results suggested that SMF pretreatment mitigates the adverse effects of UV-B stress by the enhancement in photosynthetic performance along with higher NO content which may be able to protect the plants from the deleterious effects of oxidative stress caused by UV-B irradiation.
Collapse
Affiliation(s)
- Sunita Kataria
- School of Biochemistry, Devi Ahilya University, Khandwa Road, Indore, M.P., 452001, India.
| | - Meeta Jain
- School of Biochemistry, Devi Ahilya University, Khandwa Road, Indore, M.P., 452001, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznan, Poland
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE, Enschede, The Netherlands
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, 94976, Nitra, Slovak Republic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500, Prague, Czech Republic
| |
Collapse
|
28
|
Zhong Z, Wang X, Yin X, Tian J, Komatsu S. Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves. Int J Mol Sci 2021; 22:12239. [PMID: 34830127 PMCID: PMC8618018 DOI: 10.3390/ijms222212239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023] Open
Abstract
Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Xiaojian Yin
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, China;
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
29
|
Miao T, Li D, Huang Z, Huang Y, Li S, Wang Y. Gibberellin regulates UV-B-induced hypocotyl growth inhibition in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1966587. [PMID: 34463604 PMCID: PMC8526026 DOI: 10.1080/15592324.2021.1966587] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plant response to light is a complex and diverse phenomenon. Several studies have elucidated the mechanisms via which light and hormones regulate hypocotyl growth. However, the hormone-dependent ultraviolet-B (UV-B) response in plants remains obscure. Involvement of gibberellins (GAs) in UV-B-induced hypocotyl inhibition and its mechanisms in Arabidopsis thaliana were investigated in the present research. UV-B exposure remarkably decreased the endogenous GA3 content through the UV RESISTANCE LOCUS 8 (UVR8) receptor pathway, and exogenous GA3 partially restored the hypocotyl growth. UV-B irradiation affected the expression levels of GA metabolism-related genes (GA20ox1, GA2ox1 and GA3ox1) in the hy5-215 mutant, resulting in increased GA content.ELONGATED HYPOCOTYL 5 (HY5) promoted the accumulation of DELLA proteins under UV-B radiation; HY5 appeared to regulate the abundance of DELLAs at the transcriptional level under UV-B. As a result, the GA3 content decreased, which eventually led to the shortening of the hypocotyl. To conclude, the present study provides new insight into the regulation of plant photomorphogenesis under UV-B.
Collapse
Affiliation(s)
- Tingting Miao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Dezhi Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Ziyuan Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Yuewei Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
- CONTACT Shaoshan Li Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou510631, China
| | - Yan Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Yan Wang College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Wang Y, Huang C, Zeng W, Zhang T, Zhong C, Deng S, Tang T. Epigenetic and transcriptional responses underlying mangrove adaptation to UV-B. iScience 2021; 24:103148. [PMID: 34646986 PMCID: PMC8496181 DOI: 10.1016/j.isci.2021.103148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Tropical plants have adapted to strong solar ultraviolet (UV) radiation. Here we compare molecular responses of two tropical mangroves Avecennia marina and Rhizophora apiculata to high-dose UV-B. Whole-genome bisulfate sequencing indicates that high UV-B induced comparable hyper- or hypo-methylation in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C) in A. marina but mainly CHG hypomethylation in R. apiculata. RNA and small RNA sequencing reveals UV-B induced relaxation of transposable element (TE) silencing together with up-regulation of TE-adjacent genes in R. apiculata but not in A. marina. Despite conserved upregulation of flavonoid biosynthesis and downregulation of photosynthesis genes caused by high UV-B, A. marina specifically upregulated ABC transporter and ubiquinone biosynthesis genes that are known to be protective against UV-B-induced damage. Our results point to divergent responses underlying plant UV-B adaptation at both the epigenetic and transcriptional level.
Collapse
Affiliation(s)
- Yushuai Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Chenglong Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Weishun Zeng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Tianyuan Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou 571100, Hainan, People’s Republic of China
| | - Shulin Deng
- CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
- Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| |
Collapse
|
31
|
Wang J, Li M, Feng J, Yan X, Chen H, Han R. Effects of TiO 2-NPs pretreatment on UV-B stress tolerance in Arabidopsis thaliana. CHEMOSPHERE 2021; 281:130809. [PMID: 33992849 DOI: 10.1016/j.chemosphere.2021.130809] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
As the ozone hole in the North and South poles continues to increase, the entire ecosystem will face an environmental crisis caused by enhanced UV-B radiation. Considering the function of TiO2 and the application of nanomaterials in agriculture, the effect of TiO2-NPs on UV-B stress tolerance in Arabidopsis was investigated. The phenotype of plants was determined, and the expression patterns of antioxidant systems and related genes were analyzed. Modification of the antioxidant system and changes in the flavonoid content of plants were observed by histochemical staining. The effects of TiO2-NPs and UV-B on mitosis were observed at the cellular level, and the degree of DNA damage was analyzed by the detection of CPDs content. The effects of TiO2-NPs and UV-B on SOD isozymes were detected by SOD isozyme Native-PAGE electrophoresis. A laser confocal microscope was used to explore the protective mechanism of TiO2-NPs against UV-B radiation. Results showed that pretreatment of TiO2-NPs significantly alleviated the stress of UV-B radiation on plants. TiO2-NPs activated the antioxidant system of plants, improved the activity of antioxidant enzymes, and promoted the synthesis of flavonoids. Moreover, TiO2-NPs could effectively shield UV-B radiation to prevent the depolymerization of microtubules in plant cells. 10 mg/L of TiO2-NPs is a safe and effective application dose, which has no biological toxicity to plants. Our research results reported for the first time that pretreatment of TiO2-NPs could effectively alleviate UV-B stress to plants, providing new ideas for the application of nanomaterials in agriculture.
Collapse
Affiliation(s)
- Jianhua Wang
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Mingwei Li
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Jinlin Feng
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Xiaoyan Yan
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Huize Chen
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| | - Rong Han
- Shanxi Normal University, Linfen, Shanxi, 041004, People's Republic of China; Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response (Shanxi Normal University) in Shanxi Province, Linfen, Shanxi, 041000, People's Republic of China.
| |
Collapse
|
32
|
Qian M, Rosenqvist E, Prinsen E, Pescheck F, Flygare AM, Kalbina I, Jansen MA, Strid Å. Downsizing in plants-UV light induces pronounced morphological changes in the absence of stress. PLANT PHYSIOLOGY 2021; 187:378-395. [PMID: 34618138 PMCID: PMC8418406 DOI: 10.1093/plphys/kiab262] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/18/2021] [Indexed: 05/29/2023]
Abstract
Ultraviolet (UV) light induces a stocky phenotype in many plant species. In this study, we investigate this effect with regard to specific UV wavebands (UV-A or UV-B) and the cause for this dwarfing. UV-A- or UV-B-enrichment of growth light both resulted in a smaller cucumber (Cucumis sativus L.) phenotype, exhibiting decreased stem and petiole lengths and leaf area (LA). Effects were larger in plants grown in UV-B- than in UV-A-enriched light. In plants grown in UV-A-enriched light, decreases in stem and petiole lengths were similar independent of tissue age. In the presence of UV-B radiation, stems and petioles were progressively shorter the younger the tissue. Also, plants grown under UV-A-enriched light significantly reallocated photosynthates from shoot to root and also had thicker leaves with decreased specific LA. Our data therefore imply different morphological plant regulatory mechanisms under UV-A and UV-B radiation. There was no evidence of stress in the UV-exposed plants, neither in photosynthetic parameters, total chlorophyll content, or in accumulation of damaged DNA (cyclobutane pyrimidine dimers). The abscisic acid content of the plants also was consistent with non-stress conditions. Parameters such as total leaf antioxidant activity, leaf adaxial epidermal flavonol content and foliar total UV-absorbing pigment levels revealed successful UV acclimation of the plants. Thus, the UV-induced dwarfing, which displayed different phenotypes depending on UV wavelengths, occurred in healthy cucumber plants, implying a regulatory adjustment as part of the UV acclimation processes involving UV-A and/or UV-B photoreceptors.
Collapse
Affiliation(s)
- Minjie Qian
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
- College of Horticulture, Hainan University, Haikou 570228, China
| | - Eva Rosenqvist
- Section of Crop Sciences, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Allé 9, DK-2630 Taastrup, Denmark
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Frauke Pescheck
- Botanical Institute, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Ann-Marie Flygare
- Statistics Unit, School of Business, Örebro University, SE-70182 Örebro, Sweden
| | - Irina Kalbina
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Marcel A.K. Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, North Mall, T23 TK30 Cork, Ireland
| | - Åke Strid
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| |
Collapse
|
33
|
Meyer P, Van de Poel B, De Coninck B. UV-B light and its application potential to reduce disease and pest incidence in crops. HORTICULTURE RESEARCH 2021; 8:194. [PMID: 34465753 PMCID: PMC8408258 DOI: 10.1038/s41438-021-00629-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
Ultraviolet-B radiation (280-315 nm), perceived by the plant photoreceptor UVR8, is a key environmental signal that influences plant growth and development and can reduce disease and pest incidence. The positive effect of UV-B on disease resistance and incidence in various plant species supports the implementation of supplemental UV-B radiation in sustainable crop production. However, despite many studies focusing on UV-B light, there is no consensus on the best mode of application. This review aims to analyze, evaluate, and organize the different application strategies of UV-B radiation in crop production with a focus on disease resistance. We summarize the physiological effects of UV-B light on plants and discuss how plants perceive and transduce UV-B light by the UVR8 photoreceptor as well as how this perception alters plant specialized metabolite production. Next, we bring together conclusions of various studies with respect to different UV-B application methods to improve plant resistance. In general, supplemental UV-B light has a positive effect on disease resistance in many plant-pathogen combinations, mainly through the induction of the production of specialized metabolites. However, many variables (UV-B light source, plant species, dose and intensity, timing during the day, duration, background light, etc.) make it difficult to compare and draw general conclusions. We compiled the information of recent studies on UV-B light applications, including e.g., details on the UV-B light source, experimental set-up, calculated UV-B light dose, intensity, and duration. This review provides practical insights and facilitates future research on UV-B radiation as a promising tool to reduce disease and pest incidence.
Collapse
Affiliation(s)
- Prisca Meyer
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
34
|
Raza A, Charagh S, Zahid Z, Mubarik MS, Javed R, Siddiqui MH, Hasanuzzaman M. Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. PLANT CELL REPORTS 2021; 40:1513-1541. [PMID: 33034676 DOI: 10.1007/s00299-020-02614-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 05/18/2023]
Abstract
Abiotic stresses are the primary sources of crop losses globally. The identification of key mechanisms deployed and established by plants in response to abiotic stresses is necessary for the maintenance of their growth and persistence. Recent discoveries have revealed that phytohormones or plant growth regulators (PGRs), mainly jasmonic acid (JA), have increased our knowledge of hormonal signaling of plants under stressful environments. Jasmonic acid is involved in various physiological and biochemical processes associated with plant growth and development as well as plant defense mechanism against wounding by pathogen and insect attacks. Recent findings suggest that JA can mediate the effect of abiotic stresses and help plants to acclimatize under unfavorable conditions. As a vital PGR, JA contributes in many signal transduction pathways, i.e., gene network, regulatory protein, signaling intermediates and enzymes, proteins, and other molecules that act to defend cells from the harmful effects of various environmental stresses. However, JA does not work as an independent regulator, but acts in a complex signaling pathway along other PGRs. Further, JA can protect and maintain the integrity of plant cells under several stresses by up-regulating the antioxidant defense. In this review, we have documented the biosynthesis and metabolism of JA and its protective role against different abiotic stresses. Further, JA-mediated antioxidant potential and its crosstalk with other PGRs have also been discussed.
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| | - Sidra Charagh
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zainab Zahid
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Rida Javed
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38040, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| |
Collapse
|
35
|
Rai N, Morales LO, Aphalo PJ. Perception of solar UV radiation by plants: photoreceptors and mechanisms. PLANT PHYSIOLOGY 2021; 186:1382-1396. [PMID: 33826733 PMCID: PMC8260113 DOI: 10.1093/plphys/kiab162] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/25/2021] [Indexed: 05/04/2023]
Abstract
About 95% of the ultraviolet (UV) photons reaching the Earth's surface are UV-A (315-400 nm) photons. Plant responses to UV-A radiation have been less frequently studied than those to UV-B (280-315 nm) radiation. Most previous studies on UV-A radiation have used an unrealistic balance between UV-A, UV-B, and photosynthetically active radiation (PAR). Consequently, results from these studies are difficult to interpret from an ecological perspective, leaving an important gap in our understanding of the perception of solar UV radiation by plants. Previously, it was assumed UV-A/blue photoreceptors, cryptochromes and phototropins mediated photomorphogenic responses to UV-A radiation and "UV-B photoreceptor" UV RESISTANCE LOCUS 8 (UVR8) to UV-B radiation. However, our understanding of how UV-A radiation is perceived by plants has recently improved. Experiments using a realistic balance between UV-B, UV-A, and PAR have demonstrated that UVR8 can play a major role in the perception of both UV-B and short-wavelength UV-A (UV-Asw, 315 to ∼350 nm) radiation. These experiments also showed that UVR8 and cryptochromes jointly regulate gene expression through interactions that alter the relative sensitivity to UV-B, UV-A, and blue wavelengths. Negative feedback loops on the action of these photoreceptors can arise from gene expression, signaling crosstalk, and absorption of UV photons by phenolic metabolites. These interactions explain why exposure to blue light modulates photomorphogenic responses to UV-B and UV-Asw radiation. Future studies will need to distinguish between short and long wavelengths of UV-A radiation and to consider UVR8's role as a UV-B/UV-Asw photoreceptor in sunlight.
Collapse
Affiliation(s)
- Neha Rai
- Organismal and Evolutionary Biology, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
- Author for communication: . Present address: Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Luis Orlando Morales
- School of Science and Technology, The Life Science Center-Biology, Örebro University, SE-70182 Örebro, Sweden
| | - Pedro José Aphalo
- Organismal and Evolutionary Biology, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
36
|
Xu J, Nie S, Xu CQ, Liu H, Jia KH, Zhou SS, Zhao W, Zhou XQ, El-Kassaby YA, Wang XR, Porth I, Mao JF. UV-B-induced molecular mechanisms of stress physiology responses in the major northern Chinese conifer Pinus tabuliformis Carr. TREE PHYSIOLOGY 2021; 41:1247-1263. [PMID: 33416074 DOI: 10.1093/treephys/tpaa180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
During their lifetimes, plants are exposed to different abiotic stress factors eliciting various physiological responses and triggering important defense processes. For UV-B radiation responses in forest trees, the genetics and molecular regulation remain to be elucidated. Here, we exposed Pinus tabuliformis Carr., a major conifer from northern China, to short-term high-intensity UV-B and employed a systems biology approach to characterize the early physiological processes and the hierarchical gene regulation, which revealed a temporal transition from primary to secondary metabolism, the buildup of enhanced antioxidant capacity and stress-signaling activation. Our findings showed that photosynthesis and biosynthesis of photosynthetic pigments were inhibited, while flavonoids and their related derivates biosynthesis, as well as glutathione and glutathione S-transferase mediated antioxidant processes, were enhanced. Likewise, stress-related phytohormones (jasmonic acid, salicylic acid and ethylene), kinase and reactive oxygen species signal transduction pathways were activated. Biological processes regulated by auxin and karrikin were, for the first time, found to be involved in plant defense against UV-B by promoting the biosynthesis of flavonoids and the improvement of antioxidant capacity in our research system. Our work evaluated the physiological and transcriptome perturbations in a conifer's response to UV-B, and generally, highlighted the necessity of a systems biology approach in addressing plant stress biology.
Collapse
Affiliation(s)
- Jie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Chao-Qun Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Kai-Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Shan-Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| | - Wei Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-901 87 Umeå, Sweden
| | - Xian-Qing Zhou
- Qigou State-owned Forest Farm, Qigou Village, Qigou Town, Pingquan County, Chengde City, Hebei Province, 067509, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4 Canada
| | - Xiao-Ru Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-901 87 Umeå, Sweden
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval Québec, 1030 Avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, 35 Qinghua E Rd, Beijing 100083, China
| |
Collapse
|
37
|
Genome-Wide Association Study for Ultraviolet-B Resistance in Soybean ( Glycine max L.). PLANTS 2021; 10:plants10071335. [PMID: 34210031 PMCID: PMC8308986 DOI: 10.3390/plants10071335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
The depletion of the stratospheric ozone layer is a major environmental issue and has increased the dosage of ultraviolet-B (UV-B) radiation reaching the Earth’s surface. Organisms are negatively affected by enhanced UV-B radiation, and especially in crop plants this may lead to severe yield losses. Soybean (Glycine max L.), a major legume crop, is sensitive to UV-B radiation, and therefore, it is required to breed the UV-B-resistant soybean cultivar. In this study, 688 soybean germplasms were phenotyped for two categories, Damage of Leaf Chlorosis (DLC) and Damage of Leaf Shape (DLS), after supplementary UV-B irradiation for 14 days. About 5% of the germplasms showed strong UV-B resistance, and GCS731 was the most resistant genotype. Their phenotypic distributions showed similar patterns to the normal, suggesting UV-B resistance as a quantitative trait governed by polygenes. A total of 688 soybean germplasms were genotyped using the Axiom® Soya 180K SNP array, and a genome-wide association study (GWAS) was conducted to identify SNPs significantly associated with the two traits, DLC and DLS. Five peaks on chromosomes 2, 6, 10, and 11 were significantly associated with either DLC or DLS, and the five adjacent genes were selected as candidate genes responsible for UV-B resistance. Among those candidate genes, Glyma.02g017500 and Glyma.06g103200 encode cryptochrome (CRY) and cryptochrome 1 (CRY1), respectively, and are known to play a role in DNA repair during photoreactivation. Real-time quantitative RT-PCR (qRT-PCR) results revealed that CRY1 was expressed significantly higher in the UV-B-resistant soybean compared to the susceptible soybean after 6 h of UV-B irradiation. This study is the first GWAS report on UV-B resistance in soybean, and the results will provide valuable information for breeding UV-B-resistant soybeans in preparation for climate change.
Collapse
|
38
|
He ZD, Tao ML, Leung DWM, Yan XY, Chen L, Peng XX, Liu EE. The rice germin-like protein OsGLP1 participates in acclimation to UV-B radiation. PLANT PHYSIOLOGY 2021; 186:1254-1268. [PMID: 33713137 PMCID: PMC8195522 DOI: 10.1093/plphys/kiab125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 02/19/2021] [Indexed: 05/05/2023]
Abstract
Exposure to ultraviolet B radiation (UV-B) stress can have serious effects on the growth and development of plants. Germin-like proteins (GLPs) may be involved in different abiotic and biotic stress responses in different plants, but little is known about the role of GLPs in UV-B stress response and acclimation in plants. In the present study, knockout of GLP 8-14 (OsGLP1) using the CRISPR/Cas9 system resulted in mutant rice (Oryza sativa L.) plants (herein called glp1) that exhibited UV-B-dependent formation of lesion mimic in leaves. Moreover, glp1 grown under solar radiation (including UV-B) showed decreased plant height and increased leaf angle, but we observed no significant differences in phenotypes between wild-type (WT) plants and glp1 grown under artificial light lacking UV-B. Fv/Fm, Y (II) and the expression of many genes, based on RNA-seq analysis, related to photosynthesis were also only reduced in glp1, but not in WT, after transfer from a growth cabinet illuminated with artificial white light lacking UV-B to growth under natural sunlight. The genes-associated with flavonoid metabolism as well as UV resistance locus 8 (OsUVR8), phytochrome interacting factor-like 15-like (OsPIF3), pyridoxal 5'-phosphate synthase subunit PDX1.2 (OsPDX1.2), deoxyribodipyrimidine photolyase (OsPHR), and deoxyribodipyrimidine photolyase family protein-like (OsPHRL) exhibited lower expression levels, while higher expression levels of mitogen-activated protein kinase 5-like (OsMPK3), mitogen-activated protein kinase 13-like (OsMPK13), and transcription factor MYB4-like (OsMYB4) were observed in glp1 than in WT after transfer from a growth cabinet illuminated with artificial white light to growth under natural sunlight. Therefore, mutations in OsGLP1 resulted in rice plants more sensitive to UV-B and reduced expression of some genes for UV-B protection, suggesting that OsGLP1 is involved in acclimation to UV-B radiation.
Collapse
Affiliation(s)
- Zhi-Dan He
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mi-Lin Tao
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - David W. M Leung
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Xiao-Yu Yan
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Long Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xin-Xiang Peng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - E.-E Liu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Author for communication:
| |
Collapse
|
39
|
Różyło K, Biszczak W, Jośko I, Kusiak M, Świeca M. The possibilities of using elicitors in the increase of functional value of winter wheat grain under field conditions. Cereal Chem 2021. [DOI: 10.1002/cche.10443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Krzysztof Różyło
- Department of Herbology and Plant Cultivation Techniques University of Life Sciences in Lublin Lublin Poland
| | - Wojciech Biszczak
- Department of Herbology and Plant Cultivation Techniques University of Life Sciences in Lublin Lublin Poland
| | - Izabela Jośko
- Institute of Plant Genetics, Breeding and Biotechnology University of Life Sciences in Lublin Lublin Poland
| | - Magdalena Kusiak
- Institute of Plant Genetics, Breeding and Biotechnology University of Life Sciences in Lublin Lublin Poland
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry University of Life Sciences in Lublin Lublin Poland
| |
Collapse
|
40
|
Idris M, Seo N, Jiang L, Kiyota S, Hidema J, Iino M. UV-B signalling in rice: Response identification, gene expression profiling and mutant isolation. PLANT, CELL & ENVIRONMENT 2021; 44:1468-1485. [PMID: 33377203 DOI: 10.1111/pce.13988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Responses of rice seedlings to UV-B radiation (UV-B) were investigated, aiming to establish rice as a model plant for UV-B signalling studies. The growth of japonica rice coleoptiles, grown under red light, was inhibited by brief irradiation with UV-B, but not with blue light. The effective UV-B fluences (10-1 -103 μmol m-2 ) were much lower than those reported in Arabidopsis. The response was much less in indica rice cultivars and its extent varied among Oryza species. We next identified UV-B-specific anthocyanin accumulation in the first leaf of purple rice and used this visible phenotype to isolate mutants. Some isolated mutants were further characterized, and one was found to have a defect in the growth response. Using microarrays, we identified a number of genes that are regulated by low-fluence-rate UV-B in japonica coleoptiles. Some up-regulated genes were analysed by real-time PCR for UV-B specificity and the difference between japonica and indica. More than 70% of UV-B-regulated rice genes had no homologs in UV-B-regulated Arabidopsis genes. Many UV-B-regulated rice genes are related to plant hormones and especially to jasmonate biosynthetic and responsive genes in apparent agreement with the growth response. Possible involvement of two rice homologs of UVR8, a UV-B photoreceptor, is discussed.
Collapse
Affiliation(s)
- Muhammad Idris
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Nobu Seo
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Lei Jiang
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Seiichiro Kiyota
- Office of General Administration, Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Jun Hidema
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Moritoshi Iino
- Botanical Gardens, Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
41
|
Hormonal Regulation in Different Varieties of Chenopodium quinoa Willd. Exposed to Short Acute UV-B Irradiation. PLANTS 2021; 10:plants10050858. [PMID: 33922810 PMCID: PMC8145599 DOI: 10.3390/plants10050858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/02/2023]
Abstract
Increased ultraviolet-B (UV-B) due to global change can affect plant development and metabolism. Quinoa tolerates extreme conditions including high UV levels. However, the physiological mechanisms behind its abiotic stress tolerance are unclear, especially those related to UV-B. We previously demonstrated that 9.12 kJ m−2 d−1 may induce UV-B-specific signaling while 18.24 kJ m−2 d−1 promotes a UV-B-independent response. Here, we explored the effects of these UV-B doses on hormonal regulation linked to plant morphology and defense among diverse varieties. Changes in fluorescence parameters of photosystem II, flavonoids and hormones (indoleacetic acid (IAA), jasmonic acid (JA), abscisic acid (ABA) and salicylic acid (SA)) were surveyed under controlled conditions. Here, we showed that the sensitivity to short acute UV-B doses in varieties from different habitats is influenced by their parental lines and breeding time. UV-B sensitivity does not necessarily correlate with quinoa’s geographical distribution. The role of flavonoids in the UV-B response seems to be different depending on varieties. Moreover, we found that the extent of changes in JA and SA correlate with UV-B tolerance, while the increase of ABA was mainly related to UV-B stress.
Collapse
|
42
|
Hunt HV, Przelomska NAS, Campana MG, Cockram J, Bligh HFJ, Kneale CJ, Romanova OI, Malinovskaya EV, Jones MK. Population genomic structure of Eurasian and African foxtail millet landrace accessions inferred from genotyping-by-sequencing. THE PLANT GENOME 2021; 14:e20081. [PMID: 33543599 PMCID: PMC8638668 DOI: 10.1002/tpg2.20081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 05/11/2023]
Abstract
Foxtail millet [Setaria italica (L.) P. Beauv.] is the second most important millet species globally and is adapted to cultivation in diverse environments. Like its wild progenitor, green foxtail [S. viridis (L.) P. Beauv.], it is a model species for C4 photosynthetic pathways and stress tolerance genes in related bioenergy crops. We addressed questions regarding the evolution and spread of foxtail millet through a population genomic study of landraces from across its cultivated range in Europe, Asia, and Africa. We sought to determine population genomic structure and the relationship of domesticated lineages relative to green foxtail. Further, we aimed to identify genes involved in environmental stress tolerance that have undergone differential selection between geographical and genetic groups. Foxtail millet landrace accessions (n = 328) and green foxtail accessions (n = 12) were sequenced by genotyping-by-sequencing (GBS). After filtering, 5,677 single nucleotide polymorphisms (SNPs) were retained for the combined foxtail millet-green foxtail dataset and 5,020 for the foxtail millet dataset. We extended geographic coverage of green foxtail by including previously published GBS sequence tags, yielding a 4,515-SNP dataset for phylogenetic reconstruction. All foxtail millet samples were monophyletic relative to green foxtail, suggesting a single origin of foxtail millet, although no group of foxtail millet was clearly the most ancestral. Four genetic clusters were found within foxtail millet, each with a distinctive geographical distribution. These results, together with archaeobotanical evidence, suggest plausible routes of spread of foxtail millet. Selection scans identified nine candidate genes potentially involved in environmental adaptations, particularly to novel climates encountered, as domesticated foxtail millet spread to new altitudes and latitudes.
Collapse
Affiliation(s)
- Harriet V. Hunt
- McDonald Institute for Archaeological ResearchUniversity of CambridgeDowning StreetCambridgeCB2 3ERUK
| | - Natalia A. S. Przelomska
- Comparative Plant and Fungal BiologyRoyal Botanic GardensKewRichmondTW9 3AEUK
- Department of AnthropologyNational Museum of Natural HistorySmithsonian InstitutionWashingtonDC20560USA
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDC20008USA
- Department of ArchaeologyUniversity of CambridgeDowning StreetCambridgeCB2 3DZUK
| | - Michael G. Campana
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteSmithsonian InstitutionWashingtonDC20008USA
| | - James Cockram
- The John Bingham LaboratoryNIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
| | | | - Catherine J. Kneale
- McDonald Institute for Archaeological ResearchUniversity of CambridgeDowning StreetCambridgeCB2 3ERUK
| | - Olga I. Romanova
- N.I. Vavilov Institute of Plant Genetic Resources (VIR)St. Petersburg190000Russia
| | | | - Martin K. Jones
- Department of ArchaeologyUniversity of CambridgeDowning StreetCambridgeCB2 3DZUK
| |
Collapse
|
43
|
Quan J, Latzel V, Tie D, Zhang Y, Münzbergová Z, Chai Y, Liu X, Yue M. Ultraviolet B Radiation Triggers DNA Methylation Change and Affects Foraging Behavior of the Clonal Plant Glechoma longituba. FRONTIERS IN PLANT SCIENCE 2021; 12:633982. [PMID: 33719308 PMCID: PMC7952652 DOI: 10.3389/fpls.2021.633982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 06/01/2023]
Abstract
Clonal plants in heterogeneous environments can benefit from their habitat selection behavior, which enables them to utilize patchily distributed resources efficiently. It has been shown that such behavior can be strongly influenced by their memories on past environmental interactions. Epigenetic variation such as DNA methylation was proposed to be one of the mechanisms involved in the memory. Here, we explored whether the experience with Ultraviolet B (UV-B) radiation triggers epigenetic memory and affects clonal plants' foraging behavior in an UV-B heterogeneous environment. Parental ramets of Glechoma longituba were exposed to UV-B radiation for 15 days or not (controls), and their offspring ramets were allowed to choose light environment enriched with UV-B or not (the species is monopodial and can only choose one environment). Sizes and epigenetic profiles (based on methylation-sensitive amplification polymorphism analysis) of parental and offspring plants from different environments were also analyzed. Parental ramets that have been exposed to UV-B radiation were smaller than ramets from control environment and produced less and smaller offspring ramets. Offspring ramets were placed more often into the control light environment (88.46% ramets) than to the UV-B light environment (11.54% ramets) when parental ramets were exposed to UV-B radiation, which is a manifestation of "escape strategy." Offspring of control parental ramets show similar preference to the two light environments. Parental ramets exposed to UV-B had lower levels of overall DNA methylation and had different epigenetic profiles than control parental ramets. The methylation of UV-B-stressed parental ramets was maintained among their offspring ramets, although the epigenetic differentiation was reduced after several asexual generations. The parental experience with the UV-B radiation strongly influenced foraging behavior. The memory on the previous environmental interaction enables clonal plants to better interact with a heterogeneous environment and the memory is at least partly based on heritable epigenetic variation.
Collapse
Affiliation(s)
- Jiaxin Quan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Vít Latzel
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Dan Tie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Yuhan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Zuzana Münzbergová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Yongfu Chai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Xiao Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Ming Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
- Xi’an Botanical Garden of Shaanxi Province/Institute of Botany of Shaanxi Province, Xi’an, China
| |
Collapse
|
44
|
Hancock JT, Russell G. Downstream Signalling from Molecular Hydrogen. PLANTS (BASEL, SWITZERLAND) 2021; 10:367. [PMID: 33672953 PMCID: PMC7918658 DOI: 10.3390/plants10020367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
Molecular hydrogen (H2) is now considered part of the suite of small molecules that can control cellular activity. As such, H2 has been suggested to be used in the therapy of diseases in humans and in plant science to enhance the growth and productivity of plants. Treatments of plants may involve the creation of hydrogen-rich water (HRW), which can then be applied to the foliage or roots systems of the plants. However, the molecular action of H2 remains elusive. It has been suggested that the presence of H2 may act as an antioxidant or on the antioxidant capacity of cells, perhaps through the scavenging of hydroxyl radicals. H2 may act through influencing heme oxygenase activity or through the interaction with reactive nitrogen species. However, controversy exists around all the mechanisms suggested. Here, the downstream mechanisms in which H2 may be involved are critically reviewed, with a particular emphasis on the H2 mitigation of stress responses. Hopefully, this review will provide insight that may inform future research in this area.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | | |
Collapse
|
45
|
Lopes-Oliveira PJ, Oliveira HC, Kolbert Z, Freschi L. The light and dark sides of nitric oxide: multifaceted roles of nitric oxide in plant responses to light. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:885-903. [PMID: 33245760 DOI: 10.1093/jxb/eraa504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.
Collapse
Affiliation(s)
| | - Halley Caixeta Oliveira
- Department of Animal and Plant Biology, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | - Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao Paulo, Brazil
| |
Collapse
|
46
|
Vanhaelewyn L, Van Der Straeten D, De Coninck B, Vandenbussche F. Ultraviolet Radiation From a Plant Perspective: The Plant-Microorganism Context. FRONTIERS IN PLANT SCIENCE 2020; 11:597642. [PMID: 33384704 PMCID: PMC7769811 DOI: 10.3389/fpls.2020.597642] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet (UV) radiation directly affects plants and microorganisms, but also alters the species-specific interactions between them. The distinct bands of UV radiation, UV-A, UV-B, and UV-C have different effects on plants and their associated microorganisms. While UV-A and UV-B mainly affect morphogenesis and phototropism, UV-B and UV-C strongly trigger secondary metabolite production. Short wave (<350 nm) UV radiation negatively affects plant pathogens in direct and indirect ways. Direct effects can be ascribed to DNA damage, protein polymerization, enzyme inactivation and increased cell membrane permeability. UV-C is the most energetic radiation and is thus more effective at lower doses to kill microorganisms, but by consequence also often causes plant damage. Indirect effects can be ascribed to UV-B specific pathways such as the UVR8-dependent upregulated defense responses in plants, UV-B and UV-C upregulated ROS accumulation, and secondary metabolite production such as phenolic compounds. In this review, we summarize the physiological and molecular effects of UV radiation on plants, microorganisms and their interactions. Considerations for the use of UV radiation to control microorganisms, pathogenic as well as non-pathogenic, are listed. Effects can be indirect by increasing specialized metabolites with plant pre-treatment, or by directly affecting microorganisms.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Ge XM, Hu X, Zhang J, Huang QM, Gao Y, Li ZQ, Li S, He JM. UV RESISTANCE LOCUS8 mediates ultraviolet-B-induced stomatal closure in an ethylene-dependent manner. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110679. [PMID: 33218642 DOI: 10.1016/j.plantsci.2020.110679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Although the UV RESISTANCE LOCUS 8 (UVR8)-CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-ELONGATED HYPOCOTYL5 (HY5) signaling pathway, ethylene, hydrogen peroxide (H2O2), and nitric oxide (NO) all participate in ultraviolet-B (UV-B)-triggered stomatal closing, their interrelationship is not clear. Here, we found that UV-B-induced the expression of ethylene biosynthetic genes, production of ethylene, H2O2, and NO, and stomata closing were impaired in uvr8, cop1, and hy5 mutants. UV-B-induced NO production and stomata closing were also defective in mutants for ETHYLENE RESPONSE 1 (ETR1), ETHYLENE INSENSITIVE 2 (EIN2), and EIN3, but UV-B-triggered H2O2 generation was only inhibited in etr1. In either the absence or presence of UV-B, ethylene triggered H2O2 production but not NO generation and stomatal closure in cop1 and hy5, and stomata closing in cop1 and hy5 was induced by NO but not H2O2. Moreover, NO production and stomatal closure were constitutively caused by over-expression of COP1 or HY5 in ein2 and ein3, but not by over-expression of EIN2 or EIN3 in cop1 and hy5. Our data indicate that the UVR8-COP1-HY5 signaling module mediates UV-B-induced ethylene production, ethylene is then perceived by ETR1 to induce H2O2 synthesis. H2O2 induces NO generation and subsequent stomata closing via an EIN2, EIN3, COP1, and HY5-dependent pathway(s).
Collapse
Affiliation(s)
- Xiao-Min Ge
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Hu
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun Zhang
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Qin-Mei Huang
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuan Gao
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhong-Qi Li
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun-Min He
- School of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
48
|
Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, Datta S. Light signaling and UV-B-mediated plant growth regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1270-1292. [PMID: 32237196 DOI: 10.1111/jipb.12932] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 05/05/2023]
Abstract
Light plays an important role in plants' growth and development throughout their life cycle. Plants alter their morphological features in response to light cues of varying intensity and quality. Dedicated photoreceptors help plants to perceive light signals of different wavelengths. Activated photoreceptors stimulate the downstream signaling cascades that lead to extensive gene expression changes responsible for physiological and developmental responses. Proteins such as ELONGATED HYPOCOTYL5 (HY5) and CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) act as important factors which modulate light-regulated gene expression, especially during seedling development. These factors function as central regulatory intermediates not only in red, far-red, and blue light pathways but also in the UV-B signaling pathway. UV-B radiation makes up only a minor fraction of sunlight, yet it imparts many positive and negative effects on plant growth. Studies on UV-B perception, signaling, and response in plants has considerably surged in recent times. Plants have developed different strategies to use UV-B as a developmental cue as well as to withstand high doses of UV-B radiation. Plants' responses to UV-B are an integration of its cross-talks with both environmental factors and phytohormones. This review outlines the current developments in light signaling with a major focus on UV-B-mediated plant growth regulation.
Collapse
Affiliation(s)
- Arpita Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Maneesh Lingwan
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Premachandran Yadukrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Shyam Kumar Masakapalli
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
49
|
Liao X, Liu W, Yang HQ, Jenkins GI. A dynamic model of UVR8 photoreceptor signalling in UV-B-acclimated Arabidopsis. THE NEW PHYTOLOGIST 2020; 227:857-866. [PMID: 32255498 DOI: 10.1111/nph.16581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 05/20/2023]
Abstract
The photoreceptor UVR8 mediates numerous photomorphogenic responses of plants to UV-B wavelengths by regulating transcription. Studies with purified UVR8 and seedlings not previously exposed to UV-B have generated a model for UVR8 action in which dimeric UVR8 rapidly monomerises in response to UV-B exposure to initiate signalling. However, the mechanism of UVR8 action in UV-B-acclimated plants growing under photoperiodic conditions, where UVR8 exists in a dimer/monomer photo-equilibrium, is poorly understood. We examined UVR8 dimer/monomer status, gene expression responses, amounts of key UVR8 signalling proteins and their interactions with UVR8 in UV-B-acclimated Arabidopsis. We show that in UV-B-acclimated plants UVR8 can mediate a response to a 15-fold increase in UV-B without any increase in abundance of UVR8 monomer. Following transfer to elevated UV-B, monomers show increased interaction with both COP1, to initiate signalling and RUP2, to maintain the photo-equilibrium when the dimer/monomer cycling rate increases. Native RUP1 is present in low abundance compared with RUP2. We present a model for UVR8 action in UV-B-acclimated plants growing in photoperiodic conditions that incorporates dimer and monomer photoreception, dimer/monomer cycling, abundance of native COP1 and RUP proteins, and interactions of the monomer population with COP1, RUP2 and potentially other proteins.
Collapse
Affiliation(s)
- Xinyang Liao
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow,, G12 8QQ, UK
| | - Wei Liu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow,, G12 8QQ, UK
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow,, G12 8QQ, UK
| |
Collapse
|
50
|
Gietler M, Fidler J, Labudda M, Nykiel M. Abscisic Acid-Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int J Mol Sci 2020; 21:E4607. [PMID: 32610484 PMCID: PMC7369871 DOI: 10.3390/ijms21134607] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.
Collapse
Affiliation(s)
- Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.L.); (M.N.)
| | | | | | | |
Collapse
|