1
|
Singh A, Mathan J, Dwivedi A, Rani R, Ranjan A. Integration of metabolite and transcriptome profiles of cultivated and wild rice to unveil gene regulatory networks and key genes determining rice source and sink strength. Funct Integr Genomics 2025; 25:97. [PMID: 40310586 DOI: 10.1007/s10142-025-01606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/13/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Targeting source and sink strength for crop yield increase requires a comprehensive genetic and metabolic understanding of desirable source and sink features. We performed comprehensive metabolite and transcriptomic comparisons of the photosynthetic flag leaves and milky-stage developing grains of two cultivated rice varieties (Oryza sativa L. ssp. Indica cv. IR64 and Oryza sativa L. ssp. Japonica cv. Nipponbare) and two wild rice accessions (Oryza rufipogon and Oryza australiensis). The selected wild rice accessions had stronger source strength as evidenced by a higher photosynthesis rate and more abundance of primary metabolites in the photosynthetic leaves than the cultivated varieties. In contrast, cultivated varieties had efficient sink as grains were bigger and accumulated more sugars, amino acids, and fatty acids than the selected wild rice. Transcriptomic analyses identified 9,309 genes for efficient source in wild rice, enriched for biological pathways related to photosynthesis, carbohydrate metabolism, and sucrose transport. 7,062 genes, enriched for starch biosynthesis and lipid metabolism, were associated with the efficient sink strength in the cultivated varieties. Gene co-expression networks showed 267 hub genes for source strength in wild rice that included important genes for photosynthetic reactions and sucrose metabolism. 196 hub genes for sink strength in cultivated rice included genes involved in sucrose, amino acid, and fatty acid metabolism. Gene co-expression modules further identified the candidate transcription regulators, such as zinc finger proteins and NAC for source strength and MYB55/80 and MADS64 for sink strength. Moreover, our analyses suggested a complex interplay of phytohormones regulating rice source and sink strength.
Collapse
Affiliation(s)
- Anuradha Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jyotirmaya Mathan
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Sashi Bhusan Rath Government Autonomous Women's College, Brahmapur, 760001, India
| | - Aditi Dwivedi
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Ruchi Rani
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Aashish Ranjan
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
2
|
Wang Y, Zhang Y, Huang G, Wang J, Lv L, Zhao S, Lu X, Zhang M, Guo M, Zhang C, Men Q, Guo X, Zhao C. Association analysis of maize stem vascular bundle micro-characteristics with yield components based on micro-CT and identification of related genes. Sci Rep 2025; 15:13009. [PMID: 40234583 PMCID: PMC12000327 DOI: 10.1038/s41598-025-96518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
The distribution pattern of vascular bundles and microstructure characteristics significantly impact crop yield. Previous studies have primarily focused on investigating the micro-phenotypic characteristics and genetic regulation of individual internode, neglecting the exploration of the relationship between different internodes. This study, for the first time, comprehensively analyzed multi-scale phenotypic information of stem cross-sections, zones, and vascular bundles in three different internodes (basal third internode, ear internode and highest internode) of 268 inbred maize lines using Micro-computed tomography scanning. Key findings revealed that basal third internode and ear internode exhibited more stable microscopic characteristics than highest internode. Inbred lines with higher numbers of vascular bundle and well-developed inner zone in ear internode exhibited better yield characteristics, particularly in the kernel number per row. Genome-wide association analysis respectively identified 15, 1 and 1 putative candidate genes in basal third internode, ear internode and highest internode. These genes encode a variety of enzymes, such as oxidases, synthetases, ligase enzyme and protein kinases. Notably, Zm00001d042490 may be an important putative candidate gene for The number of vascular bundles in the periphery zone and corn grain traits. This study provides an important theoretical basis and genetic resources for accurately identifying different internode phenotypes of maize stalks, potentially advancing the selection of high-yielding, high-quality maize varieties.
Collapse
Affiliation(s)
- Yanru Wang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Guanmin Huang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lujia Lv
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuaihao Zhao
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Minkun Guo
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Changyu Zhang
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingmei Men
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| | - Chunjiang Zhao
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China.
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
3
|
Liu B, Meng S, Yang J, Wu J, Peng Y, Zhang J, Ye N. Carbohydrate flow during grain filling: Phytohormonal regulation and genetic control in rice (Oryza sativa). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1086-1104. [PMID: 40192007 PMCID: PMC12016746 DOI: 10.1111/jipb.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/06/2025] [Indexed: 04/24/2025]
Abstract
Both the filling and development of grain are key processes determining agriculture production and reproductive growth in rice. The processes of grain filling and endosperm development are crucial for the accumulation of major storage compounds in rice grains. This requires extensive remobilization of carbon reserves from source to sink and the precise regulation of sucrose-to-starch conversion. Both the developmental sequence of the panicle and environmental signals influence the carbon flow between the leaves, leaf sheath, stem, and spikelets during grain filling. This, in turn, affects endosperm development and the production of storage compounds. In this review, we synthesize recent insight into grain development in rice, focusing on the dynamic changes in phytohormones and how their homeostasis integrates developmental and environmental cues to control grain filling in the developing panicle. We also highlight recent advances in the genetic control of carbohydrate remobilization and the transcriptional regulatory networks governing carbohydrate metabolism and grain development in rice. The asynchronous initiation and imbalance in grain filling limit the full yield potential of cereal crops. The "superior/inferior spikelets" serve as a model system for understanding the regulatory mechanisms underlying grain filling and development. Systematic research on carbohydrate flow and phytohormone crosstalk could enhance our understanding of optimizing yield production in cereal crops. Additionally, a thorough analysis of key genetic regulatory mechanisms can offer a genetic foundation and targets for precisely adjusting grain filling traits, ultimately aiding in the development of high-yield crop varieties.
Collapse
Affiliation(s)
- Bohan Liu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Shuan Meng
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Jianchang Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhou225009China
| | - Jun Wu
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Yan Peng
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| | - Jianhua Zhang
- Department of BiologyHong Kong Baptist UniversityHong Kong999077China
- School of Life Sciences and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong Kong999077China
| | - Nenghui Ye
- College of AgronomyHunan Agricultural UniversityChangsha410128China
- Yuelushan LaboratoryChangsha410128China
| |
Collapse
|
4
|
Wu D, Zhang S, Bai C, Liu Y, Sun Z, Ma M, Liu H, Yong JWH, Lambers H. Supplementary Calcium Overcomes Nocturnal Chilling-Induced Carbon Source-Sink Limitations of Cyclic Electron Transport in Peanuts. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40159655 DOI: 10.1111/pce.15467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025]
Abstract
'Calcium (Ca2+) priming' is an effective strategy to restore efficient carbon assimilation with undergoing unfavourable cold stress (day/night: 25°C/8°C). However, it is unclear how exogenous calcium strengthens the cyclic electron transfer (CET) to attain optimal carbon flux. To assess the nutrient fortification role of Ca2+ (15 mM) in facilitating this process for peanuts, we added antimycin (AA, 100 μM) and rotenone (R, 100 μM) as specific inhibitors. Our results revealed that inhibiting CET caused a negative effect on photosynthesis. The Ca2+ treatment accelerated the turnover of non-structural carbohydrates, and linear electron carriers while balancing the photosystem I (PSI) bilateral redox potential. The treatment also strengthened the PROTON GRADIENT REGULATION5 (PGR5)/PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) and the NADH dehydrogenase-like (NDH)-mediated CET, with plausible crosstalk between thioredoxin (Trx) system and Ca2+ signalling, to regulate chloroplast redox homoeostasis. Specifically, exogenous Ca2+ strengthened the PGR5/PGRL1-mediated CET by providing sufficient ATP and adequate photoprotection during the long-term exposure; the NDH-mediated CET served to alleviate limitations on the PSI acceptor side by translocating protons. This study demonstrated the effectiveness of harnessing optimal nutrient supply, in the form of foliar Ca2+-based sprays to strengthen the eco-physiological resilience of peanuts against cold stress.
Collapse
Affiliation(s)
- Di Wu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
- Pratacultural College, Inner Mongolia University for Nationalities, Tongliao, China
- Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Zhiyu Sun
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Centre for Efficient Utilisation of Soil and Fertiliser Resources, Northeast China Plant Nutrition and Fertilisation Scientific Observation and Research Centre for Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Hans Lambers
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Lou H, Li S, Shi Z, Zou Y, Zhang Y, Huang X, Yang D, Yang Y, Li Z, Xu C. Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell 2025; 188:530-549.e20. [PMID: 39674177 DOI: 10.1016/j.cell.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024]
Abstract
A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%-13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (CWINs) in elite rice and tomato cultivars. HSE insertion endows CWINs with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties. Up to 41% of heat-induced grain losses were rescued in rice. Beyond a prime-editing system for tweaking gene expression by efficiently delivering bespoke changes into crop genomes, we demonstrate broad and robust utility for targeted knockin of cis-regulatory elements to optimize source-sink relations and boost crop climate resilience.
Collapse
Affiliation(s)
- Huanchang Lou
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Li
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihang Shi
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yupan Zou
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueqin Zhang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaozhen Huang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dandan Yang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfang Yang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuoyao Li
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Cao Xu
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Mmbando GS. The link between changing in host carbon allocation and resistance to Magnaporthe oryzae: a possible tactic for mitigating the rice blast fungus. PLANT SIGNALING & BEHAVIOR 2024; 19:2326870. [PMID: 38465846 PMCID: PMC10936674 DOI: 10.1080/15592324.2024.2326870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
One of the most destructive diseases affecting rice is rice blast, which is brought on by the rice blast fungus Magnaporthe oryzae. The preventive measures, however, are not well established. To effectively reduce the negative effects of rice blasts on crop yields, it is imperative to comprehend the dynamic interactions between pathogen resistance and patterns of host carbon allocation. This review explores the relationship between variations in carbon allocation and rice plants' ability to withstand the damaging effects of M. oryzae. The review highlights potential strategies for altering host carbon allocation including transgenic, selective breeding, crop rotation, and nutrient management practices as a promising avenue for enhancing rice blast resistance. This study advances our knowledge of the interaction between plants' carbon allocation and M. oryzae resistance and provides stakeholders and farmers with practical guidance on mitigating the adverse effects of the rice blast globally. This information may be used in the future to create varieties that are resistant to M. oryzae.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
7
|
Lei Z, Jia M, Wang H, Carriquí M, Niinemets Ü, Chen Y, He Y, Li Z, Sun D, He Z, Li X, He D, Zhang W, Liu F, Zhang Y. Improvement in photosynthesis under different light intensities is highly linked to domestication stages in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2045-2056. [PMID: 39488794 DOI: 10.1111/tpj.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
Domestication has dramatically increased crop size and biomass, reflecting the enhanced accumulation of photosynthates. However, we still lack solid empirical data on the impacts of domestication on photosynthetic rates at different light intensities and on leaf anatomy, and of the relationships of photosynthesis with aboveground biomass. In this study, we measured the photosynthetic rate at three photosynthetic photon flux densities of 2000 (high), 1000 (moderate) and 400 μmol m-2 sec-1 (low light intensity), dark respiration, relative chlorophyll content (SPAD), leaf morphology, and aboveground biomass in 40 wild, 91 semiwild, and 42 domesticated cotton genotypes. The study was replicated for two years (growing years 2018 and 2019). During the first domestication stage (transition from wild to semiwild genotypes), domestication led to higher photosynthetic rates measured under high light intensity, higher SPAD, larger leaf area (LA), and lower leaf mass per unit area (LMA), contributing to greater aboveground biomass accumulation in both study years. During the second domestication stage (transition from semiwild to domesticated genotypes), domestication significantly enhanced photosynthesis under low light intensity and reduced LMA, which were associated with increased aboveground biomass in both study years. In conclusion, photosynthesis improvement at different light intensities has been a gradual domestication phase specific process with the rate of photosynthesis enhanced under high light during the first domestication stage, and under low light during the second domestication stage. We argue that these differences reflect a higher proportion of LA photosynthesizing under low light due to enhanced canopy expansion at the second domestication stage.
Collapse
Affiliation(s)
- Zhangying Lei
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
- College of Agronomy, Northwest A&F University, Yangling, 712100, P.R. China
| | - Mengmeng Jia
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| | - Heng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P.R. China
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean conditions, Departament de Biologia, Universitat de les Illes Balears/Institute of Agro-Environmental Research and Water Economy - INAGEA, Carretera de Valldemossa, Palma, 07122, Spain
| | - Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51006, Estonia
| | - Yunrui Chen
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| | - Yang He
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| | - Ziliang Li
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| | - Dongsheng Sun
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| | - Ziqi He
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| | - Xiafei Li
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| | - Daohua He
- College of Agronomy, Northwest A&F University, Yangling, 712100, P.R. China
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P.R. China
| | - Yali Zhang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, P.R. China
| |
Collapse
|
8
|
Wang Y, Zhang H, Zhang Z, Hua B, Liu J, Miao M. Source leaves are regulated by sink strengths through non-coding RNAs and alternative polyadenylation in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2024; 24:812. [PMID: 39198785 PMCID: PMC11360537 DOI: 10.1186/s12870-024-05416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/12/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND The yield of major crops is generally limited by sink capacity and source strength. Cucumber is a typical raffinose family oligosaccharides (RFOs)-transporting crop. Non-coding RNAs and alternative polyadenylation (APA) play important roles in the regulation of growth process in plants. However, their roles on the sink‒source regulation have not been demonstrated in RFOs-translocating species. RESULTS Here, whole-transcriptome sequencing was applied to compare the leaves of cucumber under different sink strength, that is, no fruit-carrying leaves (NFNLs) and fruit-carrying leaves (FNLs) at 12th node from the bottom. The results show that 1101 differentially expressed (DE) mRNAs, 79 DE long non-coding RNAs (lncRNAs) and 23 DE miRNAs were identified, which were enriched in photosynthesis, energy production and conversion, plant hormone signal transduction, starch and carbohydrate metabolism and protein synthesis pathways. Potential co-expression networks like, DE lncRNAs-DE mRNAs/ DE miRNAs-DE mRNAs, and competing endogenous RNA (ceRNA) regulation models (DE lncRNAs-DE miRNAs-DE mRNAs) associated with sink‒source allocation, were constructed. Furthermore, 37 and 48 DE genes, which enriched in MAPK signaling and plant hormone signal transduction pathway, exist differentially APA, and SPS (CsaV3_2G033300), GBSS1 (CsaV3_5G001560), ERS1 (CsaV3_7G029600), PNO1 (CsaV3_3G003950) and Myb (CsaV3_3G022290) may be regulated by both ncRNAs and APA between FNLs and NFNLs, speculating that ncRNAs and APA are involved in the regulation of gene expression of cucumber sink‒source carbon partitioning. CONCLUSIONS These results reveal a comprehensive network among mRNAs, ncRNAs, and APA in cucumber sink-source relationships. Our findings also provide valuable information for further research on the molecular mechanism of ncRNA and APA to enhance cucumber yield.
Collapse
Affiliation(s)
- Yudan Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Huimin Zhang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226541, China
| | - Zhiping Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Bing Hua
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiexia Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Abshire N, Hauck AL, Walia H, Obata T. Tissue- and time-dependent metabolite profiles during early grain development under normal and high night-time temperature conditions. BMC PLANT BIOLOGY 2024; 24:568. [PMID: 38886651 PMCID: PMC11184705 DOI: 10.1186/s12870-024-05190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Wheat grain development in the first few days after pollination determines the number of endosperm cells that influence grain yield potential and is susceptible to various environmental conditions, including high night temperatures (HNTs). Flag leaves and seed-associated bracts (glumes, awn, palea, and lemma) provide nutrients to the developing seed. However, the specific metabolic roles of these tissues are uncertain, especially their dynamics at different developmental stages and the time in a day. Tissue- and time-dependent metabolite profiling may hint at the metabolic roles of tissues and the mechanisms of how HNTs affect daytime metabolic status in early grain development. RESULTS The metabolite profiles of flag leaf, bract, seed (embryo and endosperm), and entire spike were analyzed at 12:00 (day) and 23:00 (night) on 2, 4, and 6 days after fertilization under control and HNT conditions. The metabolite levels in flag leaves and bracts showed day/night oscillations, while their behaviors were distinct between the tissues. Some metabolites, such as sucrose, cellobiose, and succinic acid, showed contrasting oscillations in the two photosynthetic tissues. In contrast, seed metabolite levels differed due to the days after fertilization rather than the time in a day. The seed metabolite profile altered earlier in the HNT than in the control condition, likely associated with accelerated grain development caused by HNT. HNT also disrupted the day/night oscillation of sugar accumulation in flag leaves and bracts. CONCLUSIONS These results highlight distinct metabolic roles of flag leaves and bracts during wheat early seed development. The seed metabolite levels are related to the developmental stages. The early metabolic events in the seeds and the disruption of the day/night metabolic cycle in photosynthetic tissues may partly explain the adverse effects of HNT on grain yield.
Collapse
Affiliation(s)
- Nathan Abshire
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew L Hauck
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Harkamal Walia
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Toshihiro Obata
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry, Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, Nebraska, 68588, USA.
| |
Collapse
|
10
|
Zhang Y, Kaiser E, Dutta S, Sharkey TD, Marcelis LFM, Li T. Short-term salt stress reduces photosynthetic oscillations under triose phosphate utilization limitation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2994-3008. [PMID: 38436737 DOI: 10.1093/jxb/erae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/02/2024] [Indexed: 03/05/2024]
Abstract
Triose phosphate utilization (TPU) limitation is one of the three biochemical limitations of photosynthetic CO2 assimilation rate in C3 plants. Under TPU limitation, abrupt and large transitions in light intensity cause damped oscillations in photosynthesis. When plants are salt-stressed, photosynthesis is often down-regulated particularly under dynamic light intensity, but how salt stress affects TPU-related dynamic photosynthesis is still unknown. To elucidate this, tomato (Solanum lycopersicum) was grown with and without sodium chloride (NaCl, 100 mM) stress for 13 d. Under high CO2 partial pressure, rapid increases in light intensity caused profound photosynthetic oscillations. Salt stress reduced photosynthetic oscillations in leaves initially under both low- and high-light conditions and reduced the duration of oscillations by about 2 min. Besides, salt stress increased the threshold for CO2 partial pressure at which oscillations occurred. Salt stress increased TPU capacity without affecting Rubisco carboxylation and electron transport capacity, indicating the up-regulation of end-product synthesis capacity in photosynthesis. Thus salt stress may reduce photosynthetic oscillations by decreasing leaf internal CO2 partial pressure and/or increasing TPU capacity. Our results provide new insights into how salt stress modulates dynamic photosynthesis as controlled by CO2 availability and end-product synthesis.
Collapse
Affiliation(s)
- Yuqi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Elias Kaiser
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Satadal Dutta
- Department of Precision and Microsystems Engineering, Faculty of 3ME, TU Delft, Delft, the Netherlands
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Leo F M Marcelis
- Horticulture and Product Physiology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Corrêa A, Ferrol N, Cruz C. Testing the trade-balance model: resource stoichiometry does not sufficiently explain AM effects. THE NEW PHYTOLOGIST 2024; 242:1561-1575. [PMID: 38009528 DOI: 10.1111/nph.19432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023]
Abstract
Variations in arbuscular mycorrhizae (AM) effects on plant growth (MGR) are commonly assumed to result from cost : benefit balances, with C as the cost and, most frequently, P as the benefit. The trade-balance model (TBM) adopts these assumptions and hypothesizes that mycorrhizal benefit depends on C : N : P stoichiometry. Although widely accepted, the TBM has not been experimentally tested. We isolated the parameters included in the TBM and tested these assumptions using it as framework. Oryza sativa plants were supplied with different N : P ratios at low light level, establishing different C : P and C : N exchange rates, and C, N or P limitation. MGR and effects on nutrient uptake, %M, ERM, photosynthesis and shoot starch were measured. C distribution to AM fungi played no role in MGR, and N was essential for all AM effects, including on P nutrition. C distribution to AM and MGR varied with the limiting nutrient (N or P), and evidence of extensive interplay between N and P was observed. The TBM was not confirmed. The results agreed with the exchange of surplus resources and source-sink regulation of resource distribution among plants and AMF. Rather than depending on exchange rates, resource exchange may simply obey both symbiont needs, not requiring further regulation.
Collapse
Affiliation(s)
- Ana Corrêa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nuria Ferrol
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008, Granada, Spain
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
12
|
Tao B, Ma Y, Wang L, He C, Chen J, Ge X, Zhao L, Wen J, Yi B, Tu J, Fu T, Shen J. Developmental pleiotropy of SDP1 from seedling to mature stages in B. napus. PLANT MOLECULAR BIOLOGY 2024; 114:49. [PMID: 38642182 DOI: 10.1007/s11103-024-01447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.
Collapse
Affiliation(s)
- Baolong Tao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Yina Ma
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Liqin Wang
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Chao He
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Junlin Chen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Xiaoyu Ge
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Lun Zhao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jing Wen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Bin Yi
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxing Tu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Tingdong Fu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxiong Shen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China.
| |
Collapse
|
13
|
Chang-Brahim I, Koppensteiner LJ, Beltrame L, Bodner G, Saranti A, Salzinger J, Fanta-Jende P, Sulzbachner C, Bruckmüller F, Trognitz F, Samad-Zamini M, Zechner E, Holzinger A, Molin EM. Reviewing the essential roles of remote phenotyping, GWAS and explainable AI in practical marker-assisted selection for drought-tolerant winter wheat breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1319938. [PMID: 38699541 PMCID: PMC11064034 DOI: 10.3389/fpls.2024.1319938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Marker-assisted selection (MAS) plays a crucial role in crop breeding improving the speed and precision of conventional breeding programmes by quickly and reliably identifying and selecting plants with desired traits. However, the efficacy of MAS depends on several prerequisites, with precise phenotyping being a key aspect of any plant breeding programme. Recent advancements in high-throughput remote phenotyping, facilitated by unmanned aerial vehicles coupled to machine learning, offer a non-destructive and efficient alternative to traditional, time-consuming, and labour-intensive methods. Furthermore, MAS relies on knowledge of marker-trait associations, commonly obtained through genome-wide association studies (GWAS), to understand complex traits such as drought tolerance, including yield components and phenology. However, GWAS has limitations that artificial intelligence (AI) has been shown to partially overcome. Additionally, AI and its explainable variants, which ensure transparency and interpretability, are increasingly being used as recognised problem-solving tools throughout the breeding process. Given these rapid technological advancements, this review provides an overview of state-of-the-art methods and processes underlying each MAS, from phenotyping, genotyping and association analyses to the integration of explainable AI along the entire workflow. In this context, we specifically address the challenges and importance of breeding winter wheat for greater drought tolerance with stable yields, as regional droughts during critical developmental stages pose a threat to winter wheat production. Finally, we explore the transition from scientific progress to practical implementation and discuss ways to bridge the gap between cutting-edge developments and breeders, expediting MAS-based winter wheat breeding for drought tolerance.
Collapse
Affiliation(s)
- Ignacio Chang-Brahim
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Lorenzo Beltrame
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Gernot Bodner
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Anna Saranti
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Jules Salzinger
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Phillipp Fanta-Jende
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Christoph Sulzbachner
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Felix Bruckmüller
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Friederike Trognitz
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Elisabeth Zechner
- Verein zur Förderung einer nachhaltigen und regionalen Pflanzenzüchtung, Zwettl, Austria
| | - Andreas Holzinger
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva M. Molin
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
14
|
Mabreja AD, Reyes VP, Soe TK, Shimakawa K, Makihara D, Nishiuchi S, Doi K. Evaluation of Grain-Filling-Related Traits Using Taichung 65 x DV85 Chromosome Segment Substitution Lines (TD-CSSLs) of Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:289. [PMID: 38256843 PMCID: PMC10818708 DOI: 10.3390/plants13020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Grain yield of rice consists of sink capacity and grain filling. There are some genes known to contribute to sink capacity, but few genes associated with grain filling are known. We conducted a genetic analysis on yield-related traits by using a chromosome segment substitution line population that have introgression from DV85, an aus variety of rice, in the background of T65, a japonica variety. Refined whole-genome genotypes of the 43 TD-CSSLs were obtained by genotyping-by-sequencing. The effects of previously detected quantitative trait loci (QTLs), qNSC1 and qNSC2, were confirmed by the amount of non-structural carbohydrate (NSC) at 5 days after heading (DAH). The CSSL for qSWTR11, the QTL for decrease in shoot weight during the maturity stage, showed the highest NSC at 5 DAH and lowest at 35 DAH. The brown rice yield of these lines were not stably significant. Most of the sink-related traits correlated between the 2 tested years, but most of the grain-filling traits did not show correlation between the 2 years. Correlation analysis revealed that the sink capacity is stable and primarily determines the yield, and grain filling is more affected by the environment. In addition, biomass production before heading and during the maturity stage contributes to higher yield in TD-CSSLs, and the amount of translocation of stem reserve does not affect much to the yield. We conclude that higher NSC at the heading stage and rapid decrease in shoot biomass during the maturity stage did not directly contribute to the yield formation in the japonica genetic background.
Collapse
Affiliation(s)
- Abebaw Dessie Mabreja
- Graduate School of Bioagicultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan; (A.D.M.); (V.P.R.); (K.S.); (S.N.)
- Ethiopian Institute of Agricultural Research, Fogera National Rice Research and Training Center, Bahir Dar 1937, Ethiopia
| | - Vincent Pamugas Reyes
- Graduate School of Bioagicultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan; (A.D.M.); (V.P.R.); (K.S.); (S.N.)
| | - Than Kutay Soe
- Graduate School of Bioagicultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan; (A.D.M.); (V.P.R.); (K.S.); (S.N.)
| | - Kodai Shimakawa
- Graduate School of Bioagicultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan; (A.D.M.); (V.P.R.); (K.S.); (S.N.)
| | - Daigo Makihara
- International Center for Research and Education in Agriculture, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan;
| | - Shunsaku Nishiuchi
- Graduate School of Bioagicultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan; (A.D.M.); (V.P.R.); (K.S.); (S.N.)
| | - Kazuyuki Doi
- Graduate School of Bioagicultural Science, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan; (A.D.M.); (V.P.R.); (K.S.); (S.N.)
| |
Collapse
|
15
|
Zounková A, Konečný J, Lipavská H, Mašková P. BEL transcription factors in prominent Solanaceae crops: the missing pieces of the jigsaw in plant development. PLANTA 2023; 259:14. [PMID: 38070043 DOI: 10.1007/s00425-023-04289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Understanding BEL transcription factors roles in potato and tomato varies considerably with little overlap. The review suggests reciprocal use of gained results to proceed with the knowledge in both crops The proper development of organs that plants use for reproduction, like fruits or tubers, is crucial for the survival and competitiveness of the species and thus subject to strict regulations. Interestingly, the controls of potato (Solanum tuberosum) tuber and tomato (S. lycopersicum) fruit development use common mechanisms, including the action of the BEL transcription factors (TFs). Although more than ten BEL genes have been identified in either genome, only a few of them have been characterized. The review summarizes knowledge of BEL TFs' roles in these closely related Solanaceae species, focusing on those that are essential for tuberization in potato, namely StBEL5, StBEL11 and StBEL29, and for fruit development in tomato - SlBEL11, SlBL2 and SIBL4. Comprehension of the roles of individual BEL TFs, however, is not yet sufficient. Different levels of understanding of important characteristics are described, such as BEL transcript accumulation patterns, their mobility, BEL protein interaction with KNOX partners, subcellular localisation, and their target genes during initiation and development of the organs in question. A comparison of the knowledge on BEL TFs and their mechanisms of action in potato and tomato may provide inspiration for faster progress in the study of both models through the exchange of information and ideas. Both crops are extremely important for human nutrition. In addition, their production is likely to be threatened by the upcoming climate change, so there is a particular need for breeding using a deep knowledge of control mechanisms.
Collapse
Affiliation(s)
- Andrea Zounková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Jan Konečný
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Helena Lipavská
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic
| | - Petra Mašková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12800, Prague 2, Czech Republic.
| |
Collapse
|
16
|
Scharte J, Hassa S, Herrfurth C, Feussner I, Forlani G, Weis E, von Schaewen A. Metabolic priming in G6PDH isoenzyme-replaced tobacco lines improves stress tolerance and seed yields via altering assimilate partitioning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1696-1716. [PMID: 37713307 DOI: 10.1111/tpj.16460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/17/2023]
Abstract
We investigated the basis for better performance of transgenic Nicotiana tabacum plants with G6PDH-isoenzyme replacement in the cytosol (Xanthi::cP2::cytRNAi, Scharte et al., 2009). After six generations of selfing, infiltration of Phytophthora nicotianae zoospores into source leaves confirmed that defence responses (ROS, callose) are accelerated, showing as fast cell death of the infected tissue. Yet, stress-related hormone profiles resembled susceptible Xanthi and not resistant cultivar SNN, hinting at mainly metabolic adjustments in the transgenic lines. Leaves of non-stressed plants contained twofold elevated fructose-2,6-bisphosphate (F2,6P2 ) levels, leading to partial sugar retention (soluble sugars, starch) and elevated hexose-to-sucrose ratios, but also more lipids. Above-ground biomass lay in between susceptible Xanthi and resistant SNN, with photo-assimilates preferentially allocated to inflorescences. Seeds were heavier with higher lipid-to-carbohydrate ratios, resulting in increased harvest yields - also under water limitation. Abiotic stress tolerance (salt, drought) was improved during germination, and in floated leaf disks of non-stressed plants. In leaves of salt-watered plants, proline accumulated to higher levels during illumination, concomitant with efficient NADP(H) use and recycling. Non-stressed plants showed enhanced PSII-induction kinetics (upon dark-light transition) with little differences at the stationary phase. Leaf exudates contained 10% less sucrose, similar amino acids, but more fatty acids - especially in the light. Export of specific fatty acids via the phloem may contribute to both, earlier flowering and higher seed yields of the Xanthi-cP2 lines. Apparently, metabolic priming by F2,6P2 -combined with sustained NADP(H) turnover-bypasses the genetically fixed growth-defence trade-off, rendering tobacco plants more stress-resilient and productive.
Collapse
Affiliation(s)
- Judith Scharte
- Institut für Biologie und Biotechnologie der Pflanzen, Fachbereich Biologie, Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Sebastian Hassa
- Institut für Biologie und Biotechnologie der Pflanzen, Fachbereich Biologie, Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Cornelia Herrfurth
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften and Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Abteilung Biochemie der Pflanze, Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Ivo Feussner
- Albrecht-von-Haller-Institut für Pflanzenwissenschaften and Göttinger Zentrum für Molekulare Biowissenschaften (GZMB), Abteilung Biochemie der Pflanze, Universität Göttingen, Justus-von-Liebig-Weg 11, D-37077, Göttingen, Germany
| | - Giuseppe Forlani
- Laboratorio di Fisiologia e Biochimica Vegetale, Dipartimento di Scienze della Vita e Biotecnologie, Universitá degli Studi di Ferrara, Via L. Borsari 46, I-44121, Ferrara, Italy
| | - Engelbert Weis
- Institut für Biologie und Biotechnologie der Pflanzen, Fachbereich Biologie, Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Antje von Schaewen
- Institut für Biologie und Biotechnologie der Pflanzen, Fachbereich Biologie, Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| |
Collapse
|
17
|
Yan BF, Cheng-Feng H, Zhao M, Qiu RL, Tang YT. Characterizing the remobilization flux of cadmium from pre-anthesis vegetative pools in rice during grain filling using an improved stable isotope labeling method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121891. [PMID: 37236585 DOI: 10.1016/j.envpol.2023.121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
A clear understanding of the allocation of Cd to grains is essential to manage the level of Cd in cereal diets effectively. Yet, debate remains over whether and how the pre-anthesis pools contribute to grain Cd accumulation, resulting in uncertainty regarding the need to control plant Cd uptake during vegetative growth. To this end, rice seedlings were exposed to 111Cd labeled solution until tillering, transplanted to unlabeled soils, and grown under open-air conditions. The remobilization of Cd derived from pre-anthesis vegetative pools was studied through the fluxes of 111Cd-enriched label among organs during grain filling. The 111Cd label was continuously allocated to the grain after anthesis. The lower leaves remobilized the Cd label during the earlier stage of grain development, which was allocated almost equally to the grains and husks + rachis. During the final stage, the Cd label was strongly remobilized from the roots and, less importantly, the internodes, which was strongly allocated to the nodes and, to a less extent, the grains. The results show that the pre-anthesis vegetative pools are an important source of Cd in rice grains. The lower leaves, internodes, and roots are the source organs, whereas the husks + rachis and nodes are the sinks competing with the grain for the remobilized Cd. This study provides insight into understanding the ecophysiological mechanism of Cd remobilization and setting agronomic measures for lowering grain Cd levels.
Collapse
Affiliation(s)
- Bo-Fang Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hu Cheng-Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Man Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
18
|
Hu C, Yan B, Liu Y, Gong C, Zhao M, Qiu R, Tang Y. Differential Effects of Senescence on the Phloem Exports of Cadmium and Zinc from Leaves to Grains in Rice during Grain Filling. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091902. [PMID: 37176960 PMCID: PMC10180549 DOI: 10.3390/plants12091902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In rice, non-essential toxic cadmium (Cd) and the essential nutrient zinc (Zn) share similar transport pathways, which makes it challenging to differentially regulate the allocation of these elements to the grain. The phloem is the main pathway for the loading of these elements into rice grains. It has long been accepted that tissue senescence makes the nutrients (e.g., Zn) stored in leaves available for further phloem export toward the grain. Whether senescence could drive the phloem export of Cd remains unclear. To this end, the stable isotopes 111Cd and 67Zn were used to trace the phloem export and the subsequent allocation of Cd and Zn from the flag leaves, where senescence was accelerated by spraying abscisic acid. Furthermore, changes upon senescence in the distribution of these elements among the leaf subcellular fractions and in the expression of key transporter genes were investigated. Abscisic acid-induced senescence enhanced the phloem export of Zn but had no impact on that of Cd, which was explained by the significant release of Zn from the chloroplast and cytosol fractions (concentrations decreased by ~50%) but a strong allocation of Cd to the cell wall fraction (concentration increased by ~90%) during senescence. Nevertheless, neither Zn nor Cd concentrations in the grain were affected, since senescence strengthened the sequestration of phloem-exported Zn in the uppermost node, but did not impact that of phloem-exported Cd. This study suggests that the agronomic strategies affecting tissue senescence could be utilized to differentially regulate Cd and Zn allocation in rice during grain filling.
Collapse
Affiliation(s)
- Chengfeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bofang Yan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yating Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chen Gong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Man Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
19
|
Sadka A, Walker CH, Haim D, Bennett T. Just enough fruit: understanding feedback mechanisms during sexual reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2448-2461. [PMID: 36724082 PMCID: PMC10112685 DOI: 10.1093/jxb/erad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
The fruit and seed produced by a small number of crop plants provide the majority of food eaten across the world. Given the growing global population, there is a pressing need to increase yields of these crops without using more land or more chemical inputs. Many of these crops display prominent 'fruit-flowering feedbacks', in which fruit produced early in sexual reproductive development can inhibit the production of further fruit by a range of mechanisms. Understanding and overcoming these feedbacks thus presents a plausible route to increasing crop yields 'for free'. In this review, we define three key types of fruit-flowering feedback, and examine how frequent they are and their effects on reproduction in a wide range of both wild and cultivated species. We then assess how these phenomenologically distinct phenomena might arise from conserved phytohormonal signalling events, particularly the export of auxin from growing organs. Finally, we offer some thoughts on the evolutionary basis for these self-limiting sexual reproductive patterns, and whether they are also present in the cereal crops that fundamentally underpin global diets.
Collapse
Affiliation(s)
| | - Catriona H Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dor Haim
- Department of Fruit Tree Sciences, Institute of Plant Sciences, ARO, The Volcani Institute, Rishon Le’Zion 7528809, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | |
Collapse
|
20
|
Sloan JM, Mujab AAM, Mashitah J, Zulkarami B, Wilson MJ, Toh LS, Nur Zahirah AJ, Afiq K, Asyraf AT, Zhu XG, Yaapar N, Fleming AJ. Elevated CO 2 Priming as a Sustainable Approach to Increasing Rice Tiller Number and Yield Potential. RICE (NEW YORK, N.Y.) 2023; 16:16. [PMID: 36947269 PMCID: PMC10033790 DOI: 10.1186/s12284-023-00629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Tillering and yield are linked in rice, with significant efforts being invested to understand the genetic basis of this phenomenon. However, in addition to genetic factors, tillering is also influenced by the environment. Exploiting experiments in which seedlings were first grown in elevated CO2 (eCO2) before transfer and further growth under ambient CO2 (aCO2) levels, we found that even moderate exposure times to eCO2 were sufficient to induce tillering in seedlings, which was maintained in plants grown to maturity plants in controlled environment chambers. We then explored whether brief exposure to eCO2 (eCO2 priming) could be implemented to regulate tiller number and yield in the field. We designed a cost-effective growth system, using yeast to increase the CO2 level for the first 24 days of growth, and grew these seedlings to maturity in semi-field conditions in Malaysia. The increased growth caused by eCO2 priming translated into larger mature plants with increased tillering, panicle number, and improved grain filling and 1000 grain weight. In order to make the process more appealing to conventional rice farmers, we then developed a system in which fungal mycelium was used to generate the eCO2 via respiration of sugars derived by growing the fungus on lignocellulosic waste. Not only does this provide a sustainable source of CO2, it also has the added financial benefit to farmers of generating economically valuable oyster mushrooms as an end-product of mycelium growth. Our experiments show that the system is capable of generating sufficient CO2 to induce increased tillering in rice seedlings, leading eventually to 18% more tillers and panicles in mature paddy-grown crop. We discuss the potential of eCO2 priming as a rapidly implementable, broadly applicable and sustainable system to increase tillering, and thus yield potential in rice.
Collapse
Affiliation(s)
- Jennifer M Sloan
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Azzami Adam Muhamad Mujab
- Commercialization and Business Centre, Malaysian Agricultural Research and Development Institute, MARDI Parit, 32800, Parit, Perak, Malaysia
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Jusoh Mashitah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Berahim Zulkarami
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Matthew J Wilson
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Liang Su Toh
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - A Jalil Nur Zahirah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Kamaruzali Afiq
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Ahmad Tajuddin Asyraf
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Xin-Guang Zhu
- Center of Excellence for Molecular Plant Science, Institute of Plant Physiology and Ecology, CAS, Shanghai, 200032, China
| | - Nazmin Yaapar
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| | - Andrew J Fleming
- School of Biosciences, Plants, Photosynthesis and Soil, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
21
|
Wei Z, Guo W, Jiang S, Yan D, Shi Y, Wu B, Xin X, Chen L, Cai Y, Zhang H, Li Y, Huang H, Li J, Yan F, Zhang C, Hou W, Chen J, Sun Z. Transcriptional profiling reveals a critical role of GmFT2a in soybean staygreen syndrome caused by the pest Riptortus pedestris. THE NEW PHYTOLOGIST 2023; 237:1876-1890. [PMID: 36404128 DOI: 10.1111/nph.18628] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Soybean staygreen syndrome, characterized by delayed leaf and stem senescence, abnormal pods, and aborted seeds, has recently become a serious and prominent problem in soybean production. Although the pest Riptortus pedestris has received increasing attention as the possible cause of staygreen syndrome, the mechanism remains unknown. Here, we clarify that direct feeding by R. pedestris, not transmission of a pathogen by this pest, is the primary cause of typical soybean staygreen syndrome and that critical feeding damage occurs at the early pod stage. Transcriptome profiling of soybean indicated that many signal transduction pathways, including photoperiod, hormone, defense response, and photosynthesis, respond to R. pedestris infestation. Importantly, we discovered that members of the FLOWERING LOCUS T (FT) gene family were suppressed by R. pedestris infestation, and overexpression of floral inducer GmFT2a attenuates staygreen symptoms by mediating soybean defense response and photosynthesis. Together, our findings systematically illustrate the association between pest infestation and soybean staygreen syndrome and provide the basis for establishing a targeted soybean pest prevention and control system.
Collapse
Affiliation(s)
- Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Shanshan Jiang
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Dankan Yan
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bin Wu
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiangqi Xin
- Shandong Provincial Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haijian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Junmin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Chuanxi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
22
|
Ma B, Zhang L, He Z. Understanding the regulation of cereal grain filling: The way forward. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:526-547. [PMID: 36648157 DOI: 10.1111/jipb.13456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
During grain filling, starch and other nutrients accumulate in the endosperm; this directly determines grain yield and grain quality in crops such as rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum). Grain filling is a complex trait affected by both intrinsic and environmental factors, making it difficult to explore the underlying genetics, molecular regulation, and the application of these genes for breeding. With the development of powerful genetic and molecular techniques, much has been learned about the genes and molecular networks related to grain filling over the past decades. In this review, we highlight the key factors affecting grain filling, including both biological and abiotic factors. We then summarize the key genes controlling grain filling and their roles in this event, including regulators of sugar translocation and starch biosynthesis, phytohormone-related regulators, and other factors. Finally, we discuss how the current knowledge of valuable grain filling genes could be integrated with strategies for breeding cereal varieties with improved grain yield and quality.
Collapse
Affiliation(s)
- Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
23
|
Devate NB, Krishna H, Mishra CN, Manjunath KK, Sunilkumar VP, Chauhan D, Singh S, Sinha N, Jain N, Singh GP, Singh PK. Genetic dissection of marker trait associations for grain micro-nutrients and thousand grain weight under heat and drought stress conditions in wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1082513. [PMID: 36726675 PMCID: PMC9885108 DOI: 10.3389/fpls.2022.1082513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
Introduction Wheat is grown and consumed worldwide, making it an important staple food crop for both its calorific and nutritional content. In places where wheat is used as a staple food, suboptimal micronutrient content levels, especially of grain iron (Fe) and zinc (Zn), can lead to malnutrition. Grain nutrient content is influenced by abiotic stresses, such as drought and heat stress. The best method for addressing micronutrient deficiencies is the biofortification of food crops. The prerequisites for marker-assisted varietal development are the identification of the genomic region responsible for high grain iron and zinc contents and an understanding of their genetics. Methods A total of 193 diverse wheat genotypes were evaluated under drought and heat stress conditions across the years at the Indian Agricultural Research Institute (IARI), New Delhi, under timely sown irrigated (IR), restricted irrigated (RI) and late sown (LS) conditions. Grain iron content (GFeC) and grain zinc content (GZnC) were estimated from both the control and treatment groups. Genotyping of all the lines under study was carried out with the single nucleotide polymorphisms (SNPs) from Breeder's 35K Axiom Array. Result and Discussion Three subgroups were observed in the association panel based on both principal component analysis (PCA) and dendrogram analysis. A large whole-genome linkage disequilibrium (LD) block size of 3.49 Mb was observed. A genome-wide association study identified 16 unique stringent marker trait associations for GFeC, GZnC, and 1000-grain weight (TGW). In silico analysis demonstrated the presence of 28 potential candidate genes in the flanking region of 16 linked SNPs, such as synaptotagmin-like mitochondrial-lipid-binding domain, HAUS augmin-like complex, di-copper center-containing domain, protein kinase, chaperonin Cpn60, zinc finger, NUDIX hydrolase, etc. Expression levels of these genes in vegetative tissues and grain were also found. Utilization of identified markers in marker-assisted breeding may lead to the rapid development of biofortified wheat genotypes to combat malnutrition.
Collapse
Affiliation(s)
- Narayana Bhat Devate
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | | | | | - V. P. Sunilkumar
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Divya Chauhan
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Shweta Singh
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Nivedita Sinha
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | - Neelu Jain
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| | | | - Pradeep Kumar Singh
- Division of Genetics, ICAR-Indian Agricultural research institute, New Delhi, India
| |
Collapse
|
24
|
Murchie EH, Reynolds M, Slafer GA, Foulkes MJ, Acevedo-Siaca L, McAusland L, Sharwood R, Griffiths S, Flavell RB, Gwyn J, Sawkins M, Carmo-Silva E. A 'wiring diagram' for source strength traits impacting wheat yield potential. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:72-90. [PMID: 36264277 PMCID: PMC9786870 DOI: 10.1093/jxb/erac415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 05/06/2023]
Abstract
Source traits are currently of great interest for the enhancement of yield potential; for example, much effort is being expended to find ways of modifying photosynthesis. However, photosynthesis is but one component of crop regulation, so sink activities and the coordination of diverse processes throughout the crop must be considered in an integrated, systems approach. A set of 'wiring diagrams' has been devised as a visual tool to integrate the interactions of component processes at different stages of wheat development. They enable the roles of chloroplast, leaf, and whole-canopy processes to be seen in the context of sink development and crop growth as a whole. In this review, we dissect source traits both anatomically (foliar and non-foliar) and temporally (pre- and post-anthesis), and consider the evidence for their regulation at local and whole-plant/crop levels. We consider how the formation of a canopy creates challenges (self-occlusion) and opportunities (dynamic photosynthesis) for components of photosynthesis. Lastly, we discuss the regulation of source activity by feedback regulation. The review is written in the framework of the wiring diagrams which, as integrated descriptors of traits underpinning grain yield, are designed to provide a potential workspace for breeders and other crop scientists that, along with high-throughput and precision phenotyping data, genetics, and bioinformatics, will help build future dynamic models of trait and gene interactions to achieve yield gains in wheat and other field crops.
Collapse
Affiliation(s)
- Erik H Murchie
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida–AGROTECNIO-CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain
- ICREA (Catalonian Institution for Research and Advanced Studies), Barcelona, Spain
| | - M John Foulkes
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Liana Acevedo-Siaca
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Lorna McAusland
- Division of Plant and Crop Science, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Robert Sharwood
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW 2753, Australia
| | - Simon Griffiths
- John Innes Centre, Norwich Research Park, Colney Ln, Norwich NR4 7UH, UK
| | - Richard B Flavell
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | - Mark Sawkins
- International Wheat Yield Partnership, 1500 Research Parkway, College Station, TX 77843, USA
| | | |
Collapse
|
25
|
Wang X, Zhang X, Liu L, Liu X, Feng G, Wang J, Yin YA, Wei C. Post-anthesis supplementary irrigation improves grain yield and nutritional quality of drip-irrigated rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1126278. [PMID: 37089634 PMCID: PMC10113464 DOI: 10.3389/fpls.2023.1126278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Introduction Approximately 50% of irrigation water is saved during drip-irrigation of rice, which has tremendous potential for water-saving agriculture, particularly in areas where water resources are scarce. However, the grain yield and quality of drip-irrigated rice are adversely affected. Methods In this study, we investigated the effects of different irrigation strategies on the grain yield and quality of drip-irrigated rice using field experiments. Four irrigation treatments were studied: whole growing season flooding (FI), whole growing season normal drip irrigation (DI, soil relative moisture (RSM) was maintained in the range of 90-100%), pre-anthesis drip irrigation and post-anthesis water stress (SAF, the RSM was maintained in the range of 80-90% after anthesis), pre-anthesis drip irrigation, and post-anthesis flooding (FAF). Results The results showed that grain yield, harvest index, seed setting rate and 1000 grain weight in DI and SAF were significantly lower than in FI and FAF. These parameters were not significantly different between FI and FAF but were significantly greater in DI than in SAF. Compared with FI and FAF, the source capacity, source activity time, and sink activity of DI and SAF decreased, and the sink-source difference increased. The sink-source difference had a significant negative correlation with rice yield and 1000 grain weight. The activities of ADP-glucose pyrophosphorylase, starch branching enzyme, and amylopectin content in grains in the middle panicles of FAF were significantly higher than those of DI and SAF. SAF resulted in increased amylose/amylopectin ratio and total protein content in grains but decreased proportion of glutenin in total protein. Irrigation after anthesis of drip-irrigated rice narrowed the difference between sink sources in rice plants, increased the grain yield and harvest index by 29.2% and 11%, respectively, compared to DI, increased water productivity by 19% compared to FI, and improved the grain quality of drip-irrigated rice. Discussion This study highlights that post-anthesis sufficient irrigation of drip-irrigated rice plays a positive role in maintaining the source-sink balance. This study serves as a foundation for the development of more effective rice farming methods that conserve water, while increasing the grain yield and quality of drip-irrigated rice.
Collapse
Affiliation(s)
- Xiangbin Wang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xinjiang Zhang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Linghui Liu
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaowu Liu
- Technical Center of Xinjiang Tianye (Group) Co., Ltd., Shihezi, Xinjiang, China
| | - Guorui Feng
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Juan Wang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yong-an Yin
- Technical Center of Xinjiang Tianye (Group) Co., Ltd., Shihezi, Xinjiang, China
| | - Changzhou Wei
- College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
- *Correspondence: Changzhou Wei,
| |
Collapse
|
26
|
Goldshmidt A, Ziegler T, Zhou D, Brower‐Toland B, Preuss S, Slewinski T. Tuning of meristem maturation rate increases yield in multiple Triticum aestivum cultivars. PLANT DIRECT 2022; 6:e459. [PMID: 36447652 PMCID: PMC9694431 DOI: 10.1002/pld3.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 01/02/2020] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Breeding programs aim to improve crop yield and environmental stability for enhanced food security. The principal methodology in breeding for stable yield gain relies on the indirect selection of beneficial genetics by yield evaluation across diverse environmental conditions. This methodology requires substantial resources while delivering a slow pace of yield gain and environmental adaptation. Alternative methods are required to accelerate gain and adaptation, becoming even more imperative in a changing climate. New molecular tools and approaches can enable accelerated creation and deployment of multiple alleles of genes identified to control key traits. With the advent of tools that enable breeding by targeted allelic selection, identifying gene targets associated with an improved crop performance ideotype will become crucial. Previous studies have shown that altered photoperiod regimes increase yield in wheat (Triticum aestivum). In the current study, we have employed such treatments to study the resulting yield ideotype in five spring wheat cultivars. We found that the photoperiod treatment creates a yield ideotype arising from delayed spike establishment rates that are accompanied by increased early shoot expression of TARGET OF EAT1 (TaTOE1) genes. Genes identified in this way could be used for ideotype-based improve crop performance through targeted allele creation and selection in relevant environments.
Collapse
Affiliation(s)
- Alexander Goldshmidt
- Bayer Crop ScienceChesterfieldMissouriUSA
- Present address:
The Volcani Agriculture InstituteRishon LeZionIsrael
| | | | | | | | | | | |
Collapse
|
27
|
Terletskaya NV, Korbozova NK, Grazhdannikov AE, Seitimova GA, Meduntseva ND, Kudrina NO. Accumulation of Secondary Metabolites of Rhodiola semenovii Boriss. In Situ in the Dynamics of Growth and Development. Metabolites 2022; 12:metabo12070622. [PMID: 35888746 PMCID: PMC9323023 DOI: 10.3390/metabo12070622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Rhodiola semenovii Boriss. (Regel and Herder) might be a promising replacement for the well-known but endangered Rhodiola rosea L. In this research, the metabolic profile of R. semenovii, including drug-active and stress-resistant components, was studied in the context of source–sink interactions in situ in the dynamics of growth and development. Gas chromatography with mass spectrometric detection and liquid chromatography methods were used. The data obtained allow for assumptions to be made about which secondary metabolites determine the level of stress resistance in R. semenovii at different stages of ontogeny in situ. For the first time, an expansion in the content of salidroside in the above-ground organs, with its maximum value during the period of seed maturation, and a significant decrease in its content in the root were revealed in the dynamics of vegetation. These results allow us to recommend collecting the ground component of R. semenovii for pharmaceutical purposes throughout the seed development stage without damaging the root system.
Collapse
Affiliation(s)
- Nina V. Terletskaya
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
- Correspondence: (N.V.T.); (N.O.K.); Tel.: +7-(777)-299-3335 (N.V.T.); +7-(705)-181-1440 (N.O.K.)
| | - Nazym K. Korbozova
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
| | - Alexander E. Grazhdannikov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Gulnaz A. Seitimova
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
| | - Nataliya D. Meduntseva
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
| | - Nataliya O. Kudrina
- Faculty of Biology and Biotechnology and Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue 71, 050040 Almaty, Kazakhstan; (N.K.K.); (G.A.S.); (N.D.M.)
- Institute of Genetic and Physiology, Al-Farabi Avenue 93, 050040 Almaty, Kazakhstan
- Correspondence: (N.V.T.); (N.O.K.); Tel.: +7-(777)-299-3335 (N.V.T.); +7-(705)-181-1440 (N.O.K.)
| |
Collapse
|
28
|
Merchant A, Smith MR, Windt CW. In situ pod growth rate reveals contrasting diurnal sensitivity to water deficit in Phaseolus vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3774-3786. [PMID: 35323925 PMCID: PMC9162186 DOI: 10.1093/jxb/erac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The development of reproductive tissues determines plant fecundity and yield. Loading of resources into the developing reproductive tissue is thought to be under the co-limiting effects of source and sink strength. The dynamics of this co-limitation are unknown, largely due to an inability to measure the flux of resources into a developing sink. Here we use nuclear magnetic resonance (NMR) sensors to measure sink strength by quantifying rates of pod dry matter accumulation (pod loading) in Phaseolus vulgaris at 13-min intervals across the diel period. Rates of pod loading showed contrasting variation across light and dark periods during the onset of water deficit. In addition, rates of pod loading appeared decoupled from net photosynthetic rates when adjusted to the plant scale. Combined, these observations illustrate that the rate of pod development varies under water limitation and that continuous, non-invasive methodologies to measure sink strength provide insight into the governing processes that determine the development of reproductive tissues.
Collapse
Affiliation(s)
| | - Millicent R Smith
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Carel W Windt
- IBG-2: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
29
|
Sun G, Zhang X, Duan H, Gao J, Li N, Su P, Xie H, Li W, Fu Z, Huang Y, Tang J. Dissection of the genetic architecture of peduncle vascular bundle-related traits in maize by a genome-wide association study. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1042-1053. [PMID: 35080335 PMCID: PMC9129077 DOI: 10.1111/pbi.13782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
The peduncle vascular system of maize is critical for the transport of photosynthetic products, nutrients, and water from the roots and leaves to the ear. Accordingly, it positively affects the grain yield. However, the genetic basis of peduncle vascular bundle (PVB)-related traits in maize remains unknown. Thus, 15 PVB-related traits of 386 maize inbred lines were investigated at three locations (Yongcheng, 17YC; Kaifeng, 20KF; and Yuanyang, 20YY). The repeatability for the 15 traits ranged from 35.53% to 92.13%. A genome-wide association study was performed and 69 non-redundant quantitative trait loci (QTL) were detected, including 9, 41, and 27 QTL identified at 17YC, 20KF, and 20YY, respectively. These QTL jointly explained 4.72% (SLL) to 37.30% (NSVB) of the phenotypic variation. Eight QTL were associated with the same trait at two locations. Furthermore, four pleiotropic QTL were identified. Moreover, one QTL (qPVB44), associated with NSVB_20KF, was co-localized with a previously reported locus related to kernel width, implying qPVB44 may affect the kernel width by modulating the number of small vascular bundles. Examinations of the 69 QTL identified 348 candidate genes that were classified in five groups. Additionally, 26 known VB-related homologous genes (e.g. VLN2, KNOX1, and UGT72B3) were detected in 20 of the 69 QTL. A comparison of the NSVB between a Zmvln2 EMS mutant and its wild type elucidated the function of the candidate gene ZmVLN2. These results are important for clarifying the genetic basis of PVB-related traits and may be useful for breeding new high-yielding maize cultivars.
Collapse
Affiliation(s)
- Gaoyang Sun
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
- College of AgronomySichuan Agricultural UniversityChengduChina
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Haiyang Duan
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jionghao Gao
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Na Li
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Pingping Su
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Huiling Xie
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Weihua Li
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Yubi Huang
- College of AgronomySichuan Agricultural UniversityChengduChina
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop ScienceCollege of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
30
|
Ouyang X, Zhong X, Chang S, Qian Q, Zhang Y, Zhu X. Partially functional NARROW LEAF1 balances leaf photosynthesis and plant architecture for greater rice yield. PLANT PHYSIOLOGY 2022; 189:772-789. [PMID: 35377451 PMCID: PMC9157069 DOI: 10.1093/plphys/kiac135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
NARROW LEAF1 (NAL1) is an elite gene in rice (Oryza sativa), given its close connection to leaf photosynthesis, hybrid vigor, and yield-related agronomic traits; however, the underlying mechanism by which this gene affects these traits remains elusive. In this study, we systematically measured leaf photosynthetic parameters, leaf anatomical parameters, architectural parameters, and agronomic traits in indica cultivar 9311, in 9311 with the native NAL1 replaced by the Nipponbare NAL1 (9311-NIL), and in 9311 with the NAL1 fully mutated (9311-nal1). Leaf length, width, and spikelet number gradually increased from lowest to highest in 9311-nal1, 9311, and 9311-NIL. In contrast, the leaf photosynthetic rate on a leaf area basis, leaf thickness, and panicle number gradually decreased from highest to lowest in 9311-nal1, 9311, and 9311-NIL. RNA-seq analysis showed that NAL1 negatively regulates the expression of photosynthesis-related genes; NAL1 also influenced expression of many genes related to phytohormone signaling, as also shown by different leaf contents of 3-Indoleacetic acid, jasmonic acid, Gibberellin A3, and isopentenyladenine among these genotypes. Furthermore, field experiments with different planting densities showed that 9311 had a larger biomass and yield advantage under low planting density compared to either 9311-NIL or 9311-nall. This study shows both direct and indirect effects of NAL1 on leaf photosynthesis; furthermore, we show that a partially functional NAL1 allele helps maintain a balanced leaf photosynthesis and plant architecture for increased biomass and grain yield in the field.
Collapse
Affiliation(s)
- Xiang Ouyang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyu Zhong
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha 410128, China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Yuzhu Zhang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center (HHRRC), Changsha 410125, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
31
|
Reynolds MP, Slafer GA, Foulkes JM, Griffiths S, Murchie EH, Carmo-Silva E, Asseng S, Chapman SC, Sawkins M, Gwyn J, Flavell RB. A wiring diagram to integrate physiological traits of wheat yield potential. NATURE FOOD 2022; 3:318-324. [PMID: 37117579 DOI: 10.1038/s43016-022-00512-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 04/30/2023]
Abstract
As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging and will require more insight into deterministic pathways to yields. Here, we propose a wiring diagram as a platform to illustrate the interrelationships of the physiological traits that impact wheat yield potential and to serve as a decision support tool for crop scientists. The wiring diagram is based on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable expression of both. By illustrating these linkages as coded wires, the wiring diagram can show connections among traits that may not have been apparent, and can inform new research hypotheses and guide crosses designed to accumulate beneficial traits and alleles in breeding. The wiring diagram can also serve to create an ever-richer common point of reference for refining crop models in the future.
Collapse
Affiliation(s)
| | - Gustavo Ariel Slafer
- Catalonian Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Center for Research in Agrotechnology (AGROTECNIO), Lleida, Spain.
- University of Lleida, Lleida, Spain.
| | | | | | | | | | | | | | - Mark Sawkins
- International Wheat Yield Partnership (IWYP), College Station, TX, USA
- Texas A&M AgriLife Research, Weslaco, TX, USA
| | - Jeff Gwyn
- International Wheat Yield Partnership (IWYP), College Station, TX, USA
| | | |
Collapse
|
32
|
Dominguez PG, Niittylä T. Mobile forms of carbon in trees: metabolism and transport. TREE PHYSIOLOGY 2022; 42:458-487. [PMID: 34542151 PMCID: PMC8919412 DOI: 10.1093/treephys/tpab123] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 09/12/2021] [Indexed: 05/26/2023]
Abstract
Plants constitute 80% of the biomass on earth, and almost two-thirds of this biomass is found in wood. Wood formation is a carbon (C)-demanding process and relies on C transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here, we review the molecules and mechanisms used to transport and allocate C in trees. Sucrose is the major form in which C is transported in plants, and it is found in the phloem sap of all tree species investigated so far. However, in several tree species, sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Furthermore, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular C recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C-carrying molecules in trees reveals no consistent differences in C transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate-related environmental factors will not explain the diversity of C transport forms. However, the consideration of C-transport mechanisms in relation to tree-rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| |
Collapse
|
33
|
Bharali A, Baruah KK. Effects of integrated nutrient management on sucrose phosphate synthase enzyme activity and grain quality traits in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:383-389. [PMID: 35400893 PMCID: PMC8943101 DOI: 10.1007/s12298-022-01148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Cropping systems and management practices can greatly affect rice crop, finally determining their grain yield and quality. In this study, we evaluated the effects of integrated nutrient management practices on sucrose phosphate synthase enzyme (SPS) activity and grain quality traits of rice. Field experiments were conducted at North Bank Plain Agro-climatic Zone of Assam, India from 2013 to 2015 on three rice ecosystems (winter, summer, and pre-monsoon). Selected fertilizer treatments were NPK as recommended inorganic fertilizer, NPK + cow dung, NPK + whole parts of the green manure Sesbania aculeata, NPK + compost of Azolla caroliniana and NPK + rice husk dust. NPK + Azolla compost application resulted in higher SPS activity compared to control. A significant relationship between panicle biomass and SPS enzyme activity was observed in the rice plants grown in different ecosystems. Integrated nutrient fertilizers in rice soil had a significant impact on the grain quality of rice. Grain nitrogen and crude protein content were higher at NPK + green manure Sesbania aculeata applied field irrespective of the ecosystems. NPK and Azolla compost were effective in improving grain productivity and grain quality parameters viz; total carbohydrates, starch, and amylose in rice crop. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01148-w.
Collapse
Affiliation(s)
- Ashmita Bharali
- Department of Environmental Science, Tezpur University, Napaam, Sonitpur, Assam 784028 India
| | - K. K. Baruah
- Royal School of Environmental and Earth Sciences, Royal Global University, Guwahati, Assam, 781035 India
| |
Collapse
|
34
|
Yuan S, Tang H, Fu L, Tan J, Govindjee G, Guo Y. An open Internet of Things (IoT)-based framework for feedback control of photosynthetic activities. PHOTOSYNTHETICA 2022; 60:79-87. [PMID: 39649005 PMCID: PMC11559478 DOI: 10.32615/ps.2021.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 12/10/2024]
Abstract
Active control of photosynthetic activities is important in plant physiological study. Although models of plant photosynthesis have been built at different scales, they have not been fully examined for their application in plant growth control. However, we do not have an infrastructure to support such experiments since current plant growth chambers usually use fixed control protocols. In our current paper, an open IoT-based framework is proposed. This framework allows a plant scientist or agricultural engineer, through an application programming interface (API), in a desirable programming language, (1) to gather environmental data and plant physiological responses; (2) to program and execute control algorithms based on their models, and then (3) to implement real-time commands to control environmental factors. A plant growth chamber was developed to demonstrate the concept of the proposed open framework.
Collapse
Affiliation(s)
- S. Yuan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
| | - H. Tang
- Lushixin Sci. & Tec. (Wuxi) Co. Ltd., 214124 Wuxi, China
| | - L.J. Fu
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
| | - J.L. Tan
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - G. Govindjee
- Center of Biophysics & Quantitative Biology, Department of Biochemistry and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Y. Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of IoT, Jiangnan University, 214122 Wuxi, China
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
35
|
Motto M, Sahay S. Energy plants (crops): potential natural and future designer plants. HANDBOOK OF BIOFUELS 2022:73-114. [DOI: 10.1016/b978-0-12-822810-4.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
36
|
Song Q, Van Rie J, Den Boer B, Galle A, Zhao H, Chang T, He Z, Zhu XG. Diurnal and Seasonal Variations of Photosynthetic Energy Conversion Efficiency of Field Grown Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:817654. [PMID: 35283909 PMCID: PMC8914475 DOI: 10.3389/fpls.2022.817654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 05/22/2023]
Abstract
Improving canopy photosynthetic light use efficiency and energy conversion efficiency (ε c ) is a major option to increase crop yield potential. However, so far, the diurnal and seasonal variations of canopy light use efficiency (LUE) and ε c are largely unknown due to the lack of an efficient method to estimate ε c in a high temporal resolution. Here we quantified the dynamic changes of crop canopy LUE and ε c during a day and a growing season with the canopy gas exchange method. A response curve of whole-plant carbon dioxide (CO2) flux to incident photosynthetically active radiation (PAR) was further used to calculate ε c and LUE at a high temporal resolution. Results show that the LUE of two wheat cultivars with different canopy architectures at five stages varies between 0.01 to about 0.05 mol CO2 mol-1 photon, with the LUE being higher under medium PAR. Throughout the growing season, the ε c varies from 0.5 to 3.7% (11-80% of the maximal ε c for C3 plants) with incident PAR identified as a major factor controlling variation of ε c . The estimated average ε c from tillering to grain filling stages was about 2.17%, i.e., 47.2% of the theoretical maximal. The estimated season-averaged radiation use efficiency (RUE) was 1.5-1.7 g MJ-1, which was similar to the estimated RUE based on biomass harvesting. The large variations of LUE and ε c imply a great opportunity to improve canopy photosynthesis for greater wheat biomass and yield potential.
Collapse
Affiliation(s)
- Qingfeng Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jeroen Van Rie
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Bart Den Boer
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Alexander Galle
- BASF Belgium Coordination Center – Innovation Center Gent, Ghent, Belgium
| | - Honglong Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Tiangen Chang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Zhonghu He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin-Guang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xin-Guang Zhu,
| |
Collapse
|
37
|
Dammer KH, Schirrmann M. Primarily tests of a optoelectronic in-canopy sensor for evaluation of vertical disease infection in cereals. PEST MANAGEMENT SCIENCE 2022; 78:143-149. [PMID: 34463021 DOI: 10.1002/ps.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Health scouting of crops by satellite, airplanes, unmanned aerial (UAV) and ground vehicles can only evaluate the crop from above. The visible leaves may show no disease symptoms, but lower, older leaves not visible from above can do. A mobile in-canopy sensor was developed, carried by a tractor to detect diseases in cereal crops. Photodiodes measure the reflected light in the red and infrared wavelength range at 10 different vertical heights in lateral directions. RESULTS Significant differences occurred in the vegetation index NDVI of sensor levels operated inside and near the winter wheat canopy between infected (stripe rust: 2018, 2019 / leaf rust: 2020) and control plots. The differences were not significant at those sensor levels operated far above the canopy. CONCLUSIONS Lateral reflectance measurements inside the crop canopy are able to distinguish between disease-infected and healthy crops. In future mobile in-canopy scouting could be an extension to the common above-canopy scouting praxis for making spraying decisions by the farmer or decision support systems. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Karl-Heinz Dammer
- Department Engineering for Crop Production, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | - Michael Schirrmann
- Department Engineering for Crop Production, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| |
Collapse
|
38
|
Zhang C, Zheng B, He Y. Improving Grain Yield via Promotion of Kernel Weight in High Yielding Winter Wheat Genotypes. BIOLOGY 2021; 11:biology11010042. [PMID: 35053040 PMCID: PMC8772892 DOI: 10.3390/biology11010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Improving plant net photosynthetic rates and accelerating water-soluble carbohydrate accumulation play an important role in increasing the carbon sources for wheat kernel growth and yield. The objective of this study was to quantify the relative yield contribution by analyzing the photosynthesis rate of flag leaf, water-soluble carbohydrate content of flag leaf, flag leaf sheath and stem, and other agronomic and physiological traits in 15 wheat cultivars released in Shandong Province, China between 1969 and 2006. Our results suggest that increase of flag leaf photosynthesis and WSC had a positive effect of 0.593 on the TKW, and thus benefit for developing high yielding wheat cultivars. Abstract Improving plant net photosynthetic rates and accelerating water-soluble carbohydrate accumulation play an important role in increasing the carbon sources for yield formation of wheat (Triticum aestivum L.). Understanding and quantify the contribution of these traits to grain yield can provide a pathway towards increasing the yield potential of wheat. The objective of this study was to identify kernel weight gap for improving grain yield in 15 winter wheat genotypes grown in Shandong Province, China. A cluster analysis was conducted to classify the 15 wheat genotypes into high yielding (HY) and low yielding (LY) groups based on their performance in grain yield, harvest index, photosynthetic rate, kernels per square meter, and spikes per square meter from two years of field testing. While the grain yield was significantly higher in the HY group, its thousand kernel weight (TKW) was 8.8% lower than that of the LY group (p < 0.05). A structural equation model revealed that 83% of the total variation in grain yield for the HY group could be mainly explained by TKW, the flag leaf photosynthesis rate at the grain filling stage (Pn75), and flag leaf water-soluble carbohydrate content (WSC) at grain filling stage. Their effect values on yield were 0.579, 0.759, and 0.444, respectively. Our results suggest that increase of flag leaf photosynthesis and WSC could improve the TKW, and thus benefit for developing high yielding wheat cultivars.
Collapse
Affiliation(s)
- Cong Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Str., Beijing 100081, China;
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, St. Lucia, Brisbane, QLD 4067, Australia;
| | - Yong He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Str., Beijing 100081, China;
- Correspondence: ; Tel.: +86-10-82109767
| |
Collapse
|
39
|
Duan HX, Luo CL, Zhu SY, Wang W, Naseer M, Xiong YC. Density- and moisture-dependent effects of arbuscular mycorrhizal fungus on drought acclimation in wheat. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02444. [PMID: 34448278 DOI: 10.1002/eap.2444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/13/2021] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungus (AMF) is widely viewed as an ecosystem engineer to help plants adapt to adverse environments. However, a majority of the previous studies regarding AMF's eco-physiological effects are mutually inconsistent. To clarify this fundamental issue, we conducted an experiment focused on wheat (Triticum aestivum L.) plants with or without AMF (Funneliformis mosseae) inoculation. Two water regimes (80% and 40% field water capacity, FWC80 (CK) and FWC40 (drought stress) and four planting densities (6 or 12 plants per pot as low densities, 24 or 48 plants per pot as high densities) were designed. AMF inoculation did not show significant effects on shoot biomass, grain yield, and water use efficiency (WUE) under the low densities, regardless of water regimes. However, under the high densities, AMF inoculation significantly decreased shoot biomass, grain yield and WUE in FWC80, while it significantly increased these parameters in FWC40, showing density and/or moisture-dependent effects of AMF on wheat performance. In FWC40, the relationships between reproductive biomass (y-axis) vs. vegetative biomass (x-axis) (R-V), and between grain biomass (y-axis, sink) vs. leaf biomass (x-axis, source) fell into a typical allometric pattern (α > 1, P < 0.001), and the AMF inoculation significantly increased the values of α. Yet in FWC80, they were in an isometric pattern (α ≈ 1, P < 0.001) and AMF addition had no significant effects on α. Similarly, AMF did not significantly change the isometric relationship between leaf biomass (i.e., metabolic rate) and shoot biomass (body size) in FWC80, while it significantly decreased the α of allometric relationship between both of them in FWC40 (α > 1, P < 0.001). We therefore, sketched a generalized model of R-V and sink-source relationships as affected by AMF, in which AMF inoculation might enhance the capabilities of sink acquisition and utilization under drought stress, while having no significant effect under the well watered conditions. Our findings demonstrate dual density- and moisture-dependent effects of AMF on plant development and provide new insights into current ecological applications of AMF as an ecosystem engineer.
Collapse
Affiliation(s)
- Hai-Xia Duan
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chong-Liang Luo
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Sai-Yong Zhu
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wei Wang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Minha Naseer
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
40
|
Hussain S, Ulhassan Z, Brestic M, Zivcak M, Allakhverdiev SI, Yang X, Safdar ME, Yang W, Liu W. Photosynthesis research under climate change. PHOTOSYNTHESIS RESEARCH 2021; 150:5-19. [PMID: 34235625 DOI: 10.1007/s11120-021-00861-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/28/2021] [Indexed: 05/13/2023]
Abstract
Increasing global population and climate change uncertainties have compelled increased photosynthetic efficiency and yields to ensure food security over the coming decades. Potentially, genetic manipulation and minimization of carbon or energy losses can be ideal to boost photosynthetic efficiency or crop productivity. Despite significant efforts, limited success has been achieved. There is a need for thorough improvement in key photosynthetic limiting factors, such as stomatal conductance, mesophyll conductance, biochemical capacity combined with Rubisco, the Calvin-Benson cycle, thylakoid membrane electron transport, nonphotochemical quenching, and carbon metabolism or fixation pathways. In addition, the mechanistic basis for the enhancement in photosynthetic adaptation to environmental variables such as light intensity, temperature and elevated CO2 requires further investigation. This review sheds light on strategies to improve plant photosynthesis by targeting these intrinsic photosynthetic limitations and external environmental factors.
Collapse
Affiliation(s)
- Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, 94976, Nitra, Slovakia
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, 94976, Nitra, Slovakia
| | - Suleyman I Allakhverdiev
- К.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, Russia, 127276
| | - Xinghong Yang
- Department of Plant Physiology, College of Life Sciences, Shandong Agricultural University, Daizong Road No. 61, 271018, Taian, People's Republic of China
| | | | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, People's Republic of China.
| |
Collapse
|
41
|
Yang X, Liu D, Lu H, Weston DJ, Chen JG, Muchero W, Martin S, Liu Y, Hassan MM, Yuan G, Kalluri UC, Tschaplinski TJ, Mitchell JC, Wullschleger SD, Tuskan GA. Biological Parts for Plant Biodesign to Enhance Land-Based Carbon Dioxide Removal. BIODESIGN RESEARCH 2021; 2021:9798714. [PMID: 37849951 PMCID: PMC10521660 DOI: 10.34133/2021/9798714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2023] Open
Abstract
A grand challenge facing society is climate change caused mainly by rising CO2 concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO2 via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO2 removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy. To address these limitations, there is an urgent need for genetic improvement of existing plants or construction of novel plant systems through biosystems design (or biodesign). Here, we summarize validated biological parts (e.g., protein-encoding genes and noncoding RNAs) for biological engineering of carbon dioxide removal (CDR) traits in terrestrial plants to accelerate land-based decarbonization in bioenergy plantations and agricultural settings and promote a vibrant bioeconomy. Specifically, we first summarize the framework of plant-based CDR (e.g., CO2 capture, translocation, storage, and conversion to value-added products). Then, we highlight some representative biological parts, with experimental evidence, in this framework. Finally, we discuss challenges and strategies for the identification and curation of biological parts for CDR engineering in plants.
Collapse
Affiliation(s)
- Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Haiwei Lu
- Department of Academic Education, Central Community College-Hastings, Hastings, NE 68902USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stanton Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yang Liu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Julie C. Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Stan D. Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
42
|
Sales CRG, Wang Y, Evers JB, Kromdijk J. Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5942-5960. [PMID: 34268575 PMCID: PMC8411859 DOI: 10.1093/jxb/erab327] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/09/2021] [Indexed: 05/05/2023]
Abstract
Although improving photosynthetic efficiency is widely recognized as an underutilized strategy to increase crop yields, research in this area is strongly biased towards species with C3 photosynthesis relative to C4 species. Here, we outline potential strategies for improving C4 photosynthesis to increase yields in crops by reviewing the major bottlenecks limiting the C4 NADP-malic enzyme pathway under optimal and suboptimal conditions. Recent experimental results demonstrate that steady-state C4 photosynthesis under non-stressed conditions can be enhanced by increasing Rubisco content or electron transport capacity, both of which may also stimulate CO2 assimilation at supraoptimal temperatures. Several additional putative bottlenecks for photosynthetic performance under drought, heat, or chilling stress or during photosynthetic induction await further experimental verification. Based on source-sink interactions in maize, sugarcane, and sorghum, alleviating these photosynthetic bottlenecks during establishment and growth of the harvestable parts are likely to improve yield. The expected benefits are also shown to be augmented by the increasing trend in planting density, which increases the impact of photosynthetic source limitation on crop yields.
Collapse
Affiliation(s)
- Cristina R G Sales
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Yu Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jochem B Evers
- Centre for Crops Systems Analysis (WUR), Wageningen University, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
43
|
Verbraeken L, Wuyts N, Mertens S, Cannoot B, Maleux K, Demuynck K, De Block J, Merchie J, Dhondt S, Bonaventure G, Crafts-Brandner S, Vogel J, Bruce W, Inzé D, Maere S, Nelissen H. Drought affects the rate and duration of organ growth but not inter-organ growth coordination. PLANT PHYSIOLOGY 2021; 186:1336-1353. [PMID: 33788927 PMCID: PMC8195526 DOI: 10.1093/plphys/kiab155] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 05/18/2023]
Abstract
Drought at flowering and grain filling greatly reduces maize (Zea mays) yield. Climate change is causing earlier and longer-lasting periods of drought, which affect the growth of multiple maize organs throughout development. To study how long periods of water deficit impact the dynamic nature of growth, and to determine how these relate to reproductive drought, we employed a high-throughput phenotyping platform featuring precise irrigation, imaging systems, and image-based biomass estimations. Prolonged drought resulted in a reduction of growth rate of individual organs-though an extension of growth duration partially compensated for this-culminating in lower biomass and delayed flowering. However, long periods of drought did not affect the highly organized succession of maximal growth rates of the distinct organs, i.e. leaves, stems, and ears. Two drought treatments negatively affected distinct seed yield components: Prolonged drought mainly reduced the number of spikelets, and drought during the reproductive period increased the anthesis-silking interval. The identification of these divergent biomass and yield components, which were affected by the shift in duration and intensity of drought, will facilitate trait-specific breeding toward future climate-resilient crops.
Collapse
Affiliation(s)
- Lennart Verbraeken
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Nathalie Wuyts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stien Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bernard Cannoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Katrien Maleux
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kirin Demuynck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jolien De Block
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Julie Merchie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | | | | | | | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Author for communication:
| |
Collapse
|
44
|
Source-Sink Manipulation Affects Accumulation of Zinc and Other Nutrient Elements in Wheat Grains. PLANTS 2021; 10:plants10051032. [PMID: 34065615 PMCID: PMC8161399 DOI: 10.3390/plants10051032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
To better understand the source–sink flow and its relationships with zinc (Zn) and other nutrients in wheat (Triticum aestivum L.) plants for biofortification and improving grain nutritional quality, the effects of reducing the photoassimilate source (through the flag leaf removal and spike shading) or sink (through the removal of all spikelets from one side of the spike, i.e., 50% spikelets removal) in the field of the accumulation of Zn and other nutrients in grains of two wheat cultivars (Jimai 22 and Jimai 44) were investigated at two soil Zn application levels. The kernel number per spike (KNPS), single panicle weight (SPW), thousand kernel weight (TKW), total grain weight (TGW) sampled, concentrations and yields of various nutrient elements including Zn, iron (Fe), manganese (Mn), copper (Cu), nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg), phytate phosphorus (phytate-P), phytic acid (PA) and phytohormones (ABA: abscisic acid, and the ethylene precursor ACC: 1-aminocylopropane-1-carboxylic acid), and carbon/N ratios were determined. Soil Zn application significantly increased the concentrations of grain Zn, N and K. Cultivars showing higher grain yields had lower grain protein and micronutrient nutritional quality. SPW, KNPS, TKW (with the exception of TKW in the removal of half of the spikelets), TGW, and nutrient yields in wheat grains were most severely reduced by half spikelet removal, secondly by spike shading, and slightly by flag leaf removal. Grain concentrations of Zn, N and Mg consistently showed negative correlations with SPW, KNPS and TGW, but positive correlations with TKW. There were general positive correlations among grain concentrations of Zn, Fe, Mn, Cu, N and Mg, and the bioavailability of Zn and Fe (estimated by molar ratios of PA/Zn, PA/Fe, PA × Ca/Zn, or PA × Ca/Fe). Although Zn and Fe concentrations were increased and Ca was decreased in treatments of half spikelet removal and spike shading, the treatments simultaneously increased PA and limited the increase in bioavailability of Zn and Fe. In general, different nutrient elements interact with each other and are affected to different degrees by source–sink manipulation. Elevated endogenous ABA levels and ABA/ACC ratios were associated with increased TKW and grain-filling of Zn, Mn, Ca and Mg, and inhibited K in wheat grains. However, the effects of ACC were diametrically opposite. These results provide a basis for wheat grain biofortification to alleviate human malnutrition.
Collapse
|
45
|
Aluko OO, Li C, Wang Q, Liu H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int J Mol Sci 2021; 22:4704. [PMID: 33946791 PMCID: PMC8124652 DOI: 10.3390/ijms22094704] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| |
Collapse
|
46
|
Dellero Y, Jossier M, Bouchereau A, Hodges M, Leport L. Leaf Phenological Stages of Winter Oilseed Rape ( Brassica napus L.) Have Conserved Photosynthetic Efficiencies but Contrasted Intrinsic Water Use Efficiencies at High Light Intensities. FRONTIERS IN PLANT SCIENCE 2021; 12:659439. [PMID: 33936148 PMCID: PMC8083057 DOI: 10.3389/fpls.2021.659439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Leaf senescence in source leaves leads to the active degradation of chloroplast components [photosystems, chlorophylls, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)] and plays a key role in the efficient remobilization of nutrients toward sink tissues. However, the progression of leaf senescence can differentially modify the photosynthetic properties of source leaves depending on plant species. In this study, the photosynthetic and respiratory properties of four leaf ranks of oilseed rape describing leaf phenological stages having different sink-source activities were analyzed. To achieve this, photosynthetic pigments, total soluble proteins, Rubisco amounts, and the light response of chlorophyll fluorescence parameters coupled to leaf gas exchanges and leaf water content were measured. Photosynthetic CO2 assimilation and electron transfer rates, Rubisco and chlorophyll levels per leaf area were gradually decreased between young, mature and senescent leaves but they remained highly correlated at saturating light intensities. However, senescent leaves of oilseed rape had a lower intrinsic water use efficiency compared to young and mature leaves at saturating light intensities that was mainly due to higher stomatal conductance and transpiration rate with respect to stomatal density and net CO2 assimilation. The results are in favor of a concerted degradation of chloroplast components but a contrasted regulation of water status between leaves of different phenological stages of winter oilseed rape.
Collapse
Affiliation(s)
- Younès Dellero
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, Le Rheu, France
| | - Mathieu Jossier
- Université Paris-Saclay, NAtional Committee of Scientific Research (CNRS), National Research Institute for Agriculture, Food and Environment (INRAE), Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Alain Bouchereau
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, Le Rheu, France
| | - Michael Hodges
- Université Paris-Saclay, NAtional Committee of Scientific Research (CNRS), National Research Institute for Agriculture, Food and Environment (INRAE), Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Laurent Leport
- Institute for Genetics, Environment and Plant Protection (IGEPP), National Research Institute for Agriculture, Food and Environment (INRAE), Institut Agro, Université Rennes, Le Rheu, France
| |
Collapse
|
47
|
da Silva VCH, Martins MCM, Calderan-Rodrigues MJ, Artins A, Monte Bello CC, Gupta S, Sobreira TJP, Riaño-Pachón DM, Mafra V, Caldana C. Shedding Light on the Dynamic Role of the "Target of Rapamycin" Kinase in the Fast-Growing C 4 Species Setaria viridis, a Suitable Model for Biomass Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:637508. [PMID: 33927734 PMCID: PMC8078139 DOI: 10.3389/fpls.2021.637508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The Target of Rapamycin (TOR) kinase pathway integrates energy and nutrient availability into metabolism promoting growth in eukaryotes. The overall higher efficiency on nutrient use translated into faster growth rates in C4 grass plants led to the investigation of differential transcriptional and metabolic responses to short-term chemical TOR complex (TORC) suppression in the model Setaria viridis. In addition to previously described responses to TORC inhibition (i.e., general growth arrest, translational repression, and primary metabolism reprogramming) in Arabidopsis thaliana (C3), the magnitude of changes was smaller in S. viridis, particularly regarding nutrient use efficiency and C allocation and partitioning that promote biosynthetic growth. Besides photosynthetic differences, S. viridis and A. thaliana present several specificities that classify them into distinct lineages, which also contribute to the observed alterations mediated by TOR. Indeed, cell wall metabolism seems to be distinctly regulated according to each cell wall type, as synthesis of non-pectic polysaccharides were affected in S. viridis, whilst assembly and structure in A. thaliana. Our results indicate that the metabolic network needed to achieve faster growth seems to be less stringently controlled by TORC in S. viridis.
Collapse
Affiliation(s)
| | | | | | - Anthony Artins
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Saurabh Gupta
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | | | | | - Valéria Mafra
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Camila Caldana
- National Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| |
Collapse
|
48
|
Okamura M, Hirai MY, Sawada Y, Okamoto M, Oikawa A, Sasaki R, Arai-Sanoh Y, Mukouyama T, Adachi S, Kondo M. Analysis of carbon flow at the metabolite level reveals that starch synthesis from hexose is a limiting factor in a high-yielding rice cultivar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2570-2583. [PMID: 33481019 DOI: 10.1093/jxb/erab016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Understanding the limiting factors of grain filling is essential for the further improvement of grain yields in rice (Oryza sativa). The relatively slow grain growth of the high-yielding cultivar 'Momiroman' is not improved by increasing carbon supply, and hence low sink activity (i.e. the metabolic activity of assimilate consumption/storage in sink organs) may be a limiting factor for grain filling. However, there is no metabolic evidence to corroborate this hypothesis, partly because there is no consensus on how to define and quantify sink activity. In this study, we investigated the carbon flow at a metabolite level from photosynthesis in leaves to starch synthesis in grains of three high-yielding cultivars using the stable isotope 13C. We found that a large amount of newly fixed carbon assimilates in Momiroman was stored as hexose instead of being converted to starch. In addition, the activity of ADP-glucose pyrophosphorylase and the expression of AGPS2b, which encodes a subunit of the ADP-glucose pyrophosphorylase enzyme, were both lower in Momiroman than in the other two cultivars in grains in superior positions on panicle branches. Hence, slower starch synthesis from hexose, which is partly explained by the low expression level of AGPS2b, may be the primary metabolic reason for the lower sink activity observed in Momiroman.
Collapse
Affiliation(s)
- Masaki Okamura
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
- Central Region Agricultural Research Center, NARO, 1-2-1, Inada, Joetsu, Niigata, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Mami Okamoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Akira Oikawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan
| | - Ryosuke Sasaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Yumiko Arai-Sanoh
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
| | - Takehiro Mukouyama
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
- Yamanashi Prefectural Agritechnology Center 1100, Shimoimai, Kai, Yamanashi, Japan
| | - Shunsuke Adachi
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
- College of Agriculture, Ibaraki University, 3-21-1, Chuo, Ami, Inashiki, Ibaraki, Japan
| | - Motohiko Kondo
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
49
|
Duan L, Pérez-Ruiz JM, Cejudo FJ, Dinneny JR. Characterization of CYCLOPHILLIN38 shows that a photosynthesis-derived systemic signal controls lateral root emergence. PLANT PHYSIOLOGY 2021; 185:503-518. [PMID: 33721893 PMCID: PMC8133581 DOI: 10.1093/plphys/kiaa032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/29/2020] [Indexed: 05/10/2023]
Abstract
Photosynthesis in leaves generates fixed-carbon resources and essential metabolites that support sink tissues, such as roots. Two of these metabolites, sucrose and auxin, promote growth in root systems, but the explicit connection between photosynthetic activity and control of root architecture has not been explored. Through a mutant screen to identify pathways regulating root system architecture, we identified a mutation in the Arabidopsis thaliana CYCLOPHILIN 38 (CYP38) gene, which causes accumulation of pre-emergent stage lateral roots. CYP38 was previously reported to stabilize photosystem II (PSII) in chloroplasts. CYP38 expression is enriched in shoots, and grafting experiments show that the gene acts non-cell-autonomously to promote lateral root emergence. Growth of wild-type plants under low-light conditions phenocopies the cyp38 lateral root emergence defect, as does the inhibition of PSII-dependent electron transport or Nicotinamide adenine dinucleotide phosphate (NADPH) production. Importantly, these perturbations to photosynthetic activity rapidly suppress lateral root emergence, which is separate from their effects on shoot size. Supplementary exogenous sucrose largely rescued primary root (PR) growth in cyp38, but not lateral root growth. Auxin (indole-3-acetic acid (IAA)) biosynthesis from tryptophan is dependent on reductant generated during photosynthesis. Consistently, we found that wild-type seedlings grown under low light and cyp38 mutants have highly diminished levels of IAA in root tissues. IAA treatment rescued the cyp38 lateral root defect, revealing that photosynthesis promotes lateral root emergence partly through IAA biosynthesis. These data directly confirm the importance of CYP38-dependent photosynthetic activity in supporting root growth, and define the specific contributions of two metabolites in refining root architecture under light-limited conditions.
Collapse
Affiliation(s)
- Lina Duan
- Biology Department, Stanford University, Stanford, CA 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda Américo Vespucio 49, 41092 Sevilla, Spain
| | - José R Dinneny
- Biology Department, Stanford University, Stanford, CA 94305, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Author for communication:
| |
Collapse
|
50
|
Ullah S, Zhao Q, Wu K, Ali I, Liang H, Iqbal A, Wei S, Cheng F, Ahmad S, Jiang L, Gillani SW, Amanullah, Anwar S, Khan Z. Biochar application to rice with 15N-labelled fertilizers, enhanced leaf nitrogen concentration and assimilation by improving morpho-physiological traits and soil quality. Saudi J Biol Sci 2021; 28:3399-3413. [PMID: 34121878 PMCID: PMC8176087 DOI: 10.1016/j.sjbs.2021.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/26/2022] Open
Abstract
Leaf nitrogen (N) concentration plays an important role in biochemical and physiological functions, and N availability directly influences rice yield. However, excessive N fertilization is considered to be a root cause of environmental issues and low nitrogen use efficiency. Therefore, the selection of appropriate nutrient management practices and organic amendments is key to maximizing nitrogen uptake and maintaining high and sustainable rice production. Here, we evaluated the effects of different 15N-labelled nitrogen sources (urea, ammonium nitrate, and ammonium sulfate at 315 kg ha-1) with or without biochar (30 t ha-1) on paddy soil properties, root growth, leaf gas exchange, N metabolism enzymes, and N uptake in the early and late seasons of 2019. We found significant differences among N fertilizer sources applied with or without biochar (P < 0.05). Across the seasons, the combination of biochar with N fertilizers significantly increased soil organic carbon by 51.21% and nitrogen availability by 27.51% compared with N fertilizers alone. Correlation analysis showed that rice root morphological traits were strongly related to soil chemical properties, and higher root growth was measured in the biochar treatments. Similarly, net leaf photosynthetic rate averaged 9.34% higher, chlorophyll (Chl) a concentration 12.91% higher, and Chl b concentration 10.05% higher in the biochar treatments than in the biochar-free treatments across the seasons. Notably, leaf 15N concentration was 23.19% higher in the biochar treatments in both seasons. These results illustrated higher activities of N metabolism enzymes such as NR, GS, and GOGAT by an average 23.44%, 11.26% and 18.16% in the biochar treatments across the seasons, respectively. The addition of biochar with synthetic N fertilizers is an ecological nutrient management strategy that can increase N uptake and assimilation by ameliorating soil properties and improving the morpho-physiological factors of rice.
Collapse
Affiliation(s)
- Saif Ullah
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Quan Zhao
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Ke Wu
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Izhar Ali
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - He Liang
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Anas Iqbal
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Shanqing Wei
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Fangwei Cheng
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Shakeel Ahmad
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Ligeng Jiang
- Key Laboratory of Crop Cultivation and Farming System, Guangxi University, Nanning 530004, China
| | - Syeda Wajeeha Gillani
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
| | - Amanullah
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Shazma Anwar
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Zaid Khan
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| |
Collapse
|