1
|
Ossa P, Moreno AA, Orellana D, Toro M, Carrasco-Valenzuela T, Riveros A, Meneses C, Nilo-Poyanco R, Orellana A. Cistanthe longiscapa exhibits ecophysiological and molecular adaptations to the arid environments of the Atacama Desert. PLANT PHYSIOLOGY 2025; 197:kiaf068. [PMID: 40237375 DOI: 10.1093/plphys/kiaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/08/2025] [Indexed: 04/18/2025]
Abstract
Understanding how plants survive extreme conditions is essential to breeding resilient crops. Cistanthe longiscapa, which flourishes in the Atacama Desert, provides a rare glimpse into plant resilience. To uncover the genetic basis of its stress tolerance, we investigated the ecophysiological and transcriptomic responses of C. longiscapa from 3 sites with low but different precipitation levels. Ecophysiological analyses were performed on samples collected in the field at dusk and dawn, which are crucial stages in crassulacean acid metabolism (CAM), a water-efficient type of photosynthesis. Additional transcriptomic analysis allowed us to evaluate CAM intensity in C. longiscapa and identify changes in the molecular signature of these plants. Our results show that C. longiscapa displays considerable ecophysiological trait response variation across the 3 sites, including variations in markers such as nocturnal acid accumulation, isotopic carbon ratio, and succulence, among others. Analysis of gene expression patterns revealed differences among plants exhibiting varying intensities of CAM photosynthesis and identified key molecular signatures associated with their ecological strategies. Additionally, genes related to stress responses, plastid activities, and circadian rhythm show contrasting expression levels between strong and weak CAM plants, and this expression profile is shared with other CAM plants under stress. Our findings demonstrate that C. longiscapa is a valuable resource for identifying genes involved in the transition between different CAM intensities. This may lead to the discovery of genes that enhance plant tolerance to stressful environments.
Collapse
Affiliation(s)
- Paulina Ossa
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago RM 8370146, Chile
- Millenium Institute Center for Genome Regulation, Santiago, Avenida Libertador Bernardo O´Higgins 340, Santiago RM 8320165, Chile
- Escuela de Medicina Veterinaria, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Camino La Pirámide 5750, Santiago RM 8580745, Chile
| | - Adrián A Moreno
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago RM 8370146, Chile
| | - Daniela Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago RM 8370146, Chile
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, calle San Francisco s/n La Palma, Quillota 2260000, Chile
| | - Mónica Toro
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago RM 8370146, Chile
| | - Tomás Carrasco-Valenzuela
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago RM 8370146, Chile
| | - Anibal Riveros
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago RM 8370146, Chile
- Millenium Institute Center for Genome Regulation, Santiago, Avenida Libertador Bernardo O´Higgins 340, Santiago RM 8320165, Chile
| | - Claudio Meneses
- Millenium Institute Center for Genome Regulation, Santiago, Avenida Libertador Bernardo O´Higgins 340, Santiago RM 8320165, Chile
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago RM 8580745, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, República 330, Santiago RM 8370146, Chile
- Millenium Institute Center for Genome Regulation, Santiago, Avenida Libertador Bernardo O´Higgins 340, Santiago RM 8320165, Chile
| |
Collapse
|
2
|
Lamont BB, Lamont HC. Contrasting water, dry matter and air contents distinguish orthophylls, sclerophylls and succophylls (leaf succulents). Oecologia 2025; 207:54. [PMID: 40111483 PMCID: PMC11926024 DOI: 10.1007/s00442-025-05686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Differences in leaf texture (hardness, thickness) distinguish orthophylls (soft leaves), sclerophylls (hard leaves) and (semi)succophylls (water-storing leaves). Texture is controlled by dry matter, water and air contents. Our aim was to a) identify the best index of succulence, b) assess how these three components vary with leaf type, and c) derive bounds for these properties among the four main leaf-texture classes. Eight contrasting species from the Namib Desert, South Africa were assessed for their leaf area (A), thickness (z), dry mass (D), saturated water content (Q), and relative volume of dry matter, water and air to derive various indices of leaf texture. Q/A (= QV•z), where QV is saturated water storage per unit volume of leaf and z is leaf thickness is an ideal index of succulence. Specific leaf area (SLA) is more suitable as an index of hardness (SLA-1 = D/A) but only among non-succulents. Rising leaf specific gravity among sclero-orthophylls is due to replacement of air by dry matter but water among succophylls. Collation of 13 worldwide studies showed that orthophylls can be distinguished by a Q/A ≤ 0.45 mg water mm-2 leaf surface from succophylls with Q/A ≥ 0.9, such that there is a divergent relationship among plants regarding their water-storing properties. Semi-succophylls can be defined as having a Q/A > 0.45 to < 0.9, and sclerophylls can be separated from orthophylls by a SLA ≤ 10 mm2 mg-1 dry mass. The distribution of these leaf texture classes may vary greatly within, and especially between, local floras.
Collapse
Affiliation(s)
- Byron B Lamont
- Ecology Section, School of Molecular and Life Sciences, Curtin University, PO Box U1987, Perth, WA, 6845, Australia.
| | | |
Collapse
|
3
|
Bekki S, Suetsugu K, Kobayashi K. Chlorophyll fluorescence responses to CO 2 availability reveal crassulacean acid metabolism in epiphytic orchids. JOURNAL OF PLANT RESEARCH 2025; 138:323-336. [PMID: 39718758 DOI: 10.1007/s10265-024-01608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Crassulacean acid metabolism (CAM), a specialized mode of photosynthetic carbon assimilation characterized by nocturnal fixation of atmospheric CO2 and vacuolar malic acid storage, is found in a wide variety of vascular plant species, mainly those inhabiting water-limited environments. Identifying and characterizing diverse CAM species enhances our understanding of the physiological, ecological, and evolutionary significance of CAM photosynthesis. In this study, we examined the effect of CO2 elimination on chlorophyll fluorescence-based photosynthetic parameters in two constitutive CAM Kalanchoe species and six orchids. In CAM-performing Kalanchoe species, the effective quantum yield of photosystem II showed no change in response to CO2 elimination during the daytime but decreased with CO2 elimination at dusk. We applied this method to reveal the photosynthetic mode of epiphytic orchids and found that Gastrochilus japonicus, Oberonia japonica, and Bulbophyllum inconspicuum, but not B. drymoglossum, are constitutive CAM plants, which were also confirmed by malate determination. Our data propose a novel approach to identify and characterize CAM plants without labor-intensive experimental procedures. Although B. drymoglossum leaves had relatively high malate content, they did not depend on it to perform photosynthesis even under water-deficient or increased light conditions. Anatomical comparisons revealed a notable difference in leaf structure between B. drymoglossum and B. inconspicuum; B. drymoglossum leaves possess large water storage tissue internally, unlike B. inconspicuum leaves, which develop pseudobulbs. Our findings suggest different evolutionary adaptations to water deficit between closely related B. drymoglossum and B. inconspicuum.
Collapse
Affiliation(s)
- Sae Bekki
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
- The Institute for Advanced Research, Kobe University, 1-1Rokkodai, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
- Faculty of Liberal Arts, Science and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
4
|
Vásquez-Cruz M, Loera I, Del Angel M, Nakamura M, Hultine KR, Hernández-Hernández T. Evolutionary origins, macroevolutionary dynamics, and climatic niche space of the succulent plant syndrome in the Caryophyllales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:576-593. [PMID: 39412844 DOI: 10.1093/jxb/erae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/14/2024] [Indexed: 01/11/2025]
Abstract
The succulent plant syndrome is defined by the coordination of traits that enhance internal water storage within plant tissues. Although distributed globally in different habitats, succulent plants are thought to have evolved to avoid drought in arid regions, due to trait modifications that decrease tissue water deficits. We evaluated the evolution and the ecological significance of the succulent strategy at a global scale by comparing the climatic niche of species displaying succulence within the core Caryophyllales with their non-succulent relatives. We assembled and curated a worldwide dataset of 201 734 georeferenced records belonging to 5447 species within 28 families, and analyzed the climatic niche of species along with their origin and evolutionary trajectories using ecological niche modeling, phylogenetic regression, divergence dates, and ancestral state estimation. The results indicated that the core Caryophyllales have inhabited drylands since their origin in the Early Cretaceous. However, the succulent syndrome appeared and diversified during later geological periods. The climatic niche space of succulents is narrower than that of non-succulent relatives, but no niche separation was detected between groups. Our results support alternative interpretations of the environmental and ecological forces that spurred the origin and diversification of the succulent plant syndrome and the radiation of rich succulent lineages.
Collapse
Affiliation(s)
- Marilyn Vásquez-Cruz
- LANGEBIO-UGA (Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada), Cinvestav Irapuato, Libramiento Norte Carretera León Km 9.6, 36821 Irapuato, Gto, México
| | - Israel Loera
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Melina Del Angel
- CIMAT (Centro de Investigación en Matemáticas A.C.), De Jalisco s/n, Valenciana, 36023 Guanajuato, Gto, México
| | - Miguel Nakamura
- CIMAT (Centro de Investigación en Matemáticas A.C.), De Jalisco s/n, Valenciana, 36023 Guanajuato, Gto, México
| | - Kevin R Hultine
- Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821 Irapuato, Gto, México
| | - Tania Hernández-Hernández
- LANGEBIO-UGA (Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada), Cinvestav Irapuato, Libramiento Norte Carretera León Km 9.6, 36821 Irapuato, Gto, México
- Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821 Irapuato, Gto, México
- Department of Research, Conservation and Collections, Desert Botanical Garden, 1201 N Galvin Pkwy, Phoenix, AZ 85008, USA
| |
Collapse
|
5
|
Chen J, Wang Y. Understanding the salinity resilience and productivity of halophytes in saline environments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112171. [PMID: 38969140 DOI: 10.1016/j.plantsci.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Dalian Practical Biotechnology Co. LTD., Dalian, Liaoning 116200, China.
| |
Collapse
|
6
|
Mozzi G, Crivellaro A, Blasini DE, Vásquez-Cruz M, Hernández-Hernández T, Hultine KR. Divergent structural leaf trait spectra in succulent versus non-succulent plant taxa. ANNALS OF BOTANY 2024; 134:491-500. [PMID: 38833416 PMCID: PMC11341667 DOI: 10.1093/aob/mcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND SCOPE Plant functional traits are the result of natural selection to optimize carbon gain, leading to a broad spectrum of traits across environmental gradients. Among plant traits, leaf water storage capacity is paramount for plant drought resistance. We explored whether leaf-succulent taxa follow trait correlations similar to those of non-leaf-succulent taxa to evaluate whether both are similarly constrained by relationships between leaf water storage and climate. METHODS We tested the relationships among three leaf traits related to water storage capacity and resource use strategies in 132 species comprising three primary leaf types: succulent, sclerophyllous, and leaves with rapid returns on water investment, referred to as fast return. Correlation coefficients among specific leaf area (SLA), water mass per unit of area (WMA), and saturated water content (SWC) were tested, along with relationships between leaf trait spectra and aridity determined from species occurrence records. RESULTS Both SWC and WMA at a given SLA were ~10-fold higher in succulent leaves than in non-succulent leaves. While SWC actually increased with SLA in non-succulent leaves, no relationship was detected between SWC and SLA in succulent leaves, although WMA decreased with SLA in all leaf types. A principal component analysis (PCA) revealed that succulent taxa occupied a widely different mean trait space than either fast-return (P < 0.0001) or sclerophyllous (P < 0.0001) taxa along the first PCA axis, which explained 63 % of mean trait expression among species. However, aridity only explained 12 % of the variation in PCA1 values. This study is among the first to establish a structural leaf trait spectrum in succulent leaf taxa and quantify contrasts in leaf water storage among leaf types relative to specific leaf area. CONCLUSIONS Trait coordination in succulent leaf taxa may not follow patterns similar to those of widely studied non-succulent taxa.
Collapse
Affiliation(s)
- Giacomo Mozzi
- Department of Land, Environment, Agriculture and Forestry, University of Padova, Legnaro (PD), Italy
| | - Alan Crivellaro
- Department of Agricultural, Forest and Food Sciences, Università degli Studi di Torino, 10095 Grugliasco (TO), Italy
- Forest Biometrics Laboratory, Faculty of Forestry, ‘Stefan cel Mare’ University of Suceava, 720229 Suceava, Romania
| | - Davis E Blasini
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | | | - Tania Hernández-Hernández
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kevin R Hultine
- Department of Research, Conservation, and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| |
Collapse
|
7
|
Nakayama H. Leaf form diversity and evolution: a never-ending story in plant biology. JOURNAL OF PLANT RESEARCH 2024; 137:547-560. [PMID: 38592658 PMCID: PMC11230983 DOI: 10.1007/s10265-024-01541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
Leaf form can vary at different levels, such as inter/intraspecies, and diverse leaf shapes reflect their remarkable ability to adapt to various environmental conditions. Over the past two decades, considerable progress has been made in unraveling the molecular mechanisms underlying leaf form diversity, particularly the regulatory mechanisms of leaf complexity. However, the mechanisms identified thus far are only part of the entire process, and numerous questions remain unanswered. This review aims to provide an overview of the current understanding of the molecular mechanisms driving leaf form diversity while highlighting the existing gaps in our knowledge. By focusing on the unanswered questions, this review aims to shed light on areas that require further research, ultimately fostering a more comprehensive understanding of leaf form diversity.
Collapse
Affiliation(s)
- Hokuto Nakayama
- Graduate School of Science, Department of Biological Sciences, The University of Tokyo, Science Build. #2, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
8
|
Gilman IS, Heyduk K, Maya-Lastra C, Hancock LP, Edwards EJ. Predicting photosynthetic pathway from anatomy using machine learning. THE NEW PHYTOLOGIST 2024; 242:1029-1042. [PMID: 38173400 DOI: 10.1111/nph.19488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Plants with Crassulacean acid metabolism (CAM) have long been associated with a specialized anatomy, including succulence and thick photosynthetic tissues. Firm, quantitative boundaries between non-CAM and CAM plants have yet to be established - if they indeed exist. Using novel computer vision software to measure anatomy, we combined new measurements with published data across flowering plants. We then used machine learning and phylogenetic comparative methods to investigate relationships between CAM and anatomy. We found significant differences in photosynthetic tissue anatomy between plants with differing CAM phenotypes. Machine learning-based classification was over 95% accurate in differentiating CAM from non-CAM anatomy, and had over 70% recall of distinct CAM phenotypes. Phylogenetic least squares regression and threshold analyses revealed that CAM evolution was significantly correlated with increased mesophyll cell size, thicker leaves, and decreased intercellular airspace. Our findings suggest that machine learning may be used to aid the discovery of new CAM species and that the evolutionary trajectory from non-CAM to strong, obligate CAM requires continual anatomical specialization.
Collapse
Affiliation(s)
- Ian S Gilman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, The University of Connecticut, Storrs, CT, 06269, USA
| | - Carlos Maya-Lastra
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
- Department of Biology, Angelo State University, San Angelo, TX, 76909, USA
| | - Lillian P Hancock
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
9
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
10
|
Fradera-Soler M, Mravec J, Schulz A, Taboryski R, Jørgensen B, Grace OM. Revisiting an ecophysiological oddity: Hydathode-mediated foliar water uptake in Crassula species from southern Africa. PLANT, CELL & ENVIRONMENT 2024; 47:460-481. [PMID: 37876364 DOI: 10.1111/pce.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Hydathodes are usually associated with water exudation in plants. However, foliar water uptake (FWU) through the hydathodes has long been suspected in the leaf-succulent genus Crassula (Crassulaceae), a highly diverse group in southern Africa, and, to our knowledge, no empirical observations exist in the literature that unequivocally link FWU to hydathodes in this genus. FWU is expected to be particularly beneficial on the arid western side of southern Africa, where up to 50% of Crassula species occur and where periodically high air humidity leads to fog and/or dew formation. To investigate if hydathode-mediated FWU is operational in different Crassula species, we used the apoplastic fluorescent tracer Lucifer Yellow in combination with different imaging techniques. Our images of dye-treated leaves confirm that hydathode-mediated FWU does indeed occur in Crassula and that it might be widespread across the genus. Hydathodes in Crassula serve as moisture-harvesting structures, besides their more common purpose of guttation, an adaptation that has likely played an important role in the evolutionary history of the genus. Our observations suggest that ability for FWU is independent of geographical distribution and not restricted to arid environments under fog influence, as FWU is also operational in Crassula species from the rather humid eastern side of southern Africa. Our observations point towards no apparent link between FWU ability and overall leaf surface wettability in Crassula. Instead, the hierarchically sculptured leaf surfaces of several Crassula species may facilitate FWU due to hydrophilic leaf surface microdomains, even in seemingly hydrophobic species. Overall, these results confirm the ecophysiological relevance of hydathode-mediated FWU in Crassula and reassert the importance of atmospheric humidity for some arid-adapted plant groups.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Plant Science and Biodiversity Center, Nitra, Slovakia
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rafael Taboryski
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Lyngby, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
11
|
Holtum JAM. The diverse diaspora of CAM: a pole-to-pole sketch. ANNALS OF BOTANY 2023; 132:597-625. [PMID: 37303205 PMCID: PMC10800000 DOI: 10.1093/aob/mcad067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Crassulacean acid metabolism (CAM) photosynthesis is a successful adaptation that has evolved often in angiosperms, gymnosperms, ferns and lycophytes. Present in ~5 % of vascular plants, the CAM diaspora includes all continents apart from Antarctica. Species with CAM inhabit most landscapes colonized by vascular plants, from the Arctic Circle to Tierra del Fuego, from below sea level to 4800 m a.s.l., from rainforests to deserts. They have colonized terrestrial, epiphytic, lithophytic, palustrine and aquatic systems, developing perennial, annual or geophyte strategies that can be structurally arborescent, shrub, forb, cladode, epiphyte, vine or leafless with photosynthetic roots. CAM can enhance survival by conserving water, trapping carbon, reducing carbon loss and/or via photoprotection. SCOPE This review assesses the phylogenetic diversity and historical biogeography of selected lineages with CAM, i.e. ferns, gymnosperms and eumagnoliids, Orchidaceae, Bromeliaceae, Crassulaceae, Euphorbiaceae, Aizoaceae, Portulacineae (Montiaceae, Basellaceae, Halophytaceae, Didiereaceae, Talinaceae, Portulacaceae, Anacampserotaceae and Cactaceae) and aquatics. CONCLUSIONS Most extant CAM lineages diversified after the Oligocene/Miocene, as the planet dried and CO2 concentrations dropped. Radiations exploited changing ecological landscapes, including Andean emergence, Panamanian Isthmus closure, Sundaland emergence and submergence, changing climates and desertification. Evidence remains sparse for or against theories that CAM biochemistry tends to evolve before pronounced changes in anatomy and that CAM tends to be a culminating xerophytic trait. In perennial taxa, any form of CAM can occur depending upon the lineage and the habitat, although facultative CAM appears uncommon in epiphytes. CAM annuals lack strong CAM. In CAM annuals, C3 + CAM predominates, and inducible or facultative CAM is common.
Collapse
Affiliation(s)
- Joseph A M Holtum
- College of Science and Engineering, James Cook University, Townsville, QLD4811, Australia
| |
Collapse
|
12
|
Sage RF, Edwards EJ, Heyduk K, Cushman JC. Crassulacean acid metabolism (CAM) at the crossroads: a special issue to honour 50 years of CAM research by Klaus Winter. ANNALS OF BOTANY 2023; 132:553-561. [PMID: 37856823 PMCID: PMC10799977 DOI: 10.1093/aob/mcad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Affiliation(s)
- Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Karolina Heyduk
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada–Reno, Reno, NV 89557, USA
| |
Collapse
|
13
|
Chomthong M, Griffiths H. Prospects and perspectives: inferring physiological and regulatory targets for CAM from molecular and modelling approaches. ANNALS OF BOTANY 2023; 132:583-596. [PMID: 37742290 PMCID: PMC10799989 DOI: 10.1093/aob/mcad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND SCOPE This review summarizes recent advances in our understanding of Crassulacean Acid Metabolism (CAM) by integrating evolutionary, ecological, physiological, metabolic and molecular perspectives. A number of key control loops which moderate the expression of CAM phases, and their metabolic and molecular control, are explored. These include nocturnal stomatal opening, activation of phosphoenolpyruvate carboxylase by a specific protein kinase, interactions with circadian clock control, as well as daytime decarboxylation and activation of Rubisco. The vacuolar storage and release of malic acid and the interplay between the supply and demand for carbohydrate reserves are also key metabolic control points. FUTURE OPPORTUNITIES We identify open questions and opportunities, with experimentation informed by top-down molecular modelling approaches allied with bottom-up mechanistic modelling systems. For example, mining transcriptomic datasets using high-speed systems approaches will help to identify targets for future genetic manipulation experiments to define the regulation of CAM (whether circadian or metabolic control). We emphasize that inferences arising from computational approaches or advanced nuclear sequencing techniques can identify potential genes and transcription factors as regulatory targets. However, these outputs then require systematic evaluation, using genetic manipulation in key model organisms over a developmental progression, combining gene silencing and metabolic flux analysis and modelling to define functionality across the CAM day-night cycle. From an evolutionary perspective, the origins and function of CAM succulents and responses to water deficits are set against the mesophyll and hydraulic limitations imposed by cell and tissue succulence in contrasting morphological lineages. We highlight the interplay between traits across shoots (3D vein density, mesophyll conductance and cell shrinkage) and roots (xylem embolism and segmentation). Thus, molecular, biophysical and biochemical processes help to curtail water losses and exploit rapid rehydration during restorative rain events. In the face of a changing climate, we hope such approaches will stimulate opportunities for future research.
Collapse
Affiliation(s)
- Methawi Chomthong
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
14
|
Pérez-López AV, Lim SD, Cushman JC. Tissue succulence in plants: Carrying water for climate change. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154081. [PMID: 37703768 DOI: 10.1016/j.jplph.2023.154081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
Collapse
Affiliation(s)
- Arely V Pérez-López
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Gangwon-do, 26339, South Korea.
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| |
Collapse
|
15
|
Fradera-Soler M, Mravec J, Harholt J, Grace OM, Jørgensen B. Cell wall polysaccharide and glycoprotein content tracks growth-form diversity and an aridity gradient in the leaf-succulent genus Crassula. PHYSIOLOGIA PLANTARUM 2023; 175:e14007. [PMID: 37882271 DOI: 10.1111/ppl.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/22/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023]
Abstract
Cell wall traits are believed to be a key component of the succulent syndrome, an adaptive syndrome to drought, yet the variability of such traits remains largely unknown. In this study, we surveyed the leaf polysaccharide and glycoprotein composition in a wide sampling of Crassula species that occur naturally along an aridity gradient in southern Africa, and we interpreted its adaptive significance in relation to growth form and arid adaptation. To study the glycomic diversity, we sampled leaf material from 56 Crassula taxa and performed comprehensive microarray polymer profiling to obtain the relative content of cell wall polysaccharides and glycoproteins. This analysis was complemented by the determination of monosaccharide composition and immunolocalization in leaf sections using glycan-targeting antibodies. We found that compact and non-compact Crassula species occupy distinct phenotypic spaces in terms of leaf glycomics, particularly in regard to rhamnogalacturonan I, its arabinan side chains, and arabinogalactan proteins (AGPs). Moreover, these cell wall components also correlated positively with increasing aridity, which suggests that they are likely advantageous in terms of arid adaptation. These differences point to compact Crassula species having more elastic cell walls with plasticizing properties, which can be interpreted as an adaptation toward increased drought resistance. Furthermore, we report an intracellular pool of AGPs associated with oil bodies and calcium oxalate crystals, which could be a peculiarity of Crassula and could be linked to increased drought resistance. Our results indicate that glycomics may be underlying arid adaptation and drought resistance in succulent plants.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Royal Botanic Gardens, London, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Plant Science and Biodiversity Center, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | - Olwen M Grace
- Royal Botanic Gardens, London, UK
- Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
16
|
Leverett A, Hartzell S, Winter K, Garcia M, Aranda J, Virgo A, Smith A, Focht P, Rasmussen-Arda A, Willats WGT, Cowan-Turner D, Borland AM. Dissecting succulence: Crassulacean acid metabolism and hydraulic capacitance are independent adaptations in Clusia leaves. PLANT, CELL & ENVIRONMENT 2023; 46:1472-1488. [PMID: 36624682 DOI: 10.1111/pce.14539] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Succulence is found across the world as an adaptation to water-limited niches. The fleshy organs of succulent plants develop via enlarged photosynthetic chlorenchyma and/or achlorophyllous water storage hydrenchyma cells. The precise mechanism by which anatomical traits contribute to drought tolerance is unclear, as the effect of succulence is multifaceted. Large cells are believed to provide space for nocturnal storage of malic acid fixed by crassulacean acid metabolism (CAM), whilst also buffering water potentials by elevating hydraulic capacitance (CFT ). The effect of CAM and elevated CFT on growth and water conservation have not been compared, despite the assumption that these adaptations often occur together. We assessed the relationship between succulent anatomical adaptations, CAM, and CFT , across the genus Clusia. We also simulated the effects of CAM and CFT on growth and water conservation during drought using the Photo3 model. Within Clusia leaves, CAM and CFT are independent traits: CAM requires large palisade chlorenchyma cells, whereas hydrenchyma tissue governs interspecific differences in CFT . In addition, our model suggests that CAM supersedes CFT as a means to maximise CO2 assimilation and minimise transpiration during drought. Our study challenges the assumption that CAM and CFT are mutually dependent traits within succulent leaves.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Samantha Hartzell
- Department of Civil and Environmental Engineering, Portland State University, Portland, Oregon, USA
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Milton Garcia
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Jorge Aranda
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Aurelio Virgo
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Abigail Smith
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Paulina Focht
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Adam Rasmussen-Arda
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - William G T Willats
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel Cowan-Turner
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
17
|
Ievinsh G. Water Content of Plant Tissues: So Simple That Almost Forgotten? PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061238. [PMID: 36986926 PMCID: PMC10058729 DOI: 10.3390/plants12061238] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/12/2023]
Abstract
The aim of the present review was to reconsider basic information about various functional aspects related to plant water content and provide evidence that the usefulness of measuring absolute water content in plant sciences is undervalued. First, general questions about water status in plants as well as methods for determining water content and their associated problems were discussed. After a brief overview of the structural organization of water in plant tissues, attention was paid to the water content of different parts of plants. Looking at the influence of environmental factors on plant water status, the differences caused by air humidity, mineral supply, biotic effects, salinity, and specific life forms (clonal and succulent plants) were analyzed. Finally, it was concluded that the expression of absolute water content on a dry biomass basis makes easily noticeable functional sense, but the physiological meaning and ecological significance of the drastic differences in plant water content need to be further elucidated.
Collapse
Affiliation(s)
- Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
18
|
Wang Y, Wang Z, Yu X, Zhang M, Wang X, Zhou Y, Yao Q, Wu C. 3D-Printing of succulent plant-like scaffolds with beneficial cell microenvironments for bone regeneration. J Mater Chem B 2023. [PMID: 36779236 DOI: 10.1039/d2tb02056d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Biomimetic materials with complicated structures inspired by natural plants play a critical role in tissue engineering. The succulent plants, with complicated morphologies, show tenacious vitality in extreme conditions due to the physiological functions endowed by their unique anatomical structures. Herein, inspired by the macroscopic structure of succulent plants, succulent plant-like bioceramic scaffolds were fabricated via digital laser processing 3D printing of MgSiO3. Compared with conventional scaffolds with interlaced columns, the structures could prevent cells from leaking from the scaffolds and enhance cell adhesion. The scaffold morphology could be well regulated by changing leaf sizes, shapes, and interlacing methods. The succulent plant-like scaffolds show excellent properties for cell loading as well as cell distribution, promoting cellular interplay, and further enhancing the osteogenic differentiation of bone marrow stem cells. The in vivo study further illustrated that the succulent plant-like scaffolds could accelerate bone regeneration by inducing the formation of new bone tissues. The study suggests that the obtained succulent plant-like scaffold featuring the plant macroscopic structure is a promising biomaterial for regulating cell distribution, enhancing cellular interactions, and further improving bone regeneration.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China. .,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Zikang Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Xiaopeng Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Meng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Xin Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Yanling Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
| |
Collapse
|
19
|
Xu GQ, Chen TQ, Liu SS, Ma J, Li Y. Within-crown plasticity of hydraulic properties influence branch dieback patterns of two woody plants under experimental drought conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158802. [PMID: 36115397 DOI: 10.1016/j.scitotenv.2022.158802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
In recent year, widespread declines of Populus bolleana Lauche trees (P. bolleana, which dieback from the top down) and Haloxylon ammodendron shrubs (H. ammodendron, which dieback starting from their outer canopy) have occurred. To investigate how both intra-canopy hydraulic changes and plasticity in hydraulic properties create differences in vulnerability between these two species, we conducted a drought simulation field experiment. We analyzed branch hydraulic vulnerability, leaf water potential (Ψ), photosynthesis (A), stomatal conductance (gs), non-structural carbohydrate (NSCs) contents and morphological traits of the plants as the plants underwent a partial canopy dieback. Our results showed that: (1) the hydraulic architecture was very different between the two life forms; (2) H. ammodendron exhibited a drought tolerance response with weak stomatal control, and thus a sharp decline in Ψ while P. bolleana showed a drought avoidance response with tighter stomatal control that maintained a relatively stable Ψ; (3) the Ψ of H. ammodendron showed relative consistent symptoms of drought stress with increasing plant stature, but the Ψ of P. bolleana showed greater drought stress in higher portions of the crown; (4) prolonged drought caused P. bolleana to consume and H. ammodendron to accumulate NSCs in the branches of their upper canopy. Thus, the prolonged drought caused the shoots of the upper canopy of P. bolleana to experience greater vulnerability leading to dieback of the upper branches first, while all the twigs of the outer canopy of H. ammodendron experienced nearly identical degrees of vulnerability, and thus dieback occurred uniformly. Our results indicate that intra-canopy hydraulic change and their plasticity under drought was the main cause of the observed canopy dieback patterns in both species. However, more work is needed to further establish that hydraulic limitation as a function of plant stature was the sole mechanism for causing the divergent canopy dieback patterns.
Collapse
Affiliation(s)
- Gui-Qing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tu-Qiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen-Si Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Yan Li
- State Key Lab of Subtropical Siviculture, Zhejiang A&F University, 666Wusu Street, Lin-An, Hangzhou 311300, China
| |
Collapse
|
20
|
Kaur J, Mudgal G, Chand K, Singh GB, Perveen K, Bukhari NA, Debnath S, Mohan TC, Charukesi R, Singh G. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Sci Rep 2022; 12:21330. [PMID: 36494408 PMCID: PMC9734154 DOI: 10.1038/s41598-022-25225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
A peculiar bacterial growth was very often noticed in leaf-initiated tissue cultures of Sansevieria trifasciata, a succulent belonging to the Asparagaceae family. The isolate left trails of some highly viscous material on the walls of the suspension vessels or developed a thick overlay on semisolid media without adversities in plant growth. FTIR identified this substance to be an extracellular polysaccharide. Various morphological, biochemical tests, and molecular analyses using 16S rRNA, atpD, and recA genes characterized this isolate JAS1 as a novel strain of Agrobacterium pusense. Its mucoidal growth over Murashige and Skoog media yielded enormous exopolysaccharide (7252 mg l-1), while in nutrient agar it only developed fast-growing swarms. As a qualifying plant growth-promoting bacteria, it produces significant indole-3-acetic acid (86.95 mg l-1), gibberellic acid (172.98 mg l-1), ammonia (42.66 µmol ml-1). Besides, it produces siderophores, 1-aminocyclopropane-1-carboxylic acid deaminase, fixes nitrogen, forms biofilms, and productively solubilizes soil inorganic phosphates, and zinc. Under various treatments with JAS1, wheat and chickpea resulted in significantly enhanced shoot and root growth parameters. PGP effects of JAS1 positively enhanced plants' physiological growth parameters reflecting significant increments in overall chlorophyll, carotenoids, proline, phenols, flavonoids, and sugar contents. In addition, the isolated strain maintained both plant and soil health under an intermittent soil drying regime, probably by both its PGP and EPS production attributes, respectively.
Collapse
Affiliation(s)
- Jaspreet Kaur
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gaurav Mudgal
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kartar Chand
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Gajendra B. Singh
- grid.448792.40000 0004 4678 9721University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Kahkashan Perveen
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Najat A. Bukhari
- grid.56302.320000 0004 1773 5396Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11495 Saudi Arabia
| | - Sandip Debnath
- grid.440987.60000 0001 2259 7889Department of Genetics and Plant Breeding, Palli Siksha Bhavana (Institute of Agriculture), Visva-Bharati University, Sriniketan, Birbhum, West Bengal 731236 India
| | - Thotegowdanapalya C. Mohan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Rajulu Charukesi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Bannimantapa Road, Mysore, 570015 India
| | - Gaurav Singh
- Stress Signaling to the Nucleus, CNRS-Institute of Molecular Biology of Plants, 12 Rue du General-Zimmer, 67000 Strasbourg, France
| |
Collapse
|
21
|
Fradera-Soler M, Leverett A, Mravec J, Jørgensen B, Borland AM, Grace OM. Are cell wall traits a component of the succulent syndrome? FRONTIERS IN PLANT SCIENCE 2022; 13:1043429. [PMID: 36507451 PMCID: PMC9732111 DOI: 10.3389/fpls.2022.1043429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/31/2022] [Indexed: 05/11/2023]
Abstract
Succulence is an adaptation to low water availability characterised by the presence of water-storage tissues that alleviate water stress under low water availability. The succulent syndrome has evolved convergently in over 80 plant families and is associated with anatomical, physiological and biochemical traits. Despite the alleged importance of cell wall traits in drought responses, their significance in the succulent syndrome has long been overlooked. Here, by analyzing published pressure-volume curves, we show that elastic adjustment, whereby plants change cell wall elasticity, is uniquely beneficial to succulents for avoiding turgor loss. In addition, we used comprehensive microarray polymer profiling (CoMPP) to assess the biochemical composition of cell walls in leaves. Across phylogenetically diverse species, we uncover several differences in cell wall biochemistry between succulent and non-succulent leaves, pointing to the existence of a 'succulent glycome'. We also highlight the glycomic diversity among succulent plants, with some glycomic features being restricted to certain succulent lineages. In conclusion, we suggest that cell wall biomechanics and biochemistry should be considered among the characteristic traits that make up the succulent syndrome.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| | - Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Plant Science and Biodiversity Center, Nitra, Slovakia
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anne M. Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Olwen M. Grace
- Department of Accelerated Taxonomy, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
| |
Collapse
|
22
|
Delatorre-Castillo JP, Delatorre-Herrera J, Lay KS, Arenas-Charlín J, Sepúlveda-Soto I, Cardemil L, Ostria-Gallardo E. Preconditioning to Water Deficit Helps Aloe vera to Overcome Long-Term Drought during the Driest Season of Atacama Desert. PLANTS 2022; 11:plants11111523. [PMID: 35684295 PMCID: PMC9183172 DOI: 10.3390/plants11111523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Throughout evolution, plants have developed different strategies of responses and adaptations that allow them to survive in different conditions of abiotic stress. Aloe vera (L.) Burm.f. is a succulent CAM plant that can grow in warm, semi-arid, and arid regions. Here, we tested the effects of preconditioning treatments of water availability (100, 50, and 25% of soil field capacity, FC) on the response of A. vera to prolonged drought growing in the hyper-arid core of the Atacama Desert. We studied leaf biomass, biochemical traits, and photosynthetic traits to assess, at different intervals of time, the effects of the preconditioning treatments on the response of A. vera to seven months of water deprivation. As expected, prolonged drought has deleterious effects on plant growth (a decrease of 55–65% in leaf thickness) and photosynthesis (a decrease of 54–62% in Emax). There were differences in the morphophysiological responses to drought depending on the preconditioning treatment, the 50% FC pretreatment being the threshold to better withstand prolonged drought. A diurnal increase in the concentration of malic acid (20–30 mg mg−1) in the points where the dark respiration increased was observed, from which it can be inferred that A. vera switches its C3-CAM metabolism to a CAM idling mode. Strikingly, all A. vera plants stayed alive after seven months without irrigation. Possible mechanisms under an environmental context are discussed. Overall, because of a combination of morphophysiological traits, A. vera has the remarkable capacity to survive under severe and long-term drought, and further holistic research on this plant may serve to produce biotechnological solutions for crop production under the current scenario of climatic emergency.
Collapse
Affiliation(s)
- José P. Delatorre-Castillo
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - José Delatorre-Herrera
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - Kung Sang Lay
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - Jorge Arenas-Charlín
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - Isabel Sepúlveda-Soto
- Faculty of Renewable Natural Resources, Desert Agriculture Area, Universidad Arturo Prat, Iquique 1100000, Chile; (J.P.D.-C.); (J.D.-H.); (K.S.L.); (J.A.-C.); (I.S.-S.)
| | - Liliana Cardemil
- Plant Molecular Biology Center, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago de Chile 7800003, Chile;
| | - Enrique Ostria-Gallardo
- Laboratory of Plant Physiology, Center of Advanced Studies in Arid Zones (CEAZA), La Serena 1710088, Chile
- Correspondence: ; Tel.: +56-51-2204378
| |
Collapse
|
23
|
Fradera-Soler M, Grace OM, Jørgensen B, Mravec J. Elastic and collapsible: current understanding of cell walls in succulent plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2290-2307. [PMID: 35167681 PMCID: PMC9015807 DOI: 10.1093/jxb/erac054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/11/2022] [Indexed: 05/11/2023]
Abstract
Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Correspondence: or
| | | | | | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Correspondence: or
| |
Collapse
|
24
|
Rawat N, Wungrampha S, Singla-Pareek SL, Yu M, Shabala S, Pareek A. Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. MOLECULAR PLANT 2022; 15:45-64. [PMID: 34915209 DOI: 10.1016/j.molp.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Abiotic stress tolerance has been weakened during the domestication of all major staple crops. Soil salinity is a major environmental constraint that impacts over half of the world population; however, given the increasing reliance on irrigation and the lack of available freshwater, agriculture in the 21st century will increasingly become saline. Therefore, global food security is critically dependent on the ability of plant breeders to create high-yielding staple crop varieties that will incorporate salinity tolerance traits and account for future climate scenarios. Previously, we have argued that the current agricultural practices and reliance on crops that exclude salt from uptake is counterproductive and environmentally unsustainable, and thus called for a need for a major shift in a breeding paradigm to incorporate some halophytic traits that were present in wild relatives but were lost in modern crops during domestication. In this review, we provide a comprehensive physiological and molecular analysis of the key traits conferring crop halophytism, such as vacuolar Na+ sequestration, ROS desensitization, succulence, metabolic photosynthetic switch, and salt deposition in trichomes, and discuss the strategies for incorporating them into elite germplasm, to address a pressing issue of boosting plant salinity tolerance.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Silas Wungrampha
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute for Agriculture, University of Tasmania, Hobart Tas 7001, Australia.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; National Agri-Food Biotechnology Institute, Mohali 140306, India.
| |
Collapse
|
25
|
Gechev T, Lyall R, Petrov V, Bartels D. Systems biology of resurrection plants. Cell Mol Life Sci 2021; 78:6365-6394. [PMID: 34390381 PMCID: PMC8558194 DOI: 10.1007/s00018-021-03913-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022]
Abstract
Plant species that exhibit vegetative desiccation tolerance can survive extreme desiccation for months and resume normal physiological activities upon re-watering. Here we survey the recent knowledge gathered from the sequenced genomes of angiosperm and non-angiosperm desiccation-tolerant plants (resurrection plants) and highlight some distinct genes and gene families that are central to the desiccation response. Furthermore, we review the vast amount of data accumulated from analyses of transcriptomes and metabolomes of resurrection species exposed to desiccation and subsequent rehydration, which allows us to build a systems biology view on the molecular and genetic mechanisms of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria.
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., Plovdiv, 4000, Bulgaria.
| | - Rafe Lyall
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 139 Ruski Blvd., Plovdiv, 4000, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University - Plovdiv, 12, Mendeleev Str, Plovdiv, 4000, Bulgaria
| | | |
Collapse
|
26
|
Abate E, Nardini A, Petruzzellis F, Trifilò P. Too dry to survive: Leaf hydraulic failure in two Salvia species can be predicted on the basis of water content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:215-224. [PMID: 34119871 DOI: 10.1016/j.plaphy.2021.05.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Global warming is exposing plants to increased risks of drought-driven mortality. Recent advances suggest that hydraulic failure is a key process leading to plant death, and the identification of simple and reliable proxies of species-specific risk of irreversible hydraulic damage is urgently required. We assessed the predictive power of leaf water content and shrinkage for monitoring leaf hydraulic failure in two Mediterranean native species, Salvia ceratophylloides (Sc) and S. officinalis (So). The study species showed significant differences in relative water content (RWC) thresholds inducing loss of rehydration capacity, as well as leaf hydraulic conductance (KL) impairment. Sc turned out to be more resistant to drought than So. However, Sc and So showed different leaf saturated water content values, so that different RWC values actually corresponded to similar absolute leaf water content. Our findings suggest that absolute leaf water content and leaf water potential, but not RWC, are reliable parameters for predicting the risk of leaf hydraulic impairment of two Salvia species, and their potential risk of irreversible damage under severe drought. Moreover, the lack of any KL decline until the turgor loss point in Sc, coupled to consistent leaf shrinkage, rejects the hypothesis to use leaf shrinkage as a proxy to predict KL vulnerability, at least in species with high leaf capacitance. Robust linear correlations between KL decline and electrolyte leakage measurements suggested a role of membrane damage in driving leaf hydraulic collapse.
Collapse
Affiliation(s)
- Elisa Abate
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127, Trieste, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Via delle Scienze 91, 33100, Udine, Italy
| | - Patrizia Trifilò
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166, Messina, Italy.
| |
Collapse
|
27
|
Ahmed HAI, Shabala L, Shabala S. Understanding the mechanistic basis of adaptation of perennial Sarcocornia quinqueflora species to soil salinity. PHYSIOLOGIA PLANTARUM 2021; 172:1997-2010. [PMID: 33826749 DOI: 10.1111/ppl.13413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0-1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl- contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200-1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl- sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl- accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water-use efficiency.
Collapse
Affiliation(s)
- Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
28
|
Gamisch A, Winter K, Fischer GA, Comes HP. Evolution of crassulacean acid metabolism (CAM) as an escape from ecological niche conservatism in Malagasy Bulbophyllum (Orchidaceae). THE NEW PHYTOLOGIST 2021; 231:1236-1248. [PMID: 33960438 DOI: 10.1111/nph.17437] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 05/29/2023]
Abstract
Despite growing evidence that niche shifts are more common in flowering plants than previously thought, little is known of whether such shifts are promoted by changes in photosynthetic pathways. Here we combine the most complete phylogeny for epiphytic Malagasy Bulbophyllum orchids (c. 210 spp.) with climatic niche and carbon isotope ratios to infer the group's spatial-temporal history, and the role of strongly expressed crassulacean acid metabolism (CAM) in facilitating niche shifts and diversification. We find that most extant species still retain niche (Central Highland) and photosynthesis (C3 ) states as present in the single mid-Miocene (c. 12.70 million yr ago (Ma)) ancestor colonizing Madagascar. However, we also infer a major transition to CAM, linked to a late Miocene (c. 7.36 Ma) invasion of species from the sub-humid highland first into the island's humid eastern coastal, and then into the seasonally dry 'Northwest Sambirano' rainforests, yet without significant effect on diversification rates. These findings indicate that CAM in tropical epiphytes may be selectively advantageous even in high rainfall habitats, rather than presenting a mere adaptation to dry environments or epiphytism per se. Overall, our study qualifies CAM as an evolutionary 'gateway' trait that considerably widened the spatial-ecological amplitude of Madagascar's most species-rich orchid genus.
Collapse
Affiliation(s)
- Alexander Gamisch
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Apartado, Balboa, Ancón, 0843-03092, Republic of Panama
| | - Gunter A Fischer
- Kadoorie Farm and Botanic Garden Corporation, Lam Kam Road, Tai Po, NT, Hong Kong SAR, China
| | - Hans Peter Comes
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| |
Collapse
|
29
|
Abstract
Crassulacean acid metabolism (CAM) has evolved from a C3 ground state to increase water use efficiency of photosynthesis. During CAM evolution, selective pressures altered the abundance and expression patterns of C3 genes and their regulators to enable the trait. The circadian pattern of CO2 fixation and the stomatal opening pattern observed in CAM can be explained largely with a regulatory architecture already present in C3 plants. The metabolic CAM cycle relies on enzymes and transporters that exist in C3 plants and requires tight regulatory control to avoid futile cycles between carboxylation and decarboxylation. Ecological observations and modeling point to mesophyll conductance as a major factor during CAM evolution. The present state of knowledge enables suggestions for genes for a minimal CAM cycle for proof-of-concept engineering, assuming altered regulation of starch synthesis and degradation are not critical elements of CAM photosynthesis and sufficient malic acid export from the vacuole is possible.
Collapse
Affiliation(s)
- Katharina Schiller
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| | - Andrea Bräutigam
- Computational Biology, Faculty of Biology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; ,
| |
Collapse
|
30
|
Demographic analysis of an Israeli Carpobrotus population. PLoS One 2021; 16:e0250879. [PMID: 33930061 PMCID: PMC8087044 DOI: 10.1371/journal.pone.0250879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022] Open
Abstract
Carpobrotus species are harmful invaders to coastal areas throughout the world, particularly in Mediterranean habitats. Demographic models are ideally suited to identify and understand population processes and stages in the life cycle of the species that could be most effectively targeted with management. However, parameterizing these models has been limited by the difficulty in accessing the cliff-side locations where its populations are typically found, as well as accurately measuring the growth and spread of individuals, which form large, dense mats. This study uses small unmanned aerial vehicles (drones) to collect demographic data and parameterize an Integral Projection Model of an Israeli Carpobrotus population. We validated our data set with ground targets of known size. Through the analysis of asymptotic growth rates and population sensitivities and elasticities, we demonstrate that the population at the study site is demographically stable, and that reducing the survival and growth of the largest individuals would have the greatest effect on reducing overall population growth rate. Our results provide a first evaluation of the demography of Carpobrotus, a species of conservation and economic concern, and provide the first structured population model of a representative of the Aizoaceae family, thus contributing to our global knowledge on plant population dynamics. In addition, we demonstrate the advantages of using drones for collecting demographic data in understudied habitats such as coastal ecosystems.
Collapse
|
31
|
Paula Oliveira R, Zotz G, Wanek W, Franco AC. Leaf trait co‐variation and trade‐offs in gallery forest C
3
and CAM epiphytes. Biotropica 2021. [DOI: 10.1111/btp.12895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Gerhard Zotz
- Department of Biology and Environmental Sciences University of Oldenburg Oldenburg Germany
| | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science University of Vienna Vienna Austria
| | | |
Collapse
|
32
|
Tribble CM, Martínez-Gómez J, Howard CC, Males J, Sosa V, Sessa EB, Cellinese N, Specht CD. Get the shovel: morphological and evolutionary complexities of belowground organs in geophytes. AMERICAN JOURNAL OF BOTANY 2021; 108:372-387. [PMID: 33760229 DOI: 10.1002/ajb2.1623] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Herbaceous plants collectively known as geophytes, which regrow from belowground buds, are distributed around the globe and throughout the land plant tree of life. The geophytic habit is an evolutionarily and ecologically important growth form in plants, permitting novel life history strategies, enabling the occupation of more seasonal climates, mediating interactions between plants and their water and nutrient resources, and influencing macroevolutionary patterns by enabling differential diversification and adaptation. These taxa are excellent study systems for understanding how convergence on a similar growth habit (i.e., geophytism) can occur via different morphological and developmental mechanisms. Despite the importance of belowground organs for characterizing whole-plant morphological diversity, the morphology and evolution of these organs have been vastly understudied with most research focusing on only a few crop systems. Here, we clarify the terminology commonly used (and sometimes misused) to describe geophytes and their underground organs and highlight key evolutionary patterns of the belowground morphology of geophytic plants. Additionally, we advocate for increasing resources for geophyte research and implementing standardized ontological definitions of geophytic organs to improve our understanding of the factors controlling, promoting, and maintaining geophyte diversity.
Collapse
Affiliation(s)
- Carrie M Tribble
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Jesús Martínez-Gómez
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| | - Cody Coyotee Howard
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Jamie Males
- Department of Plant Science, University of Cambridge, Downing Street, Cambridge, UK
| | - Victoria Sosa
- Biología Evolutiva, Instituto de Ecologia AC, Xalapa, Veracruz, Mexico
| | - Emily B Sessa
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Nico Cellinese
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Chelsea D Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Heyduk K. The genetic control of succulent leaf development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101978. [PMID: 33454545 DOI: 10.1016/j.pbi.2020.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 05/25/2023]
Abstract
Succulent leaves have long intrigued biologists; much research has been done to define succulence, understand the evolutionary trajectory and implications of leaf succulence, and contextualize the ecological importance of water storage for plants inhabiting dry habitats, particularly those using CAM photosynthesis. Surprisingly little is understood about the molecular regulation of leaf succulence, despite advances in our understanding of the molecular foundation of leaf architecture in model systems. Moreover, leaf succulence is a drought avoidance trait, one that has yet to be fully used for crop improvement. Here, connections between disparate literatures are highlighted: research on the regulation of cell size, the determination of vascular patterning, and water transport between cells have direct implications for our understanding of leaf succulence. Connecting functional genomics of leaf patterning with knowledge of the evolution and ecology of succulent species will guide future research on the determination and maintenance of leaf succulence.
Collapse
Affiliation(s)
- Karolina Heyduk
- University of Hawai'i at Mānoa, 1800 East West Rd., Honolulu, HI 96822, USA.
| |
Collapse
|
34
|
Lim SD, Mayer JA, Yim WC, Cushman JC. Plant tissue succulence engineering improves water-use efficiency, water-deficit stress attenuation and salinity tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1049-1072. [PMID: 32338788 DOI: 10.1111/tpj.14783] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 05/25/2023]
Abstract
Tissue succulence (ratio of tissue water/leaf area or dry mass) or the ability to store water within living tissues is among the most successful adaptations to drought in the plant kingdom. This taxonomically widespread adaptation helps plants avoid the damaging effects of drought, and is often associated with the occupancy of epiphytic, epilithic, semi-arid and arid environments. Tissue succulence was engineered in Arabidopsis thaliana by overexpression of a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape involved in the cell expansion phase of berry development. VvCEB1opt -overexpressing lines displayed significant increases in cell size, succulence and decreased intercellular air space. VvCEB1opt -overexpressing lines showed increased instantaneous and integrated water-use efficiency (WUE) due to reduced stomatal conductance caused by reduced stomatal aperture and density resulting in increased attenuation of water-deficit stress. VvCEB1opt -overexpressing lines also showed increased salinity tolerance due to reduced salinity uptake and dilution of internal Na+ and Cl- as well as other ions. Alterations in transporter activities were further suggested by media and apoplastic acidification, hygromycin B tolerance and changes in relative transcript abundance patterns of various transporters with known functions in salinity tolerance. Engineered tissue succulence might provide an effective strategy for improving WUE, drought avoidance or attenuation, salinity tolerance, and for crassulacean acid metabolism biodesign.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA
| |
Collapse
|
35
|
Jura-Morawiec J, Marcinkiewicz J. Wettability, water absorption and water storage in rosette leaves of the dragon tree (Dracaena draco L.). PLANTA 2020; 252:30. [PMID: 32725269 PMCID: PMC7387376 DOI: 10.1007/s00425-020-03433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Leaf surfaces of Dracaena draco are wettable and can absorb water. The thick, basal leaf part could act as a water reservoir that changes in volume with plant hydration. Rosettes of leaves of Dracaena draco play an important role in directing fog water through leaf axils into the stem tissues, where it can be stored for further use. However, how water is intercepted and collected by the leaves remains unclear, especially since leaf blade surfaces are considered hydrophobic. Based on the observations of D. draco individuals growing in Spain and in glasshouse conditions in Poland, we hypothesised that their long leaves (~ 70 cm) are able to absorb water along the whole leaf blade, but leaf age affects this process. We used water droplet contact angle measurements, anatomical analyses of leaf cross sections along the age gradient and dye tracer experiments to test this hypothesis. The data showed that the leaf surfaces of D. draco are wettable. In general, the mature leaves of the rosette are more wettable than the young ones. Water can be absorbed both through the adaxial and abaxial surfaces. The hydrenchyma is not uniformly distributed along the leaf, it is especially abundant towards the leaf base where it forms a massive water reservoir, which changes in volume depending on plant water status. The results of these studies shed light on the role of rosettes in water absorption by D. draco, and broaden our understanding of the functioning of this vulnerable species.
Collapse
Affiliation(s)
- Joanna Jura-Morawiec
- Polish Academy of Sciences Botanical Garden-Centre for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland.
| | - Jan Marcinkiewicz
- Polish Academy of Sciences Botanical Garden-Centre for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973, Warsaw, Poland
| |
Collapse
|
36
|
da Cunha Neto IL, Pace MR, Douglas NA, Nee MH, de Sá CFC, Moore MJ, Angyalossy V. Diversity, distribution, development, and evolution of medullary bundles in Nyctaginaceae. AMERICAN JOURNAL OF BOTANY 2020; 107:707-725. [PMID: 32432350 DOI: 10.1002/ajb2.1471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/06/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Medullary bundles, i.e., vascular units in the pith, have evolved multiple times in vascular plants. However, no study has ever explored their anatomical diversity and evolution within a phylogenetic framework. Here, we investigated the development of the primary vascular system within Nyctaginaceae showing how medullary bundles diversified within the family. METHODS Development of 62 species from 25 of the 31 genera of Nyctaginaceae in stem samples was thoroughly studied with light microscopy and micro-computed tomography. Ancestral states were reconstructed using a maximum likelihood approach. RESULTS Two subtypes of eusteles were found, the regular eustele, lacking medullary bundles, observed exclusively in representatives of Leucastereae, and the polycyclic eustele, containing medullary bundles, found in all the remaining taxa. Medullary bundles had the same origin and development, but the organization was variable and independent of phyllotaxy. Within the polycyclic eustele, medullary bundles developed first, followed by the formation of a continuous concentric procambium, which forms a ring of vascular bundles enclosing the initially formed medullary bundles. The regular eustele emerged as a synapomorphy of Leucastereae, while the medullary bundles were shown to be a symplesiomorphy for Nyctaginaceae. CONCLUSIONS Medullary bundles in Nyctaginaceae developed by a single shared pathway, that involved the departure of vascular traces from lateral organs toward the pith. These medullary bundles were encircled by a continuous concentric procambium that also constituted the polycyclic eustele, which was likely a symplesiomorphy for Nyctaginaceae with one single reversion to the regular eustele.
Collapse
Affiliation(s)
- Israel L da Cunha Neto
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| | - Marcelo R Pace
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-367, Mexico City, Mexico
| | - Norman A Douglas
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Michael H Nee
- New York Botanical Garden, 2900 Southern Blvd., Bronx, NY, 10458-5126, USA
| | - Cyl Farney C de Sá
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Rio de Janeiro, RJ, Brasil
| | - Michael J Moore
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, Cidade Universitária, CEP 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
37
|
Guan Q, Tan B, Kelley TM, Tian J, Chen S. Physiological Changes in Mesembryanthemum crystallinum During the C 3 to CAM Transition Induced by Salt Stress. FRONTIERS IN PLANT SCIENCE 2020; 11:283. [PMID: 32256510 PMCID: PMC7090145 DOI: 10.3389/fpls.2020.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/25/2020] [Indexed: 05/27/2023]
Abstract
Salt stress impedes plant growth and development, and leads to yield loss. Recently, a halophyte species Mesembryanthemum crystallinum has become a model to study plant photosynthetic responses to salt stress. It has an adaptive mechanism of shifting from C3 photosynthesis to crassulacean acid metabolism (CAM) photosynthesis under stresses, which greatly enhances water usage efficiency and stress tolerance. In this study, we focused on investigating the morphological and physiological changes [e.g., leaf area, stomatal movement behavior, gas exchange, leaf succulence, and relative water content (RWC)] of M. crystallinum during the C3 to CAM photosynthetic transition under salt stress. Our results showed that in M. crystallinum seedlings, CAM photosynthesis was initiated after 6 days of salt treatment, the transition takes place within a 3-day period, and plants became mostly CAM in 2 weeks. This result defined the transition period of a facultative CAM plant, laid a foundation for future studies on identifying the molecular switches responsible for the transition from C3 to CAM, and contributed to the ultimate goal of engineering CAM characteristics into C3 crops.
Collapse
Affiliation(s)
- Qijie Guan
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Bowen Tan
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Theresa M. Kelley
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Jingkui Tian
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Zhejiang-Malaysia Joint Research Center for Traditional Medicine, Zhejiang University, Hangzhou, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Xiong D, Nadal M. Linking water relations and hydraulics with photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:800-815. [PMID: 31677190 DOI: 10.1111/tpj.14595] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 05/28/2023]
Abstract
For land plants, water is the principal governor of growth. Photosynthetic performance is highly dependent on the stable and suitable water status of leaves, which is balanced by the water transport capacity, the water loss rate as well as the water capacitance of the plant. This review discusses the links between leaf water status and photosynthesis, specifically focussing on the coordination of CO2 and water transport within leaves, and the potential role of leaf capacitance and elasticity on CO2 and water transport.
Collapse
Affiliation(s)
- Dongliang Xiong
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB) - Institute of Agro-Environmental Research and Water Economy (INAGEA), Carretera de Valldemossa, 07122, Palma, Spain
| |
Collapse
|
39
|
Singh AK, Pérez-López AV, Simpson J, Castro-Camus E. Three-dimensional water mapping of succulent Agave victoriae-reginae leaves by terahertz imaging. Sci Rep 2020; 10:1404. [PMID: 31996722 PMCID: PMC6989691 DOI: 10.1038/s41598-020-58277-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
While terahertz imaging has been used before for the determination of water content in vegetative tissue, most studies have either presented measurements of the temporal evolution of water content at a single-point of the plant or have presented two-dimensional images of leaves, demonstrating the potential of the technique, but relatively little of such information has been used to support biologically relevant conclusions. In this article we introduce terahertz time-domain spectroscopic imaging as a technique for the determination of the three-dimensional distribution of water in succulent plant tissues. We present the first three-dimensional water mapping of an agave leaf, which demonstrates an unprecedented capability to study the water retention mechanisms within succulent plants. We found that agave leaves are composed of a low-hydration outer tissue layer, defined by the outermost layer of vascular tissue that surrounds a high-hydration tissue, the carbohydrate rich hydrenchyma. The findings are supported by histological images and the correlation between the water content and carbohydrate presence is consistent with recently published findings of a remarkably large hydration shell associated with agave fructans.
Collapse
Affiliation(s)
- Abhishek K Singh
- Centro de Investigaciones en Optica A.C., Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato, 37150, Mexico
| | - Arely V Pérez-López
- Department of Plant Genetic Engineering, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - June Simpson
- Department of Plant Genetic Engineering, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte Carretera Irapuato-Leon, Apdo. Postal 629, 36821, Irapuato, Guanajuato, Mexico
| | - Enrique Castro-Camus
- Centro de Investigaciones en Optica A.C., Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato, 37150, Mexico.
| |
Collapse
|
40
|
Ahl LI, Mravec J, Jørgensen B, Rudall PJ, Rønsted N, Grace OM. Dynamics of intracellular mannan and cell wall folding in the drought responses of succulent Aloe species. PLANT, CELL & ENVIRONMENT 2019; 42:2458-2471. [PMID: 30980422 PMCID: PMC6851777 DOI: 10.1111/pce.13560] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 05/17/2023]
Abstract
Plants have evolved a multitude of adaptations to survive extreme conditions. Succulent plants have the capacity to tolerate periodically dry environments, due to their ability to retain water in a specialized tissue, termed hydrenchyma. Cell wall polysaccharides are important components of water storage in hydrenchyma cells. However, the role of the cell wall and its polysaccharide composition in relation to drought resistance of succulent plants are unknown. We investigate the drought response of leaf-succulent Aloe (Asphodelaceae) species using a combination of histological microscopy, quantification of water content, and comprehensive microarray polymer profiling. We observed a previously unreported mode of polysaccharide and cell wall structural dynamics triggered by water shortage. Microscopical analysis of the hydrenchyma cell walls revealed highly regular folding patterns indicative of predetermined cell wall mechanics in the remobilization of stored water and the possible role of homogalacturonan in this process. The in situ distribution of mannans in distinct intracellular compartments during drought, for storage, and apparent upregulation of pectins, imparting flexibility to the cell wall, facilitate elaborate cell wall folding during drought stress. We conclude that cell wall polysaccharide composition plays an important role in water storage and drought response in Aloe.
Collapse
Affiliation(s)
- Louise Isager Ahl
- Natural History Museum of Denmark, Faculty of ScienceUniversity of CopenhagenCopenhagen KDK‐1353Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Paula J. Rudall
- Department of Comparative Plant and Fungal BiologyRoyal Botanic Gardens, KewRichmondTW9 3AEUK
| | - Nina Rønsted
- Natural History Museum of Denmark, Faculty of ScienceUniversity of CopenhagenCopenhagen KDK‐1353Denmark
| | - Olwen M. Grace
- Department of Comparative Plant and Fungal BiologyRoyal Botanic Gardens, KewRichmondTW9 3AEUK
| |
Collapse
|
41
|
Kassout J, Terral JF, Hodgson JG, Ater M. Trait-based plant ecology a flawed tool in climate studies? The leaf traits of wild olive that pattern with climate are not those routinely measured. PLoS One 2019; 14:e0219908. [PMID: 31314789 PMCID: PMC6636763 DOI: 10.1371/journal.pone.0219908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 11/21/2022] Open
Abstract
Climate-related studies have generally focussed upon physiologically well-defined 'mechanistic' traits rather than 'functional' ones relating indirectly to resource capture. Nevertheless, field responses to climate are likely to typically include both 'mechanistic' specialization to climatic extremes and 'functional' strategies that optimize resource acquisition during less climatically-severe periods. Here, this hypothesis was tested. Seventeen traits (six 'functional', six 'mechanistic' and five 'intermediate') were measured from 19 populations of oleaster (wild olive) along a climatic gradient in Morocco. Principal components analysis of the trait dataset identified size and the 'worldwide leaf economics spectrum' as PCA axes 1 and 2. However, contrary to our prediction, these axes, and commonly-measured 'functional' traits, were little correlated with climate. Instead, PCA 3, perhaps relating to water-use and succulence, together stomatal density, specific leaf water content and leaf shape, patterned with altitude, aridity, rainfall and temperature. We concluded that, at least for slow-growing species, such as oleaster, 'mechanistic' traits are key to identifying mechanisms of climatic restriction. Meaningful collaboration between 'mechanistic' and 'functional' disciplines provides the best way of improving our understanding of the global impacts of climate change on species distribution and performance.
Collapse
Affiliation(s)
- Jalal Kassout
- Equipe bio-Agrodiversité, Laboratoire Botanique Appliquée, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
- Associated International Laboratory EVOLEA, INEE-CNRS- CNRST, Montpellier, France
- Institut des Sciences de l’Evolution, CNRS, IRD, EPHE, Equipe Dynamique de la Biodiversité, Anthropo-Ecologie, Université de Montpellier, Montpellier, France
| | - Jean-Frederic Terral
- Associated International Laboratory EVOLEA, INEE-CNRS- CNRST, Montpellier, France
- Institut des Sciences de l’Evolution, CNRS, IRD, EPHE, Equipe Dynamique de la Biodiversité, Anthropo-Ecologie, Université de Montpellier, Montpellier, France
| | - John G. Hodgson
- Unit of Comparative Plant Ecology, University of Sheffield, Sheffield, United Kingdom
- School of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Mohammed Ater
- Equipe bio-Agrodiversité, Laboratoire Botanique Appliquée, Faculté des Sciences, Université Abdelmalek Essaâdi, Tétouan, Morocco
- Associated International Laboratory EVOLEA, INEE-CNRS- CNRST, Montpellier, France
| |
Collapse
|
42
|
Niechayev NA, Pereira PN, Cushman JC. Understanding trait diversity associated with crassulacean acid metabolism (CAM). CURRENT OPINION IN PLANT BIOLOGY 2019; 49:74-85. [PMID: 31284077 DOI: 10.1016/j.pbi.2019.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to climates with seasonal or intermittent water limitations. CAM plants display a plastic continuum in the extent to which species engage in net nocturnal CO2 uptake that ranges from 0 to 100%. CAM plants also display diverse enzyme and organic acid and carbohydrate storage systems, which likely reflect the multiple, independent evolutionary origins of CAM. CAM is often accompanied by a diverse set of anatomical traits, such as tissue succulence and water-storage and water-capture strategies to attenuate drought. Other co-adaptive traits, such as thick cuticles, epicuticular wax, low stomatal density, high stomatal responsiveness, and shallow rectifier-like roots limit water loss under conditions of water deficit. Recommendations for future research efforts to better explore and understand the diversity of traits associated with CAM and CAM Biodesign efforts are presented.
Collapse
Affiliation(s)
- Nicholas A Niechayev
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - Paula N Pereira
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States.
| |
Collapse
|
43
|
Xi JJ, Chen HY, Bai WP, Yang RC, Yang PZ, Chen RJ, Hu TM, Wang SM. Sodium-Related Adaptations to Drought: New Insights From the Xerophyte Plant Zygophyllum xanthoxylum. FRONTIERS IN PLANT SCIENCE 2018; 9:1678. [PMID: 30515180 PMCID: PMC6255947 DOI: 10.3389/fpls.2018.01678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/29/2018] [Indexed: 05/11/2023]
Abstract
Understanding the unusual physiological mechanisms that enable drought tolerance in xerophytes will be of considerable benefit because of the potential to identify novel and key genetic elements for future crop improvements. These plants are interesting because they are well-adapted for life in arid zones; Zygophyllum xanthoxylum, for example, is a typical xerophytic shrub that inhabits central Asian deserts, accumulating substantial levels of sodium (Na+) in its succulent leaves while growing in soils that contain very low levels of this ion. The physiological importance of this unusual trait to drought adaptations remains poorly understood, however. Thus, 2-week-old Z. xanthoxylum plants were treated with 50 mM NaCl (Na) for 7 days in this study in order to investigate their drought tolerance, leaf osmotic potential (Ψs) related parameters, anatomical characteristics, and transpiration traits. The results demonstrated that NaCl treatment significantly enhanced both the survivability and durability of Z. xanthoxylum plants under extreme drought conditions. The bulk of the Na+ ions encapsulated in plants was overwhelmingly allocated to leaves rather than roots or stems under drought conditions; thus, compared to the control, significantly more Na+ compared to other solutes such as K+, Ca2+, Cl-, sugars, and proline accumulated in the leaves of NaCl-treated plants and led to a marked decrease (31%) in leaf Ψs. In addition, the accumulation of Na+ ions also resulted in mesophyll cell enlargement and leaf succulence, enabling the additional storage of water; Na+ ions also reduced the rate of water loss by decreasing stomatal density and down-regulating stomatal aperture size. The results of this study demonstrate that Z. xanthoxylum has evolved a notable ability to utilize Na+ ions to lower Ψs, swell its leaves, and decrease stomatal aperture sizes, in order to enable the additional uptake and storage of water and mitigate losses. These distinctive drought adaption characteristics mean that the xerophytic plant Z. xanthoxylum presents a fascinating case study for the potential identification of important and novel genetic elements that could improve crops. This report provides insights on the eco-physiological role of sodium accumulation in xerophytes adapted to extremely arid habitats.
Collapse
Affiliation(s)
- Jie-Jun Xi
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Hong-Yu Chen
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Wan-Peng Bai
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Rong-Chen Yang
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Pei-Zhi Yang
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Ru-Jin Chen
- Noble Research Institute, Ardmore, OK, United States
| | - Tian-Ming Hu
- College of Grassland Agriculture, Northwest A&F University, Xianyang, China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
44
|
Males J. Concerted anatomical change associated with crassulacean acid metabolism in the Bromeliaceae. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:681-695. [PMID: 32291044 DOI: 10.1071/fp17071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/05/2018] [Indexed: 06/11/2023]
Abstract
Crassulacean acid metabolism (CAM) is a celebrated example of convergent evolution in plant ecophysiology. However, many unanswered questions surround the relationships among CAM, anatomy and morphology during evolutionary transitions in photosynthetic pathway. An excellent group in which to explore these issues is the Bromeliaceae, a diverse monocot family from the Neotropics in which CAM has evolved multiple times. Progress in the resolution of phylogenetic relationships among the bromeliads is opening new and exciting opportunities to investigate how evolutionary changes in leaf structure has tracked, or perhaps preceded, photosynthetic innovation. This paper presents an analysis of variation in leaf anatomical parameters across 163C3 and CAM bromeliad species, demonstrating a clear divergence in the fundamental aspects of leaf structure in association with the photosynthetic pathway. Most strikingly, the mean volume of chlorenchyma cells of CAM species is 22 times higher than that of C3 species. In two bromeliad subfamilies (Pitcairnioideae and Tillandsioideae), independent transitions from C3 to CAM are associated with increased cell succulence, whereas evolutionary trends in tissue thickness and leaf air space content differ between CAM origins. Overall, leaf anatomy is clearly and strongly coupled with the photosynthetic pathway in the Bromeliaceae, where the independent origins of CAM have involved significant anatomical restructuring.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Cambridge, UK. Email
| |
Collapse
|
45
|
Males J, Griffiths H. Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae. PLANT, CELL & ENVIRONMENT 2018; 41:64-78. [PMID: 28346742 DOI: 10.1111/pce.12954] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/08/2017] [Accepted: 03/11/2017] [Indexed: 05/18/2023]
Abstract
Leaf economic and hydraulic theories have rarely been applied to the ecological differentiation of speciose herbaceous plant radiations. The role of character trait divergences and network reorganization in the differentiation of the functional types in the megadiverse Neotropical Bromeliaceae was explored by quantifying a range of leaf economic and hydraulic traits in 50 diverse species. Functional types, which are defined by combinations of C3 or Crassulacean acid metabolism (CAM) photosynthesis, terrestrial or epiphytic habits, and non-specialized, tank-forming or atmospheric morphologies, segregated clearly in trait space. Most classical leaf economic relationships were supported, but they were weakened by the presence of succulence. Functional types differed in trait-network architecture, suggesting that rewiring of trait-networks caused by innovations in habit and photosynthetic pathway is an important aspect of ecological differentiation. The hydraulic data supported the coupling of leaf hydraulics and gas exchange, but not the hydraulic safety versus efficiency hypothesis, and hinted at an important role for the extra-xylary compartment in the control of bromeliad leaf hydraulics. Overall, our findings highlight the fundamental importance of structure-function relationships in the generation and maintenance of ecological diversity.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
46
|
Males J, Griffiths H. Specialized stomatal humidity responses underpin ecological diversity in C3 bromeliads. PLANT, CELL & ENVIRONMENT 2017; 40:2931-2945. [PMID: 28722113 DOI: 10.1111/pce.13024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
The Neotropical Bromeliaceae display an extraordinary level of ecological variety, with species differing widely in habit, photosynthetic pathway and growth form. Divergences in stomatal structure and function, hitherto understudied in treatments of bromeliad evolutionary physiology, could have been critical to the generation of variety in ecophysiological strategies among the bromeliads. Because humidity is a key factor in bromeliad niches, we focussed on stomatal responses to vapour pressure deficit (VPD). We measured the sensitivity of stomatal conductance and assimilation rate to VPD in eight C3 bromeliad species of contrasting growth forms and ecophysiological strategies and parameterised the kinetics of stomatal responses to a step change in VPD. Notably, three tank-epiphyte species displayed low conductance, high sensitivity and fast kinetics relative to the lithophytes, while three xeromorphic terrestrial species showed high conductance and sensitivity but slow stomatal kinetics. An apparent feedforward response of transpiration to VPD occurred in the tank epiphytes, while water-use efficiency was differentially impacted by stomatal closure depending on photosynthetic responses. Differences in stomatal responses to VPD between species of different ecophysiological strategies are closely linked to modifications of stomatal morphology, which we argue has been a pivotal component of the evolution of high diversity in this important plant family.
Collapse
Affiliation(s)
- Jamie Males
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
47
|
|
48
|
Males J. Hydraulics link leaf shape and environmental niche in terrestrial bromeliads. Biotropica 2017. [DOI: 10.1111/btp.12475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jamie Males
- Department of Plant Sciences; University of Cambridge; Downing Street Cambridge CB2 3EA UK
| |
Collapse
|