1
|
Xing J, Pan J, Yang W. Chloroplast protein translocation complexes and their regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:912-925. [PMID: 40013537 DOI: 10.1111/jipb.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Chloroplasts, refined through more than a billion years of evolution in plants and algae, act as highly efficient and resilient converters of solar energy. Additionally, these organelles function as complex anabolic factories, synthesizing a wide array of primary and secondary metabolites. The functionality of chloroplasts is dependent on the involvement of more than 3,000 proteins, the majority of which are encoded by the nuclear genome. These nucleus-encoded proteins must cross the chloroplast double lipid membrane to become functional. This translocation process is facilitated by the translocons at the outer and inner envelope membranes of chloroplasts (the outer chloroplast [TOC] and the inner chloroplast [TIC] complexes, respectively) and is driven by an energy-providing motor. Despite decades of research, the composition of these complexes remains highly controversial, especially regarding the TIC and motor components. However, recent studies have provided valuable insight into the TOC/TIC complexes, while also raising new questions about their mechanisms. In this review, we explore the latest advancements in understanding the structure and function of these complexes. Additionally, we briefly examine the processes of protein quality control, retrograde signaling, and discuss promising directions for future research in this field.
Collapse
Affiliation(s)
- Jiale Xing
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junting Pan
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Yang
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Huang Y, Cao L, Chen T, Chang X, Fang Y, Wu L. Genome-wide identification of the ATP-dependent zinc metalloprotease (FtsH) in Triticeae species reveals that TaFtsH-1 regulates cadmium tolerance in Triticum aestivum. PLoS One 2024; 19:e0316486. [PMID: 39739686 DOI: 10.1371/journal.pone.0316486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members. Additionally, these proteins exhibit similar physicochemical characteristics as well as secondary and tertiary structures. The FtsH genes can be classified into eight groups, each characterized by similar structures and conserved motifs. Intraspecific and interspecific comparisons further revealed extensive gene duplications within the TaFtsH gene family, indicating a closer relationship to maize. Analysis of cis-acting elements in the promoter regions of TaFtsH genes revealed developmental and stress-responsive elements in most of the genes. Expression pattern analysis showed that TaFtsH genes are expressed in all wheat tissues, though with varying patterns. TaFtsH genes displayed differential responses to CdCl2, ZnSO4, and MnSO4 stress treatments. Gene Ontology (GO) enrichment analysis indicated that TaFtsH genes are involved in protein hydrolysis. Barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) technology confirmed the function of TaFtsH-1, indicating that silencing TaFtsH-1 enhances common wheat's resistance to cadmium (Cd) toxicity. In summary, this study offers an in-depth understanding of the FtsH gene family in wheat, establishing a solid basis for comprehending its functions, genetic mechanisms, and improving wheat's tolerance to heavy metal contamination.
Collapse
Affiliation(s)
- Yuxi Huang
- Henan Academy of Sciences, Zhengzhou, China
| | - Lifan Cao
- Henan Academy of Sciences, Zhengzhou, China
| | | | | | - Yumei Fang
- Henan Academy of Sciences, Zhengzhou, China
| | - Liuliu Wu
- College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China
| |
Collapse
|
3
|
Liang K, Jin Z, Zhan X, Li Y, Xu Q, Xie Y, Yang Y, Wang S, Wu J, Yan Z. Structural insights into the chloroplast protein import in land plants. Cell 2024; 187:5651-5664.e18. [PMID: 39197452 DOI: 10.1016/j.cell.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/16/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
Chloroplast proteins are imported via the translocon at the outer chloroplast membrane (TOC)-translocon at the inner chloroplast membrane (TIC) supercomplex, driven by an ATPase motor. The Ycf2-FtsHi complex has been identified as the chloroplast import motor. However, its assembly and cooperation with the TIC complex during preprotein translocation remain unclear. Here, we present the structures of the Ycf2-FtsHi and TIC complexes from Arabidopsis and an ultracomplex formed between them from Pisum. The Ycf2-FtsHi structure reveals a heterohexameric AAA+ ATPase motor module with characteristic features. Four previously uncharacterized components of Ycf2-FtsHi were identified, which aid in complex assembly and anchoring of the motor module at a tilted angle relative to the membrane. When considering the structures of the TIC complex and the TIC-Ycf2-FtsHi ultracomplex together, it becomes evident that the tilted motor module of Ycf2-FtsHi enables its close contact with the TIC complex, thereby facilitating efficient preprotein translocation. Our study provides valuable structural insights into the chloroplast protein import process in land plants.
Collapse
Affiliation(s)
- Ke Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zeyu Jin
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuxin Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Qikui Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanqiu Xie
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yi Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Shaojie Wang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Zhen Yan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
4
|
Mishra LS, Cook SD, Kushwah S, Isaksson H, Straub IR, Abele M, Mishra S, Ludwig C, Libby E, Funk C. Overexpression of the plastidial pseudo-protease AtFtsHi3 enhances drought tolerance while sustaining plant growth. PHYSIOLOGIA PLANTARUM 2024; 176:e14370. [PMID: 38818570 DOI: 10.1111/ppl.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
With climate change, droughts are expected to be more frequent and severe, severely impacting plant biomass and quality. Here, we show that overexpressing the Arabidopsis gene AtFtsHi3 (FtsHi3OE) enhances drought-tolerant phenotypes without compromising plant growth. AtFtsHi3 encodes a chloroplast envelope pseudo-protease; knock-down mutants (ftshi3-1) are found to be drought tolerant but exhibit stunted growth. Altered AtFtsHi3 expression therefore leads to drought tolerance, while only diminished expression of this gene leads to growth retardation. To understand the underlying mechanisms of the enhanced drought tolerance, we compared the proteomes of ftshi3-1 and pFtsHi3-FtsHi3OE (pFtsHi3-OE) to wild-type plants under well-watered and drought conditions. Drought-related processes like osmotic stress, water transport, and abscisic acid response were enriched in pFtsHi3-OE and ftshi3-1 mutants following their enhanced drought response compared to wild-type. The knock-down mutant ftshi3-1 showed an increased abundance of HSP90, HSP93, and TIC110 proteins, hinting at a potential downstream role of AtFtsHi3 in chloroplast pre-protein import. Mathematical modeling was performed to understand how variation in the transcript abundance of AtFtsHi3 can, on the one hand, lead to drought tolerance in both overexpression and knock-down lines, yet, on the other hand, affect plant growth so differently. The results led us to hypothesize that AtFtsHi3 may form complexes with at least two other protease subunits, either as homo- or heteromeric structures. Enriched amounts of AtFtsH7/9, AtFtsH11, AtFtsH12, and AtFtsHi4 in ftshi3-1 suggest a possible compensation mechanism for these proteases in the hexamer.
Collapse
Affiliation(s)
| | - Sam D Cook
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
| | - Isabella R Straub
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Miriam Abele
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Sanatkumar Mishra
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden
- IceLab, Umeå University, Umeå, Sweden
| | | |
Collapse
|
5
|
Li M, Zhu X, Yu Q, Yu A, Chen L, Kang J, Wang X, Yang T, Yang Q, Long R. FtsH proteases confer protection against salt and oxidative stress in Medicago sativa L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111915. [PMID: 37944702 DOI: 10.1016/j.plantsci.2023.111915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Plant filamentation temperature-sensitive H (FtsH) proteins are ATP-dependent zinc proteases that play an important role in regulating abiotic stress adaptions. Here we explore their potential role in abiotic stress tolerance in alfalfa, an important legume crop. Genomic analysis revealed seventeen MsFtsH genes in five clusters, which generally featured conserved domains and gene structures. Furthermore, the expression of MsFtsHs was found to be tightly associated with abiotic stresses, including osmotic, salt and oxidative stress. In addition, numerous stress responsive cis-elements, including those related to ABA, auxin, and salicylic acid, were identified in their promoter regions. Moreover, MsFtsH8 overexpression was shown to confer tolerance to salt and oxidative stress which was associated with reduced levels of reactive oxygen species, and enhanced expression and activity of antioxidant enzymes. Our results highlight MsFtsHs as key factors in abiotic stress tolerance, and show their potential usefulness for breeding alfalfa and other crops with improved yield and stress tolerance.
Collapse
Affiliation(s)
- Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiaoxi Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Qianwen Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Andong Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lin Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xue Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Tianhui Yang
- Institute of Animal Sciences, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, PR China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
6
|
Zhu X, Yu A, Zhang Y, Yu Q, Long R, Kang J, Yang Q, Guo C, Li M. Genome-wide identification and characterization of filamentation temperature-sensitive H (FtsH) genes and expression analysis in response to multiple stresses in Medicago truncatula. Mol Biol Rep 2023; 50:10097-10109. [PMID: 37910387 DOI: 10.1007/s11033-023-08851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Filamentation temperature-sensitive H (FtsH) is an AAA+ ATP-dependent protease that plays a vital role in plant environmental adaption and tolerance. However, little is known about the function of the FtsH gene family in the most important legume model plant, Medicago truncatula. METHODS AND RESULTS To identify and investigate the potential stress adaptation roles of FtsH gene family in M. truncatula, we conducted a series of genome-wide characterization and expression analyses. Totally, twenty MtFtsH genes were identified, which were unevenly distributed across eight chromosomes and classified into six evolution groups based on their phylogenetic relationships, with each group containing similar structures and motifs. Furthermore, MtFtsH genes exhibited a high degree of collinearity and homology with leguminous plants such as alfalfa and soybean. Multiple cis-elements in the upstream region of MtFtsH genes were also identified that responded to light, abiotic stress, and phytohormones. Public RNA-seq data indicated that MtFtsH genes were induced under both salt and drought stresses, and our transcript expression analysis showed that MtFtsH genes of MtFtsH1, MtFtsH2, MtFtsH4, MtFtsH9, and MtFtsH10 were up-regulated after ABA, H2O2, PEG, and NaCl treatments. These results suggest that MtFtsH genes may play a critical role in drought and high salt stress responses and the adaption processes of plants. CONCLUSIONS This study provides a systematic analysis of FtsH gene family in M. truncatula, serving as a valuable molecular theoretical basis for future functional investigations. Our findings also extend the pool of potential candidate genes for the genetic improvement of abiotic stress tolerance in legume crops.
Collapse
Affiliation(s)
- Xiaoxi Zhu
- College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Andong Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yingying Zhang
- College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China
| | - Qianwen Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Junmei Kang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Changhong Guo
- College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025, China.
| | - Mingna Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Shan Q, Zhou B, Wang Y, Hao F, Zhu L, Liu Y, Wang N, Wang F, Li X, Dong Y, Xu K, Zhou Y, Li H, Liu W, Gao H. Genome-Wide Identification and Comprehensive Analysis of the FtsH Gene Family in Soybean ( Glycine max). Int J Mol Sci 2023; 24:16996. [PMID: 38069319 PMCID: PMC10707429 DOI: 10.3390/ijms242316996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The filamentation temperature-sensitive H (FtsH) gene family is critical in regulating plant chloroplast development and photosynthesis. It plays a vital role in plant growth, development, and stress response. Although FtsH genes have been identified in a wide range of plants, there is no detailed study of the FtsH gene family in soybean (Glycine max). Here, we identified 34 GmFtsH genes, which could be categorized into eight groups, and GmFtsH genes in the same group had similar structures and conserved protein motifs. We also performed intraspecific and interspecific collinearity analysis and found that the GmFtsH family has large-scale gene duplication and is more closely related to Arabidopsis thaliana. Cis-acting elements analysis in the promoter region of the GmFtsH genes revealed that most genes contain developmental and stress response elements. Expression patterns based on transcriptome data and real-time reverse transcription quantitative PCR (qRT-PCR) showed that most of the GmFtsH genes were expressed at the highest levels in leaves. Then, GO enrichment analysis indicated that GmFtsH genes might function as a protein hydrolase. In addition, the GmFtsH13 protein was confirmed to be localized in chloroplasts by a transient expression experiment in tobacco. Taken together, the results of this study lay the foundation for the functional determination of GmFtsH genes and help researchers further understand the regulatory network in soybean leaf development.
Collapse
Affiliation(s)
- Qi Shan
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Baihui Zhou
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuanxin Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Feiyu Hao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Lin Zhu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuhan Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Nan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Fawei Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Xiaowei Li
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Yuanyuan Dong
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Keheng Xu
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Yonggang Zhou
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Haiyan Li
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| | - Weican Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (Q.S.); (B.Z.); (Y.W.); (F.H.); (L.Z.); (Y.L.); (N.W.); (F.W.); (X.L.); (Y.D.)
| | - Hongtao Gao
- Sanya Institute of Breeding and Multiplication, School of Breeding and Multiplication, Hainan University, Sanya 572025, China; (K.X.); (Y.Z.); (H.L.)
| |
Collapse
|
8
|
Chang CY, Chen LJ, Li HM. Chloroplast import motor subunits FtsHi1 and FtsHi2 are located on opposite sides of the inner envelope membrane. Proc Natl Acad Sci U S A 2023; 120:e2307747120. [PMID: 37669373 PMCID: PMC10500165 DOI: 10.1073/pnas.2307747120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Protein import into chloroplasts is powered by ATP hydrolysis in the stroma. Establishing the identity and functional mechanism of the stromal ATPase motor that drives import is critical for understanding chloroplast biogenesis. Recently, a complex consisting of Ycf2, FtsHi1, FtsHi2, FtsHi4, FtsHi5, FtsH12, and malate dehydrogenase was shown to be important for chloroplast protein import, and it has been proposed to act as the motor driving protein translocation across the chloroplast envelope into the stroma. To gain further mechanistic understanding of how the motor functions, we performed membrane association and topology analyses on two of its subunits, FtsHi1 and FtsHi2. We isolated cDNA clones encoding FtsHi1 and FtsHi2 preproteins to perform in vitro import experiments in order to determine the exact size of each mature protein. We also generated antibodies against the C-termini of the proteins, i.e., where their ATPase domains reside. Protease treatments and alkaline and high-salt extractions of chloroplasts with imported and endogenous proteins revealed that FtsHi1 is an integral membrane protein with its C-terminal portion located in the intermembrane space of the envelope, not the stroma, whereas FtsHi2 is a soluble protein in the stroma. We further complemented an FtsHi1-knockout mutant with a C-terminally tagged FtsHi1 and obtained identical results for topological analyses. Our data indicate that the model of a single membrane-anchored pulling motor at the stromal side of the inner membrane needs to be revised and suggest that the Ycf2-FtsHi complex may have additional functions.
Collapse
Affiliation(s)
- Chia-Yun Chang
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| | - Hsou-min Li
- Institute of Molecular Biology, Academia Sinica, Taipei11529, Taiwan
| |
Collapse
|
9
|
Sharma A, Sharma D, Verma SK. A systematic in silico report on iron and zinc proteome of Zea mays. FRONTIERS IN PLANT SCIENCE 2023; 14:1166720. [PMID: 37662157 PMCID: PMC10469895 DOI: 10.3389/fpls.2023.1166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
Zea mays is an essential staple food crop across the globe. Maize contains macro and micronutrients but is limited in essential mineral micronutrients such as Fe and Zn. Worldwide, serious health concerns have risen due to the deficiencies of essential nutrients in human diets, which rigorously jeopardizes economic development. In the present study, the systematic in silico approach has been used to predict Fe and Zn binding proteins from the whole proteome of maize. A total of 356 and 546 putative proteins have been predicted, which contain sequence and structural motifs for Fe and Zn ions, respectively. Furthermore, the functional annotation of these predicted proteins, based on their domains, subcellular localization, gene ontology, and literature support, showed their roles in distinct cellular and biological processes, such as metabolism, gene expression and regulation, transport, stress response, protein folding, and proteolysis. The versatile roles of these shortlisted putative Fe and Zn binding proteins of maize could be used to manipulate many facets of maize physiology. Moreover, in the future, the predicted Fe and Zn binding proteins may act as relevant, novel, and economical markers for various crop improvement programs.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Liu J, Zhang C, Jiang M, Ni Y, Xu Y, Wu W, Huang L, Newmaster SG, Kole C, Wu B, Liu C. Identification of circular RNAs of Cannabis sativa L. potentially involved in the biosynthesis of cannabinoids. PLANTA 2023; 257:72. [PMID: 36862222 DOI: 10.1007/s00425-023-04104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
We identified circRNAs in the Cannabis sativa L. genome and examined their association with 28 cannabinoids in three tissues of C. sativa. Nine circRNAs are potentially involved in the biosynthesis of six cannabinoids. Cannabis sativa L. has been widely used in the production of medicine, textiles, and food for over 2500 years. The main bioactive compounds in C. sativa are cannabinoids, which have multiple important pharmacological actions. Circular RNAs (circRNAs) play essential roles in growth and development, stress resistance, and the biosynthesis of secondary metabolites. However, the circRNAs in C. sativa remain unknown. In this study, to explore the role of circRNAs in cannabinoid biosynthesis, we performed RNA-Seq and metabolomics analysis on the leaves, roots, and stems of C. sativa. We identified 741 overlapping circRNAs by three tools, of which 717, 16, and 8 circRNAs were derived from exonic, intronic, and intergenic, respectively. Functional enrichment analysis indicated that the parental genes (PGs) of circRNAs were enriched in many processes related to biological stress responses. We found that most of the circRNAs showed tissue-specific expression and 65 circRNAs were significantly correlated with their PGs (P < 0.05, |r|≥ 0.5). We also determined 28 cannabinoids by High-performance liquid chromatography-ESI-triple quadrupole-linear ion trap mass spectrometry. Ten circRNAs, including ciR0159, ciR0212, ciR0153, ciR0149, ciR0016, ciR0044, ciR0022, ciR0381, ciR0006, and ciR0025 were found to be associated with six cannabinoids by weighted gene co-expression network analysis. Twenty-nine of 53 candidate circRNAs, including 9 cannabinoids related were validated successfully using PCR amplification and Sanger sequencing. Taken together, all these results would help to enhance our acknowledge of the regulation of circRNAs, and lay the foundation for breeding new C. sativa cultivars with high cannabinoids through manipulating circRNAs.
Collapse
Affiliation(s)
- Jingting Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Chang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Yicen Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Wuwei Wu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, People's Republic of China
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Steven G Newmaster
- Natural Health Product Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Chittaranjan Kole
- International Climate Resilient Crop Genomics Consortium and International Phytomedomics and Nutriomics Consortium, Kolkata, 700094, India
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
11
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
12
|
Zou Y, Bozhkov PV. Chlamydomonas proteases: classification, phylogeny, and molecular mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7680-7693. [PMID: 34468747 PMCID: PMC8643629 DOI: 10.1093/jxb/erab383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 05/08/2023]
Abstract
Proteases can regulate myriad biochemical pathways by digesting or processing target proteins. While up to 3% of eukaryotic genes encode proteases, only a tiny fraction of proteases are mechanistically understood. Furthermore, most of the current knowledge about proteases is derived from studies of a few model organisms, including Arabidopsis thaliana in the case of plants. Proteases in other plant model systems are largely unexplored territory, limiting our mechanistic comprehension of post-translational regulation in plants and hampering integrated understanding of how proteolysis evolved. We argue that the unicellular green alga Chlamydomonas reinhardtii has a number of technical and biological advantages for systematic studies of proteases, including reduced complexity of many protease families and ease of cell phenotyping. With this end in view, we share a genome-wide inventory of proteolytic enzymes in Chlamydomonas, compare the protease degradomes of Chlamydomonas and Arabidopsis, and consider the phylogenetic relatedness of Chlamydomonas proteases to major taxonomic groups. Finally, we summarize the current knowledge of the biochemical regulation and physiological roles of proteases in this algal model. We anticipate that our survey will promote and streamline future research on Chlamydomonas proteases, generating new insights into proteolytic mechanisms and the evolution of digestive and limited proteolysis.
Collapse
Affiliation(s)
- Yong Zou
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Peter V Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
13
|
Mishra LS, Mishra S, Caddell DF, Coleman-Derr D, Funk C. The Plastid-Localized AtFtsHi3 Pseudo-Protease of Arabidopsis thaliana Has an Impact on Plant Growth and Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2021; 12:694727. [PMID: 34249066 PMCID: PMC8261292 DOI: 10.3389/fpls.2021.694727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/28/2021] [Indexed: 05/22/2023]
Abstract
While drought severely affects plant growth and crop production, the molecular mechanisms of the drought response of plants remain unclear. In this study, we demonstrated for the first time the effect of the pseudo-protease AtFtsHi3 of Arabidopsis thaliana on overall plant growth and in drought tolerance. An AtFTSHi3 knock-down mutant [ftshi3-1(kd)] displayed a pale-green phenotype with lower photosynthetic efficiency and Darwinian fitness compared to wild type (Wt). An observed delay in seed germination of ftshi3-1(kd) was attributed to overaccumulation of abscisic acid (ABA); ftshi3-1(kd) seedlings showed partial sensitivity to exogenous ABA. Being exposed to similar severity of soil drying, ftshi3-1(kd) was drought-tolerant up to 20 days after the last irrigation, while wild type plants wilted after 12 days. Leaves of ftshi3-1(kd) contained reduced stomata size, density, and a smaller stomatic aperture. During drought stress, ftshi3-1(kd) showed lowered stomatal conductance, increased intrinsic water-use efficiency (WUEi), and slower stress acclimation. Expression levels of ABA-responsive genes were higher in leaves of ftshi3-1(kd) than Wt; DREB1A, but not DREB2A, was significantly upregulated during drought. However, although ftshi3-1(kd) displayed a drought-tolerant phenotype in aboveground tissue, the root-associated bacterial community responded to drought.
Collapse
Affiliation(s)
| | - Sanatkumar Mishra
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Daniel F. Caddell
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, United States
| | - Devin Coleman-Derr
- Plant Gene Expression Center, US Department of Agriculture-Agricultural Research Service, Albany, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
14
|
Mishra LS, Kim S, Caddell DF, Coleman‐Derr D, Funk C. Loss of Arabidopsis matrix metalloproteinase-5 affects root development and root bacterial communities during drought stress. PHYSIOLOGIA PLANTARUM 2021; 172:1045-1058. [PMID: 33616955 PMCID: PMC8247326 DOI: 10.1111/ppl.13299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/11/2020] [Accepted: 12/03/2020] [Indexed: 05/30/2023]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endo-peptidases that in mammals are known to be involved in remodeling the extracellular matrix (ECM) in developmental and pathological processes. In this study, we report At5-MMP of Arabidopsis thaliana to be important for root development and root bacterial communities. At5-MMP is mainly localized in the root vasculature and lateral root, an At5-MMP T-DNA insertion mutant (mmp5 KO) showed reduced root growth and a lower number of root apexes, causing reduced water uptake from the soil. Subsequently, mmp5 KO is sensitive to drought stress. Inhibited auxin transport was accompanied with resistance to indole-3-acetic acid (IAA), 2, 4-dichlorophenoxyacetic acid (2, 4-D), and 1-naphthaleneacetic acid (NAA). The content of endogenous abscisic acid (ABA) was lower in roots of mmp5 KO than in wild type. Genes responsive to ABA as well as genes encoding enzymes of the proline biosynthesis were expressed to a lower extent in mmp5 KO than in wild type. Moreover, drought stress modulated root-associated bacterial communities of mmp5 KO: the number of Actinobacteria increased. Therefore, At5-MMP modulates auxin/ABA signaling rendering the plant sensitive to drought stress and recruiting differential root bacterial communities.
Collapse
Affiliation(s)
| | - Sung‐Yong Kim
- Department of ChemistryUmeå UniversityUmeåSweden
- Department of Plant BreedingSwedish University of Agricultural SciencesUppsalaSweden
| | - Daniel F. Caddell
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- US Department of Agriculture‐Agricultural Research ServicePlant Gene Expression CenterAlbanyCaliforniaUSA
| | - Devin Coleman‐Derr
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- US Department of Agriculture‐Agricultural Research ServicePlant Gene Expression CenterAlbanyCaliforniaUSA
| | | |
Collapse
|
15
|
Mishra LS, Funk C. The FtsHi Enzymes of Arabidopsis thaliana: Pseudo-Proteases with an Important Function. Int J Mol Sci 2021; 22:5917. [PMID: 34072887 PMCID: PMC8197885 DOI: 10.3390/ijms22115917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 01/01/2023] Open
Abstract
FtsH metalloproteases found in eubacteria, animals, and plants are well-known for their vital role in the maintenance and proteolysis of membrane proteins. Their location is restricted to organelles of endosymbiotic origin, the chloroplasts, and mitochondria. In the model organism Arabidopsis thaliana, there are 17 membrane-bound FtsH proteases containing an AAA+ (ATPase associated with various cellular activities) and a Zn2+ metalloprotease domain. However, in five of those, the zinc-binding motif HEXXH is either mutated (FtsHi1, 2, 4, 5) or completely missing (FtsHi3), rendering these enzymes presumably inactive in proteolysis. Still, homozygous null mutants of the pseudo-proteases FtsHi1, 2, 4, 5 are embryo-lethal. Homozygous ftshi3 or a weak point mutant in FTSHi1 are affected in overall plant growth and development. This review will focus on the findings concerning the FtsHi pseudo-proteases and their involvement in protein import, leading to consequences in embryogenesis, seed growth, chloroplast, and leaf development and oxidative stress management.
Collapse
Affiliation(s)
| | - Christiane Funk
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden;
| |
Collapse
|
16
|
Mielke K, Wagner R, Mishra LS, Demir F, Perrar A, Huesgen PF, Funk C. Abundance of metalloprotease FtsH12 modulates chloroplast development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3455-3473. [PMID: 33216923 PMCID: PMC8042743 DOI: 10.1093/jxb/eraa550] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/19/2020] [Indexed: 05/11/2023]
Abstract
The ATP-dependent metalloprotease FtsH12 (filamentation temperature sensitive protein H 12) has been suggested to participate in a heteromeric motor complex, driving protein translocation into the chloroplast. FtsH12 was immuno-detected in proplastids, seedlings, leaves, and roots. Expression of Myc-tagged FtsH12 under its native promotor allowed identification of FtsHi1, 2, 4, and 5, and plastidic NAD-malate dehydrogenase, five of the six interaction partners in the suggested import motor complex. Arabidopsis thaliana mutant seedlings with reduced FTSH12 abundance exhibited pale cotyledons and small, deformed chloroplasts with altered thylakoid structure. Mature plants retained these chloroplast defects, resulting in slightly variegated leaves and lower chlorophyll content. Label-free proteomics revealed strong changes in the proteome composition of FTSH12 knock-down seedlings, reflecting impaired plastid development. The composition of the translocon on the inner chloroplast membrane (TIC) protein import complex was altered, with coordinated reduction of the FtsH12-FtsHi complex subunits and accumulation of the 1 MDa TIC complex subunits TIC56, TIC214 and TIC22-III. FTSH12 overexpressor lines showed no obvious phenotype, but still displayed distinct differences in their proteome. N-terminome analyses further demonstrated normal proteolytic maturation of plastid-imported proteins irrespective of FTSH12 abundance. Together, our data suggest that FtsH12 has highest impact during seedling development; its abundance alters the plastid import machinery and impairs chloroplast development.
Collapse
Affiliation(s)
- Kati Mielke
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Raik Wagner
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, Jülich, Germany
| | - Andreas Perrar
- Central Institute for Engineering, Electronics and Analytics, Jülich, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, Jülich, Germany
- CECAD, Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | | |
Collapse
|
17
|
Yang Q, Fu GF, Wu ZQ, Li L, Zhao JL, Li QJ. Chloroplast Genome Evolution in Four Montane Zingiberaceae Taxa in China. FRONTIERS IN PLANT SCIENCE 2021; 12:774482. [PMID: 35082807 PMCID: PMC8784687 DOI: 10.3389/fpls.2021.774482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/08/2021] [Indexed: 05/11/2023]
Abstract
Chloroplasts are critical to plant survival and adaptive evolution. The comparison of chloroplast genomes could provide insight into the adaptive evolution of closely related species. To identify potential adaptive evolution in the chloroplast genomes of four montane Zingiberaceae taxa (Cautleya, Roscoea, Rhynchanthus, and Pommereschea) that inhabit distinct habitats in the mountains of Yunnan, China, the nucleotide sequences of 13 complete chloroplast genomes, including five newly sequenced species, were characterized and compared. The five newly sequenced chloroplast genomes (162,878-163,831 bp) possessed typical quadripartite structures, which included a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted repeat regions (IRa and IRb), and even though the structure was highly conserved among the 13 taxa, one of the rps19 genes was absent in Cautleya, possibly due to expansion of the LSC region. Positive selection of rpoA and ycf2 suggests that these montane species have experienced adaptive evolution to habitats with different sunlight intensities and that adaptation related to the chloroplast genome has played an important role in the evolution of Zingiberaceae taxa.
Collapse
Affiliation(s)
- Qian Yang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Gao-Fei Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhi-Qiang Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Li Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jian-Li Zhao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
- *Correspondence: Jian-Li Zhao,
| | - Qing-Jun Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
18
|
Huber CV, Jakobs BD, Mishra LS, Niedermaier S, Stift M, Winter G, Adamska I, Funk C, Huesgen PF, Funck D. DEG10 contributes to mitochondrial proteostasis, root growth, and seed yield in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5423-5436. [PMID: 31225599 PMCID: PMC6793672 DOI: 10.1093/jxb/erz294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/11/2019] [Indexed: 05/04/2023]
Abstract
Maintaining mitochondrial proteome integrity is especially important under stress conditions to ensure a continued ATP supply for protection and adaptation responses in plants. Deg/HtrA proteases are important factors in the cellular protein quality control system, but little is known about their function in mitochondria. Here we analyzed the expression pattern and physiological function of Arabidopsis thaliana DEG10, which has homologs in all photosynthetic eukaryotes. Both expression of DEG10:GFP fusion proteins and immunoblotting after cell fractionation showed an unambiguous subcellular localization exclusively in mitochondria. DEG10 promoter:GUS fusion constructs showed that DEG10 is expressed in trichomes but also in the vascular tissue of roots and aboveground organs. DEG10 loss-of-function mutants were impaired in root elongation, especially at elevated temperature. Quantitative proteome analysis revealed concomitant changes in the abundance of mitochondrial respiratory chain components and assembly factors, which partially appeared to depend on altered mitochondrial retrograde signaling. Under field conditions, lack of DEG10 caused a decrease in seed production. Taken together, our findings demonstrate that DEG10 affects mitochondrial proteostasis, is required for optimal root development and seed set under challenging environmental conditions, and thus contributes to stress tolerance of plants.
Collapse
Affiliation(s)
- Catharina V Huber
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Barbara D Jakobs
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Laxmi S Mishra
- Department of Chemistry, Umeå University, Linnaeus väg, Umeå, Sweden
| | - Stefan Niedermaier
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Marc Stift
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Gudrun Winter
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Iwona Adamska
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Christiane Funk
- Department of Chemistry, Umeå University, Linnaeus väg, Umeå, Sweden
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Medical Faculty and University Hospital, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dietmar Funck
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| |
Collapse
|
19
|
Stael S, Van Breusegem F, Gevaert K, Nowack MK. Plant proteases and programmed cell death. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1991-1995. [PMID: 31222306 PMCID: PMC6460956 DOI: 10.1093/jxb/erz126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
20
|
Adam Z, Aviv-Sharon E, Keren-Paz A, Naveh L, Rozenberg M, Savidor A, Chen J. The Chloroplast Envelope Protease FTSH11 - Interaction With CPN60 and Identification of Potential Substrates. FRONTIERS IN PLANT SCIENCE 2019; 10:428. [PMID: 31024594 PMCID: PMC6459962 DOI: 10.3389/fpls.2019.00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
FTSH proteases are membrane-bound, ATP-dependent metalloproteases found in bacteria, mitochondria and chloroplasts. The product of one of the 12 genes encoding FTSH proteases in Arabidopsis, FTSH11, has been previously shown to be essential for acquired thermotolerance. However, the substrates of this protease, as well as the mechanism linking it to thermotolerance are largely unknown. To get insight into these, the FTSH11 knockout mutant was complemented with proteolytically active or inactive variants of this protease, tagged with HA-tag, under the control of the native promoter. Using these plants in thermotolerance assay demonstrated that the proteolytic activity, and not only the ATPase one, is essential for conferring thermotolerance. Immunoblot analyses of leaf extracts, isolated organelles and sub-fractionated chloroplast membranes localized FTSH11 mostly to chloroplast envelopes. Affinity purification followed by mass spectrometry analysis revealed interaction between FTSH11 and different components of the CPN60 chaperonin. In affinity enrichment assays, CPN60s as well as a number of envelope, stroma and thylakoid proteins were found associated with proteolytically inactive FTSH11. Comparative proteomic analysis of WT and knockout plants, grown at 20°C or exposed to 30°C for 6 h, revealed a plethora of upregulated chloroplast proteins in the knockout, some of them might be candidate substrates. Among these stood out TIC40, which was stabilized in the knockout line after recovery from heat stress, and three proteins that were found trapped in the affinity enrichment assay: the nucleotide antiporter PAPST2, the fatty acid binding protein FAP1 and the chaperone HSP70. The consistent behavior of these four proteins in different assays suggest that they are potential FTSH11 substrates.
Collapse
Affiliation(s)
- Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- *Correspondence: Zach Adam,
| | - Elinor Aviv-Sharon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alona Keren-Paz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Leah Naveh
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mor Rozenberg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, USDA-ARS, Lubbock, TX, United States
| |
Collapse
|