1
|
Charrier G, Améglio T. Dynamic modeling of stem water content during the dormant period in walnut trees. TREE PHYSIOLOGY 2024; 44:tpad128. [PMID: 37847599 DOI: 10.1093/treephys/tpad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Water content (WC) is a key variable in plant physiology even during the winter period. To simulate stem WC during the dormant season, a series of experiments were carried out on walnut trees under controlled conditions. In the field, WC was significantly correlated with soil temperature at 50 cm depth (R2 = 0.526). In the greenhouse, WC remained low as long as soil temperature was kept cold (<+5 °C) and increased after the soil temperature was warmed to +15 °C regardless of the date. Stem dehydration rate was significantly influenced by the WC and evaporative demand. A parsimonious model with functions describing the main experimental results was calibrated and validated with field data from 13 independent winter dynamics in Juglans regia L. orchards. Three functions of water uptake were tested, and these gave equivalent accuracies (root-mean-square error (RMSE) = 0.127-8; predictive root-mean-square error = 0.116). However, only a sigmoid function describing the relationship between the root water uptake and soil temperature gave values in agreement with the experimental results. Finally, the simulated WC provided a similar accuracy in predicting frost hardiness compared with the measured WC (RMSE ca 3 °C) and was excellent in spring (RMSE ca 2 °C). This model may be a relevant tool for predicting the risk of spring frost in walnut trees. Its genericity should be tested in other fruit and forest tree species.
Collapse
Affiliation(s)
- Guillaume Charrier
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| | - Thierry Améglio
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand F-63000, France
| |
Collapse
|
2
|
Fouché M, Bonnet H, Bonnet DMV, Wenden B. Transport capacity is uncoupled with endodormancy breaking in sweet cherry buds: physiological and molecular insights. FRONTIERS IN PLANT SCIENCE 2023; 14:1240642. [PMID: 38752012 PMCID: PMC11094712 DOI: 10.3389/fpls.2023.1240642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/25/2023] [Indexed: 05/18/2024]
Abstract
Introduction To avoid the negative impacts of winter unfavorable conditions for plant development, temperate trees enter a rest period called dormancy. Winter dormancy is a complex process that involves multiple signaling pathways and previous studies have suggested that transport capacity between cells and between the buds and the twig may regulate the progression throughout dormancy stages. However, the dynamics and molecular actors involved in this regulation are still poorly described in fruit trees. Methods Here, in order to validate the hypothesis that transport capacity regulates dormancy progression in fruit trees, we combined physiological, imaging and transcriptomic approaches to characterize molecular pathways and transport capacity during dormancy in sweet cherry (Prunus avium L.) flower buds. Results Our results show that transport capacity is reduced during dormancy and could be regulated by environmental signals. Moreover, we demonstrate that dormancy release is not synchronized with the transport capacity resumption but occurs when the bud is capable of growth under the influence of warmer temperatures. We highlight key genes involved in transport capacity during dormancy. Discussion Based on long-term observations conducted during six winter seasons, we propose hypotheses on the environmental and molecular regulation of transport capacity, in relation to dormancy and growth resumption in sweet cherry.
Collapse
Affiliation(s)
- Mathieu Fouché
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie 1332, Villenave d’Ornon, France
| | | | | | - Bénédicte Wenden
- INRAE, Univ. Bordeaux, UMR Biologie du Fruit et Pathologie 1332, Villenave d’Ornon, France
| |
Collapse
|
3
|
Velappan Y, Considine JA, Signorelli S, Considine MJ. Contrasting seasonal dynamics of dormancy, respiratory metabolism and cell cycle state in grapevine buds of a subtropical and Mediterranean climate. Food Energy Secur 2022. [DOI: 10.1002/fes3.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yazhini Velappan
- The UWA Institute of Agriculture, The University of Western Australia Perth WA Australia
- The Centre of Excellence in Plant Energy Biology The University of Western Australia Perth WA Australia
| | - John A. Considine
- The UWA Institute of Agriculture, The University of Western Australia Perth WA Australia
| | - Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía Universidad de la República Montevideo Uruguay
| | - Michael J. Considine
- The UWA Institute of Agriculture, The University of Western Australia Perth WA Australia
- The UWA School of Agriculture and Environment, The University of Western Australia Perth WA Australia
- Department of Primary Industries and Regional Development South Perth WA Australia
| |
Collapse
|
4
|
De Rosa V, Falchi R, Moret E, Vizzotto G. Insight into Carbohydrate Metabolism and Signaling in Grapevine Buds during Dormancy Progression. PLANTS (BASEL, SWITZERLAND) 2022; 11:1027. [PMID: 35448755 PMCID: PMC9028844 DOI: 10.3390/plants11081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Perennial fruit crops enter dormancy to ensure bud tissue survival during winter. However, a faster phenological advancement caused by global warming exposes bud tissue to a higher risk of spring frost damage. Tissue dehydration and soluble sugars accumulation are connected to freezing tolerance, but non-structural carbohydrates also act as metabolic substrates and signaling molecules. A deepened understanding of sugar metabolism in the context of winter freezing resistance is required to gain insight into adaptive possibilities to cope with climate changes. In this study, the soluble sugar content was measured in a cold-tolerant grapevine hybrid throughout the winter season. Moreover, the expression of drought-responsive hexose transporters VvHT1 and VvHT5, raffinose synthase VvRS and grapevine ABA-, Stress- and Ripening protein VvMSA was analyzed. The general increase in sugars in December and January suggests that they can participate in protecting bud tissues against low temperatures. The modulation of VvHT5, VvINV and VvRS appeared consistent with the availability of the different sugar species; challenging results were obtained for VvHT1 and VvMSA, suggesting interesting hypotheses about their role in the sugar-hormone crosstalk. The multifaceted role of sugars on the intricate phenomenon, which is the response of dormant buds to changing temperature, is discussed.
Collapse
|
5
|
Velappan Y, Chabikwa TG, Considine JA, Agudelo-Romero P, Foyer CH, Signorelli S, Considine MJ. The bud dormancy disconnect: latent buds of grapevine are dormant during summer despite a high metabolic rate. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2061-2076. [PMID: 35022731 PMCID: PMC8982382 DOI: 10.1093/jxb/erac001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/10/2022] [Indexed: 05/19/2023]
Abstract
Grapevine (Vitis vinifera L.) displays wide plasticity to climate; however, the physiology of dormancy along a seasonal continuum is poorly understood. Here we investigated the apparent disconnect between dormancy and the underlying respiratory physiology and transcriptome of grapevine buds, from bud set in summer to bud burst in spring. The establishment of dormancy in summer was pronounced and reproducible; however, this was coupled with little or no change in physiology, indicated by respiration, hydration, and tissue oxygen tension. The release of dormancy was biphasic; the depth of dormancy declined substantially by mid-autumn, while the subsequent decline towards spring was moderate. Observed changes in physiology failed to explain the first phase of dormancy decline, in particular. Transcriptome data contrasting development from summer through to spring also indicated that dormancy was poorly reflected by metabolic quiescence during summer and autumn. Gene Ontology and enrichment data revealed the prevailing influence of abscisic acid (ABA)-related gene expression during the transition from summer to autumn, and promoter motif analysis suggested that photoperiod may play an important role in regulating ABA functions during the establishment of dormancy. Transcriptomic data from later transitions reinforced the importance of oxidation and hypoxia as physiological cues to regulate the maintenance of quiescence and resumption of growth. Collectively these data reveal a novel disconnect between growth and metabolic quiescence in grapevine following bud set, which requires further experimentation to explain the phenology and dormancy relationships.
Collapse
Affiliation(s)
- Yazhini Velappan
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Tinashe G Chabikwa
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD 4006, Australia
| | - John A Considine
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Patricia Agudelo-Romero
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Present address: Telethon Kids Institute, Perth Children’s Hospital, 15 Hospital Ave, Nedlands WA 6009, Australia
| | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Santiago Signorelli
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- Departamento de Biología Vegetal, Universidad de la República, Montevideo, 12900, Uruguay
| | - Michael J Considine
- ARC Centre of Excellence in Plant Energy Biology, and the School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia
- Correspondence:
| |
Collapse
|
6
|
Noronha H, Garcia V, Silva A, Delrot S, Gallusci P, Gerós H. Molecular reprogramming in grapevine woody tissues at bud burst. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:110984. [PMID: 34482904 DOI: 10.1016/j.plantsci.2021.110984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Perennial woody plants undergo a period of dormancy from the beginning of autumn until the end of spring. Whereas the molecular and physiological events that characterize dormancy release of buds have been described in detail, those occurring in woody tissues underneath the buds are mostly unknown. To bridge this gap, the mRNA populations of cane segments located underneath the bud were analyzed at bud dormancy (E-L 1) and at bud burst (E-L 4). They revealed an important reprogramming of gene expression suggesting that cell division, cell wall metabolism and the mobilization of sugars are the main metabolic and cellular events occurring in cane woody tissues at bud burst. Also, the upregulation of several genes of sugar metabolism, encoding starch- and sucrose-degrading enzymes and sugar transporters, correlates with the decrease in starch and soluble sugars in woody tissues concomitant with increased sucrose synthase and α-amylolytic biochemical activities. The latter is likely due to the VviAMY2 gene that encodes a functional α-amylase as observed after its heterologous expression in yeast. Taken together, these results are consistent with starch and sugar mobilization in canes being primarily involved in grapevine secondary growth initiation and supporting the growth of the emerging bud.
Collapse
Affiliation(s)
- Henrique Noronha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Virginie Garcia
- UMR EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, Villenave d'Ornon, 33882, France
| | - Angélica Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Serge Delrot
- UMR EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, Villenave d'Ornon, 33882, France
| | - Philippe Gallusci
- UMR EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, Villenave d'Ornon, 33882, France.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Centre of Biological Engineering (CEB), Department of Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
7
|
Iqbal Z, Sarkhosh A, Balal RM, Gómez C, Zubair M, Ilyas N, Khan N, Shahid MA. Silicon Alleviate Hypoxia Stress by Improving Enzymatic and Non-enzymatic Antioxidants and Regulating Nutrient Uptake in Muscadine Grape ( Muscadinia rotundifolia Michx.). FRONTIERS IN PLANT SCIENCE 2021; 11:618873. [PMID: 33643333 PMCID: PMC7902783 DOI: 10.3389/fpls.2020.618873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/23/2020] [Indexed: 05/26/2023]
Abstract
Flooding induces low oxygen (hypoxia) stress to plants, and this scenario is mounting due to hurricanes followed by heavy rains, especially in subtropical regions. Hypoxia stress results in the reduction of green pigments, gas exchange (stomatal conductance and internal CO2 concentration), and photosynthetic activity in the plant leaves. In addition, hypoxia stress causes oxidative damage by accelerating lipid peroxidation due to the hyperproduction of reactive oxygen species (ROS) in leaf and root tissues. Furthermore, osmolyte accumulation and antioxidant activity increase, whereas micronutrient uptake decreases under hypoxia stress. Plant physiology and development get severely compromised by hypoxia stress. This investigation was, therefore, aimed at appraising the effects of regular silicon (Si) and Si nanoparticles (SiNPs) to mitigate hypoxia stress in muscadine (Muscadinia rotundifolia Michx.) plants. Our results demonstrated that hypoxia stress reduced muscadine plants' growth by limiting the production of root and shoot dry biomass, whereas the root zone application of both Si and SiNP effectively mitigated oxidative and osmotic cell damage. Compared to Si, SiNP yielded better efficiency by improving the activity of enzymatic antioxidants [including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)], non-enzymatic antioxidants [ascorbic acid (AsA) and glutathione contents], and accumulation of organic osmolytes [proline and glycinebetaine (GB)]. SiNP also regulated the nutrient profile of the plants by increasing N, P, K, and Zn contents while limiting Mn and Fe concentration to a less toxic level. A negative correlation between antioxidant activities and lipid peroxidation rates was observed in SiNP-treated plants under hypoxia stress. Conclusively, SiNP-treated plants combat hypoxia more efficiently stress than conventional Si by boosting antioxidant activities, osmoprotectant accumulation, and micronutrient regulation.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Ali Sarkhosh
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rashad Mukhtar Balal
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Celina Gómez
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
| | - Muhammad Zubair
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Noshin Ilyas
- Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Naeem Khan
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Muhammad Adnan Shahid
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
8
|
Pareek A, Dhankher OP, Foyer CH. Mitigating the impact of climate change on plant productivity and ecosystem sustainability. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:451-456. [PMID: 31909813 PMCID: PMC6945998 DOI: 10.1093/jxb/erz518] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|