1
|
Marcuzzi O, Cecco PÁ, Olivera LH, Pereira Rico JA, Calcaterra F, Vega AL, Peral-García P, Fernández ME, Muñoz AR, Giovambattista G. Divergent adaptation to highland and tropical environments in Bolivian Creole cattle. Gene 2025; 949:149354. [PMID: 40015466 DOI: 10.1016/j.gene.2025.149354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/29/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Bolivian Creole cattle populations evolved under low levels of breeding management and, during more than 500 years of natural selection, became adapted to various environments such as the contrasting highland and subtropical environments. Recently, highland Creole cattle were crossbred with Holstein to improve dairy production. The aim of this research was to evaluate the divergent adaptation through selection footprints of Bolivian Creole cattle from Andean highland and tropical lowlands, and to evaluate the effect of Holstein introgression in highland Creole. For this purpose, 130 Creole cattle (75 highland, 55 lowland) and 88 Holstein were genotyped using a microarray. The database was used to determine population structure and admixture and detect selection sweeps using FST, Rsb, XP-EHH, and ROH. Ancestry inference suggested that selection peaks were not due to Holstein introgression. The NCBI database was used to retrieve genes from the common regions and then perform gene ontology analysis. The most prominent selection peaks were on BTA20 and BTA23 and included the PRLR (slick phenotype) and Class I and IIa BoLA genes. Other windows contained candidate genes for hypoxia (ANXA2, NDUFA4L2), angiogenesis and haematological parameters (ANXA2, CPLANE1, NRP1, NRP2), immune response (IL7R, IL6ST, IL31RA, C6, C7, STAT6, NKG2A, IRAK4, KLR, CLEC), oxidative stress (GSTA, HSD17B6) and morphological traits (PLAG1, CHCHD7, CAP2, ARL15). GO analysis revealed enrichment terms and pathways related to immune response, glutathione and retinol metabolism and reported QTLs for coat characteristics, immune response and tick resistance. The results suggest the complex mechanism in the adaptation of Bolivian Creole cattle to the contrasting highland and subtropical environments.
Collapse
Affiliation(s)
- Olivia Marcuzzi
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - Paulo Álvarez Cecco
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - Leónidas H Olivera
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - Juan A Pereira Rico
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Francisco Calcaterra
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - Ariel Loza Vega
- Facultad de Ciencias Veterinarias, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Pilar Peral-García
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | - María E Fernández
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina
| | | | - Guillermo Giovambattista
- Instituto de Genética Veterinaria (IGEVET, CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, 60 Y 118 S/N, 1900 La Plata, Argentina.
| |
Collapse
|
2
|
Lyu Y, Wang F, Cheng H, Han J, Dang R, Xia X, Wang H, Zhong J, Lenstra JA, Zhang H, Han J, MacHugh DE, Medugorac I, Upadhyay M, Leonard AS, Ding H, Yang X, Wang MS, Quji S, Zhuzha B, Quzhen P, Wangmu S, Cangjue N, Wa D, Ma W, Liu J, Zhang J, Huang B, Qi X, Li F, Huang Y, Ma Y, Wang Y, Gao Y, Lu W, Lei C, Chen N. Recent selection and introgression facilitated high-altitude adaptation in cattle. Sci Bull (Beijing) 2024; 69:3415-3424. [PMID: 38945748 DOI: 10.1016/j.scib.2024.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024]
Abstract
During the past 3000 years, cattle on the Qinghai-Xizang Plateau have developed adaptive phenotypes under the selective pressure of hypoxia, ultraviolet (UV) radiation, and extreme cold. The genetic mechanism underlying this rapid adaptation is not yet well understood. Here, we present whole-genome resequencing data for 258 cattle from 32 cattle breeds/populations, including 89 Tibetan cattle representing eight populations distributed at altitudes ranging from 3400 m to 4300 m. Our genomic analysis revealed that Tibetan cattle exhibited a continuous phylogeographic cline from the East Asian taurine to the South Asian indicine ancestries. We found that recently selected genes in Tibetan cattle were related to body size (HMGA2 and NCAPG) and energy expenditure (DUOXA2). We identified signals of sympatric introgression from yak into Tibetan cattle at different altitudes, covering 0.64%-3.26% of their genomes, which included introgressed genes responsible for hypoxia response (EGLN1), cold adaptation (LRP11), DNA damage repair (LATS1), and UV radiation resistance (GNPAT). We observed that introgressed yak alleles were associated with noncoding variants, including those in present EGLN1. In Tibetan cattle, three yak introgressed SNPs in the EGLN1 promoter region reduced the expression of EGLN1, suggesting that these genomic variants enhance hypoxia tolerance. Taken together, our results indicated complex adaptation processes in Tibetan cattle, where recently selected genes and introgressed yak alleles jointly facilitated rapid adaptation to high-altitude environments.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan 250000, China
| | - Jing Han
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610000, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu 610000, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China
| | - Jianlin Han
- Yazhouwan National Laboratory, Sanya 572024, China; CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing 100000, China
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin D04 V1W8, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin D04 V1W8, Ireland
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Martinsried 82152, Germany
| | - Alexander S Leonard
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, Zurich 8006, Switzerland
| | - He Ding
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Suolang Quji
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Basang Zhuzha
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Pubu Quzhen
- Shigatse City Kangma County Shaogang Township Agriculture and Animal Husbandry Comprehensive Service Center, Shigatse 857000, China
| | - Silang Wangmu
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Nima Cangjue
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Da Wa
- Institute of Animal Husbandry and Veterinary Science, Xizang Autonomous Region Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, China
| | - Weidong Ma
- Shaanxi Province Agriculture & Husbandry Breeding Farm, Fufeng 722203, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming 650500, China
| | - Xingshan Qi
- Animal Husbandry Bureau in Biyang County, Biyang 463700, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd., Lianyuan 417126, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan 750000, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China.
| | - Wenfa Lu
- Key Laboratory of Animal Production, Product Quality, and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Yazhouwan National Laboratory, Sanya 572024, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Seshadri L, Atickem A, Zinner D, Roos C, Zhang L. Whole Genome Analysis Reveals Evolutionary History and Introgression Events in Bale Monkeys. Genes (Basel) 2024; 15:1359. [PMID: 39596559 PMCID: PMC11593718 DOI: 10.3390/genes15111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objective: The Bale monkey (Chlorocebus djamdjamensis) is a threatened primate species endemic to Ethiopia and, in contrast to other members of the genus Chlorocebus, lives at high altitudes and feeds mainly on bamboo. Two populations of the species are present, one in continuous bamboo forest (CF) in the eastern part of the species' range, and the other in fragmented forest (FF) in the western part. Based on mitochondrial DNA and phenotypic characteristics, previous studies have suggested introgression by parapatric congeners into the FF population but not into the CF population. The objective of this study was to gain insights into the evolutionary history of Bale monkeys and their potential genetic adaptations to high altitudes and for bamboo consumption. Methods: We sequenced the whole genomes of individuals from both populations and compared their genomes with those of the other five Chlorocebus species. We applied phylogenetic methods and conducted population demographic simulations to elucidate their evolutionary history. A genome-wide analysis was conducted to assess gene flow and identify mutations potentially associated with adaptations to high altitudes and for bamboo metabolism. Results: Our analyses revealed Bale monkeys as the sister clade to Chlorocebus aethiops and showed that gene flow occurred between C. aethiops and FF but not between C. aethiops and CF. In addition, we detected non-synonymous mutations in genes potentially associated with the adaptation to high altitudes (EPAS1) in both populations and with the adaptation for bamboo metabolism (TAS2R16, MPST, and TST) mainly in the CF population. Conclusions: Our study provides insights into the evolutionary history of a threatened primate species and reveals the genetic basis for its adaptions to unique environments and for diet specialization.
Collapse
Affiliation(s)
- Lakshmi Seshadri
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- International Max Planck Research School for Genome Science (IMPRS-GS), Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Anagaw Atickem
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa 999047, Ethiopia;
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Liye Zhang
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
| |
Collapse
|
4
|
Yang R, Han Z, Zhou W, Li X, Zhang X, Zhu L, Wang J, Li X, Zhang CL, Han Y, Li L, Liu S. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip. PeerJ 2024; 12:e17980. [PMID: 39308831 PMCID: PMC11416764 DOI: 10.7717/peerj.17980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/06/2024] [Indexed: 09/25/2024] Open
Abstract
Objective By assessing the genetic diversity and associated selective traits of Kirghiz sheep (KIR), we aim to uncover the mechanisms that contribute to sheep's adaptability to the Pamir Plateau environment. Methods This study utilized Illumina Ovine SNP50 BeadChip data from KIR residing in the Pamir Plateau, Qira Black sheep (QBS) inhabiting the Taklamakan Desert, and commonly introduced breeds including Dorper sheep (DOR), Suffolk sheep (SUF), and Hu sheep (HU). The data was analyzed using principal component analysis, phylogenetic analysis, population admixture analysis, kinship matrix analysis, linkage disequilibrium analysis, and selective signature analysis. We employed four methods for selective signature analysis: fixation index (Fst), cross-population extended homozygosity (XP-EHH), integrated haplotype score (iHS), and nucleotide diversity (Pi). These methods aim to uncover the genetic mechanisms underlying the germplasm resources of Kirghiz sheep, enhance their production traits, and explore their adaptation to challenging environmental conditions. Results The test results unveiled potential selective signals associated with adaptive traits and growth characteristics in sheep under harsh environmental conditions, and annotated the corresponding genes accordingly. These genes encompass various functionalities such as adaptations associated with plateau, cold, and arid environment (ETAA1, UBE3D, TLE4, NXPH1, MAT2B, PPARGC1A, VEGFA, TBX15 and PLXNA4), wool traits (LMO3, TRPS1, EPHA5), body size traits (PLXNA2, EFNA5), reproductive traits (PPP3CA, PDHA2, NTRK2), and immunity (GATA3). Conclusion Our study identified candidate genes associated with the production traits and adaptation to the harsh environment of the Pamir Plateau in Kirghiz sheep. These findings provide valuable resources for local sheep breeding programs. The objective of this study is to offer valuable insights for the sustainable development of the Kirghiz sheep industry.
Collapse
Affiliation(s)
- Ruizhi Yang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Xuejiao Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xuechen Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
| | - Jieru Wang
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Cheng-long Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| | - Lianrui Li
- College of Life Science and Technology, Tarim University, Alar, Xinjiang, China
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Key Laboratory of Tarim Animal Husbandry Science and Technology, Alar, Xinjiang, China
- Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Alar, Xinjiang, China
| |
Collapse
|
5
|
Wang L, Liu WQ, Du J, Li M, Wu RF, Li M. Comparative DNA methylation reveals epigenetic adaptation to high altitude in snub-nosed monkeys. Zool Res 2024; 45:1013-1026. [PMID: 39147716 PMCID: PMC11491775 DOI: 10.24272/j.issn.2095-8137.2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/25/2024] [Indexed: 08/17/2024] Open
Abstract
DNA methylation plays a crucial role in environmental adaptations. Here, using whole-genome bisulfite sequencing, we generated comprehensive genome-wide DNA methylation profiles for the high-altitude Yunnan snub-nosed monkey ( Rhinopithecus bieti) and the closely related golden snub-nosed monkey ( R. roxellana). Our findings indicated a slight increase in overall DNA methylation levels in golden snub-nosed monkeys compared to Yunnan snub-nosed monkeys, suggesting a higher prevalence of hypermethylated genomic regions in the former. Comparative genomic methylation analysis demonstrated that genes associated with differentially methylated regions were involved in membrane fusion, vesicular formation and trafficking, hemoglobin function, cell cycle regulation, and neuronal differentiation. These results suggest that the high-altitude-related epigenetic modifications are extensive, involving a complete adaptation process from the inhibition of single Ca 2+ channel proteins to multiple proteins collaboratively enhancing vesicular function or inhibiting cell differentiation and proliferation. Functional assays demonstrated that overexpression or down-regulation of candidate genes, such as SNX10, TIMELESS, and CACYBP, influenced cell viability under stress conditions. Overall, this research suggests that comparing DNA methylation across closely related species can identify novel candidate genomic regions and genes associated with local adaptations, thereby deepening our understanding of the mechanisms underlying environmental adaptations.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qiang Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Feng Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
6
|
Babin CH, Leiva FP, Verberk WCEP, Rees BB. Evolution of Key Oxygen-Sensing Genes Is Associated with Hypoxia Tolerance in Fishes. Genome Biol Evol 2024; 16:evae183. [PMID: 39165136 PMCID: PMC11370800 DOI: 10.1093/gbe/evae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Low dissolved oxygen (hypoxia) is recognized as a major threat to aquatic ecosystems worldwide. Because oxygen is paramount for the energy metabolism of animals, understanding the functional and genetic drivers of whole-animal hypoxia tolerance is critical to predicting the impacts of aquatic hypoxia. In this study, we investigate the molecular evolution of key genes involved in the detection of and response to hypoxia in ray-finned fishes: the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) oxygen-sensing system, also known as the EGLN (egg-laying nine)-HIF oxygen-sensing system. We searched fish genomes for HIFA and EGLN genes, discovered new paralogs from both gene families, and analyzed protein-coding sites under positive selection. The physicochemical properties of these positively selected amino acid sites were summarized using linear discriminants for each gene. We employed phylogenetic generalized least squares to assess the relationship between these linear discriminants for each HIFA and EGLN and hypoxia tolerance as reflected by the critical oxygen tension (Pcrit) of the corresponding species. Our results demonstrate that Pcrit in ray-finned fishes correlates with the physicochemical variation of positively selected sites in specific HIFA and EGLN genes. For HIF2A, two linear discriminants captured more than 90% of the physicochemical variation of these sites and explained between 20% and 39% of the variation in Pcrit. Thus, variation in HIF2A among fishes may contribute to their capacity to cope with aquatic hypoxia, similar to its proposed role in conferring tolerance to high-altitude hypoxia in certain lineages of terrestrial vertebrates.
Collapse
Affiliation(s)
- Courtney H Babin
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Félix P Leiva
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Wilco C E P Verberk
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Bernard B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
7
|
Kang Y, Wang Z, An K, Hou Q, Zhang Z, Su J. Introgression drives adaptation to the plateau environment in a subterranean rodent. BMC Biol 2024; 22:187. [PMID: 39218870 PMCID: PMC11368017 DOI: 10.1186/s12915-024-01986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Introgression has repeatedly been shown to play an important role in the adaptation of species to extreme environments, yet how introgression enables rodents with specialized subterranean lifestyle to acclimatize to high altitudes is still unclear. Myospalacinae is a group of subterranean rodents, among which the high-altitude plateau zokors (Eospalax baileyi) and the low-altitude Gansu zokors (E. cansus) are sympatrically distributed in the grassland ecosystems of the Qinghai-Tibet Plateau (QTP). Together, they provide a model for the study of the role of introgression in the adaptation of low-altitude subterranean rodents to high altitudes. RESULTS Applying low-coverage whole-genome resequencing and population genetics analyses, we identified evidence of adaptive introgression from plateau zokors into Gansu zokors, which likely facilitated the adaptation of the latter to the high-altitude environment of the QTP. We identified positively selected genes with functions related to energy metabolism, cardiovascular system development, calcium ion transport, and response to hypoxia which likely made critical contributions to adaptation to the plateau environment in both plateau zokors and high-altitude populations of Gansu zokors. CONCLUSIONS Introgression of genes associated with hypoxia adaptation from plateau zokors may have played a role in the adaptation of Gansu zokors to the plateau environment. Our study provides new insights into the understanding of adaptive evolution of species on the QTP and the importance of introgression in the adaptation of species to high-altitude environments.
Collapse
Affiliation(s)
- Yukun Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Kang An
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiqi Hou
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhiming Zhang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei, 733200, China.
| |
Collapse
|
8
|
Li X, Zhu L, Zhang CL, Wang X, Li Y, Zhou W, Han Z, Yang R, Peng Y, Han Y, Zhang L, Zheng L, Liu S. Genetic structure and selective sweeps in Kirghiz sheep using SNP50K bead chip. Front Genet 2024; 15:1432105. [PMID: 39233740 PMCID: PMC11371558 DOI: 10.3389/fgene.2024.1432105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
The objective of this study is to analyze environmental genetic selection signals in large-scale sheep populations with conflicting environmental adaptations, aiming to identify and isolate genes associated with environmental adaptations in sheep populations. Kirghiz sheep, which inhabit high-altitude environments year-round, demonstrate the ability to adapt to extreme conditions. In this study, 42 Kirghiz sheep, 24 Tien-Shan in Kyrgyzstan sheep, 189 Qira black sheep, and 160 Chinese Merino sheep were genotyped using Illumina Ovine SNP50K chip. Regions exhibiting a selection signal threshold of 5%, as well as PI analysis and haplotype statistical scanning gene data were annotated, and intersecting genes were identified as candidate genes. Through Fst and haplotype statistical analysis revealed the key gene PDGFD and its vicinity's impact on fat deposition in sheep tails. Additionally, Fst and PI analysis uncovered genes related to high-altitude adaptation as well as those linked to animal growth and reproduction.Further GO and KEGG enrichment pathway analyses unveiled pathways associated with high-altitude adaptation such as negative regulation of peptidyl-tyrosine phosphorylation and xenobiotic metabolism processes.This investigation into the adaptability of Kirghiz sheep provides theoretical support and practical guidance for the conservation and genetic enhancement of Kirghiz sheep germplasm resources.
Collapse
Affiliation(s)
- Xiaopeng Li
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Lijun Zhu
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Cheng-Long Zhang
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Xueyan Wang
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Yanhao Li
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Wen Zhou
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Zhipeng Han
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Ruizhi Yang
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Yuwei Peng
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Yahui Han
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Lulu Zhang
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Langman Zheng
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| | - Shudong Liu
- College of Animal Science and Technology, Tarim University, Xinjiang, China
- Key Laboratory of Tarim Animal Husbandry Science and Technology, Xinjiang Production and Construction Corps, Xinjiang, China
| |
Collapse
|
9
|
Zhang G, Song Y, Chen N, Wei J, Zhang J, He C. Chromosome-level genome assembly of Hippophae tibetana provides insights into high-altitude adaptation and flavonoid biosynthesis. BMC Biol 2024; 22:82. [PMID: 38609969 PMCID: PMC11015584 DOI: 10.1186/s12915-024-01875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND As an endemic shrub of the Qinghai-Tibetan Plateau (QTP), the distribution of Hippophae tibetana Schlecht. ranges between 2800 and 5200 m above sea level. As the most basal branch of the Hippophae genus, H. tibetana has an extensive evolutionary history. The H. tibetana is a valuable tree for studying the ecological evolution of species under extreme conditions. RESULTS Here, we generated a high-quality chromosome-level genome of H. tibetana. The total size of the assembly genome is 917 Mb. The phylogenomic analysis of 1064 single-copy genes showed a divergence between 3.4 and 12.8 Mya for H. tibetana. Multiple gene families associated with DNA repair and disease resistance were significantly expanded in H. tibetana. We also identified many genes related to DNA repair with signs of positive selection. These results showed expansion and positive selection likely play important roles in H. tibetana's adaptation to comprehensive extreme environments in the QTP. A comprehensive genomic and transcriptomic analysis identified 49 genes involved in the flavonoid biosynthesis pathway in H. tibetana. We generated transgenic sea buckthorn hairy root producing high levels of flavonoid. CONCLUSIONS Taken together, this H. tibetana high-quality genome provides insights into the plant adaptation mechanisms of plant under extreme environments and lay foundation for the functional genomic research and molecular breeding of H. tibetana.
Collapse
Affiliation(s)
- Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yating Song
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ning Chen
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jihua Wei
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
10
|
Lee FS. Hypoxia Inducible Factor pathway proteins in high-altitude mammals. Trends Biochem Sci 2024; 49:79-92. [PMID: 38036336 PMCID: PMC10841901 DOI: 10.1016/j.tibs.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Humans and other mammals inhabit hypoxic high-altitude locales. In many of these species, genes under positive selection include ones in the Hypoxia Inducible Factor (HIF) pathway. One is PHD2 (EGLN1), which encodes for a key oxygen sensor. Another is HIF2A (EPAS1), which encodes for a PHD2-regulated transcription factor. Recent studies have provided insights into mechanisms for these high-altitude alleles. These studies have (i) shown that selection can occur on nonconserved, unstructured regions of proteins, (ii) revealed that high altitude-associated amino acid substitutions can have differential effects on protein-protein interactions, (iii) provided evidence for convergent evolution by different molecular mechanisms, and (iv) suggested that mutations in different genes can complement one another to produce a set of adaptive phenotypes.
Collapse
Affiliation(s)
- Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Mujica PC, Martinez V. A purebred South American breed showing high effective population size and independent breed ancestry: The Chilean Terrier. Anim Genet 2023; 54:772-785. [PMID: 37778752 DOI: 10.1111/age.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
The Chilean Terrier is a known breed in Chile that has not been genetically assessed despite its distinctive color patterns, agility, and hardiness across the diversity of climates encountered within the Chilean landscape. The population structure and its relatedness with other breeds, as well as the actual origin of the breed, remain unknown. We estimated several population parameters using samples from individuals representing the distribution of the Chilean Terrier across the country. By utilizing the Illumina HD canine genotyping array, we computed the effective population size (Ne ), individual inbreeding, and relatedness to evaluate the genetic diversity of the breed. The results show that linkage disequilibrium was relatively low and decayed rapidly; in fact, Ne was very high when compared to other breeds, and similar to other American indigenous breeds (such as the Chihuahua with values of Ne near 500). These results are in line with the low estimates of genomic inbreeding and relatedness and the relatively large number of effective chromosome segments (Me = 2467) obtained using the properties of the genomic relationship matrix. Between population analysis (cross-population extended haplotype homozygosity, di ) with other breeds such as the Jack Russell Terrier, the Peruvian-Inca Orchid, and the Chihuahua suggested that candidate regions harboring FGF5, PAX3, and ASIP, probably explained some morphological traits, such as the distinctive color pattern characteristic of the breed. When considering Admixture estimates and phylogenetic analysis, together with other breeds of American and European origin, the Chilean Terrier does not have a recent European ancestry. Overall, the results suggest that the breed has evolved independently in Chile from other terrier breeds, from an unknown European terrier ancestor.
Collapse
Affiliation(s)
- Paola C Mujica
- FAVET-INBIOGEN Laboratory, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | - Víctor Martinez
- FAVET-INBIOGEN Laboratory, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Liao Q, Deng H, Wang Z, Yu G, Zhu C, Jia S, Liu W, Bai Y, Sun X, Chen X, Xiao W, Liu X. Deletion of prolyl hydroxylase domain-containing enzyme 3 (phd3) in zebrafish facilitates hypoxia tolerance. J Biol Chem 2023; 299:105420. [PMID: 37923141 PMCID: PMC10724695 DOI: 10.1016/j.jbc.2023.105420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Prolyl hydroxylase domain (PHD)-containing enzyme 3 (PHD3) belongs to the Caenorhabditis elegans gene egl-9 family of prolyl hydroxylases. PHD3 catalyzes proline hydroxylation of hypoxia-inducible factor α (HIF-α) and promotes HIF-α proteasomal degradation through coordination with the pVHL complex under normoxic conditions. However, the relationship between PHD3 and the hypoxic response is not well understood. In this study, we used quantitative real-time PCR assay and O-dianisidine staining to characterize the hypoxic response in zebrafish deficient in phd3. We found that the hypoxia-responsive genes are upregulated and the number of erythrocytes was increased in phd3-null zebrafish compared with their wild-type siblings. On the other hand, we show overexpression of phd3 suppresses HIF-transcriptional activation. In addition, we demonstrate phd3 promotes polyubiquitination of zebrafish hif-1/2α proteins, leading to their proteasomal degradation. Finally, we found that compared with wild-type zebrafish, phd3-null zebrafish are more resistant to hypoxia treatment. Therefore, we conclude phd3 has a role in hypoxia tolerance. These results highlight the importance of modulation of the hypoxia signaling pathway by phd3 in hypoxia adaptation.
Collapse
Affiliation(s)
- Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Hongyan Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; College of Life Science, Wuhan University, Wuhan, P. R.China
| | - Zixuan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China
| | - Shuke Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Wen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Yao Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; Hubei Hongshan Laboratory, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R.China.
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P. R.China; University of Chinese Academy of Sciences, Beijing, P. R.China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, P. R.China.
| |
Collapse
|
13
|
Peng MS, Liu YH, Shen QK, Zhang XH, Dong J, Li JX, Zhao H, Zhang H, Zhang X, He Y, Shi H, Cui C, Ouzhuluobu, Wu TY, Liu SM, Gonggalanzi, Baimakangzhuo, Bai C, Duojizhuoma, Liu T, Dai SS, Murphy RW, Qi XB, Dong G, Su B, Zhang YP. Genetic and cultural adaptations underlie the establishment of dairy pastoralism in the Tibetan Plateau. BMC Biol 2023; 21:208. [PMID: 37798721 PMCID: PMC10557253 DOI: 10.1186/s12915-023-01707-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Domestication and introduction of dairy animals facilitated the permanent human occupation of the Tibetan Plateau. Yet the history of dairy pastoralism in the Tibetan Plateau remains poorly understood. Little is known how Tibetans adapted to milk and dairy products. RESULTS We integrated archeological evidence and genetic analysis to show the picture that the dairy ruminants, together with dogs, were introduced from West Eurasia into the Tibetan Plateau since ~ 3600 years ago. The genetic admixture between the exotic and indigenous dogs enriched the candidate lactase persistence (LP) allele 10974A > G of West Eurasian origin in Tibetan dogs. In vitro experiments demonstrate that - 13838G > A functions as a LP allele in Tibetans. Unlike multiple LP alleles presenting selective signatures in West Eurasians and South Asians, the de novo origin of Tibetan-specific LP allele - 13838G > A with low frequency (~ 6-7%) and absence of selection corresponds - 13910C > T in pastoralists across eastern Eurasia steppe. CONCLUSIONS Results depict a novel scenario of genetic and cultural adaptations to diet and expand current understanding of the establishment of dairy pastoralism in the Tibetan Plateau.
Collapse
Affiliation(s)
- Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
- Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College, Kunming, 650118, China
| | - Jiajia Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Hui Zhang
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Tian-Yi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Shi-Ming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Caijuan Bai
- The First People's Hospital of Gansu Province, Lanzhou, 730000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Ti Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Xue-Bin Qi
- State Key Laboratory of Primate Biomedical Research (LPBR), School of Primate Translational Medicine, Kunming University of Science and Technology (KUST), Kunming, 650000, China.
- Tibetan Fukang Hospital, Lhasa, 850000, China.
| | - Guanghui Dong
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
14
|
Peng X, Cheng J, Li H, Feijó A, Xia L, Ge D, Wen Z, Yang Q. Whole-genome sequencing reveals adaptations of hairy-footed jerboas (Dipus, Dipodidae) to diverse desert environments. BMC Biol 2023; 21:182. [PMID: 37649052 PMCID: PMC10469962 DOI: 10.1186/s12915-023-01680-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Environmental conditions vary among deserts across the world, spanning from hyper-arid to high-elevation deserts. However, prior genomic studies on desert adaptation have focused on desert and non-desert comparisons overlooking the complexity of conditions within deserts. Focusing on the adaptation mechanisms to diverse desert environments will advance our understanding of how species adapt to extreme desert environments. The hairy-footed jerboas are well adapted to diverse desert environments, inhabiting high-altitude arid regions, hyper-arid deserts, and semi-deserts, but the genetic basis of their adaptation to different deserts remains unknown. RESULTS Here, we sequenced the whole genome of 83 hairy-footed jerboas from distinct desert zones in China to assess how they responded under contrasting conditions. Population genomics analyses reveal the existence of three species in hairy-footed jerboas distributed in China: Dipus deasyi, Dipus sagitta, and Dipus sowerbyi. Analyses of selection between high-altitude desert (elevation ≥ 3000m) and low-altitude desert (< 500m) populations identified two strongly selected genes, ATR and HIF1AN, associated with intense UV radiation and hypoxia in high-altitude environments. A number of candidate genes involved in energy and water homeostasis were detected in the comparative genomic analyses of hyper-arid desert (average annual precipitation < 70mm) and arid desert (< 200mm) populations versus semi-desert (> 360mm) populations. Hyper-arid desert animals also exhibited stronger adaptive selection in energy homeostasis, suggesting water and resource scarcity may be the main drivers of desert adaptation in hairy-footed jerboas. CONCLUSIONS Our study challenges the view of deserts as homogeneous environments and shows that distinct genomic adaptations can be found among desert animals depending on their habitats.
Collapse
Affiliation(s)
- Xingwen Peng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Hong Li
- Novogene Bioinformatics Institute, Haidian District, Beijing, 100083, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, 60605, USA
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
15
|
L Rocha J, Silva P, Santos N, Nakamura M, Afonso S, Qninba A, Boratynski Z, Sudmant PH, Brito JC, Nielsen R, Godinho R. North African fox genomes show signatures of repeated introgression and adaptation to life in deserts. Nat Ecol Evol 2023; 7:1267-1286. [PMID: 37308700 PMCID: PMC10527534 DOI: 10.1038/s41559-023-02094-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/26/2023] [Indexed: 06/14/2023]
Abstract
Elucidating the evolutionary process of animal adaptation to deserts is key to understanding adaptive responses to climate change. Here we generated 82 individual whole genomes of four fox species (genus Vulpes) inhabiting the Sahara Desert at different evolutionary times. We show that adaptation of new colonizing species to a hot arid environment has probably been facilitated by introgression and trans-species polymorphisms shared with older desert resident species, including a putatively adaptive 25 Mb genomic region. Scans for signatures of selection implicated genes affecting temperature perception, non-renal water loss and heat production in the recent adaptation of North African red foxes (Vulpes vulpes), after divergence from Eurasian populations approximately 78 thousand years ago. In the extreme desert specialists, Rueppell's fox (V. rueppellii) and fennec (V. zerda), we identified repeated signatures of selection in genes affecting renal water homeostasis supported by gene expression and physiological differences. Our study provides insights into the mechanisms and genetic underpinnings of a natural experiment of repeated adaptation to extreme conditions.
Collapse
Affiliation(s)
- Joana L Rocha
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
| | - Pedro Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Nuno Santos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Mónia Nakamura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Abdeljebbar Qninba
- Laboratory of Geophysics and Natural Hazards, Geophysics, Natural Patrimony and Green Chemistry Research Center (GEOPAC), Institut Scientifique, Mohammed V University of Rabat, Rabat, Morocco
| | - Zbyszek Boratynski
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Peter H Sudmant
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - José C Brito
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Rasmus Nielsen
- Department of Integrative Biology and Department of Statistics, University of California Berkeley, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
- Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Raquel Godinho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal.
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
16
|
Analysis of dog breed diversity using a composite selection index. Sci Rep 2023; 13:1674. [PMID: 36717599 PMCID: PMC9886904 DOI: 10.1038/s41598-023-28826-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
During breed development, domestic dogs have undergone genetic bottlenecks and sustained selective pressures, as a result distinctive genomic diversity occurs to varying degrees within and between breed groups. This diversity can be identified using standard methods or combinations of these methods. This study explored the application of a combined selection index, composite selection signals (CSS), derived from multiple methods to an existing genotype dataset from three breed groups developed in distinct regions of Asia: Qinghai-Tibet plateau dogs (adapted to living at altitude), Xi dogs (with superior running ability) and Mountain hounds (used for hunting ability). The CSS analysis confirmed top ranked genomic regions on CFA10 and CFA21 in Qinghai-Tibet plateau dogs, CFA1 in Xi dogs and CFA5 in Mountain hounds. CSS analysis identified additional significant genomic regions in each group, defined by a total of 1,397, 1,475 and 1,675 significant SNPs in the Qinghai-Tibetan Plateau dogs, Xi dogs and Mountain hounds, respectively. Chitinase 3 Like 1 (CHI3L1) and Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6) genes were located in the top ranked region on CFA7 (0.02-1 Mb) in the Qinghai-Tibetan Plateau dogs. Both genes have been associated with hypoxia responses or altitude adaptation in humans. For the Xi dogs, the top ranked region on CFA25 contained the Transient Receptor Potential Cation Channel Subfamily C Member 4 (TRPC4) gene. This calcium channel is important for optimal muscle performance during exercise. The outstanding signals in the Mountain dogs were on CFA5 with 213 significant SNPs that spanned genes involved in cardiac development, sight and generation of biochemical energy. These findings support the use of the combined index approach for identifying novel regions of genome diversity in dogs. As with other methods, the results do not prove causal links between these regions and phenotypes, but they may assist in focusing future studies that seek to identify functional pathways that contribute to breed diversity.
Collapse
|
17
|
Ma J, Zhang L, Shen F, Geng Y, Huang Y, Wu H, Fan Z, Hou R, Song Z, Yue B, Zhang X. Gene expressions between obligate bamboo-eating pandas and non-herbivorous mammals reveal converged specialized bamboo diet adaptation. BMC Genomics 2023; 24:23. [PMID: 36647013 PMCID: PMC9843897 DOI: 10.1186/s12864-023-09111-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It is inevitable to change the function or expression of genes during the environmental adaption of species. Both the giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) belong to Carnivora and have developed similar adaptations to the same dietary switch to bamboos at the morphological and genomic levels. However, the genetic adaptation at the gene expression level is unclear. Therefore, we aimed to examine the gene expression patterns of giant and red panda convergent specialized bamboo-diets. We examined differences in liver and pancreas transcriptomes between the two panda species and other non-herbivorous species. RESULTS The clustering and PCA plots suggested that the specialized bamboo diet may drive similar expression shifts in these two species of pandas. Therefore, we focused on shared liver and pancreas DEGs (differentially expressed genes) in the giant and red panda relative to other non-herbivorous species. Genetic convergence occurred at multiple levels spanning carbohydrate metabolism, lipid metabolism, and lysine degradation. The shared adaptive convergence DEGs in both organs probably be an evolutionary response to the high carbohydrate, low lipid and lysine bamboo diet. Convergent expression of those nutrient metabolism-related genes in both pandas was an intricate process and subjected to multi-level regulation, including DNA methylation and transcription factor. A large number of lysine degradation and lipid metabolism related genes were hypermethylated in promoter regions in the red panda. Most genes related to carbohydrate metabolism had reduced DNA methylation with increased mRNA expression in giant pandas. Unlike the red panda, the core gene of the lysine degradation pathway (AASS) doesn't exhibit hypermethylation modification in the giant panda, and dual-luciferase reporter assay showed that transcription factor, NR3C1, functions as a transcriptional activator in AASS transcription through the binding to AASS promoter region. CONCLUSIONS Our results revealed the adaptive expressions and regulations of the metabolism-related genes responding to the unique nutrients in bamboo food and provided data accumulation and research hints for the future revelation of complex mechanism of two pandas underlying convergent adaptation to a specialized bamboo diet.
Collapse
Affiliation(s)
- Jinnan Ma
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.410739.80000 0001 0723 6903College of Continuing Education, Yunnan Normal University, Kunming, 650092 China
| | - Liang Zhang
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Fujun Shen
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Yang Geng
- grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Wolong, 623006 Sichuan China
| | - Zhenxin Fan
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Rong Hou
- grid.452857.9The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081 China
| | - Zhaobin Song
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Bisong Yue
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| | - Xiuyue Zhang
- grid.13291.380000 0001 0807 1581Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China ,grid.13291.380000 0001 0807 1581Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065 China
| |
Collapse
|
18
|
Mooney JA, Marsden CD, Yohannes A, Wayne RK, Lohmueller KE. Long-term Small Population Size, Deleterious Variation, and Altitude Adaptation in the Ethiopian Wolf, a Severely Endangered Canid. Mol Biol Evol 2023; 40:msac277. [PMID: 36585842 PMCID: PMC9847632 DOI: 10.1093/molbev/msac277] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Ethiopian wolves, a canid species endemic to the Ethiopian Highlands, have been steadily declining in numbers for decades. Currently, out of 35 extant species, it is now one of the world's most endangered canids. Most conservation efforts have focused on preventing disease, monitoring movements and behavior, and assessing the geographic ranges of sub-populations. Here, we add an essential layer by determining the Ethiopian wolf's demographic and evolutionary history using high-coverage (∼40×) whole-genome sequencing from 10 Ethiopian wolves from the Bale Mountains. We observe exceptionally low diversity and enrichment of weakly deleterious variants in the Ethiopian wolves in comparison with two North American gray wolf populations and four dog breeds. These patterns are consequences of long-term small population size, rather than recent inbreeding. We infer the demographic history of the Ethiopian wolf and find it to be concordant with historic records and previous genetic analyses, suggesting Ethiopian wolves experienced a series of both ancient and recent bottlenecks, resulting in a census population size of fewer than 500 individuals and an estimated effective population size of approximately 100 individuals. Additionally, long-term small population size may have limited the accumulation of strongly deleterious recessive mutations. Finally, as the Ethiopian wolves have inhabited high-altitude areas for thousands of years, we searched for evidence of high-altitude adaptation, finding evidence of positive selection at a transcription factor in a hypoxia-response pathway [CREB-binding protein (CREBBP)]. Our findings are pertinent to continuing conservation efforts and understanding how demography influences the persistence of deleterious variation in small populations.
Collapse
Affiliation(s)
- Jazlyn A Mooney
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Clare D Marsden
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Abigail Yohannes
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert K Wayne
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Kirk E Lohmueller
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Ecology & Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Bionda A, Cortellari M, Bigi D, Chiofalo V, Liotta L, Crepaldi P. Selection Signatures in Italian Livestock Guardian and Herding Shepherd Dogs. Vet Sci 2022; 10:3. [PMID: 36669004 PMCID: PMC9862740 DOI: 10.3390/vetsci10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Livestock guardian (LGD) and herding shepherd (HSD) dogs have distinct morphological and behavioural characteristics, long selected by farmers and breeders, to accomplish different tasks. This study aimed to find the genomic regions that best differentiate and characterise Italian LGD and HSD. Genomic data of 158 dogs of four LGD and five HSD breeds, obtained with the 170K canine SNPchip, were collected. The two groups were compared using FST and XP-EHH analyses, identifying regions containing 29 genes. Moreover, 16 islands of runs of homozygosity were found in LGD, and 15 in HSD; 4 of them were partially shared. Among the genes found that better differentiated HSD and LGD, several were associated with dog domestication and behavioural aspects; particularly, MSRB3 and LLPH were linked to herding behaviour in previous studies. Others, DYSK, MAP2K5, and RYR, were related to body size and muscle development. Prick ears prevailed in sampled HSD, and drop ears in LGD; this explains the identification of WIF1 and MSRB3 genes. Unexpectedly, a number of genes were also associated with eye development and functionality. These results shed further light on the differences that human selection introduced in dogs aimed at different duties, even in a limited geographic area such as Italy.
Collapse
Affiliation(s)
- Arianna Bionda
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria 2, 20133 Milan, Italy
| | - Matteo Cortellari
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria 2, 20133 Milan, Italy
| | - Daniele Bigi
- Department of Agricultural and Food Science and Technology (DISTAL), University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Vincenzo Chiofalo
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy
- Consortium of Research for Meat Chain and Agrifood (CoRFilCarni), Viale Palatucci 13, 98168 Messina, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, Messina University, Viale Palatucci 13, 98168 Messina, Italy
| | - Paola Crepaldi
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
20
|
Zhong H, Kong X, Zhang Y, Su Y, Zhang B, Zhu L, Chen H, Gou X, Zhang H. Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient. Evol Appl 2022; 15:2100-2112. [PMID: 36540645 PMCID: PMC9753841 DOI: 10.1111/eva.13503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
As an indigenous breed, the Tibetan chicken is found in highland regions and shows physiological adaptations to high altitude; however, the genetic changes that determine these adaptations remain elusive. We assumed that the microevolution of the Tibetan chicken occurred from lowland to highland regions with a continuous elevation range. In this study, we analyzed the genome of 188 chickens from lowland areas to the high-altitude regions of the Tibetan plateau with four altitudinal levels. Phylogenetic analysis revealed that Tibetan chickens are significantly different from other altitude chicken populations. Reconstruction of the demographic history showed that the migration and admixture events of the Tibetan chicken occurred at different times. The genome of the Tibetan chicken was also used to analyze positive selection pressure that is associated with high-altitude adaptation, revealing the well-known candidate gene that participates in oxygen binding (HBAD), as well as other novel potential genes (e.g., HRG and ANK2) that are related to blood coagulation and cardiovascular efficiency. Our study provides novel insights regarding the evolutionary history and microevolution mechanisms of the high-altitude adaptation in the Tibetan chicken.
Collapse
Affiliation(s)
- Hai‐An Zhong
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiao‐Yan Kong
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Ya‐Wen Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan‐Kai Su
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Li Zhu
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hua Chen
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Xiao Gou
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
21
|
Lyu T, Yang X, Zhao C, Wang L, Zhou S, Shi L, Dong Y, Dou H, Zhang H. Comparative transcriptomics of high-altitude Vulpes and their low-altitude relatives. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.999411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The harsh environment of Qinghai-Tibet Plateau (QTP) imposes strong selective stresses (e.g., hypoxia, high UV-radiation, and extreme temperature) to the native species, which have driven striking phenotypic and genetic adaptations. Although the mechanisms of high-altitude adaptation have been explored for many plateau species, how the phylogenetic background contributes to genetic adaption to high-altitude of Vulpes is largely unknown. In this study, we sequenced transcriptomic data across multiple tissues of two high-altitude Vulpes (Vulpes vulpes montana and Vulpes ferrilata) and their low-altitude relatives (Vulpes corsac and Vulpes lagopus) to search the genetic and gene expression changes caused by high-altitude environment. The results indicated that the positive selection genes (PSGs) identified by both high-altitude Vulpes are related to angiogenesis, suggesting that angiogenesis may be the result of convergent evolution of Vulpes in the face of hypoxic selection pressure. In addition, more PSGs were detected in V. ferrilata than in V. v. montana, which may be related to the longer adaptation time of V. ferrilata to plateau environment and thus more genetic changes. Besides, more PSGs associated with high-altitude adaptation were identified in V. ferrilata compared with V. v. montana, indicating that the longer the adaptation time to the high-altitude environment, the more genetic alterations of the species. Furthermore, the result of expression profiles revealed a tissue-specific pattern between Vulpes. We also observed that differential expressed genes in the high-altitude group exhibited species-specific expression patterns, revealed a convergent expression pattern of Vulpes in high-altitude environment. In general, our research provides a valuable transcriptomic resource for further studies, and expands our understanding of high-altitude adaptation within a phylogenetic context.
Collapse
|
22
|
Zhou C, Liu Y, Zhang R, Zheng X, Zhao G, Li F, Liu W, Yue B, Yang N. Chromosome-level Genome Assembly of the High-altitude Leopard (Panthera pardus) Sheds Light on Its Environmental Adaptation. Genome Biol Evol 2022; 14:6670020. [PMID: 35975810 PMCID: PMC9452791 DOI: 10.1093/gbe/evac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The leopard (Panthera pardus) has the largest natural distribution from low- to high-altitude areas of any wild felid species, but recent studies have revealed that leopards have disappeared from large areas, probably owing to poaching, a decline of prey species, and habitat degradation. Here, we reported the chromosome-scale genome assembly of the high-altitude leopard (HL) based on nanopore sequencing and high-throughput chromatin conformation capture (Hi-C) technology. Panthera genomes revealed similar repeat composition, and there was an appreciably conserved synteny between HL and the other two Panthera genomes. Divergence time analysis based on the whole genomes revealed that the HL and the low-altitude leopard differentiate from a common ancestor ∼2.2 Ma. Through comparative genomics analyses, we found molecular genetic signatures that may reflect high-altitude adaptation of the HL. Three HL-specific missense mutations were detected in two positively selected genes, that is, ITGA7 (Ala112Gly, Asp113Val, and Gln115Pro) and NOTCH2 (Ala2398Ser), which are likely to be associated with hypoxia adaptation. The chromosome-level genome of the HL provides valuable resources for the investigation of high-altitude adaptation and protection management of the vulnerable leopard.
Collapse
Affiliation(s)
- Chuang Zhou
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Yi Liu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Rusong Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Xiaofeng Zheng
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Guangqing Zhao
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Fengjun Li
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Wei Liu
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, P. R.China
| | - Bisong Yue
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P.R. China
| | - Nan Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, P. R.China.,Collaborative Innovation Center for Ecological Animal Husbandry of Qinghai- Tibetan plateau, Southwest Minzu University, China
| |
Collapse
|
23
|
Ivy CM, Velotta JP, Cheviron ZA, Scott GR. Genetic variation in HIF-2α attenuates ventilatory sensitivity and carotid body growth in chronic hypoxia in high-altitude deer mice. J Physiol 2022; 600:4207-4225. [PMID: 35797482 DOI: 10.1113/jp282798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS High-altitude natives of many species have experienced natural selection on the gene encoding HIF-2α, Epas1, including high-altitude populations of deer mice. HIF-2α regulates ventilation and carotid body growth in hypoxia, so the genetic variants in Epas1 in high-altitude natives may underlie evolved changes in control of breathing. Deer mice from controlled crosses between high- and low-altitude populations were used to examine the effects of Epas1 genotype on an admixed genomic background. The high-altitude variant was associated with reduced ventilatory chemosensitivity and carotid body growth in chronic hypoxia, but had no effects on haematology. The results help us better understand the genetic basis for the unique physiological phenotype of high-altitude natives. ABSTRACT The gene encoding HIF-2α, Epas1, has experienced a history of natural selection in many high-altitude taxa, but the functional role of mutations in this gene are still poorly understood. We investigated the influence of the high-altitude variant of Epas1 in North American deer mice (Peromyscus maniculatus) on control of breathing and carotid body growth during chronic hypoxia. We created hybrids between high- and low-altitude populations of deer mice to disrupt linkages between genetic loci so physiological effects of Epas1 alleles (Epas1H and Epas1L , respectively) could be examined on an admixed genomic background. In general, chronic hypoxia (4 weeks at 12 kPa O2 ) enhanced ventilatory chemosensitivity (assessed as the acute ventilatory response to hypoxia), increased total ventilation and arterial O2 saturation during progressive poikilocapnic hypoxia, and increased haematocrit and blood haemoglobin content across genotypes. However, effects of chronic hypoxia on ventilatory chemosensitivity were attenuated in mice that were homozygous for the high-altitude Epas1 allele (Epas1H/H ). Carotid body growth and glomus cell hyperplasia, which was strongly induced in Epas1L/L mice in chronic hypoxia, was not observed in Epas1H/H mice. Epas1 genotype also modulated the effects of chronic hypoxia on metabolism and body temperature depression in hypoxia, but had no effects on haematological traits. These findings confirm the important role of HIF-2α in modulating ventilatory sensitivity and carotid body growth in chronic hypoxia, and show that genetic variation in Epas1 is responsible for evolved changes in the control of breathing and metabolism in high-altitude deer mice. Abstract figure legend ventilation and carotid body growth in hypoxia, so we investigated the role genetic variants in Epas1 in highaltitude deer mice on the control of breathing. In the lab, hybrids between high- and lowaltitude populations of deer mice were created to disrupt linkages between genetic loci so physiological effects of Epas1 alleles (Epas1H and Epas1L, respectively) could be examined on an admixed genomic background. The high-altitude variant was associated with reduced ventilatory chemosensitivity and carotid body growth after 4 weeks of chronic hypoxia, compared to mice homozygous for the low-altitude allele (Epas1LL). These results help us better understand the genetic basis for the unique physiological phenotype of high-altitude natives. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Jonathan P Velotta
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
24
|
Li R, Chen S, Li C, Xiao H, Costa V, Bhuiyan MSA, Baig M, Beja-Pereira A. Whole-Genome Analysis Deciphers Population Structure and Genetic Introgression Among Bovine Species. Front Genet 2022; 13:847492. [PMID: 35711941 PMCID: PMC9197319 DOI: 10.3389/fgene.2022.847492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
It is known that throughout history and presently, taurine (Bos taurus) and indicine/zebu (Bos indicus) cattle were crossed with other bovine species (e.g., gayal, gaur, banteng, yak, wisent, and bison). Information on the role of interspecific hybridization to facilitate faster adaptation of the newly arrived domestic species to new environments is poorly known. Herein, we collected 266 samples of bovine species of the taurine, zebu, yak, and gaur from West Europe, Southwest China, Indian subcontinent, and Southeast Asia to conduct the principal component analysis (PCA), admixture, gene flow, and selection signature analyses by using SNPs distributed across the bovine autosomes. The results showed that the genetic relationships between the zebu, yak, and gaur mirrored their geographical origins. Three ancestral components of the European taurine, East Asian taurine, and Indian zebu were found in domestic cattle, and the bidirectional genetic introgression between the Diqing cattle and Zhongdian yak was also detected. Simultaneously, the introgressed genes from the Zhongdian yak to the Diqing cattle were mainly enriched with immune-related pathways, and the ENPEP, FLT1, and PIK3CA genes related to the adaptation of high-altitude hypoxia were detected. Additionally, we found the genetic components of the Zhongdian yak had introgressed into Tibetan cattle. The 30 selected genes were detected in Tibetan cattle, which were significantly enriched in the chemokine signaling pathway. Interestingly, some genes (CDC42, SLC39A2, and EPAS1) associated with hypoxia response were discovered, in which CDC42 and SLC39A2 played important roles in angiogenesis and erythropoiesis, and heart function, respectively. This result showed that genetic introgression was one of the important ways for the environmental adaptation of domestic cattle.
Collapse
Affiliation(s)
- Rong Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, China.,College of Life Science, Yunnan Normal University, Kunming, China
| | - Shanyuan Chen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chunqing Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Heng Xiao
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Vânia Costa
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Vairão, Portugal
| | | | - Mumtaz Baig
- Department of Zoology, Government Vidarbha Institute of Science and Humanities, Amravati, India
| | - Albano Beja-Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBIO), Universidade do Porto, Vairão, Portugal.,Ambiente e Ordenamento do Território (DGAOT), Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Sustainable Agrifood Production Research Centre (GreenUPorto), University of Porto, Vairão, Portugal
| |
Collapse
|
25
|
Cai C, Yang Y, Ga Q, Xu G, Ge R, Tang F. Comparative genomic analysis of high-altitude adaptation for Mongolia Mastiff, Tibetan Mastiff, and Canis Lupus. Genomics 2022; 114:110359. [PMID: 35364265 DOI: 10.1016/j.ygeno.2022.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/03/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
Abstract
Tibetan Mastiff has adapted to the extreme environment of the Qinghai-Tibetan Plateau. Yet, the underlying mechanisms of its high-altitude-adaptation and origin remains elusive. Here, we generated the draft genomes of Mongolia Mastiff, Tibetan Mastiff, and Canis Lupus. The phylogenetic tree uncovered that Tibetan Mastiff and Mongolia Mastiff were derived from Canis Lupus species. The comparative genomic analyses identified that the expansion of gene families related to DNA repair and damage response, and contraction related to ATPase activity revealed the genetic adaptations of Tibetan Mastiff and Canis Lupus to high altitude. In addition, the Tibetan Mastiff and Canis Lupus had signals of positive selection for genes involved in fatty-acid α/β- oxidation for highland adaptation. Notably, the positively selected TERT of Tibetan Mastiff should be an adaptive trait for correcting DNA damage. These findings suggested that the Tibetan Mastiff and Canis Lupus evolves basic strategies for adaptation to high altitude.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China
| | - Yingzhong Yang
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China
| | - Qin Ga
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China
| | - Guocai Xu
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China
| | - Rili Ge
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China.
| | - Feng Tang
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining 810016, PR China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining 810016, PR China.
| |
Collapse
|
26
|
Werhahn G, Senn H, Macdonald DW, Sillero-Zubiri C. The Diversity in the Genus Canis Challenges Conservation Biology: A Review of Available Data on Asian Wolves. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.782528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Taxa belonging to the Genus Canis can challenge taxonomists because species boundaries and distribution ranges are often gradual. Species delineation within Canis is currently not based on consistent criteria, and is hampered by geographical bias and lack of taxonomic research. But a consistent taxonomy is critical, given its importance for assigning legal protection, conservation priorities, and financial resources. We carried out a qualitative review of the major wolf lineages so far identified from Asia from historical to contemporary time and considered relevant morphological, ecological, and genetic evidence. We present full mitochondrial phylogenies and genetic distances between these lineages. This review aims to summarize the available data on contemporary Asian wolf lineages within the context of the larger phylogenetic Canis group and to work toward a taxonomy that is consistent within the Canidae. We found support for the presence and taxon eligibility of Holarctic gray, Himalayan/Tibetan, Indian, and Arabian wolves in Asia and recommend their recognition at the taxonomic levels consistent within the group.
Collapse
|
27
|
Zhao B, Wu C, Sammad A, Ma Z, Suo L, Wu Y, Fu X. The fiber diameter traits of Tibetan cashmere goats are governed by the inherent differences in stress, hypoxic, and metabolic adaptations: an integrative study of proteome and transcriptome. BMC Genomics 2022; 23:191. [PMID: 35255833 PMCID: PMC8903710 DOI: 10.1186/s12864-022-08422-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Tibetan cashmere goats are served as a valuable model for high altitude adaptation and hypoxia complications related studies, while the cashmere produced by these goats is an important source of income for the herders. The aim of this study was to investigate the differences in protein abundance underlying the fine (average 12.20 ± 0.03 μm of mean fiber diameter) and coarse cashmere (average 14.67 ± 0.05 μm of mean fiber diameter) producing by Tibetan cashmere goats. We systematically investigated the genetic determinants of fiber diameter by integrated analysis with proteomic and transcriptomic datasets from skin tissues of Tibetan cashmere goats. Results We identified 1980 proteins using a label-free proteomics approach. They were annotated to three different databases, while 1730 proteins were mapped to the original protein coding genes (PCGs) of the transcriptomic study. Comparative analyses of cashmere with extremely fine vs. coarse phenotypes yielded 29 differentially expressed proteins (DEPs), for instance, APOH, GANAB, AEBP1, CP, CPB2, GPR142, VTN, IMPA1, CTSZ, GLB1, and HMCN1. Functional enrichment analysis of these DEPs revealed their involvement in oxidation-reduction process, cell redox homeostasis, metabolic, PI3K-Akt, MAPK, and Wnt signaling pathways. Transcription factors enrichment analysis revealed the proteins mainly belong to NF-YB family, HMG family, CSD family. We further validated the protein abundance of four DEPs (GC, VTN, AEBP1, and GPR142) through western blot, and considered they were the most potential candidate genes for cashmere traits in Tibetan cashmere goats. Conclusions These analyses indicated that the major biological variations underlying the difference of cashmere fiber diameter in Tibetan cashmere goats were attributed to the inherent adaptations related to metabolic, hypoxic, and stress response differences. This study provided novel insights into the breeding strategies for cashmere traits and enhance the understanding of the biological and genetic mechanisms of cashmere traits in Tibetan cashmere goats. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08422-x.
Collapse
Affiliation(s)
- Bingru Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cuiling Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Abdul Sammad
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Ma
- Key Laboratory of Genetics Breeding and Reproduction of the Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Langda Suo
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yujiang Wu
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China.
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China.
| |
Collapse
|
28
|
Beckman EJ, Martins F, Suzuki TA, Bi K, Keeble S, Good JM, Chavez AS, Ballinger MA, Agwamba K, Nachman MW. The genomic basis of high-elevation adaptation in wild house mice (Mus musculus domesticus) from South America. Genetics 2022; 220:iyab226. [PMID: 34897431 PMCID: PMC9097263 DOI: 10.1093/genetics/iyab226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.
Collapse
Affiliation(s)
- Elizabeth J Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Taichi A Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Andreas S Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Evolution, Ecology, and Organismal Biology and the Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mallory A Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kennedy Agwamba
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
Di Genova A, Nardocci G, Maldonado-Agurto R, Hodar C, Valdivieso C, Morales P, Gajardo F, Marina R, Gutiérrez RA, Orellana A, Cambiazo V, González M, Glavic A, Mendez MA, Maass A, Allende ML, Montecino MA. Genome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life. Genomics 2021; 114:305-315. [PMID: 34954349 DOI: 10.1016/j.ygeno.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to G-protein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.
Collapse
Affiliation(s)
- Alex Di Genova
- FONDAP Center for Genome Regulation, Santiago, Chile; Center for Mathematical Modeling, Department of Mathematical Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile and IRL CNRS, 2807 Santiago, Chile
| | - Gino Nardocci
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Christian Hodar
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Camilo Valdivieso
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pamela Morales
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Gajardo
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Raquel Marina
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Santiago, Chile; Department of Molecular Genetics and Microbiology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ariel Orellana
- FONDAP Center for Genome Regulation, Santiago, Chile; Center of Plant Biotechnology, Universidad Andres Bello, Santiago, Chile
| | - Veronica Cambiazo
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Alvaro Glavic
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Marco A Mendez
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Institute of Ecology and Biodiversity, Chile
| | - Alejandro Maass
- FONDAP Center for Genome Regulation, Santiago, Chile; Center for Mathematical Modeling, Department of Mathematical Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile and IRL CNRS, 2807 Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | - Martin A Montecino
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
30
|
Li F, Qiao Z, Duan Q, Nevo E. Adaptation of mammals to hypoxia. Animal Model Exp Med 2021; 4:311-318. [PMID: 34977482 PMCID: PMC8690989 DOI: 10.1002/ame2.12189] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen plays a pivotal role in the metabolism and activities of mammals. However, oxygen is restricted in some environments-subterranean burrow systems or habitats at high altitude or deep in the ocean-and this could exert hypoxic stresses such as oxidative damage on organisms living in these environments. In order to cope with these stresses, organisms have evolved specific strategies to adapt to hypoxia, including changes in physiology, gene expression regulation, and genetic mutations. Here, we review how mammals have adapted to the three high-altitude plateaus of the world, the limited oxygen dissolved in deep water habitats, and underground tunnels, with the aim of better understanding the adaptation of mammals to hypoxia.
Collapse
Affiliation(s)
- Fang Li
- College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
| | - Zhenglei Qiao
- College of Life Sciences and TechnologyMudanjiang Normal UniversityMudanjiangChina
| | - Qijiao Duan
- College of Natural Resources and EnvironmentSouth China Agriculture UniversityGuangzhouChina
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| |
Collapse
|
31
|
Liu YH, Wang L, Zhang Z, Otecko NO, Khederzadeh S, Dai Y, Liang B, Wang GD, Zhang YP. Whole-Genome Sequencing Reveals Lactase Persistence Adaptation in European Dogs. Mol Biol Evol 2021; 38:4884-4890. [PMID: 34289055 PMCID: PMC8557436 DOI: 10.1093/molbev/msab214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coexistence and cooperation between dogs and humans over thousands of years have supported convergent evolutionary processes in the two species. Previous studies found that Eurasian dogs evolved into a distinct geographic cluster. In this study, we used the genomes of 242 European dogs, 38 Southeast Asian indigenous (SEAI) dogs, and 41 gray wolves to identify adaptation of European dogs . We report 86 unique positively selected genes in European dogs, among which is LCT (lactase). LCT encodes lactase, which is fundamental for the digestion of lactose. We found that an A-to-G mutation (chr19:38,609,592) is almost fixed in Middle Eastern and European dogs. The results of two-dimensional site frequency spectrum (2D SFS) support that the mutation is under soft sweep . We inferred that the onset of positive selection of the mutation is shorter than 6,535 years and behind the well-developed dairy economy in central Europe. It increases the expression of LCT by reducing its binding with ZEB1, which would enhance dog's ability to digest milk-based diets. Our study uncovers the genetic basis of convergent evolution between humans and dogs with respect to diet, emphasizing the import of the dog as a biomedical model for studying mechanisms of the digestive system.
Collapse
Affiliation(s)
- Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongqin Dai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Bin Liang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
32
|
Schweizer RM, Jones MR, Bradburd GS, Storz JF, Senner NR, Wolf C, Cheviron ZA. Broad Concordance in the Spatial Distribution of Adaptive and Neutral Genetic Variation across an Elevational Gradient in Deer Mice. Mol Biol Evol 2021; 38:4286-4300. [PMID: 34037784 PMCID: PMC8476156 DOI: 10.1093/molbev/msab161] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
When species are continuously distributed across environmental gradients, the relative strength of selection and gene flow shape spatial patterns of genetic variation, potentially leading to variable levels of differentiation across loci. Determining whether adaptive genetic variation tends to be structured differently than neutral variation along environmental gradients is an open and important question in evolutionary genetics. We performed exome-wide population genomic analysis on deer mice sampled along an elevational gradient of nearly 4,000 m of vertical relief. Using a combination of selection scans, genotype-environment associations, and geographic cline analyses, we found that a large proportion of the exome has experienced a history of altitude-related selection. Elevational clines for nearly 30% of these putatively adaptive loci were shifted significantly up- or downslope of clines for loci that did not bear similar signatures of selection. Many of these selection targets can be plausibly linked to known phenotypic differences between highland and lowland deer mice, although the vast majority of these candidates have not been reported in other studies of highland taxa. Together, these results suggest new hypotheses about the genetic basis of physiological adaptation to high altitude, and the spatial distribution of adaptive genetic variation along environmental gradients.
Collapse
Affiliation(s)
- Rena M Schweizer
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Matthew R Jones
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Southwest Biological Science Center, U.S. Geological Survey, Flagstaff, AZ, USA
| | - Gideon S Bradburd
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Nathan R Senner
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Cole Wolf
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
33
|
Yang L, Wang Y, Sun N, Chen J, He S. Genomic and functional evidence reveals convergent evolution in fishes on the Tibetan Plateau. Mol Ecol 2021; 30:5752-5764. [PMID: 34516715 DOI: 10.1111/mec.16171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022]
Abstract
High-altitude environments are strong drivers of adaptive evolution in endemic organisms. However, little is known about the genetic mechanisms of convergent adaptation among different lineages, especially in fishes. There are three independent fish groups on the Tibetan Plateau: Tibetan Loaches, Schizothoracine fishes and Glyptosternoid fishes; all are well adapted to the harsh environmental conditions. They represent an excellent example of convergent evolution but with an unclear genetic basis. We used comparative genomic analyses between Tibetan fishes and fishes from low altitudes and detected genomic signatures of convergent evolution in fishes on the Tibetan Plateau. The Tibetan fishes exhibited genome-wide accelerated evolution in comparison with a control set of fishes from low altitudes. A total of 368 positively selected genes were identified in Tibetan fishes, which were enriched in functional categories related to energy metabolism and hypoxia response. Widespread parallel amino acid substitutions were detected among the Tibetan fishes and a subset of these substitutions occurred in positively selected genes associated with high-altitude adaptation. Functional assays suggested that von Hippel-Lindau (VHL) tumour suppressor genes from Tibetan fishes enhance hypoxia-inducible factor (HIF) activity convergently under hypoxia compared to low-altitude fishes. The results provide genomic and functional evidence supporting convergent genetic mechanisms for high-altitude adaptation in fishes on the Tibetan Plateau.
Collapse
Affiliation(s)
- Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China.,Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ying Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
34
|
Zhang T, Chen J, Zhang J, Guo YT, Zhou X, Li MW, Zheng ZZ, Zhang TZ, Murphy RW, Nevo E, Shi P. Phenotypic and genomic adaptations to the extremely high elevation in plateau zokor (Myospalax baileyi). Mol Ecol 2021; 30:5765-5779. [PMID: 34510615 DOI: 10.1111/mec.16174] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/07/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022]
Abstract
The evolutionary outcomes of high elevation adaptation have been extensively described. However, whether widely distributed high elevation endemic animals adopt uniform mechanisms during adaptation to different elevational environments remains unknown, especially with respect to extreme high elevation environments. To explore this, we analysed the phenotypic and genomic data of seven populations of plateau zokor (Myospalax baileyi) along elevations ranging from 2,700 to 4,300 m. Based on whole-genome sequencing data and demographic reconstruction of the evolutionary history, we show that two populations of plateau zokor living at elevations exceeding 3,700 m diverged from other populations nearly 10,000 years ago. Further, phenotypic comparisons reveal stress-dependent adaptation, as two populations living at elevations exceeding 3,700 m have elevated ratios of heart mass to body mass relative to other populations, and the highest population (4,300 m) displays alterations in erythrocytes. Correspondingly, genomic analysis of selective sweeps indicates that positive selection might contribute to the observed phenotypic alterations in these two extremely high elevation populations, with the adaptive cardiovascular phenotypes of both populations possibly evolving under the functional constrains of their common ancestral population. Taken together, phenotypic and genomic evidence demonstrates that heterogeneous stressors impact adaptations to extreme elevations and reveals stress-dependent and genetically constrained adaptation to hypoxia, collectively providing new insights into the high elevation adaptation.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jie Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jia Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuan-Ting Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Meng-Wen Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhi-Zhong Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Tong-Zuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
35
|
Liu K, Yang J, Yuan H. Recent progress in research on the gut microbiota and highland adaptation on the Qinghai-Tibet Plateau. J Evol Biol 2021; 34:1514-1530. [PMID: 34473899 DOI: 10.1111/jeb.13924] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Microbial communities that inhabit the host's intestine influence many aspects of the host's health and bear the adaptive potential to alterations in harsh environments and diets. The Qinghai-Tibet Plateau represents one of the harshest environments in the world. Preliminary progress has been made in identifying the communities of gut microbes in Indigenous Tibetans and non-human animals. However, due to the complexity of microbial communities, the effects of gut microbes on the host's health and high-plateau adaptation remain unexplained. Herein, we review the latest progress in identifying factors affecting the gut microbiota of native Tibetans and non-human animals and highlight the complex interactions between the gut microbiota, health and highland adaptation, which provides a basis for exploring the correlations between the gut microbiota and clinical indexes in native highland residents and travellers, as well as developing microbiota-based strategies to mitigate health risks for tourists and treatments for mountain sickness during high-altitude travel in the future.
Collapse
Affiliation(s)
- Kui Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Wang L, Josephs EB, Lee KM, Roberts LM, Rellán-Álvarez R, Ross-Ibarra J, Hufford MB. Molecular Parallelism Underlies Convergent Highland Adaptation of Maize Landraces. Mol Biol Evol 2021; 38:3567-3580. [PMID: 33905497 PMCID: PMC8382895 DOI: 10.1093/molbev/msab119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Convergent phenotypic evolution provides some of the strongest evidence for adaptation. However, the extent to which recurrent phenotypic adaptation has arisen via parallelism at the molecular level remains unresolved, as does the evolutionary origin of alleles underlying such adaptation. Here, we investigate genetic mechanisms of convergent highland adaptation in maize landrace populations and evaluate the genetic sources of recurrently selected alleles. Population branch excess statistics reveal substantial evidence of parallel adaptation at the level of individual single-nucleotide polymorphism (SNPs), genes, and pathways in four independent highland maize populations. The majority of convergently selected SNPs originated via migration from a single population, most likely in the Mesoamerican highlands, while standing variation introduced by ancient gene flow was also a contributor. Polygenic adaptation analyses of quantitative traits reveal that alleles affecting flowering time are significantly associated with elevation, indicating the flowering time pathway was targeted by highland adaptation. In addition, repeatedly selected genes were significantly enriched in the flowering time pathway, indicating their significance in adapting to highland conditions. Overall, our study system represents a promising model to study convergent evolution in plants with potential applications to crop adaptation across environmental gradients.
Collapse
Affiliation(s)
- Li Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Emily B Josephs
- The Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kristin M Lee
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | - Lucas M Roberts
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Rubén Rellán-Álvarez
- Langebio, Irapuato, Gto., Mexico
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Genome Center and Center for Population Biology, University of California, Davis, Davis, CA, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
37
|
Using weighted gene co-expression network analysis (WGCNA) to identify the hub genes related to hypoxic adaptation in yak (Bos grunniens). Genes Genomics 2021; 43:1231-1246. [PMID: 34338989 DOI: 10.1007/s13258-021-01137-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/29/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND As a mammal living at the highest altitude in the world, the yak has strong adaptability to the harsh natural environment (such as low temperature, scarce food, especially low oxygen) of Qinghai-Tibet Plateau (QTP) after a long process of natural selection. OBJECTIVE Here, we used Weighted Correlation Network Analysis (WGCNA), a systematic biology method, to identify hypoxic adaptation-related modules and hub genes. The research of the adaptability of yak against hypoxia is of great significance to identify the genetic characteristics and yak breeding. METHODS Based on the transcriptome sequencing data (PRJNA362606), the R package DESeq2 and WGCNA were conducted to analyze differentially expressed genes (DEGs) and construct the gene co-expression network. The module hub genes were identified and characterized by the correlation of gene and trait, module membership (kME). In addition, GO and KEGG enrichment analyses were used to explore the functions of hub genes. RESULTS Our results revealed that 1098, 1429, and 1645 DEGs were identified in muscle, spleen, and lung, respectively. Besides, a total of 13 gene co-expression modules were detected, of which two hypoxic adaptation-related modules (saddlebrown and turquoise) were found. We identified 39 and 150 hub genes in these two modules. Functional enrichment analyses showed that 12 GO terms and 18 KEGG pathways were enriched in the saddlebrown module while 85 GO terms and 22 KEGG pathways were enriched in the turquoise module. The significant pathways related to hypoxia adaptation include FoxO signaling pathway, Thermogenesis pathway, and Retrograde endocannabinoid signaling pathway, etc. CONCLUSIONS: In this study, we obtained two hypoxia-related specific modules and identified hub genes based on the connectivity by constructing a weighted gene co-expression network. Function enrichment analysis of two modules revealed mitochondrion is the most important organelle for hypoxia adaptation. Moreover, the insulin-related pathways and thermogenic-related pathways played a major role. The results of this study provide theoretical guidance for further understanding the molecular mechanism of yak adaptation to hypoxia.
Collapse
|
38
|
Kang M, Ahn B, Youk S, Cho HS, Choi M, Hong K, Do JT, Song H, Jiang H, Kennedy LJ, Park C. High Allelic Diversity of Dog Leukocyte Antigen Class II in East Asian Dogs: Identification of New Alleles and Haplotypes. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09560-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Graham AM, Peters JL, Wilson RE, Muñoz-Fuentes V, Green AJ, Dorfsman DA, Valqui TH, Winker K, McCracken KG. Adaptive introgression of the beta-globin cluster in two Andean waterfowl. Heredity (Edinb) 2021; 127:107-123. [PMID: 33903741 PMCID: PMC8249413 DOI: 10.1038/s41437-021-00437-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 11/09/2022] Open
Abstract
Introgression of beneficial alleles has emerged as an important avenue for genetic adaptation in both plant and animal populations. In vertebrates, adaptation to hypoxic high-altitude environments involves the coordination of multiple molecular and cellular mechanisms, including selection on the hypoxia-inducible factor (HIF) pathway and the blood-O2 transport protein hemoglobin (Hb). In two Andean duck species, a striking DNA sequence similarity reflecting identity by descent is present across the ~20 kb β-globin cluster including both embryonic (HBE) and adult (HBB) paralogs, though it was yet untested whether this is due to independent parallel evolution or adaptive introgression. In this study, we find that identical amino acid substitutions in the β-globin cluster that increase Hb-O2 affinity have likely resulted from historical interbreeding between high-altitude populations of two different distantly-related species. We examined the direction of introgression and discovered that the species with a deeper mtDNA divergence that colonized high altitude earlier in history (Anas flavirostris) transferred adaptive genetic variation to the species with a shallower divergence (A. georgica) that likely colonized high altitude more recently possibly following a range shift into a novel environment. As a consequence, the species that received these β-globin variants through hybridization might have adapted to hypoxic conditions in the high-altitude environment more quickly through acquiring beneficial alleles from the standing, hybrid-origin variation, leading to faster evolution.
Collapse
Affiliation(s)
- Allie M Graham
- Eccles Institute for Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Jeffrey L Peters
- Department of Biological Sciences, Wright State University, Dayton, OH, USA
| | - Robert E Wilson
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Violeta Muñoz-Fuentes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, UK
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| | - Daniel A Dorfsman
- Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Thomas H Valqui
- Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima, Perú
- Universidad Nacional Agraria, La Molina, Perú
| | - Kevin Winker
- University of Alaska Museum and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Kevin G McCracken
- Human Genetics and Genomics, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
- Centro de Ornitología y Biodiversidad (CORBIDI), Surco, Lima, Perú.
- University of Alaska Museum and Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA.
- Department of Biology, University of Miami, Coral Gables, FL, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, USA.
| |
Collapse
|
40
|
Xie DF, Cheng RY, Fu X, Zhang XY, Price M, Lan YL, Wang CB, He XJ. A Combined Morphological and Molecular Evolutionary Analysis of Karst-Environment Adaptation for the Genus Urophysa (Ranunculaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:667988. [PMID: 34177982 PMCID: PMC8223000 DOI: 10.3389/fpls.2021.667988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
The karst environment is characterized by low soil water content, periodic water deficiency, and poor nutrient availability, which provides an ideal natural laboratory for studying the adaptive evolution of its inhabitants. However, how species adapt to such a special karst environment remains poorly understood. Here, transcriptome sequences of two Urophysa species (Urophysa rockii and Urophysa henryi), which are Chinese endemics with karst-specific distribution, and allied species in Semiaquilegia and Aquilegia (living in non-karst habitat) were collected. Single-copy genes (SCGs) were extracted to perform the phylogenetic analysis using concatenation and coalescent methods. Positively selected genes (PSGs) and clusters of paralogous genes (Mul_genes) were detected and subsequently used to conduct gene function annotation. We filtered 2,271 SCGs and the coalescent analysis revealed that 1,930 SCGs shared the same tree topology, which was consistent with the topology detected from the concatenated tree. Total of 335 PSGs and 243 Mul_genes were detected, and many were enriched in stress and stimulus resistance, transmembrane transport, cellular ion homeostasis, calcium ion transport, calcium signaling regulation, and water retention. Both molecular and morphological evidences indicated that Urophysa species evolved complex strategies for adapting to hostile karst environments. Our findings will contribute to a new understanding of genetic and phenotypic adaptive mechanisms of karst adaptation in plants.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui-Yu Cheng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiao Fu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiang-Yi Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan-Ling Lan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | | | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Szpiech ZA, Novak TE, Bailey NP, Stevison LS. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol Lett 2021; 5:408-421. [PMID: 34367665 PMCID: PMC8327953 DOI: 10.1002/evl3.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology Pennsylvania State University University Park Pennsylvania 16801.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16801.,Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| |
Collapse
|
42
|
Deng Y, Meng M, Fang J, Jiang H, Sun N, Lv W, Lei Y, Wang C, Bo J, Liu C, Wang Y, Yang L, He S. Genome of the butterfly hillstream loach provides insights into adaptations to torrential mountain stream life. Mol Ecol Resour 2021; 21:1922-1935. [PMID: 33893720 DOI: 10.1111/1755-0998.13400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/25/2021] [Accepted: 04/13/2021] [Indexed: 11/27/2022]
Abstract
Butterfly hillstream loach (Beaufortia kweichowensis), a benthic fish in the torrential mountain streams, possesses a totally flat ventrum, flattened craniofacial and body skeletons, and enlarged paired fins covered by substantially small keratinous structures. However, little is known about the genetic basis of these specialized morphological adaptations. Here we present a 448.52-Mb genome assembly with contig N50 length of 5.53 Mb by integrating Illumina short-read sequencing, Nanopore long-read sequencing and HiC-based chromatin map. Demographic history reconstruction of the butterfly hillstream loach reveals that the population dynamics is correlated with the different stages of uplifting of the Tibetan Plateau. Comparative genomic analysis finds evidence of six keratin genes in butterfly hillstream loach evolving under positive selection. Within these genes, two keratin genes exhibit species-specific and divergent amino acid changes, suggesting a role in the formation of the unculi. Additionally, a series of positively selected genes, rapid evolving genes, specific variant genes and expanded gene families are found, including genes related to Hedgehog, Notch and BMP pathways, which may be involved in craniofacial development. These findings may have important implications for understanding the genetic basis of phenotypic adaptation to torrential mountain stream life.
Collapse
Affiliation(s)
- Yu Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minghui Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jian Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Bo
- University of Chinese Academy of Sciences, Beijing, China.,Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Chun Liu
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
43
|
Ge Q, Guo Y, Zheng W, Zhao S, Cai Y, Qi X. Molecular mechanisms detected in yak lung tissue via transcriptome-wide analysis provide insights into adaptation to high altitudes. Sci Rep 2021; 11:7786. [PMID: 33833362 PMCID: PMC8032655 DOI: 10.1038/s41598-021-87420-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/23/2023] Open
Abstract
Due to their long-term colonization of and widespread distribution in plateau environments, yaks can serve as an ideal natural animal model for the adaptive evolution of other plateau species, including humans. Some studies reported that the lung and heart are two key organs that show adaptive transcriptional changes in response to high altitudes, and most of the genes that show differential expression in lung tissue across different altitudes display nonlinear regulation. To explore the molecular mechanisms that are activated in yak lung tissue in response to hypoxia, the mRNAs, lncRNAs and miRNAs of lung tissue from 9 yaks living at three different altitudes (3400 m, 4200 m and 5000 m), with three repetitions per altitude, were sequenced. Two Zaosheng cattle from 1500 m were selected as low-altitude control. A total of 21,764 mRNAs, 14,168 lncRNAs and 1209 miRNAs (305 known and 904 novel miRNAs) were identified. In a comparison of yaks and cattle, 4975 mRNAs, 3326 lncRNAs and 75 miRNAs were differentially expressed. A total of 756 mRNAs, 346 lncRNAs and 83 miRNAs were found to be differentially expressed among yaks living at three different altitudes (fold change ≥ 2 and P-value < 0.05). The differentially expressed genes between yaks and cattle were functionally enriched in long-chain fatty acid metabolic process and protein processing, while the differentially expressed genes among yaks living at three different altitudes were enriched in immune response and the cell cycle. Furthermore, competing endogenous RNA (ceRNA) networks were investigated to illustrate the roles of ceRNAs in this process, the result was also support the GO and KEGG analysis. The present research provides important genomic insights for discovering the mechanisms that are activated in response to hypoxia in yak lung tissue.
Collapse
Affiliation(s)
- Qianyun Ge
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
44
|
West CM, Wearing OH, Rhem RG, Scott GR. Pulmonary hypertension is attenuated and ventilation-perfusion matching is maintained during chronic hypoxia in deer mice native to high altitude. Am J Physiol Regul Integr Comp Physiol 2021; 320:R800-R811. [PMID: 33826424 DOI: 10.1152/ajpregu.00282.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia at high altitude can constrain metabolism and performance and can elicit physiological adjustments that are deleterious to health and fitness. Hypoxic pulmonary hypertension is a particularly serious and maladaptive response to chronic hypoxia, which results from vasoconstriction and pathological remodeling of pulmonary arteries, and can lead to pulmonary edema and right ventricle hypertrophy. We investigated whether deer mice (Peromyscus maniculatus) native to high altitude have attenuated this maladaptive response to chronic hypoxia and whether evolved changes or hypoxia-induced plasticity in pulmonary vasculature might impact ventilation-perfusion (V-Q) matching in chronic hypoxia. Deer mouse populations from both high and low altitudes were born and raised to adulthood in captivity at sea level, and various aspects of lung function were measured before and after exposure to chronic hypoxia (12 kPa O2, simulating the O2 pressure at 4,300 m) for 6-8 wk. In lowlanders, chronic hypoxia increased right ventricle systolic pressure (RVSP) from 14 to 19 mmHg (P = 0.001), in association with thickening of smooth muscle in pulmonary arteries and right ventricle hypertrophy. Chronic hypoxia also impaired V-Q matching in lowlanders (measured at rest using SPECT-CT imaging), as reflected by increased log SD of the perfusion distribution (log SDQ) from 0.55 to 0.86 (P = 0.031). In highlanders, chronic hypoxia had attenuated effects on RVSP and no effects on smooth muscle thickness, right ventricle mass, or V-Q matching. Therefore, evolved changes in lung function help attenuate maladaptive plasticity and contribute to hypoxia tolerance in high-altitude deer mice.
Collapse
Affiliation(s)
- Claire M West
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rod G Rhem
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Guo T, Zhao H, Yuan C, Huang S, Zhou S, Lu Z, Niu C, Liu J, Zhu S, Yue Y, Yang Y, Wang X, Chen Y, Yang B. Selective Sweeps Uncovering the Genetic Basis of Horn and Adaptability Traits on Fine-Wool Sheep in China. Front Genet 2021; 12:604235. [PMID: 33708236 PMCID: PMC7940688 DOI: 10.3389/fgene.2021.604235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
Long-term natural and artificial selection leads to change in certain regions of the genome, resulting in selection signatures that can reveal genes associated with selected traits, such as horns (i.e., polled/horned), high-quality wool traits, and high-altitude hypoxia adaptability. These are complex traits determined by multiple genes, regulatory pathways, and environmental factors. A list of genes with considerable effects on horn and adaptability traits has not been found, although multiple quantitative trait loci (QTL) have been identified. Selection signatures could be identified using genetic differentiation (FST), polymorphism levels θπ, and Tajima’s D. This study aimed to identify selection signatures in fine-wool sheep and to investigate the genes annotated in these regions, as well as the biological pathways involved in horn and adaptability traits. For this purpose, the whole-genome sequence of 120 individuals from four breeds, which come from different elevations and habitats in China, was used to analyze selection signatures for horn and adaptability traits. Annotation of the consensus regions of FST and θπ ratios revealed a list of identified genes associated with polled/horned and high-altitude hypoxia adaptability traits, such as RXPF2, EERFC4, MSH6, PP1R12A, THBS1, ATP1B2, RYR2, and PLA2G2E. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified genes related primarily to mismatch repair, metabolism, vascular smooth muscle contraction, and cardiac muscle contraction. This is the first study to demonstrate that selection signatures play an important role in the polled/horned and high-altitude hypoxia adaptability traits of fine-wool sheep breeds that have undergone high-intensity selection and adapted to different ecological environments in China. Changes observed in the genome of fine-wool sheep may have acted on genomic regions that affect performance traits and provide a reference for genome design and breeding.
Collapse
Affiliation(s)
- Tingting Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Xianyang, China.,Engineering Research Center of Sheep and Goat Breeding, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongchang Zhao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Engineering Research Center of Sheep and Goat Breeding, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuhong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Xianyang, China
| | - Shiwei Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Xianyang, China
| | - Zengkui Lu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Engineering Research Center of Sheep and Goat Breeding, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun'e Niu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Engineering Research Center of Sheep and Goat Breeding, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Engineering Research Center of Sheep and Goat Breeding, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shaohua Zhu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yaojing Yue
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Engineering Research Center of Sheep and Goat Breeding, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Xianyang, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Xianyang, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Xianyang, China
| | - Bohui Yang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Engineering Research Center of Sheep and Goat Breeding, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
46
|
Genome-wide comparative analyses reveal selection signatures underlying adaptation and production in Tibetan and Poll Dorset sheep. Sci Rep 2021; 11:2466. [PMID: 33510350 PMCID: PMC7844035 DOI: 10.1038/s41598-021-81932-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The identification of genome-wide selection signatures can provide insights on the mechanisms of natural and/or artificial selection and uncover genes related to biological functions and/or phenotypes. Tibetan sheep are an important livestock in Tibet, providing meat and wool for Tibetans who are renown for breeding livestock that adapt well to high altitudes. Using whole-genome sequences with an effective sequencing depth of 5×, we investigated the genomic diversity and structure and, identified selection signatures of White Tibetan, Oula and Poll Dorset sheep. We obtained 30,163,679 Single Nucleotide Polymorphisms (SNPs) and 5,388,372 indels benchmarked against the ovine Oar_v4.0 genome assembly. Next, using FST, ZHp and XP-EHH approaches, we identified selection signatures spanning a set of candidate genes, including HIF1A, CAPN3, PRKAA1, RXFP2, TRHR and HOXA10 that are associated with pathways and GO categories putatively related to hypoxia responses, meat traits and disease resistance. Candidate genes and GO terms associated with coat color were also identified. Finally, quantification of blood physiological parameters, revealed higher levels of mean corpuscular hemoglobin measurement and mean corpuscular hemoglobin concentration in Tibetan sheep compared with Poll Dorset, suggesting a greater oxygen-carrying capacity in the Tibetan sheep and thus better adaptation to high-altitude hypoxia. In conclusion, this study provides a greater understanding of genome diversity and variations associated with adaptive and production traits in sheep.
Collapse
|
47
|
Lee SH, Kim JW, Lee BC, Oh HJ. Age-specific variations in hematological and biochemical parameters in middle- and large-sized of dogs. J Vet Sci 2020; 21:e7. [PMID: 31940686 PMCID: PMC7000901 DOI: 10.4142/jvs.2020.21.e7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/28/2023] Open
Abstract
Aging triggers cellular and molecular alterations, including genomic instability and organ dysfunction, which increases the risk of disease in mammals. Recently, due to the markedly growing number of aging dogs in the world, as much as 49% in total number of pet dogs, it is necessary to improve and maintain their quality of life by understanding of the biological effects of aging. Therefore, the aim of this study was to determine specific biomarkers in aging dogs as a means of defining a set of hematological/biochemical biomarkers that influence the aging process. Blood samples were collected from younger (1-3 years) and older (7-10 years) dogs of middle/large size. The hematological/biochemistry analysis was performed to evaluate parameters significantly associated with age. Enzyme-linked immunosorbent assay was used to target growth hormone (GH)/insulin growth factor-1 (IGF-1), one of the main regulators of the aging process. Declining levels of total protein and increased levels of glucose in young dogs was observed regardless of their body size. Notably, a significantly high concentration of GH and IGF-1 in the younger dogs compared to the older dogs was found in middle/large-sized dogs. GH and IGF-1 were also found at significantly high levels in large-sized dogs compared to middle-sized dogs, suggesting a similar trend to that of elderly humans. Consequently, glucose, total protein, GH, and IGF-1 were identified as potential biomarkers for regulating the aging process in large/middle-sized dogs. These findings provide an invaluable insight into the mechanism of aging for the field of aging research.
Collapse
Affiliation(s)
- Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Wook Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| | - Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
48
|
Abstract
The domestic dog, as a highly successful domestication model, is well known as a favored human companion. Exploring its domestication history should provide great insight into our understanding of the prehistoric development of human culture and productivity. Furthermore, investigation on the mechanisms underpinning the morphological and behavioral traits associated with canid domestication syndrome is of significance not only for scientific study but also for human medical research. Current development of a multidisciplinary canine genome database, which includes enormous omics data, has substantially improved our understanding of the genetic makeup of dogs. Here, we reviewed recent advances associated with the original history and genetic basis underlying environmental adaptations and phenotypic diversities in domestic dogs, which should provide perspectives on improving the communicative relationship between dogs and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| |
Collapse
|
49
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
50
|
Sun S, Wu Y, Ge X, Jakovlić I, Zhu J, Mahboob S, Al-Ghanim KA, Al-Misned F, Fu H. Disentangling the interplay of positive and negative selection forces that shaped mitochondrial genomes of Gammarus pisinnus and Gammarus lacustris. ROYAL SOCIETY OPEN SCIENCE 2020; 7:190669. [PMID: 32218929 PMCID: PMC7029888 DOI: 10.1098/rsos.190669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/29/2019] [Indexed: 05/16/2023]
Abstract
We hypothesized that the mitogenome of Gammarus lacustris (GL), native to the Qinghai-Tibet Plateau, might exhibit genetic adaptations to the extreme environmental conditions associated with high altitudes (greater than 3000 m). To test this, we also sequenced the mitogenome of Gammarus pisinnus (GP), whose native range is close to the Tibetan plateau, but at a much lower altitude (200-1500 m). The two mitogenomes exhibited conserved mitochondrial architecture, but low identity between genes (55% atp8 to 76.1% cox1). Standard (homogeneous) phylogenetic models resolved Gammaridae as paraphyletic, but 'heterogeneous' CAT-GTR model as monophyletic. In indirect support of our working hypothesis, GL, GP and Gammarus fossarum exhibit evidence of episodic diversifying selection within the studied Gammaroidea dataset. The mitogenome of GL generally evolves under a strong purifying selection, whereas GP evolves under directional (especially pronounced in atp8) and/or relaxed selection. This is surprising, as GP does not inhabit a unique ecological niche compared to other gammarids. We propose that this rapid evolution of the GP mitogenome may be a reflection of its relatively recent speciation and heightened non-adaptive (putatively metabolic rate-driven) mutational pressures. To test these hypotheses, we urge sequencing mitogenomes of remaining Gammarus species populating the same geographical range as GP.
Collapse
Affiliation(s)
- Shengming Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| | - Ying Wu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan, People's Republic of China
| | - Jian Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, People's Republic of China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Khalid Abdullah Al-Ghanim
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh-11451, Riyadh, Saudi Arabia
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, People's Republic of China
| |
Collapse
|