1
|
Zhao C, Zhao L, Liu Y, Sun LQ, Li XR, Wang Y, Sun W. The impact of serum uric acid on biological aging and mortality risk: insights from the NHANES and CHARLS cohorts. Front Nutr 2025; 12:1569798. [PMID: 40331095 PMCID: PMC12052535 DOI: 10.3389/fnut.2025.1569798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Background Serum uric acid (SUA), a byproduct of purine metabolism, exerts both antioxidant and pro-inflammatory effects, making its role in aging and chronic diseases a subject of ongoing debate. Despite this, the mechanisms by which SUA influences the aging process remain poorly understood. Methods We analyzed data from the NHANES (1999-2010) and CHARLS (2011-2015) cohorts to investigate SUA's impact on biological aging. Generalized linear regression models assessed SUA's effect on biological aging markers [ΔKDM-BA, ΔPhenoAge, and allostatic load (AL)], while Cox regression models estimated its association with all-cause and premature mortality. Dose-response relationships between SUA levels and aging markers (ΔKDM-BA, ΔPhenoAge, and AL), as well as all-cause and premature mortality, were evaluated using restricted cubic splines (RCS). Results In both cohorts, elevated SUA levels were significantly associated with accelerated aging. In the NHANES cohort, for each 1 mg/dL increase in SUA, ΔKDM-BA increased by 0.52 years (95% CI: 0.43-0.61, p < 0.0001), and AL increased by 0.38 (95% CI: 0.29-0.47, p < 0.0001). In the CHARLS cohort, SUA was similarly linked to an increase in ΔKDM-BA by 0.65 years (95% CI: 0.57-0.74, p < 0.0001) and AL by 0.15 (95% CI: 0.12-0.18, p < 0.0001). RCS analysis revealed a nonlinear association between SUA and ΔKDM-BA in NHANES, with a more pronounced acceleration of aging when SUA levels exceeded 4.16 mg/dL (nonlinear p < 0.0001). In CHARLS, SUA showed a nonlinear relationship with ΔKDM-BA (nonlinear p = 0.01). Additionally, in NHANES, SUA levels were associated with increased all-cause (HR: 1.04, 95% CI: 1.01-1.07, p = 0.01) and premature mortality (HR: 1.06, 95% CI: 1.00-1.13, p = 0.046). RCS analysis further demonstrated a U-shaped nonlinear relationship between SUA levels and both all-cause and premature mortality. In contrast, SUA did not show a significant association with mortality outcomes in the CHARLS cohort. Conclusion Elevated SUA is associated with accelerated biological aging in both U.S. and Chinese populations, but its link to mortality was evident only in the NHANES cohort. These findings highlight SUA as a potential aging marker and call for further population-specific investigation.
Collapse
Affiliation(s)
- Cong Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Leying Zhao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Liu
- Department of Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Li-qiao Sun
- Department of Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Xin-rong Li
- Department of Chinese Medicine, Cangzhou Central Hospital, Cangzhou, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Weiwei Sun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Abdel Mageed SS, Elimam H, Elesawy AE, Abulsoud AI, Raouf AA, Tabaa MME, Mohammed OA, Zaki MB, Abd-Elmawla MA, El-Dakroury WA, Mangoura SA, Elrebehy MA, Elballal MS, Mohamed AA, Ashraf A, Abdel-Reheim MA, Eleragi AMS, Abdellatif H, Doghish AS. Unraveling the impact of miRNAs on gouty arthritis: diagnostic significance and therapeutic opportunities. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3433-3450. [PMID: 39560752 PMCID: PMC11978694 DOI: 10.1007/s00210-024-03603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Gouty arthritis is a prevalent inflammatory illness. Gout attacks begin when there is an imbalance in the body's uric acid metabolism, which leads to urate buildup and the development of the ailment. A family of conserved, short non-coding RNAs known as microRNAs (miRNAs) can regulate post-transcriptional protein synthesis by attaching to the 3' untranslated region (UTR) of messenger RNA (mRNA). An increasing amount of research is pointing to miRNAs as potential players in several inflammatory diseases, including gouty arthritis. miRNAs may influence the progression of the disease by regulating immune function and inflammatory responses. This review mainly focused on miRNAs and how they contribute to gouty arthritis. It also looked at how miRNAs could be used as diagnostic, prognostic, and potential therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hanan Elimam
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Galala University, New Galala City, 43713, Suez,, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Aya A Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Ali M S Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
- Department of Anatomy and Embryology, Faculty of Medicine, University of Mansoura, Mansoura, 35516, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| |
Collapse
|
3
|
Bian X, Ge Z, Chen X, Zhong S, Li L, Xu W, Li B, Chen S, Lv G. Protective effects and mechanisms of quercetin in animal models of hyperuricemia: A systematic review and meta-analysis. Pharmacol Res 2025; 213:107665. [PMID: 39986664 DOI: 10.1016/j.phrs.2025.107665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Quercetin, a prevalent natural flavonoid found in various medicinal plants, including Dendrobium officinale Kimura & Migo, has garnered attention for its potential health benefits. However, foundational animal studies investigating the effects of quercetin on lowering uric acid levels remain insufficiently established, and the number of related clinical studies is limited. This scarcity hinders the practical application of quercetin in managing hyperuricemia. We systematically searched for preclinical studies published by December 2024 in nine databases, such as PubMed, Web of Science, and Embase. The results of our meta-analysis showed that, compared with the model group, quercetin not only effectively alleviated the pathological injury of the kidney and liver and improved the renal function indexes in the animal model of hyperuricemia but also played a role in lowering uric acid by modulating multiple signaling pathways such as oxidative stress, lipid metabolism, and transporter proteins. Quercetin showed a more substantial effect in decreasing serum creatinine levels (SMD = -4.29, 95 % CI [-6.48, -2.10], P = 0.0001), blood urea nitrogen levels (SMD = -3.08, 95 % CI [-4.80, -1.35], P = 0.0005), and Up-regulate organic anion transporter 1 mRNA expression levels (SMD = 2.72, 95 %CI [0.45, 4.99], P = 0.02) compared to the positive control group. Sensitivity analyses confirmed the stability of the results, while the subgroup analysis indicates that the treatment course may be the main source of heterogeneity. The results of the Dose-efficacy analysis suggested that quercetin had a more substantial protective effect against hyperuricemia at a gavage dose of 100-200 mg/kg. However, to more accurately assess the effects of quercetin on hyperuricemia, it is essential to conduct additional high-quality, large-scale animal trials to validate our findings.
Collapse
Affiliation(s)
- Xueren Bian
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Zhihao Ge
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xuannan Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Shutian Zhong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China
| | - Lu Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Wanfeng Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang 310014, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China.
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
4
|
Kaufmann D, Chaiyakunapruk N, Schlesinger N. Optimizing gout treatment: A comprehensive review of current and emerging uricosurics. Joint Bone Spine 2025; 92:105826. [PMID: 39622367 DOI: 10.1016/j.jbspin.2024.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/29/2024]
Abstract
Gout is the most common inflammatory arthritis, affecting approximately 5.1% of adults in the United States (US) population. Gout is a metabolic and autoinflammatory disease. Elevated uric acid pools lead to the precipitation of monosodium urate (MSU) crystals in and around joints, as well as other tissues, and the subsequent autoinflammatory response. Since elevated serum urate (SU) levels (hyperuricemia) correspond with gout severity, urate-lowering therapies (ULTs) are the cornerstone of gout treatment. ULTs include xanthine oxidoreductase inhibitors, uricosurics, less commonly used in the US but widely used in Europe and Asia, including benzbromarone, dotinurad, and probenecid (the only US Food and Drug Administration (FDA) approved uricosuric in the US), and uricases, including rasburicase and pegloticase (available only in the US). Over 90% of the daily load of uric acid filtered by the kidneys is reabsorbed through renal transporters. These urate transporters include uric acid transporter 1 (URAT1), glucose transporter 9, and organic anion transporters 1, 3, and 4 (OAT1, OAT3, OAT4). They are the target of approved and in-the-pipeline uricosurics. Any drug that increases renal excretion of uric acid, independently of the mechanism through which it exerts its effect, may be considered a uricosuric drug. This review discusses drugs that increase renal excretion of uric acid, either approved or in development, as well as off-label drugs with uricosuric properties.
Collapse
Affiliation(s)
- Dan Kaufmann
- Division of Rheumatology, Department of Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, 84132 Utah, United States.
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, 84132 Utah, United States
| | - Naomi Schlesinger
- Division of Rheumatology, Department of Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, 84132 Utah, United States; Department of Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, 84132 Utah, United States
| |
Collapse
|
5
|
Cai W, Yang M, Zhao Q, Yi G, Lin P, Chen A, De G. hURAT1 Transgenic Mouse Model for Evaluating Targeted Urate-Lowering Agents. Int J Rheum Dis 2025; 28:e70034. [PMID: 39740040 DOI: 10.1111/1756-185x.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/03/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Urate transporter 1 (URAT1) is a well-known therapeutic target for reducing urate levels in the treatment of hyperuricemia and gout. However, current pharmacological studies have failed to evaluate the efficacy of URAT1 inhibitors in non-primate animal models. We established a human URAT1 (hURAT1) transgenic knock-in (KI) mouse model to assess uricosuric agents' effectiveness and characterize URAT1-caused pathogenesis. METHODS We generated hURAT1 transgenic mice using CRISPR/Cas9 KI technique. mUrat1 knockout was achieved by replacing exon 1 coding sequence with a human SLC22A12 coding sequence (CDS)-pA cassette. Based on the above transgenic mice, a hyperuricemia model was further established by hypoxanthine administration. RESULTS The hURAT1-KI mice successfully expressed hURAT1 protein to the apical side of the kidney proximal tubule epithelium, where native human URAT1 is localized in human kidney. Upon hypoxanthine challenge, the blood uric acid (UA) level was elevated in hURAT1-KI mice (251 μmol/L), showing an approximately 37% increase compared to wild-type (WT) mice (183.5 μmol/L). The elevated blood UA level could be alleviated by hURAT1 inhibitor benzbromarone treatment in the hURAT1-KI mice (164.2 μmol/L vs. 251 μmol/L, p < 0.05) whereas no response was observed in WT littermates (168.8 μmol/L vs. 183.5 μmol/L). CONCLUSION The hURAT1-KI hyperuricemia mouse model would be valuable for preclinical evaluation of gout treatment with urate-lowering drugs and for studying UA metabolic complexities in humans.
Collapse
Affiliation(s)
- Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Miyi Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghe Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, Texas, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Peihui Lin
- Division of Nephrology, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Apeng Chen
- Department of Respiratory, Children's Hospital of Nanjing MedicalUniversity, Nanjing, Jiangsu, China
| | - Gejing De
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Pommereau A, Sassone F, Poli A, De Silvestris M, Scarabottolo L, Zuschlag Y, Licher T, Bärenz F. The development of a novel high-throughput membrane potential assay and a solid-supported membrane (SSM)-based electrophysiological assay to study the pharmacological inhibition of GLUT9/SLC2A9 isoforms in a drug discovery program. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100193. [PMID: 39522878 DOI: 10.1016/j.slasd.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
GLUT9/SLC2A9 is a urate transporter and takes a fundamental role in the maintenance of normal serum urate levels. GLUT9 is the sole transporter of reabsorbed urate from renal epithelial cells to blood, thus making it an ideal pharmacological target for the development of urate-lowering drugs. None of the three currently available assays for studying GLUT9 pharmacological inhibition can support a high throughput drug discovery screening campaign. In this manuscript we present two novel assay technologies which can be used in a drug discovery screening cascade for GLUT9: a GLUT9 membrane potential assay for primary screening; and a solid-supported membrane (SSM)-based supported electrophysiological assay for secondary screening.
Collapse
Affiliation(s)
- Antje Pommereau
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | | | | | | | | | - Yasmin Zuschlag
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Thomas Licher
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany
| | - Felix Bärenz
- Sanofi, Integrated Drug Discovery, Industriepark Hoechst, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Dai Y, Lee CH. Transport mechanism and structural pharmacology of human urate transporter URAT1. Cell Res 2024; 34:776-787. [PMID: 39245778 PMCID: PMC11528023 DOI: 10.1038/s41422-024-01023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Urate is an endogenous product of purine metabolism in the liver. High urate levels in the blood lead to gout, a very common and painful inflammatory arthritis. Excreted urate is reabsorbed in the kidney mainly by URAT1 antiporter, a key target for anti-gout drugs. To uncover the mechanisms of urate transport and drug inhibition, we determined cryo-EM structures of human URAT1 with urate, counter anion pyrazinoate, or anti-gout drugs of different chemotypes - lesinurad, verinurad, and dotinurad. We captured the outward-to-inward transition of URAT1 during urate uptake, revealing that urate binds in a phenylalanine-rich pocket and engages with key gating residues to drive the transport cycle. In contrast to the single binding site for urate, pyrazinoate interacts with three distinct, functionally relevant sites within URAT1, a mechanism that has not yet been observed in other anion antiporters. In addition, we found that while all three drugs compete with substrates and halt the transport cycle, verinurad and dotinurad further hijack gating residues to achieve high potency. These insights advance our understanding of organic anion transport and provide a foundation for designing improved gout therapeutics.
Collapse
Affiliation(s)
- Yaxin Dai
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chia-Hsueh Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Zhuang H, Cao X, Tang X, Zou Y, Yang H, Liang Z, Yan X, Chen X, Feng X, Shen L. Investigating metabolic dysregulation in serum of triple transgenic Alzheimer's disease male mice: implications for pathogenesis and potential biomarkers. Amino Acids 2024; 56:10. [PMID: 38315232 PMCID: PMC10844422 DOI: 10.1007/s00726-023-03375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/11/2023] [Indexed: 02/07/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease that lacks convenient and accessible peripheral blood diagnostic markers and effective drugs. Metabolic dysfunction is one of AD risk factors, which leaded to alterations of various metabolites in the body. Pathological changes of the brain can be reflected in blood metabolites that are expected to explain the disease mechanisms or be candidate biomarkers. The aim of this study was to investigate the changes of targeted metabolites within peripheral blood of AD mouse model, with the purpose of exploring the disease mechanism and potential biomarkers. Targeted metabolomics was used to quantify 256 metabolites in serum of triple transgenic AD (3 × Tg-AD) male mice. Compared with controls, 49 differential metabolites represented dysregulation in purine, pyrimidine, tryptophan, cysteine and methionine and glycerophospholipid metabolism. Among them, adenosine, serotonin, N-acetyl-5-hydroxytryptamine, and acetylcholine play a key role in regulating neural transmitter network. The alteration of S-adenosine-L-homocysteine, S-adenosine-L-methionine, and trimethylamine-N-oxide in AD mice serum can served as indicator of AD risk. The results revealed the changes of metabolites in serum, suggesting that metabolic dysregulation in periphery in AD mice may be related to the disturbances in neuroinhibition, the serotonergic system, sleep function, the cholinergic system, and the gut microbiota. This study provides novel insights into the dysregulation of several key metabolites and metabolic pathways in AD, presenting potential avenues for future research and the development of peripheral biomarkers.
Collapse
Affiliation(s)
- Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Yongdong Zou
- Center for Instrumental Analysis, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Hongbo Yang
- Center for Instrumental Analysis, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Xi Yan
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xiaolu Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, People's Republic of China
| | - Xingui Feng
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518071, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
9
|
Sun F, Wang C, Xu Y, Lin P, Cao Y, Zhang J, Li X, Jiang X, Fu Y, Cao Y. Randomized, Double-Blind, Placebo-Controlled, Phase I, Dose- Escalation Study to Evaluate the Tolerance, Pharmacokinetics, Pharmacodynamics and Immunogenicity of PEGylated Urate Oxidase for Injection in Healthy Adults and Hyperuricemia Volunteers: Study Protocol. Diabetes Metab Syndr Obes 2023; 16:4263-4268. [PMID: 38164417 PMCID: PMC10758163 DOI: 10.2147/dmso.s429114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Hyperuricemia is a disease with abnormal purine metabolism, which leads to the increase of urate concentration. It is an independent risk factor for the occurrence and development of metabolic syndrome, type 2 diabetes, hypertension, cardiovascular disease, chronic kidney disease, and gout. The enzyme urate oxidase can metabolize urate to allantoin, resulting in decreased urate concentrations. Pegylated the urate oxidase can extend half-life and decrease immunogenicity of the protein. This trial aims to evaluate the safety, tolerability, pharmacokinetics(PK), pharmacodynamics(PD) and immunogenicity of a new intravenous PEGylated urate oxidase produced by Xiuzheng Bio-Medicine Research Institute Co., Ltd. Methods and Analysis A randomized, double-blind, placebo-controlled, phase I, dose escalation study will be conducted in China. In total, 56 subjects will be enrolled in the study, with 24 healthy subjects in the low dose-escalation stage and 32 patients with hyperuricemia in the high dose-escalation stage. There is a bridging between the two stages. Subjects are randomized to PEGylated urate oxidase or the placebo in a 3:1 ratio in each group and followed up for 71 days observation. The primary outcomes include PK, PD, tolerability; the secondary outcomes include safety and immunogenicity. Ethics and Dissemination The trial is performed abiding by the Declaration of Helsinki, Good clinical practice (GCP) and the guidelines of China National Medical Products Administration (NMPA). Relevant documents, including protocol, informed consent and drug inspection report, are all approved independently by the Medical Ethics Committee of the Affiliated Hospital of Qingdao University. The first subject was enrolled on January 17, 2022. Trial Registration Clinicaltrials, NCT05226013 (Registered April 2, 2022, Retrospectively registered). ChinaDrugTrials, CTR20211801(Registered July 27, 2021).
Collapse
Affiliation(s)
- Feifei Sun
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Chenjing Wang
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Yi Xu
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Pingping Lin
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Yaozhong Cao
- Clinical Medical Center, Xiuzheng Pharmaceutical Group, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiahui Zhang
- Xiuzheng Bio-Medicine Research Institute, Hangzhou, Zhejiang, People’s Republic of China
| | - Xin Li
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Xin Jiang
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Yao Fu
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Yu Cao
- Clinical Trials Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
10
|
Tong Y, Wei Y, Ju Y, Li P, Zhang Y, Li L, Gao L, Liu S, Liu D, Hu Y, Li Z, Yu H, Luo Y, Wang J, Wang Y, Zhang Y. Anaerobic purinolytic enzymes enable dietary purine clearance by engineered gut bacteria. Cell Chem Biol 2023; 30:1104-1114.e7. [PMID: 37164019 DOI: 10.1016/j.chembiol.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023]
Abstract
Uric acid, the end product of purine degradation, causes hyperuricemia and gout, afflicting hundreds of millions of people. The debilitating effects of gout are exacerbated by dietary purine intake, and thus a potential therapeutic strategy is to enhance purine degradation in the gut microbiome. Aerobic purine degradation involves oxidative dearomatization of uric acid catalyzed by the O2-dependent uricase. The enzymes involved in purine degradation in strictly anaerobic bacteria remain unknown. Here we report the identification and characterization of these enzymes, which include four hydrolases belonging to different enzyme families, and a prenyl-flavin mononucleotide-dependent decarboxylase. Introduction of the first two hydrolases to Escherichia coli Nissle 1917 enabled its anaerobic growth on xanthine as the sole nitrogen source. Oral supplementation of these engineered probiotics ameliorated hyperuricemia in a Drosophila melanogaster model, including the formation of renal uric acid stones and a shortened lifespan, providing a route toward the development of purinolytic probiotics.
Collapse
Affiliation(s)
- Yang Tong
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemistry, Tianjin University, Tianjin 300072, P.R. China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A∗STAR), Singapore 138669, Singapore
| | - Yingjie Ju
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Peishan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P.R. China
| | - Liqin Li
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Zhangjiawo Industrial Park, No. 16 Huiyuan Road, Zhangjiawo Town, Xiqing District, Tianjin 300380, China
| | - Lujuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shengnan Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Dazhi Liu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Meining Pharma Inc, 2-401-1, Bldg 8, Huiying Industrial Park, No. 86 West Zhonghuan Road, Tianjin Pilot Free Trade Zone, Tianjin 300308, China
| | - Yiling Hu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Zhi Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Hongbin Yu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jian Wang
- Tianjin Speerise Challenge Biotechnology Co., Ltd., Zhangjiawo Industrial Park, No. 16 Huiyuan Road, Zhangjiawo Town, Xiqing District, Tianjin 300380, China
| | - Yiwen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Department of Chemistry, Tianjin University, Tianjin 300072, P.R. China.
| |
Collapse
|
11
|
Chen C, Smith MT. The NLRP3 inflammasome: role in the pathobiology of chronic pain. Inflammopharmacology 2023:10.1007/s10787-023-01235-8. [PMID: 37106238 DOI: 10.1007/s10787-023-01235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Chronic pain is not only one of the most common health problems, it is often challenging to treat adequately. Chronic pain has a high prevalence globally, affecting approximately 20% of the adult population. Chronic inflammatory pain and neuropathic (nerve) pain conditions are areas of large unmet medical need because analgesic/adjuvant agents recommended for alleviation of these types of chronic pain often lack efficacy and/or they produce dose-limiting side effects. Recent work has implicated the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome in the pathobiology of chronic pain, especially neuropathic and inflammatory pain conditions. NLRP3 is activated by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). This in turn leads to recruitment and activation of caspase-1 an enzyme that cleaves the inactive IL-1β and IL-18 precursors to their respective mature pro-inflammatory cytokines (IL-1β and IL-18) for release into the cellular milieu. Caspase-1 also cleaves the pyroptosis-inducing factor, gasdermin D, that leads to oligomerization of its N-terminal fragment to form pores in the host cell membrane. This then results in cellular swelling, lysis and release of cytoplasmic contents in an inflammatory form of cell death, termed pyroptosis. The ultimate outcome may lead to the development of neuropathic pain and/or chronic inflammatory pain. In this review, we address a role for NLRP3 inflammasome activation in the pathogenesis of various chronic pain conditions.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Science, School of Chemistry and Molecular Biosciences and School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, St Lucia Campus, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
12
|
Tran L, Das S, Zhao L, Finn MG, Gaucher EA. Oral Delivery of Nanoparticles Carrying Ancestral Uricase Enzyme Protects against Hyperuricemia in Knockout Mice. Biomacromolecules 2023; 24:2003-2008. [PMID: 37126604 PMCID: PMC10170503 DOI: 10.1021/acs.biomac.2c01388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The therapeutic value of delivering recombinant uricase to human patients has been appreciated for decades. The development of therapeutic uricases has been hampered by the fact that humans do not encode an endogenous uricase and therefore most recombinant forms of the protein are recognized as foreign by the immune system and are therefore highly immunogenic. In order to both shield and stabilize the active enzyme, we encapsulated a functional ancestral uricase in recombinant, noninfectious Qβ capsid nanoparticles and characterized its catalytic activity. Oral delivery of the nanoparticles moderated key symptoms of kidney dysfunction in uricase-knockout mice by lowering uric acid levels. Histological kidney samples of the treated mice suggest that delivery of recombinant uricase had a protective effect against the destructive effects of uric acid that lead to renal failure caused by hyperuricemia.
Collapse
Affiliation(s)
- Lily Tran
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - M G Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30306, United States
| | - Eric A Gaucher
- Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
13
|
Qi X, Ma Y, Guan K, Liu C, Wang R, Ma Y, Niu T. Whey protein peptide PEW attenuates hyperuricemia and associated renal inflammation in potassium oxonate and hypoxanthine-induced rat. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2022.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Spengler RN, Kienast F, Roberts P, Boivin N, Begun DR, Ashastina K, Petraglia M. Bearing Fruit: Miocene Apes and Rosaceous Fruit Evolution. BIOLOGICAL THEORY 2023; 18:134-151. [PMID: 37214192 PMCID: PMC10191964 DOI: 10.1007/s13752-022-00413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 09/08/2022] [Indexed: 05/24/2023]
Abstract
Extinct megafaunal mammals in the Americas are often linked to seed-dispersal mutualisms with large-fruiting tree species, but large-fruiting species in Europe and Asia have received far less attention. Several species of arboreal Maloideae (apples and pears) and Prunoideae (plums and peaches) evolved large fruits starting around nine million years ago, primarily in Eurasia. As evolutionary adaptations for seed dispersal by animals, the size, high sugar content, and bright colorful visual displays of ripeness suggest that mutualism with megafaunal mammals facilitated the evolutionary change. There has been little discussion as to which animals were likely candidate(s) on the late Miocene landscape of Eurasia. We argue that several possible dispersers could have consumed the large fruits, with endozoochoric dispersal usually relying on guilds of species. During the Pleistocene and Holocene, the dispersal guild likely included ursids, equids, and elephantids. During the late Miocene, large primates were likely also among the members of this guild, and the potential of a long-held mutualism between the ape and apple clades merits further discussion. If primates were a driving factor in the evolution of this large-fruit seed-dispersal system, it would represent an example of seed-dispersal-based mutualism with hominids millions of years prior to crop domestication or the development of cultural practices, such as farming.
Collapse
Affiliation(s)
- Robert N. Spengler
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Frank Kienast
- Senckenberg Research Station of Quaternary, Palaeontology, Weimar, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- isoTROPIC Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- School of Social Science, The University of Queensland, Brisbane, Australia
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| | - David R. Begun
- Department of Anthropology, University of Toronto, Toronto, Canada
| | - Kseniia Ashastina
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
- Domestication and Anthropogenic Evolution Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Michael Petraglia
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC USA
- Australian Research Centre for Human Evolution, Griffith University, Nathan, Queensland Australia
| |
Collapse
|
15
|
An MF, Shen C, Zhang SS, Wang MY, Sun ZR, Fan MS, Zhang LJ, Zhao YL, Sheng J, Wang XJ. Anti-hyperuricemia effect of hesperetin is mediated by inhibiting the activity of xanthine oxidase and promoting excretion of uric acid. Front Pharmacol 2023; 14:1128699. [PMID: 37124197 PMCID: PMC10131109 DOI: 10.3389/fphar.2023.1128699] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Hesperetin is a natural flavonoid with many biological activities. In view of hyperuricemia treatment, the effects of hesperetin in vivo and in vitro, and the underlying mechanisms, were explored. Hyperuricemia models induced by yeast extract (YE) or potassium oxonate (PO) in mice were created, as were models based on hypoxanthine and xanthine oxidase (XOD) in L-O2 cells and sodium urate in HEK293T cells. Serum level of uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) were reduced significantly after hesperetin treatment in vivo. Hesperetin provided hepatoprotective effects and inhibited xanthine oxidase activity markedly, altered the level of malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and catalase (CAT), downregulated the XOD protein expression, toll-like receptor (TLR)4, nucleotide binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, interleukin-18 (IL-18), upregulated forkhead box O3a (FOXO3a), manganese superoxide dismutase (MnSOD) in a uric acid-synthesis model in mice. Protein expression of organic anion transporter 1 (OAT1), OAT3, organic cationic transporter 1 (OCT1), and OCT2 was upregulated by hesperetin intervention in a uric acid excretion model in mice. Our results proposal that hesperetin exerts a uric acid-lowering effect through inhibiting xanthine oxidase activity and protein expression, intervening in the TLR4-NLRP3 inflammasome signaling pathway, and up-regulating expression of FOXO3a, MnSOD, OAT1, OAT3, OCT1, and OCT2 proteins. Thus, hesperetin could be a promising therapeutic agent against hyperuricemia.
Collapse
Affiliation(s)
- Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Chang Shen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shao-Shi Zhang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ze-Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Mao-Si Fan
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Li-Juan Zhang
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun-Li Zhao
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research and Development of Natural Products, School of Pharmacy, School of Chemical Science and Technology, Yunnan University, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yun-Li Zhao, ; Jun Sheng, ; Xuan-Jun Wang,
| |
Collapse
|
16
|
ALRashdi BM, Elgebaly HA, Germoush MO, Qarmush MM, Azab MS, Alruhaimi RS, Ahmeda AF, Abukhalil MH, Kamel EM, Arab HH, Alzoghaibi MA, Alotaibi MF, Mahmoud AM. A flavonoid-rich fraction of Monolluma quadrangula inhibits xanthine oxidase and ameliorates potassium oxonate-induced hyperuricemia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63520-63532. [PMID: 35461413 DOI: 10.1007/s11356-022-20274-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Hyperuricemia represents a risk factor for the progression of chronic kidney disease. Oxidative stress and inflammation are implicated in the mechanisms underlying hyperuricemia-mediated kidney injury. Monolluma quadrangula possesses several beneficial effects; however, its effect on hyperuricemia has not been investigated. This study evaluated the renoprotective and xanthine oxidase (XO) inhibitory activity of M. quadrangula in hyperuricemic rats. Phytochemical investigation revealed the presence of six known flavonoid isolated for the first time from this species. The rats received M. quadrangula extract (MQE) and potassium oxonate (PO) for 7 days. In vitro assays showed the radical scavenging and XO inhibitory activities of MQE, and in silico molecular docking revealed the inhibitory activity of the isolated flavonoids towards XO. Hyperuricemic rats showed elevated serum uric acid, creatinine, urea, and XO activity, and renal pro-inflammatory cytokines, MDA and NO, and decreased GSH, SOD, and catalase. MQE ameliorated serum uric acid, urea, creatinine, and XO activity, and renal pro-inflammatory cytokines. In addition, MQE attenuated renal oxidative stress, enhanced antioxidants, downregulated URAT-1, and GLUT-9 and upregulated OAT-1 in PO-induced rats. In conclusion, M. quadrangula attenuated hyperuricemia and kidney impairment by suppressing XO activity, oxidative stress and inflammation, and modulating urate transporters.
Collapse
Affiliation(s)
- Barakat M ALRashdi
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
| | - Hassan A Elgebaly
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
| | | | - Mona S Azab
- Biology Department, College of Science, Jouf University, Sakakah, Saudi Arabia
- Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Reem S Alruhaimi
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Ma'an, Jordan
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Salah Salim St, Beni-Suef, 62514, Egypt.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
17
|
Hormesis and Oxidative Distress: Pathophysiology of Reactive Oxygen Species and the Open Question of Antioxidant Modulation and Supplementation. Antioxidants (Basel) 2022; 11:antiox11081613. [PMID: 36009331 PMCID: PMC9405171 DOI: 10.3390/antiox11081613] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Alterations of redox homeostasis leads to a condition of resilience known as hormesis that is due to the activation of redox-sensitive pathways stimulating cell proliferation, growth, differentiation, and angiogenesis. Instead, supraphysiological production of reactive oxygen species (ROS) exceeds antioxidant defence and leads to oxidative distress. This condition induces damage to biomolecules and is responsible or co-responsible for the onset of several chronic pathologies. Thus, a dietary antioxidant supplementation has been proposed in order to prevent aging, cardiovascular and degenerative diseases as well as carcinogenesis. However, this approach has failed to demonstrate efficacy, often leading to harmful side effects, in particular in patients affected by cancer. In this latter case, an approach based on endogenous antioxidant depletion, leading to ROS overproduction, has shown an interesting potential for enhancing susceptibility of patients to anticancer therapies. Therefore, a deep investigation of molecular pathways involved in redox balance is crucial in order to identify new molecular targets useful for the development of more effective therapeutic approaches. The review herein provides an overview of the pathophysiological role of ROS and focuses the attention on positive and negative aspects of antioxidant modulation with the intent to find new insights for a successful clinical application.
Collapse
|
18
|
Uricase sensitizes hepatocellular carcinoma cells to 5-fluorouracil through uricase-uric acid-UMP synthase axis. J Physiol Biochem 2022; 78:679-687. [PMID: 35674867 DOI: 10.1007/s13105-022-00894-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Conventional chemotherapy plays a key role in hepatocellular carcinoma (HCC) treatment, however, with intrinsic or acquired chemoresistance being a major constraint. Here, we aimed to identify potential target to reverse such chemoresistance. In the present study, we found significant difference in uridine monophosphate synthetase (UMPS) expression between 5-FU resistant and sensitive HCC cell lines and the overexpression or downregulation of UMPS impacted 5-FU response in HCC cells. We further found that inhibition of UMPS activity with uric acid at concentration present in human plasma decreased the 5-FU sensitivity of HCC cells, while reduction of uric acid levels with uricase improved the 5-FU sensitivity of HCC cells as well as colorectal cancer cells. In vivo studies also suggested that modulation of uric acid levels did affect 5-FU sensitivity of tumors. These data indicated that UMPS was correlated with the 5-FU resistance in HCC cells and uricase sensitized cancer cells to 5-FU through uricase-uric acid-UMP synthase axis, which provided a potential strategy to improve the efficacy of 5-FU-based chemotherapy for human cancers.
Collapse
|
19
|
Abdulhafiz F, Farhan Hanif Reduan M, Hamzah Z, Abdul Kari Z, Dawood MA, Mohammed A. Acute Oral Toxicity Assessment and Anti-hyperuricemic Activity of Alocasia longiloba Extracts on Sprague-Dawley Rats. Saudi J Biol Sci 2022; 29:3184-3193. [PMID: 35844413 PMCID: PMC9280170 DOI: 10.1016/j.sjbs.2022.01.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/11/2021] [Accepted: 01/22/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperuricemia is defined as a metabolic abnormality that occurs when serum uric acid (UA) level is abnormally high in the body. We previously reported that A. longiloba possesses various important phytochemicals and in vitro xanthine oxidase activity. Despite A. longiloba ethnomedicinal benefits, its toxicity and anti-hyperuricemic effects have not been reported. The present study was carried out to ensure the safety and investigate the anti-hyperuricemic effects of A. longiloba fruit and petiole ethanolic extracts on rats. In the acute toxicity study, extracts were orally administered at a dose of 2000 mg/kg bodyweight and closely monitored for 2-week for any toxicity effects. The rats were then sacrificed and samples were collected and analyzed for hematological, biochemical, and histopathological parameters. The anti-hyperuricemic effect of A. longiloba fruit or petiole extract was investigated through determination of UA levels on potassium oxonate (PO)-induced hyperuricemic rats. Extracts or standard drug treatments were orally administrated 1-h after PO administration for 14-day. Animals were euthanized and samples were collected for further experiments. The toxicity results show, no significant changes were observed in behavioral, bodyweight changes in experimental groups compared to the control. Moreover, there were no significant changes in hematological, biochemical, and histological parameters between extracts treated and control group. In the anti-hyperuricemia study, the fruit and petiole extracts treatments significantly reduced the level of UA in serum compared to the hyperuricemic model group. This study demonstrated that the extracts of A. longiloba have anti-hyperuricemic activity and was found to be non-toxic to rats in acute toxicity test.
Collapse
|
20
|
Lin G, Yu Q, Xu L, Huang Z, Mai L, Jiang L, Su Z, Xie J, Li Y, Liu Y, Lin Z, Chen J. Berberrubine attenuates potassium oxonate- and hypoxanthine-induced hyperuricemia by regulating urate transporters and JAK2/STAT3 signaling pathway. Eur J Pharmacol 2021; 912:174592. [PMID: 34699754 DOI: 10.1016/j.ejphar.2021.174592] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 01/27/2023]
Abstract
Phellodendri Chinensis Cortex (PC) is a traditional medicinal material used to treat gout and hyperuricemia (HUA) in China. Berberine (BBR), the main component of PC, possesses anti-hyperuricemic and anti-gout effects. However, BBR exhibits low bioavailability due to its extensive metabolism and limited absorption. Thus, the metabolites of BBR are believed to be the potential active forms responsible for its in vivo biological activities. Berberrubine (BRB), one of the major metabolites of BBR, exhibits appreciable biological activities even superior to BBR. In this work, the anti-hyperuricemic efficacy of BRB was investigated in HUA model mice induced by co-administration with intraperitoneal potassium oxonate (PO) and oral hypoxanthine (HX) for 7 days. Results showed that administration with BRB (6.25, 12.5, and 25.0 mg/kg) significantly decreased the serum levels of uric acid (UA) by 49.70%, 75.35%, and 75.96% respectively, when compared to the HUA group. In addition, BRB sharply decreased the levels of blood urea nitrogen (BUN) (by 19.62%, 28.98%, and 38.72%, respectively) and serum creatinine (CRE) (by 16.19%, 25.07%, and 52.08%, respectively) and reversed the PO/HX-induced renal histopathological damage dose-dependently. Additionally, BRB lowered the hepatic XOD activity, downregulated the expressions of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1), upregulated expressions of organic anion transporter 1/3 (OAT1/3) and ATP-binding cassette transporter subfamily G member 2 (ABCG2) at both protein and mRNA levels, and suppressed the activation of the JAK2/STAT3 signaling pathway. In addition, BRB significantly decreased the levels of inflammatory mediators (IL-1β, IL-6, and TNF-α). In conclusion, our study indicated that BRB exerted anti-hyperuricemic effect, at least in part, via regulating the urate transporter expressions and suppressing the JAK2/STAT3 signaling pathway. BRB was believed to be promising for further development into a potential therapeutic agent for HUA treatment.
Collapse
Affiliation(s)
- Guoshu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Qiuxia Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, 510120, Guangzhou, P.R. China
| | - Lieqiang Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Ziwei Huang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510405, Guangzhou, P.R. China
| | - Liting Mai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Linyun Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510405, Guangzhou, P.R. China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, P.R. China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 510120, Guangzhou, P.R. China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, 510120, Guangzhou, P.R. China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China
| | - Zhixiu Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China.
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, P.R. China.
| |
Collapse
|
21
|
Abstract
Circulation of urate levels is determined by the balance between urate production and excretion, homeostasis regulated by the function of urate transporters in key epithelial tissues and cell types. Our understanding of these physiological processes and identification of the genes encoding the urate transporters has advanced significantly, leading to a greater ability to predict risk for urate-associated diseases and identify new therapeutics that directly target urate transport. Here, we review the identified urate transporters and their organization and function in the renal tubule, the intestinal enterocytes, and other important cell types to provide a fuller understanding of the complicated process of urate homeostasis and its role in human diseases. Furthermore, we review the genetic tools that provide an unbiased catalyst for transporter identification as well as discuss the role of transporters in determining the observed significant gender differences in urate-associated disease risk.
Collapse
Affiliation(s)
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
22
|
Meegan JM, Ardente AJ, Poindexter JR, Baird M, Novick B, Parry C, Jensen ED, Venn-Watson S, Sakhaee K, Smith CR. Dietary effects on urinary physicochemistry in Navy bottlenose dolphins ( Tursiops truncatus) for the prevention of ammonium urate kidney stones. Am J Physiol Regul Integr Comp Physiol 2021; 321:R723-R731. [PMID: 34523361 DOI: 10.1152/ajpregu.00056.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bottlenose dolphins are susceptible to developing ammonium urate (NH4U) kidney stones. The current study was designed to test the hypothesis that diet influences the urinary physicochemistry risk factors associated with nephrolithiasis in dolphins. A comprehensive nutrient analysis was performed revealing that the baseline diet (BD) commonly fed to dolphins under professional care had a greater purine content and a more negative dietary cation-anion difference (DCAD) when compared with a model diet consumed by free-ranging dolphins. A modified diet (MD) was formulated to include free-ranging diet fish species and achieve a more positive DCAD. The BD had a more negative DCAD (-52 mEq/Mcal metabolizable energy) when compared with the MD (+51 mEq/Mcal ME), which more closely approximated the DCAD of the free-ranging model diet (+152 mEq/Mcal ME). Six dolphins (with stones) were fed the BD followed by the MD for a minimum of 4 wk. At the end of each feeding trial, a 6-h continuous urine collection was performed to compare urine parameters of dolphins fed the BD versus MD. Dolphins consuming the MD demonstrated a significant decrease in urinary ammonium, net acid excretion, saturation index of ammonium urate, and phosphorous, and a significant increase in urinary citrate and net gastrointestinal (GI) alkali absorption, as compared with urine parameters assessed when fed the BD. Increasing the proportion of free-ranging diet fish species and optimizing the DCAD positively influenced some of the risk factors believed to be associated with NH4U kidney stone development in bottlenose dolphins under professional care.
Collapse
Affiliation(s)
| | | | - John R Poindexter
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark Baird
- National Marine Mammal Foundation, San Diego, California
| | | | - Celeste Parry
- National Marine Mammal Foundation, San Diego, California
| | - Eric D Jensen
- United States Navy Marine Mammal Program, SSC Pacific, San Diego, California
| | | | - Khashayar Sakhaee
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | | |
Collapse
|
23
|
Li Z, Hoshino Y, Tran L, Gaucher EA. Phylogenetic articulation of uric acid evolution in mammals and how it informs a therapeutic uricase. Mol Biol Evol 2021; 39:6413644. [PMID: 34718698 PMCID: PMC8760943 DOI: 10.1093/molbev/msab312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The role of uric acid during primate evolution has remained elusive ever since it was discovered over 100 years ago that humans have unusually high levels of the small molecule in our serum. It has been difficult to generate a neutral or adaptive explanation in part because the uricase enzyme evolved to become a pseudogene in apes thus masking typical signals of sequence evolution. Adding to the difficulty is a lack of clarity on the functional role of uric acid in apes. One popular hypothesis proposes that uric acid is a potent antioxidant that increased in concentration to compensate for the lack of vitamin C synthesis in primate species ∼65 million years ago (Mya). Here, we have expanded on our previous work with resurrected ancient uricase proteins to better resolve the reshaping of uricase enzymatic activity prior to ape evolution. Our results suggest that the pivotal death-knell to uricase activity occurred between 20-30 Mya despite small sequential modifications to its catalytic efficiency for the tens of millions of years since primates lost their ability to synthesize vitamin C, and thus the two appear uncorrelated. We also use this opportunity to demonstrate how molecular evolution can contribute to biomedicine by presenting ancient uricases to human immune cells that assay for innate reactivity against foreign antigens. A highly stable and highly catalytic ancient uricase is shown to elicit a lower immune response in more human haplotypes than other uricases currently in therapeutic development.
Collapse
Affiliation(s)
- Ze Li
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Yosuke Hoshino
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Lily Tran
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| | - Eric A Gaucher
- Georgia State University, Department of Biology, Atlanta, GA U.S.A
| |
Collapse
|
24
|
Liang H, Deng P, Ma YF, Wu Y, Ma ZH, Zhang W, Wu JD, Qi YZ, Pan XY, Huang FS, Lv SY, Han JL, Dai WD, Chen Z. Advances in Experimental and Clinical Research of the Gouty Arthritis Treatment with Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8698232. [PMID: 34721646 PMCID: PMC8550850 DOI: 10.1155/2021/8698232] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/27/2022]
Abstract
Gouty arthritis (GA) is a multifactorial disease whose pathogenesis is utterly complex, and the current clinical treatment methods cannot wholly prevent GA development. Western medicine is the primary treatment strategy for gouty arthritis, but it owns an unfavorable prognosis. Therefore, the prevention and treatment of GA are essential. In China, traditional Chinese medicine (TCM) has been adopted for GA prevention and treatment for thousands of years. Gout patients are usually treated with TCM according to their different conditions, and long-term results can be achieved by improving their physical condition. And TCM has been proved to be an effective method to treat gout in modern China. Nevertheless, the pharmacological mechanism of TCM for gout is still unclear, which limits its spread. The theory of prevention and treatment of gout with TCM is more well acknowledged in China than in abroad. In this article, Chinese herbs and ancient formula for gout were summarized first. A total of more than 570 studies published from 2004 to June 2021 in PubMed, Medline, CNKI, VIP, Web of Science databases and Chinese Pharmacopoeia and traditional Chinese books were searched; the current status of TCM in the treatment of GA was summarized from the following aspects: articular chondrocyte apoptosis inhibition, antioxidative stress response, inflammatory cytokine levels regulation, uric acid excretion promotion, immune function regulation, uric acid reduction, and intestinal flora improvement in subjects with gout. The literature review concluded that TCM has a specific curative effect on the prevention and treatment of GA, particularly when combined with modern medical approaches. However, lacking a uniform definition of GA syndrome differentiation and the support of evidence-based medicine in clinical practice have provoked considerable concern in previous studies, which needs to be addressed in future research.
Collapse
Affiliation(s)
- Huan Liang
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pin Deng
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu-Feng Ma
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yan Wu
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhan-Hua Ma
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Wei Zhang
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Jun-De Wu
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yin-Ze Qi
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Xu-Yue Pan
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Fa-Sen Huang
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Si-Yuan Lv
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing-Lu Han
- School of Graduates, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Da Dai
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Zhaojun Chen
- Department of Hand and Foot Surgery, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| |
Collapse
|
25
|
Huang H, Xing D, Zhang Q, Li H, Lin J, He Z, Lin J. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif 2021; 54:e13113. [PMID: 34498342 PMCID: PMC8488571 DOI: 10.1111/cpr.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES In recent years, long non-coding RNAs (lncRNAs) have been found to play a role in the occurrence, progression and prognosis of chronic musculoskeletal disorders. DESIGN AND METHODS Literature exploring on PubMed was conducted using the combination of keywords 'LncRNA' and each of the following: 'osteoarthritis', 'rheumatoid arthritis', 'osteoporosis', 'osteogenesis', 'osteoclastogenesis', 'gout arthritis', 'Kashin-Beck disease', 'ankylosing spondylitis', 'cervical spondylotic myelopathy', 'intervertebral disc degeneration', 'human muscle disease' and 'muscle hypertrophy and atrophy'. For each disorder, we focused on the publications in the last five years (5/1/2016-2021/5/1, except for Kashin-Beck disease). Finally, we excluded publications that had been reported in reviews of various musculoskeletal disorders during the last three years. Here, we summarized the progress of research on the role of lncRNA in multiple pathological processes during musculoskeletal disorders. RESULTS LncRNAs play a crucial role in regulating downstream gene expression and maintaining function and homeostasis of cells, especially in chondrocytes, synovial cells, osteoblasts, osteoclasts and skeletal muscle cells. CONCLUSIONS Understanding the mechanisms of lncRNAs in musculoskeletal disorders may provide promising strategies for clinical practice.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Dan Xing
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Qingxi Zhang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Hui Li
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianjing Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Zihao He
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| |
Collapse
|
26
|
de Lima Balico L, Gaucher EA. CRISPR-Cas9-mediated reactivation of the uricase pseudogene in human cells prevents acute hyperuricemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:578-584. [PMID: 34589279 PMCID: PMC8463316 DOI: 10.1016/j.omtn.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022]
Abstract
The utility of CRISPR-Cas9 to repair or reverse diseased states that arise from recent genetic mutations in the human genome is now widely appreciated. The use of CRISPR to "design" the outcomes of biology is challenged by both specialized ethicists and the general public. Less of a focus, however, is the ability of CRISPR to provide metabolic supplements or prophylactic molecules that improve long-term human health by overwriting ancient evolutionary events. Here, we use CRISPR to genomically integrate a functional uricase gene that encodes an enzymatically active protein into the human genome. These uricase-producing cells are able to reduce or even eliminate high concentrations of exogenous uric acid despite the enzyme being localized to peroxisomes. Our evolutionary engineered cells represent the first instance of the primate ape lineage expressing a functional uricase encoded in the genome within the last 20 million years. We anticipate that human cells expressing uricase will help prevent hyperuricemia (including gout) as well as hypertension and will help protect against fatty liver disease in the future.
Collapse
Affiliation(s)
- Lais de Lima Balico
- Department of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303, USA
| | - Eric A Gaucher
- Department of Biology, Georgia State University, 100 Piedmont Ave., Atlanta, GA, 30303, USA
| |
Collapse
|
27
|
5'-Nucleotidase Plays a Key Role in Uric Acid Metabolism of Bombyx mori. Cells 2021; 10:cells10092243. [PMID: 34571893 PMCID: PMC8468349 DOI: 10.3390/cells10092243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 01/26/2023] Open
Abstract
Uric acid (UA) is the end-product in the human purine metabolism pathway. The UA that accumulates in silkworm tissues is excreted as a nitrogen waste product. Here, we first validated that Bombyx mori has a homolog of the human gene that encodes the 5′-nucleotidase (5′N) involved in purine metabolism. The B. mori gene, Bm5′N, is located upstream of other genes involved in UA metabolism in the silkworm. Disruption of Bm5′N via the CRISPR/Cas9 system resulted in decreased UA levels in the silkworm epidermis and caused a translucent skin phenotype. When Bm5′N mutant silkworms were fed with the uric acid precursor inosine, the UA levels in the epidermis increased significantly. Furthermore, the metabolomic and transcriptomic analyses of Bm5′N mutants indicated that loss of the Bm5′N affected purine metabolism and the ABC transport pathway. Taken together, these results suggest that the UA pathway is conserved between the silkworm and humans and that the Bm5′N gene plays a crucial role in the uric acid metabolism of the silkworm. Thus, the silkworm may be a suitable model for the study of UA metabolism pathways relevant to human disease.
Collapse
|
28
|
Zhang X, Nie Q, Zhang Z, Zhao J, Zhang F, Wang C, Wang X, Song G. Resveratrol affects the expression of uric acid transporter by improving inflammation. Mol Med Rep 2021; 24:564. [PMID: 34109437 PMCID: PMC8201466 DOI: 10.3892/mmr.2021.12203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Resveratrol (RSV), a polyphenol, non‑flavonoid plant‑derived antitoxin, ameliorates hyperuricemia and kidney inflammation. The present study aimed to establish a model of high‑fat diet (HFD)‑induced insulin resistance (IR) and to determine the specific mechanism of RSV to improve kidney inflammation and reduce uric acid (UA). C57BL/6J mice were fed a HFD for 12 weeks and their glucose tolerance was evaluated by intraperitoneal glucose tolerance testing. The mice were then administered RSV for 6 weeks, and blood and kidney samples were collected. Serum UA and insulin concentrations were determined using ELISA kits. Hematoxylin and eosin, periodic acid‑Schiff and Masson staining were performed to observe the pathological changes of the kidney, and electron microscopy was used to observe changes in the kidney ultrastructure. The renal concentrations of interleukin (IL)‑6, IL‑18, IL‑1β and tumor necrosis factor‑α (TNF‑α) were measured using ELISA kits, and western blotting evaluated changes in the protein expression levels of various indicators. RSV significantly ameliorated HFD‑induced IR and reduced blood UA levels. Long‑term IR can lead to lipid deposition, glycogen accumulation, inflammatory damage and fibrotic changes in the kidney of mice. This leads to a significant increase in the expression of UA transport‑related proteins, an increase in UA reabsorption and an increase in blood UA levels. Notably, RSV intervention was able to reverse this process. The effect of RSV may be achieved by inhibiting the NOD‑like receptor family, pyrin domain‑containing 3 (NLRP3) inflammasome and Toll‑like receptor 4 (TLR4)/myeloid differentiation factor 88/nuclear factor‑κB signaling pathway. In conclusion, RSV may improve kidney inflammation through TLR4 and NLRP3 signaling pathways, and reduce the expression of UA transporter proteins in the kidney of insulin‑resistant mice, thereby reducing blood UA levels.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Qian Nie
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhimei Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Zhao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Fengxiao Zhang
- Department of Rheumatism and Immunology, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
29
|
Schlesinger N, Lipsky PE. Pegloticase treatment of chronic refractory gout: Update on efficacy and safety. Semin Arthritis Rheum 2021; 50:S31-S38. [PMID: 32620200 DOI: 10.1016/j.semarthrit.2020.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gout is currently the most frequent cause of inflammatory arthritis worldwide. It results from elevated serum urate and subsequent deposition of monosodium urate crystals in joints and other tissues. While many patients with gout can be managed with conventional agents (e.g., allopurinol, febuxostat), those with chronic refractory gout often fail to achieve treatment goals with these agents. Pegloticase is a recombinant, pegylated mammalian uricase developed for treatment of chronic refractory gout. Pegloticase is different than other urate lowering therapies in that it enzymatically degrades urate. Pegloticase has been evaluated in multiple studies, most importantly in two randomized controlled trials and a follow-up open-label extension. Extensive analysis of results from these studies has shown that pegloticase profoundly lowers serum urate, resolves tophi, reduces tender and swollen joint counts, decreases pain, and improves both patients' global assessments and quality of life. Pegloticase also significantly decreases blood pressure in patients with chronic refractory gout, but has no significant effect on renal function. Post hoc analyses of clinical results also indicated that chronic refractory gout patients not achieving sustained urate lowering still have significant clinical benefits with pegloticase treatment. The major limitation of pegloticase is immunogenicity and the emergence of anti-drug antibodies that result in increased drug clearance, loss of efficacy, and infusion reactions. However, these reactions can be avoided by stopping pegloticase when there is a loss of serum urate lowering. New dosing regimens and co-administration of immunosuppressive agents are also being employed to overcome this limitation and extend the benefits of pegloticase to a larger number of patients.
Collapse
Affiliation(s)
- Naomi Schlesinger
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, U.S.A
| | - Peter E Lipsky
- AMPEL BioSolutions, LLC, Charlottesville, Virginia, U.S.A.
| |
Collapse
|
30
|
Aadland K, Kolaczkowski B. Alignment-Integrated Reconstruction of Ancestral Sequences Improves Accuracy. Genome Biol Evol 2021; 12:1549-1565. [PMID: 32785673 PMCID: PMC7523730 DOI: 10.1093/gbe/evaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Ancestral sequence reconstruction (ASR) uses an alignment of extant protein sequences, a phylogeny describing the history of the protein family and a model of the molecular-evolutionary process to infer the sequences of ancient proteins, allowing researchers to directly investigate the impact of sequence evolution on protein structure and function. Like all statistical inferences, ASR can be sensitive to violations of its underlying assumptions. Previous studies have shown that, whereas phylogenetic uncertainty has only a very weak impact on ASR accuracy, uncertainty in the protein sequence alignment can more strongly affect inferred ancestral sequences. Here, we show that errors in sequence alignment can produce errors in ASR across a range of realistic and simplified evolutionary scenarios. Importantly, sequence reconstruction errors can lead to errors in estimates of structural and functional properties of ancestral proteins, potentially undermining the reliability of analyses relying on ASR. We introduce an alignment-integrated ASR approach that combines information from many different sequence alignments. We show that integrating alignment uncertainty improves ASR accuracy and the accuracy of downstream structural and functional inferences, often performing as well as highly accurate structure-guided alignment. Given the growing evidence that sequence alignment errors can impact the reliability of ASR studies, we recommend that future studies incorporate approaches to mitigate the impact of alignment uncertainty. Probabilistic modeling of insertion and deletion events has the potential to radically improve ASR accuracy when the model reflects the true underlying evolutionary history, but further studies are required to thoroughly evaluate the reliability of these approaches under realistic conditions.
Collapse
Affiliation(s)
- Kelsey Aadland
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida
| | - Bryan Kolaczkowski
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida
| |
Collapse
|
31
|
Development of a fluorescence-based assay for screening of urate transporter 1 inhibitors using 6-carboxyfluorescein. Anal Biochem 2021; 626:114246. [PMID: 33965427 DOI: 10.1016/j.ab.2021.114246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/03/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022]
Abstract
The urate transporter 1 (URAT1) inhibitors were considered a very promising class of uricosuric agents for the treatment of hyperuricemia and gout. In vitro activity testing of these compounds has been conducted by radio-labeling uric acid for a long time. However, relatively few offer the convenience and speed of fluorescence-based assays. Herein, we report the development of a non-radioactive cell-based method for the screening of URAT1 inhibitors using the human embryonic kidney 293T cells stably expressing human URAT1, and 6-carboxyfluorescein (6-CFL) as a substrate. The URAT1-mediated transport of 6-CFL was time dependent and saturable (Km = 239.5 μM, Vmax = 6.2 pmol/well/min, respectively). Molecules known to interact with organic anion transporters, including benzbromarone, probenecid, and lesinurad, demonstrated concentration-dependent inhibition of 6-CFL transport by URAT1. Moreover, we screened a small subset of compounds, and identified compound 4 as a promising URAT1 inhibitor. This in vitro assay may be employed to screen for novel URAT1 inhibitors, which are effective against hyperuricemia.
Collapse
|
32
|
Abstract
Multiple interacting checkpoints are involved in the pathophysiology of gout. Hyperuricemia is the key risk factor for gout and is considered a prerequisite for monosodium urate (MSU) crystal formation. Urate underexcretion through renal and gut mechanisms is the major mechanism for hyperuricemia in most people. Multiple genetic, environmental, and metabolic factors are associated with serum urate and alter urate transport or synthesis. Urate supersaturation is the most important factor for MSU crystal formation, and other factors such as temperature, pH, and connective tissue components also play a role. The nucleotide-binding oligomerization domain leucine-rich repeats and pyrin domain-containing protein 3 inflammasome plays a pivotal role in the inflammatory response to MSU crystals, and interleukin 1β is the key cytokine mediating the inflammatory cascade. Variations in the regulatory mechanisms of this inflammatory response may affect an individual's susceptibility to developing gout. Tophus formation is the cardinal feature of advanced gout, and both MSU crystals and the inflammatory tissue component of the tophus contribute to the development of structural joint damage owing to gout. In this article, we review the pathophysiologic mechanisms of hyperuricemia, MSU crystal formation and the associated inflammatory response, tophus formation, and structural joint damage in gout.
Collapse
|
33
|
Matsubayashi M, Sakaguchi YM, Sahara Y, Nanaura H, Kikuchi S, Asghari A, Bui L, Kobashigawa S, Nakanishi M, Nagata R, Matsui TK, Kashino G, Hasegawa M, Takasawa S, Eriguchi M, Tsuruya K, Nagamori S, Sugie K, Nakagawa T, Takasato M, Umetani M, Mori E. 27-Hydroxycholesterol regulates human SLC22A12 gene expression through estrogen receptor action. FASEB J 2020; 35:e21262. [PMID: 33368618 PMCID: PMC7771643 DOI: 10.1096/fj.202002077r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
Abstract
The excretion and reabsorption of uric acid both to and from urine are tightly regulated by uric acid transporters. Metabolic syndrome conditions, such as obesity, hypercholesterolemia, and insulin resistance, are believed to regulate the expression of uric acid transporters and decrease the excretion of uric acid. However, the mechanisms driving cholesterol impacts on uric acid transporters have been unknown. Here, we show that cholesterol metabolite 27‐hydroxycholesterol (27HC) upregulates the uric acid reabsorption transporter URAT1 encoded by SLC22A12 via estrogen receptors (ER). Transcriptional motif analysis showed that the SLC22A12 gene promoter has more estrogen response elements (EREs) than other uric acid reabsorption transporters such as SLC22A11 and SLC22A13, and 27HC‐activated SLC22A12 gene promoter via ER through EREs. Furthermore, 27HC increased SLC22A12 gene expression in human kidney organoids. Our results suggest that in hypercholesterolemic conditions, elevated levels of 27HC derived from cholesterol induce URAT1/SLC22A12 expression to increase uric acid reabsorption, and thereby, could increase serum uric acid levels.
Collapse
Affiliation(s)
| | | | - Yoshiki Sahara
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hitoki Nanaura
- Department of Future Basic Medicine, Nara Medical University, Nara, Japan.,Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Sotaro Kikuchi
- Department of Future Basic Medicine, Nara Medical University, Nara, Japan
| | - Arvand Asghari
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Linh Bui
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Nara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Nara, Japan
| | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Nara, Japan
| | - Takeshi K Matsui
- Department of Future Basic Medicine, Nara Medical University, Nara, Japan.,Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Genro Kashino
- Radioisotope Research Center, Nara Medical University, Kashihara, Japan
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | | | - Kazuhiko Tsuruya
- Department of Nephrology, Nara Medical University, Kashihara, Japan
| | - Shushi Nagamori
- Department of Collaborative Research, Nara Medical University, Nara, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Takahiko Nakagawa
- Department of Future Basic Medicine, Nara Medical University, Nara, Japan
| | - Minoru Takasato
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.,HEALTH Research Institute, University of Houston, Houston, TX, USA
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Nara, Japan.,V-iCliniX Laboratory, Nara Medical University, Kashihara, Japan
| |
Collapse
|
34
|
Al-Awad D, Al-Emadi N, Abu-Madi M, Al-Thani AA, Zughaier SM. The Role of Soluble Uric Acid in Modulating Autophagy Flux and Inflammasome Activation during Bacterial Infection in Macrophages. Biomedicines 2020; 8:E598. [PMID: 33322651 PMCID: PMC7763195 DOI: 10.3390/biomedicines8120598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a homeostatic process that regulates and recycles intracellular structures and is a host defense mechanism that facilitates bacterial clearance. Uric acid in plasma is a major antioxidant but in certain conditions acts as an inflammatory danger signal. The aim of this study is to investigate the effect of soluble uric acid on autophagy and the inflammatory responses in macrophages during bacterial infection. Herein, we employed murine RAW264.7 macrophages that express uricase enzyme and human THP-1 cells that are uricase-deficient. Three different strains of Staphylococcus aureus and two different strains of Klebsiella pneumoniae were used to infect macrophages in presence and absence of soluble uric acid. We found that soluble uric acid enhanced autophagy flux in infected macrophages. We observed that IL-1β increased during bacterial infection but decreased when macrophages were co-stimulated with bacteria and uric acid. In contrast to IL-1β, soluble uric acid did not affect TNFα release and there were no dramatic differences when macrophages were infected with S. aureus or K. pneumoniae. In conclusion, uric acid enhances autophagy flux during bacterial infection, consequently reducing inflammasome activation in macrophages. Understanding the effect of uric acid on the interplay between autophagy and inflammation will facilitate therapeutic design.
Collapse
Affiliation(s)
- Duha Al-Awad
- Biomedical Science Department, College of Health Sciences, Qatar University, P.O. Box 2713 Doha, Qatar; (D.A.-A.); (N.A.-E.); (M.A.-M.); (A.A.A.-T.)
| | - Nada Al-Emadi
- Biomedical Science Department, College of Health Sciences, Qatar University, P.O. Box 2713 Doha, Qatar; (D.A.-A.); (N.A.-E.); (M.A.-M.); (A.A.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Marawan Abu-Madi
- Biomedical Science Department, College of Health Sciences, Qatar University, P.O. Box 2713 Doha, Qatar; (D.A.-A.); (N.A.-E.); (M.A.-M.); (A.A.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Asmaa A. Al-Thani
- Biomedical Science Department, College of Health Sciences, Qatar University, P.O. Box 2713 Doha, Qatar; (D.A.-A.); (N.A.-E.); (M.A.-M.); (A.A.A.-T.)
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- Biomedical Research Center, Qatar University, P.O. Box 2713 Doha, Qatar
| | - Susu M. Zughaier
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
- College of Medicine, QU Health, Qatar University, P.O. Box 2713 Doha, Qatar
| |
Collapse
|
35
|
An LC-MS/MS- and hURAT1 cell-based approach for screening of uricosuric agents. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1159:122336. [PMID: 32905987 DOI: 10.1016/j.jchromb.2020.122336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/10/2020] [Accepted: 08/16/2020] [Indexed: 11/23/2022]
Abstract
Urate anion exchanger 1 (URAT1) expressed in the proximal renal tubules is responsible for about 90% of the reabsorption of uric acid. URAT1 is identified as an important target of uricosuric drugs. Here we present an LC-MS/MS-based approach, combined with URAT1-transgenic MDCK cells, for the assessment of uric acid. Cell lysis was executed with 50 mM NaOH to release uric acid. 1,3-15N2 uric acid was employed as the internal standard. The harvested uric acid, along with the stable isotope-labeled uric acid, was analyzed by LC-MS/MS in multiple reactions monitoring and negative modes. Validation, i.e. determination of selectivity, precision, accuracy, extraction recovery, and matrix effect, and feasibility was evaluated by use of the approach developed. The linearity was observed in the range of 1.0-250 μM (r = 0.9960) with limit of detection of 50 nM and limit of quantitation of 200 nM. The precision and accuracy were found to be RSD ≤ 20% and 80-120% of the nominal value, respectively. Uric acid uptake showed concentration and time dependency in URAT1-transgenic cells. The observed inhibitory effects of three URAT1-targeted uricosuric drugs were consistent with those reported in literature. The stable isotope dilution-based approach was proven to be selective, sensitive, and convenient, which is a good in vitro model for URAT1-targeted drug candidate screening.
Collapse
|
36
|
An MF, Wang MY, Shen C, Sun ZR, Zhao YL, Wang XJ, Sheng J. Isoorientin exerts a urate-lowering effect through inhibition of xanthine oxidase and regulation of the TLR4-NLRP3 inflammasome signaling pathway. J Nat Med 2020; 75:129-141. [PMID: 33188510 DOI: 10.1007/s11418-020-01464-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Isoorientin (ISO), a natural flavonoid compound, has been identified in several plants and its biological activity is determined and the study on lowering uric acid has not been reported. In view of the current status of treatment of hyperuricemia, we evaluated the hypouricemic effects of ISO in vivo and in vitro, and explored the underlying mechanisms. Yeast extract-induced hyperuricemia animal model as well as hypoxanthine and xanthine oxidase (XOD) co-induced high uric acid L-O2 cell model and enzymatic experiments in vitro were selected. The XOD activity and uric acid (UA) level were inhibited after the treatment of ISO in vitro and in vivo. Furthermore, serum creatinine (CRE) and blood urea nitrogen (BUN) levels were also significantly reduced and liver damage was recovered in pathological histology after the ISO administration in hyperuricemia animal model. The results of mechanism illustrated that protein expressions such as XOD, toll-like receptor 4 (TLR4), cathepsin B (CTSB), NLRP3, and its downstream caspase-1 as well as interleukin-18 (IL-18) were markedly downregulated by ISO intervention in vitro and in vivo. Our results suggest that ISO exerts a urate-lowering effect through inhibiting XOD activity and regulating TLR4-NLRP3 inflammasome signal pathway, thus representing a promising candidate therapeutic agent for hyperuricemia. Both animal models and in vitro experiments suggested that ISO may effectively lower uric acid produce. The mechanism might be the inhibition of XOD activity and NLRP3 inflammasome of upregulation.
Collapse
Affiliation(s)
- Meng-Fei An
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
| | - Ming-Yue Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
| | - Chang Shen
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
| | - Ze-Rui Sun
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650224, People's Republic of China
| | - Yun-Li Zhao
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- College of Science, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- College of Science, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650224, People's Republic of China.
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- College of Science, Yunnan Agricultural University, Kunming, 650224, People's Republic of China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650224, People's Republic of China.
| |
Collapse
|
37
|
Chen Y, Zhao Z, Li Y, Li L, Jiang Y, Cao Y, Zhou P, Wu T, Pang J. Characterizations of the Urate Transporter, GLUT9, and Its Potent Inhibitors by Patch-Clamp Technique. SLAS DISCOVERY 2020; 26:450-459. [PMID: 32844721 DOI: 10.1177/2472555220949501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucose transporter 9 (GLUT9), which transports urate in an electrogenic and voltage-dependent manner, plays an important role in the maintenance of normal blood uric acid/urate levels. In the present study, we established a cell model based on the single-electrode patch-clamp technique for characterization of GLUT9 and explored the inhibitory effects of benzobromarone (BM) and probenecid (PB) on urate-induced currents in mouse GLUT9a (mGLUT9a)-expressing HEK-293T cells. The results showed that uric acid, rather than glucose perfusion, led to a rapid and large outward current by mGLUT9a in dose-, voltage-, and pH-dependent manners. BM prominently and irreversibly inhibited the uric acid-induced currents through mGLUT9a, and PB weakly and reversibly inhibited mGLUT9a. We found that depletion of K+ in the external solution significantly strengthened the blockade of BM on mGLUT9a. In addition, an enhanced inhibitory rate of BM was detected when the pH of the external solution was changed from 7.4 to 5.5, indicating that BM functions optimally in an acidic environment. In conclusion, the combination of the established cell model with patch-clamp techniques first revealed the function properties of GLUT9 inhibitors and may provide potential benefits to the study of GLUT9 inhibitors as antihyperuricemic or antigout agents.
Collapse
Affiliation(s)
- Yanyu Chen
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zean Zhao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yongmei Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lu Li
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Jiang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jianxin Pang
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Johnson RJ, Stenvinkel P, Andrews P, Sánchez-Lozada LG, Nakagawa T, Gaucher E, Andres-Hernando A, Rodriguez-Iturbe B, Jimenez CR, Garcia G, Kang DH, Tolan DR, Lanaspa MA. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. J Intern Med 2020; 287:252-262. [PMID: 31621967 PMCID: PMC10917390 DOI: 10.1111/joim.12993] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
Mass extinctions occur frequently in natural history. While studies of animals that became extinct can be informative, it is the survivors that provide clues for mechanisms of adaptation when conditions are adverse. Here, we describe a survival pathway used by many species as a means for providing adequate fuel and water, while also providing protection from a decrease in oxygen availability. Fructose, whether supplied in the diet (primarily fruits and honey), or endogenously (via activation of the polyol pathway), preferentially shifts the organism towards the storing of fuel (fat, glycogen) that can be used to provide energy and water at a later date. Fructose causes sodium retention and raises blood pressure and likely helped survival in the setting of dehydration or salt deprivation. By shifting energy production from the mitochondria to glycolysis, fructose reduced oxygen demands to aid survival in situations where oxygen availability is low. The actions of fructose are driven in part by vasopressin and the generation of uric acid. Twice in history, mutations occurred during periods of mass extinction that enhanced the activity of fructose to generate fat, with the first being a mutation in vitamin C metabolism during the Cretaceous-Paleogene extinction (65 million years ago) and the second being a mutation in uricase that occurred during the Middle Miocene disruption (12-14 million years ago). Today, the excessive intake of fructose due to the availability of refined sugar and high-fructose corn syrup is driving 'burden of life style' diseases, including obesity, diabetes and high blood pressure.
Collapse
Affiliation(s)
- R J Johnson
- From the, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - P Stenvinkel
- Division of Renal Diseases, Karolinska Institute, Stockholm, Sweden
| | - P Andrews
- Museum of Natural History, London, UK
| | | | - T Nakagawa
- Department of Nephrology, Rakuwakai Otowa Hospital, Kyoto, Japan
| | - E Gaucher
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - A Andres-Hernando
- From the, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - C R Jimenez
- From the, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - G Garcia
- From the, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - D-H Kang
- Division of Renal Diseases, Ewha University, Seoul, Korea
| | - D R Tolan
- Department of Biology, Boston University, Boson, MA, USA
| | - M A Lanaspa
- From the, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
39
|
Lu J, Dalbeth N, Yin H, Li C, Merriman TR, Wei WH. Mouse models for human hyperuricaemia: a critical review. Nat Rev Rheumatol 2020; 15:413-426. [PMID: 31118497 DOI: 10.1038/s41584-019-0222-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hyperuricaemia (increased serum urate concentration) occurs mainly in higher primates, including in humans, because of inactivation of the gene encoding uricase during primate evolution. Individuals with hyperuricaemia might develop gout - a painful inflammatory arthritis caused by monosodium urate crystal deposition in articular structures. Hyperuricaemia is also associated with common chronic diseases, including hypertension, chronic kidney disease, type 2 diabetes and cardiovascular disease. Many mouse models have been developed to investigate the causal mechanisms for hyperuricaemia. These models are highly diverse and can be divided into two broad categories: mice with genetic modifications (genetically induced models) and mice exposed to certain environmental factors (environmentally induced models; for example, pharmaceutical or dietary induction). This Review provides an overview of the mouse models of hyperuricaemia and the relevance of these models to human hyperuricaemia, with an emphasis on those models generated through genetic modifications. The challenges in developing and comparing mouse models of hyperuricaemia and future research directions are also outlined.
Collapse
Affiliation(s)
- Jie Lu
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.,Shandong Provincial Key Laboratory of Metabolic Diseases, Department of Endocrinology and Metabolic Diseases, the Affiliated Hospital of Qingdao University, Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Huiyong Yin
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), CAS, Shanghai, China
| | - Changgui Li
- Shandong Provincial Key Laboratory of Metabolic Diseases, Department of Endocrinology and Metabolic Diseases, the Affiliated Hospital of Qingdao University, Institute of Metabolic Diseases, Qingdao University, Qingdao, China
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Wen-Hua Wei
- Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
40
|
Nyce JW. A lex naturalis delineates components of a human-specific, adrenal androgen-dependent, p53-mediated 'kill switch' tumor suppression mechanism. Endocr Relat Cancer 2020; 27:R51-R65. [PMID: 31815681 PMCID: PMC6993206 DOI: 10.1530/erc-19-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/09/2019] [Indexed: 11/30/2022]
Abstract
We have recently described in this journal our detection of an anthropoid primate-specific, adrenal androgen-dependent, p53-mediated, 'kill switch' tumor suppression mechanism that reached its fullest expression only in humans, as a result of human-specific exposure to polycyclic aromatic hydrocarbons caused by the harnessing of fire - but which has components reaching all the way back to the origin of the primate lineage. We proposed that species-specific mechanisms of tumor suppression are a generalized requirement for vertebrate species to increase in body size or lifespan beyond those of species basal to their lineage or to exploit environmental niches which increase exposure to carcinogenic substances. Using empirical dynamic modeling, we have also reported our detection of a relationship between body size, lifespan, and species-specific mechanism of tumor suppression (and here add carcinogen exposure), such that a change in any one of these variables requires an equilibrating change in one or more of the others in order to maintain lifetime cancer risk at a value of about 4%, as observed in virtually all larger, longer-lived species under natural conditions. Here we show how this relationship, which we refer to as the lex naturalis of vertebrate speciation, elucidates the evolutionary steps underlying an adrenal androgen-dependent, human-specific 'kill switch' tumor suppression mechanism; and further, how it prescribes a solution to 'normalize' lifetime cancer risk in our species from its current aberrant 40% to the 4% that characterized primitive humans. We further argue that this prescription writ by the lex naturalis represents the only tenable strategy for meaningful suppression of the accelerating impact of cancer upon our species.
Collapse
Affiliation(s)
- Jonathan Wesley Nyce
- ACGT Biotechnology, Collegeville, Pennsylvania, USA
- Correspondence should be addressed to J W Nyce:
| |
Collapse
|
41
|
Joosten LAB, Crişan TO, Bjornstad P, Johnson RJ. Asymptomatic hyperuricaemia: a silent activator of the innate immune system. Nat Rev Rheumatol 2020; 16:75-86. [PMID: 31822862 PMCID: PMC7075706 DOI: 10.1038/s41584-019-0334-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
Asymptomatic hyperuricaemia affects ~20% of the general population in the USA, with variable rates in other countries. Historically, asymptomatic hyperuricaemia was considered a benign laboratory finding with little clinical importance in the absence of gout or kidney stones. Yet, increasing evidence suggests that asymptomatic hyperuricaemia can predict the development of hypertension, obesity, diabetes mellitus and chronic kidney disease and might contribute to disease by stimulating inflammation. Although urate has been classically viewed as an antioxidant with beneficial effects, new data suggest that both crystalline and soluble urate activate various pro-inflammatory pathways. This Review summarizes what is known about the role of urate in the inflammatory response. Further research is needed to define the role of asymptomatic hyperuricaemia in these pro-inflammatory pathways.
Collapse
Affiliation(s)
- Leo A B Joosten
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Tania O Crişan
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Petter Bjornstad
- Department of Medicine of the University of Colorado School of Medicine of the University Hospital, Aurora, CO, USA
| | - Richard J Johnson
- Department of Medicine of the University of Colorado School of Medicine of the University Hospital, Aurora, CO, USA.
| |
Collapse
|
42
|
Dong Y, Zhao T, Ai W, Zalloum WA, Kang D, Wu T, Liu X, Zhan P. Novel urate transporter 1 (URAT1) inhibitors: a review of recent patent literature (2016-2019). Expert Opin Ther Pat 2019; 29:871-879. [PMID: 31593642 DOI: 10.1080/13543776.2019.1676727] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Introduction: Human urate transporter 1 (URAT1), which is an influx transporter protein, is located at the apical surface of renal tubular cells and presumed to be the major transporter responsible for the reabsorption of urate from blood. About 90% of patients develop hyperuricemia due to insufficient urate excretion; thus, it is important to develop URAT1 inhibitors that could enhance renal urate excretion by blocking the reabsorption of urate anion. Areas covered: In this review, the authors addressed the patent applications (2016-2019) about URAT1 inhibitors and some medicinal chemistry strategies employed in these patents. Expert opinion: Substituent decorating, bioisosterism, and scaffold hopping are three common medicinal chemistry strategies used in the discovery of URAT1 inhibitors. Meanwhile, the introduction of sulfonyl group into small molecules has become one of the important strategies for structural optimization of URAT1 inhibitors. Furthermore, developing drug candidates targeting both URAT1 and xanthine oxidase (XOD) has attracted lots of interest and attention.
Collapse
Affiliation(s)
- Yue Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , PR China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , PR China
| | - Wei Ai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba , Amman , Jordan
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , PR China
| | - Ting Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University , Guangzhou , Guangdong , China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , Jinan , Shandong , PR China
| |
Collapse
|
43
|
Zhong X, Peng Y, Liao H, Yao C, Li J, Yang Q, He Y, Qing Y, Guo X, Zhou J. Aberrant expression of long non-coding RNAs in peripheral blood mononuclear cells isolated from patients with gouty arthritis. Exp Ther Med 2019; 18:1967-1976. [PMID: 31452697 PMCID: PMC6704489 DOI: 10.3892/etm.2019.7816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Gouty arthritis (GA) is the most common inflammatory and immune-associated disease, and its prevalence and incidence exhibit yearly increases. The aim of the present study was to analyse the expression profile variation of long non-coding RNAs (lncRNAs) in GA patients and to explore the role of lncRNAs in the pathogenesis of GA. The peripheral blood mononuclear cells of GA patients and of healthy controls (HCs) were used to detect for the differentially expressed lncRNAs by microarray. The functional annotations and classifications of the differentially expressed transcripts were predicted using Gene Ontology (GO) and pathway analysis. The results were then verified by reverse transcription-quantitative (RT-q)PCR. A total of 1,815 lncRNAs and 971 mRNAs with a >2-fold difference in the levels of expression in the GA patients compared with those in the HCs were identified. According to the GO functional enrichment analysis, the differentially expressed lncRNAs were accumulated in terms including protein binding, catalytic activity and molecular transducer activity. The pathways predicted to be involved were the tumor necrosis factor signaling pathway, osteoclast differentiation, NOD-like receptor signaling pathway and NF-κB signaling pathway. The expression of six lncRNAs was measured by RT-qPCR and the results were consistent with those of the microarrays. Among these lncRNAs, AJ227913 was the most differentially expressed lncRNA in GA patients vs. HCs. The expression of several lncRNAs was significantly changed in GA patients compared with that in HCs, which suggests that these lncRNAs with differential expression levels may have an important role in the development and progression of GA.
Collapse
Affiliation(s)
- Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuanhong Peng
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hebin Liao
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China
| | - Chengjiao Yao
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jiulong Li
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qibin Yang
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yonglong He
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yufeng Qing
- Department of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637007, P.R. China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jingguo Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
44
|
Clinical and Functional Characterization of a Novel URAT1 Dysfunctional Variant in a Pediatric Patient with Renal Hypouricemia. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Renal hypouricemia (RHUC) is caused by an inherited defect in the main (reabsorptive) renal urate transporters, URAT1 and GLUT9. RHUC is characterized by decreased concentrations of serum uric acid and an increase in its excretion fraction. Patients suffer from hypouricemia, hyperuricosuria, urolithiasis, and even acute kidney injury. We report the clinical, biochemical, and genetic findings of a pediatric patient with hypouricemia. Sequencing analysis of the coding region of SLC22A12 and SLC2A9 and a functional study of a novel RHUC1 variant in the Xenopus expression system were performed. The proband showed persistent hypouricemia (67–70 µmol/L; ref. range 120–360 µmol/L) and hyperuricosuria (24–34%; ref. range 7.3 ± 1.3%). The sequencing analysis identified common non-synonymous allelic variants c.73G > A, c.844G > A, c.1049C > T in the SLC2A9 gene and rare variants c.973C > T, c.1300C > T in the SLC22A12 gene. Functional characterization of the novel RHUC associated c.973C > T (p. R325W) variant showed significantly decreased urate uptake, an irregular URAT1 signal on the plasma membrane, and reduced cytoplasmic staining. RHUC is an underdiagnosed disorder and unexplained hypouricemia warrants detailed metabolic and genetic investigations. A greater awareness of URAT1 and GLUT9 deficiency by primary care physicians, nephrologists, and urologists is crucial for identifying the disorder.
Collapse
|
45
|
Garcia AK, Kaçar B. How to resurrect ancestral proteins as proxies for ancient biogeochemistry. Free Radic Biol Med 2019; 140:260-269. [PMID: 30951835 DOI: 10.1016/j.freeradbiomed.2019.03.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/11/2019] [Accepted: 03/26/2019] [Indexed: 10/27/2022]
Abstract
Throughout the history of life, enzymes have served as the primary molecular mediators of biogeochemical cycles by catalyzing the metabolic pathways that interact with geochemical substrates. The byproducts of enzymatic activities have been preserved as chemical and isotopic signatures in the geologic record. However, interpretations of these signatures are limited by the assumption that such enzymes have remained functionally conserved over billions of years of molecular evolution. By reconstructing ancient genetic sequences in conjunction with laboratory enzyme resurrection, preserved biogeochemical signatures can instead be related to experimentally constrained, ancestral enzymatic properties. We may thereby investigate instances within molecular evolutionary trajectories potentially tied to significant biogeochemical transitions evidenced in the geologic record. Here, we survey recent enzyme resurrection studies to provide a reasoned assessment of areas of success and common pitfalls relevant to ancient biogeochemical applications. We conclude by considering the Great Oxidation Event, which provides a constructive example of a significant biogeochemical transition that warrants investigation with ancestral enzyme resurrection. This event also serves to highlight the pitfalls of facile interpretation of paleophenotype models and data, as applied to two examples of enzymes that likely both influenced and were influenced by the rise of atmospheric oxygen - RuBisCO and nitrogenase.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Betül Kaçar
- Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
46
|
Combination urate-lowering therapy in the treatment of gout: What is the evidence? Semin Arthritis Rheum 2019; 48:658-668. [DOI: 10.1016/j.semarthrit.2018.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022]
|
47
|
Wang Z, Cui T, Ci X, Zhao F, Sun Y, Li Y, Liu R, Wu W, Yi X, Liu C. The effect of polymorphism of uric acid transporters on uric acid transport. J Nephrol 2018; 32:177-187. [DOI: 10.1007/s40620-018-0546-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 01/09/2023]
|
48
|
Oh J, Liuzzi A, Ronda L, Marchetti M, Corsini R, Folli C, Bettati S, Rhee S, Percudani R. Diatom Allantoin Synthase Provides Structural Insights into Natural Fusion Protein Therapeutics. ACS Chem Biol 2018; 13:2237-2246. [PMID: 29874034 DOI: 10.1021/acschembio.8b00404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Humans have lost the ability to convert urate into the more soluble allantoin with the evolutionary inactivation of three enzymes of the uricolytic pathway. Restoration of this function through enzyme replacement therapy can treat severe hyperuricemia and Lesch-Nyhan disease. Through a genomic exploration of natural gene fusions, we found that plants and diatoms independently evolved a fusion protein (allantoin synthase) complementing two human pseudogenes. The 1.85-Å-resolution crystal structure of allantoin synthase from the diatom Phaeodactylum tricornutum provides a rationale for the domain combinations observed in the metabolic pathway, suggesting that quaternary structure is key to the evolutionary success of protein domain fusions. Polyethylene glycol (PEG) conjugation experiments indicate that a PEG-modified form of the natural fusion protein provides advantages over separate enzymes in terms of activity maintenance and manufacturing of the bioconjugate. These results suggest that the combination of different activities in a single molecular unit can simplify the production and chemical modification of recombinant proteins for multifunctional enzyme therapy.
Collapse
Affiliation(s)
- Juntaek Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Anastasia Liuzzi
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, 43124, Parma, Italy
- Biopharmanet-TEC Interdepartmental Center, University of Parma, 43124, Parma, Italy
| | - Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, 43124, Parma, Italy
| | - Romina Corsini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| | - Claudia Folli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43124, Parma, Italy
- Biopharmanet-TEC Interdepartmental Center, University of Parma, 43124, Parma, Italy
- National Institute of Biostructures and Biosystems, 00136, Rome, Italy
| | - Sangkee Rhee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Riccardo Percudani
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy
| |
Collapse
|
49
|
Zou L, Stecula A, Gupta A, Prasad B, Chien HC, Yee SW, Wang L, Unadkat JD, Stahl SH, Fenner KS, Giacomini KM. Molecular Mechanisms for Species Differences in Organic Anion Transporter 1, OAT1: Implications for Renal Drug Toxicity. Mol Pharmacol 2018; 94:689-699. [PMID: 29720497 PMCID: PMC5987998 DOI: 10.1124/mol.117.111153] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/25/2018] [Indexed: 12/31/2022] Open
Abstract
Species differences in renal drug transporters continue to plague drug development with animal models failing to adequately predict renal drug toxicity. For example, adefovir, a renally excreted antiviral drug, failed clinical studies for human immunodeficiency virus due to pronounced nephrotoxicity in humans. In this study, we demonstrated that there are large species differences in the kinetics of interactions of a key class of antiviral drugs, acyclic nucleoside phosphonates (ANPs), with organic anion transporter 1 [(OAT1) SLC22A6] and identified a key amino acid residue responsible for these differences. In OAT1 stably transfected human embryonic kidney 293 cells, the Km value of tenofovir for human OAT1 (hOAT1) was significantly lower than for OAT1 orthologs from common preclinical animals, including cynomolgus monkey, mouse, rat, and dog. Chimeric and site-directed mutagenesis studies along with comparative structure modeling identified serine at position 203 (S203) in hOAT1 as a determinant of its lower Km value. Furthermore, S203 is conserved in apes, and in contrast alanine at the equivalent position is conserved in preclinical animals and Old World monkeys, the most related primates to apes. Intriguingly, transport efficiencies are significantly higher for OAT1 orthologs from apes with high serum uric acid (SUA) levels than for the orthologs from species with low serum uric acid levels. In conclusion, our data provide a molecular mechanism underlying species differences in renal accumulation of nephrotoxic ANPs and a novel insight into OAT1 transport function in primate evolution.
Collapse
Affiliation(s)
- Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Adrian Stecula
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Anshul Gupta
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Bhagwat Prasad
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Huan-Chieh Chien
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Li Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Jashvant D Unadkat
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Simone H Stahl
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Katherine S Fenner
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California (L.Z., A.S., H.-C.C., S.W.Y., K.M.G.); Pharmacokinetics and Drug Metabolism, Amgen Inc., Cambridge, Massachusetts (A.G.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (B.P., L.W., J.D.U.); and Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, UK (S.H.S., K.S.F.)
| |
Collapse
|
50
|
Zhang Y, Jin L, Liu J, Wang W, Yu H, Li J, Chen Q, Wang T. Effect and mechanism of dioscin from Dioscorea spongiosa on uric acid excretion in animal model of hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2018; 214:29-36. [PMID: 29233733 DOI: 10.1016/j.jep.2017.12.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Dioscin, a spirostane glycoside, the rhizoma of Dioscorea septemloba (Diocoreacea) is used for diuresis, rheumatism, and joints pain. Given the poor solubility and stability of Dioscin, we proposed a hypothesis that Dioscin's metabolite(s) are the active substance(s) in vivo to contribute to the reducing effects on serum uric acid levels. AIM OF THE STUDY The aim of this study is to identify the active metabolite(s) of Dioscin in vivo and to explore the mechanism of its antihyperuricemic activity. MATERIALS AND METHODS After oral administration of Dioscin in potassium oxonate (PO) induced hyperuricemia rats and adenine-PO induced hyperuricemia mice models, serum uric acid and creatinine levels, clearance of uric acid and creatinine, fractional excretion of uric acid, and renal pathological lesions were determined were used to evaluate the antihyperuricemic effects. Renal glucose transporter-9 (GLUT-9) and organic anion transporter-1 (OAT-1) expressions were analyzed by western blotting method. Renal uric acid excretion was evaluated using stably urate transporter-1 (URAT-1) transfected human epithelial kidney cell line. Intestinal uric acid excretion was evaluated by measuring the transcellular transport of uric acid in HCT116 cells. RESULTS In hyperuricemia rats, both 25 and 50mg/kg of oral Dioscin decreased serum uric acid levels over 4h. In the hyperuricemia mice, two weeks treatment of Dioscin significantly decreased serum uric acid and creatinine levels, increased clearance of uric acid and creatinine, increased fractional excretion of uric acid, and reduced renal pathological lesions caused by hyperuricemia. In addition, renal GLUT -9 was significantly down-regulated and OAT-1 was up-regulated in Dioscin treated hyperuricemia mice. Dioscin's metabolite Tigogenin significantly inhibited uric acid re-absorption via URAT1 from 10 to 100μM. Diosgenin and Tigogenin increased uric acid excretion via ATP binding cassette subfamily G member 2 (ABCG2). CONCLUSION Decreasing effect of Dioscin on serum uric acid level and enhancing effect on urate excretion were confirmed in hyperuricemia animal models. Tigogenin, a metabolite of Dioscin, was identified as an active substance with antihyperuricemic activity in vivo, through inhibition of URAT1 and promotion of ABCG2.
Collapse
Affiliation(s)
- Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Lijun Jin
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Jinchang Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Wei Wang
- Houston Methodist Hospital, 6565 Fannin Street, Houston, TX 77030, USA
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Jian Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Qian Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China.
| |
Collapse
|