1
|
Hersch‐Green EI, Fay PA, Hass HB, Smith NG. Mechanistic insights into plant community responses to environmental variables: genome size, cellular nutrient investments, and metabolic tradeoffs. THE NEW PHYTOLOGIST 2025; 245:2336-2349. [PMID: 39722202 PMCID: PMC11798896 DOI: 10.1111/nph.20374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Affecting biodiversity, plants with larger genome sizes (GS) may be restricted in nutrient-poor conditions. This pattern has been attributed to their greater cellular nitrogen (N) and phosphorus (P) investments and hypothesized nutrient-investment tradeoffs between cell synthesis and physiological attributes associated with growth. However, the influence of GS on cell size and functioning may also contribute to GS-dependent growth responses to nutrients. To test whether and how GS is associated with cellular nutrient, stomata, and/or physiological attributes, we examined > 500 forbs and grasses from seven grassland sites conducting a long-term N and P fertilization experiment. Larger GS plants had increased cellular nutrient contents and larger, but fewer stomata than smaller GS plants. Larger GS grasses (but not forbs) also had lower photosynthetic rates and water-use efficiencies. However, nutrients had no direct effect on GS-dependent physiological attributes and GS-dependent physiological changes likely arise from how GS influences cells. At the driest sites, large GS grasses displayed high water-use efficiency mostly because transpiration was reduced relative to photosynthesis in these conditions. We suggest that climatic conditions and GS-associated cell traits that modify physiological responses, rather than resource-investment tradeoffs, largely explain GS-dependent growth responses to nutrients (especially for grasses).
Collapse
Affiliation(s)
- Erika I. Hersch‐Green
- Department of Biological SciencesMichigan Technological UniversityHoughtonMI49931USA
| | - Philip A. Fay
- USDA ARS Grassland Soil and Water Research LabTempleTX76502USA
| | - Hailee B. Hass
- Department of Biological SciencesMichigan Technological UniversityHoughtonMI49931USA
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAL35487USA
| | - Nicholas G. Smith
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| |
Collapse
|
2
|
Simpson KJ, Mian S, Forrestel EJ, Hackel J, Morton JA, Leitch AR, Leitch IJ. Bigger genomes provide environment-dependent growth benefits in grasses. THE NEW PHYTOLOGIST 2024; 244:2049-2061. [PMID: 39351620 DOI: 10.1111/nph.20150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/05/2024] [Indexed: 11/08/2024]
Abstract
Increasing genome size (GS) has been associated with slower rates of DNA replication and greater cellular nitrogen (N) and phosphorus demands. Despite most plant species having small genomes, the existence of larger GS species suggests that such costs may be negligible or represent benefits under certain conditions. Focussing on the widespread and diverse grass family (Poaceae), we used data on species' climatic niches and growth rates under different environmental conditions to test for growth costs or benefits associated with GS. The influence of photosynthetic pathway, life history and evolutionary history on grass GS was also explored. We found that evolutionary history, photosynthetic pathway and life history all influence the distribution of grass species' GS. Genomes were smaller in annual and C4 species, the latter allowing for small cells necessary for C4 leaf anatomy. We found larger GS were associated with high N availability and, for perennial species, low growth-season temperature. Our findings reveal that GS is a globally important predictor of grass performance dependent on environmental conditions. The benefits for species with larger GS are likely due to associated larger cell sizes, allowing rapid biomass production where soil fertility meets N demands and/or when growth occurs via temperature-independent cell expansion.
Collapse
Affiliation(s)
- Kimberley J Simpson
- Plants, Photosynthesis and Soils, School of Biosciences, University of Sheffield, Sheffield, South Yorkshire, S10 2TN, UK
- Botany Department, Rhodes University, Makhanda, Eastern Cape, 6140, South Africa
| | - Sahr Mian
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Elisabeth J Forrestel
- Department of Viticultural and Enology, University of California, Davis, CA, 95616-5270, USA
| | - Jan Hackel
- Department of Biology, University of Marburg, Marburg, 35043, Germany
| | - Joseph A Morton
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Andrew R Leitch
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Ilia J Leitch
- Department of Trait Diversity and Function, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
3
|
Hamann E, Groen SC, Dunivant TS, Ćalić I, Cochran C, Konshok R, Purugganan MD, Franks SJ. Selection on genome-wide gene expression plasticity of rice in wet and dry field environments. Mol Ecol 2024:e17522. [PMID: 39215462 DOI: 10.1111/mec.17522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Gene expression can be highly plastic in response to environmental variation. However, we know little about how expression plasticity is shaped by natural selection and evolves in wild and domesticated species. We used genotypic selection analysis to characterize selection on drought-induced plasticity of over 7,500 leaf transcripts of 118 rice accessions (genotypes) from different environmental conditions grown in a field experiment. Gene expression plasticity was neutral for most gradually plastic transcripts, but transcripts with discrete patterns of expression showed stronger selection on expression plasticity. Whether plasticity was adaptive and co-gradient or maladaptive and counter-gradient varied among varietal groups. No transcripts that experienced selection for plasticity across environments showed selection against plasticity within environments, indicating a lack of evidence for costs of adaptive plasticity that may constrain its evolution. Selection on expression plasticity was influenced by degree of plasticity, transcript length and gene body methylation. We observed positive selection on plasticity of co-expression modules containing transcripts involved in photosynthesis, translation and responsiveness to abiotic stress. Taken together, these results indicate that patterns of selection on expression plasticity were context-dependent and likely associated with environmental conditions of varietal groups, but that the evolution of adaptive plasticity would likely not be constrained by opposing patterns of selection on plasticity within compared to across environments. These results offer a genome-wide view of patterns of selection and ecological constraints on gene expression plasticity and provide insights into the interplay between plastic and evolutionary responses to drought at the molecular level.
Collapse
Affiliation(s)
- Elena Hamann
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
- Department of Biology, Institute of Plant Ecology and Evolution, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon C Groen
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - Taryn S Dunivant
- Department of Nematology, University of California Riverside, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, USA
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, California, USA
| | - Irina Ćalić
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Colleen Cochran
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Rachel Konshok
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
- Center for Genomics and Systems Biology, NYU Abu Dhabi Research Institute, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven J Franks
- Department of Biological Sciences, Fordham University, Bronx, New York, USA
| |
Collapse
|
4
|
Gajardo HA, Morales M, Larama G, Luengo-Escobar A, López D, Machado M, Nunes-Nesi A, Reyes-Díaz M, Planchais S, Savouré A, Gago J, Bravo LA. Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert. PLANTA 2024; 260:55. [PMID: 39020000 DOI: 10.1007/s00425-024-04484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
MAIN CONCLUSIONS In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and β-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Melanie Morales
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Giovanni Larama
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ana Luengo-Escobar
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Dariel López
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mariana Machado
- Departamento de Biología Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biología Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Séverine Planchais
- Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, UPEC, CNRS, IRD, INRAE, 75005, Paris, France
| | - Arnould Savouré
- Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, UPEC, CNRS, IRD, INRAE, 75005, Paris, France
| | - Jorge Gago
- Research Group On Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de Les Illes Balears/Institute of Agro-Environmental Research and Water Economy-INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
5
|
Walczyk AM, Hersch-Green EI. Genome-material costs and functional trade-offs in the autopolyploid Solidago gigantea (giant goldenrod) series. AMERICAN JOURNAL OF BOTANY 2023; 110:e16218. [PMID: 37551707 DOI: 10.1002/ajb2.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 08/09/2023]
Abstract
PREMISE Increased genome-material costs of N and P atoms inherent to organisms with larger genomes have been proposed to limit growth under nutrient scarcities and to promote growth under nutrient enrichments. Such responsiveness may reflect a nutrient-dependent diploid versus polyploid advantage that could have vast ecological and evolutionary implications, but direct evidence that material costs increase with ploidy level and/or influence cytotype-dependent growth, metabolic, and/or resource-use trade-offs is limited. METHODS We grew diploid, autotetraploid, and autohexaploid Solidago gigantea plants with one of four ambient or enriched N:P ratios and measured traits related to material costs, primary and secondary metabolism, and resource-use. RESULTS Relative to diploids, polyploids invested more N and P into cells, and tetraploids grew more with N enrichments, suggesting that material costs increase with ploidy level. Polyploids also generally exhibited strategies that could minimize material-cost constraints over both long (reduced monoploid genome size) and short (more extreme transcriptome downsizing, reduced photosynthesis rates and terpene concentrations, enhanced N-use efficiencies) evolutionary time periods. Furthermore, polyploids had lower transpiration rates but higher water-use efficiencies than diploids, both of which were more pronounced under nutrient-limiting conditions. CONCLUSIONS N and P material costs increase with ploidy level, but material-cost constraints might be lessened by resource allocation/investment mechanisms that can also alter ecological dynamics and selection. Our results enhance mechanistic understanding of how global increases in nutrients might provide a release from material-cost constraints in polyploids that could impact ploidy (or genome-size)-specific performances, cytogeographic patterning, and multispecies community structuring.
Collapse
Affiliation(s)
- Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
- Biology Department, Gustavus Adolphus College, 800 West College Avenue, St. Peter, MN, 56082, USA
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
6
|
Bouvier JW, Kelly S. Response to Tcherkez and Farquhar: Rubisco adaptation is more limited by phylogenetic constraint than by catalytic trade-off. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154021. [PMID: 37392528 DOI: 10.1016/j.jplph.2023.154021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Rubisco is the primary entry point for carbon into the biosphere. It has been widely proposed that rubisco is highly constrained by catalytic trade-offs due to correlations between the enzyme's kinetic traits across species. In previous work, we have shown that the strength of these correlations, and thus the strength of catalytic trade-offs, have been overestimated due to the presence of phylogenetic signal in the kinetic trait data (Bouvier et al., 2021). We demonstrated that only the trade-offs between the Michaelis constant for CO2 and carboxylase turnover, and between the Michaelis constants for CO2 and O2 were robust to phylogenetic effects. We further demonstrated that phylogenetic constraints have limited rubisco adaptation to a greater extent than the combined action of catalytic trade-offs. Recently, however, our claims have been contested by Tcherkez and Farquhar (2021), who have argued that the phylogenetic signal we detect in rubisco kinetic traits is an artefact of species sampling, the use of rbcL-based trees for phylogenetic inference, laboratory-to-laboratory variability in kinetic measurements, and homoplasy of the C4 trait. In the present article, we respond to these criticisms on a point-by-point basis and conclusively show that all are unfounded. As such, we stand by our original conclusions. Namely, although rubisco kinetic evolution has been limited by biochemical trade-offs, these are not absolute and have been previously overestimated due to phylogenetic biases. Instead, rubisco adaptation has in fact been more limited by phylogenetic constraint.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom.
| |
Collapse
|
7
|
Draga S, Gabelli G, Palumbo F, Barcaccia G. Genome-Wide Datasets of Chicories ( Cichorium intybus L.) for Marker-Assisted Crop Breeding Applications: A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:11663. [PMID: 37511422 PMCID: PMC10380310 DOI: 10.3390/ijms241411663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cichorium intybus L. is the most economically important species of its genus and among the most important of the Asteraceae family. In chicory, many linkage maps have been produced, several sets of mapped and unmapped markers have been developed, and dozens of genes linked to traits of agronomic interest have been investigated. This treasure trove of information, properly cataloged and organized, is of pivotal importance for the development of superior commercial products with valuable agronomic potential in terms of yield and quality, including reduced bitter taste and increased inulin production, as well as resistance or tolerance to pathogens and resilience to environmental stresses. For this reason, a systematic review was conducted based on the scientific literature published in chicory during 1980-2023. Based on the results obtained from the meta-analysis, we created two consensus maps capable of supporting marker-assisted breeding (MAB) and marker-assisted selection (MAS) programs. By taking advantage of the recently released genome of C. intybus, we built a 639 molecular marker-based consensus map collecting all the available mapped and unmapped SNP and SSR loci available for this species. In the following section, after summarizing and discussing all the genes investigated in chicory and related to traits of interest such as reproductive barriers, sesquiterpene lactone biosynthesis, inulin metabolism and stress response, we produced a second map encompassing 64 loci that could be useful for MAS purposes. With the advent of omics technologies, molecular data chaos (namely, the situation where the amount of molecular data is so complex and unmanageable that their use becomes challenging) is becoming far from a negligible issue. In this review, we have therefore tried to contribute by standardizing and organizing the molecular data produced thus far in chicory to facilitate the work of breeders.
Collapse
Affiliation(s)
| | | | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, Campus of Agripolis, University of Padova, 35020 Legnaro, Italy; (S.D.); (G.G.)
| |
Collapse
|
8
|
Mozdzer TJ, McCormick MK, Slette IJ, Blum MJ, Megonigal JP. Rapid evolution of a coastal marsh ecosystem engineer in response to global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:157846. [PMID: 35948126 DOI: 10.1016/j.scitotenv.2022.157846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
There is increasing evidence that global change can alter ecosystems by eliciting rapid evolution of foundational plants capable of shaping vital attributes and processes. Here we describe results of a field-scale exposure experiment and multilocus assays illustrating that elevated CO2 (eCO2) and nitrogen (N) enrichment can result in rapid shifts in genetic and genotypic variation in Phragmites australis, an ecologically dominant plant that acts as an ecosystem engineer in coastal marshes worldwide. Compared to control treatments, genotypic diversity declined over three years of exposure, especially to N enrichment. The magnitude of loss also increased over time under conditions of N enrichment. Comparisons of genotype frequencies revealed that proportional abundances shifted with exposure to eCO2 and N in a manner consistent with expected responses to selection. Comparisons also revealed evidence of tradeoffs that constrained exposure responses, where any particular genotype responded favorably to one factor rather than to different factors or to combinations of factors. These findings challenge the prevailing view that plant-mediated ecosystem outcomes of global change are governed primarily by differences in species responses to shifting environmental pressures and highlight the value of accounting for organismal evolution in predictive models to improve forecasts of ecosystem responses to global change.
Collapse
Affiliation(s)
- Thomas J Mozdzer
- Bryn Mawr College, Department of Biology, 101 N. Merion Ave, Bryn Mawr, PA 19010, United States of America; Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| | - Melissa K McCormick
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| | - Ingrid J Slette
- Colorado State University, Department of Biology and Graduate Degree Program in Ecology, 251 W Pitkin St, Fort Collins, CO 80523, United States of America
| | - Michael J Blum
- University of Tennessee, Department of Ecology & Evolutionary Biology, 1416 Circle Dr, Knoxville, TN 37996, United States of America.
| | - J Patrick Megonigal
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037, United States of America.
| |
Collapse
|
9
|
Walczyk AM, Hersch-Green EI. Do water and soil nutrient scarcities differentially impact the performance of diploid and tetraploid Solidago gigantea (Giant Goldenrod, Asteraceae)? PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1031-1042. [PMID: 35727918 DOI: 10.1111/plb.13448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Plants require water and nutrients for survival, although the effects of their availabilities on plant fitness differ amongst species. Genome size variation, within and across species, is suspected to influence plant water and nutrient requirements, but little is known about how variations in these resources concurrently affect plant fitness based on genome size. We examined how genome size variation between autopolyploid cytotypes influences plant morphological and physiological traits, and whether cytotype-specific trait responses differ based on water and/or nutrient availability. Diploid and autotetraploid Solidago gigantea (Giant Goldenrod) were grown in a greenhouse under four soil water:N+P treatments (L:L, L:H, H:L, H:H), and stomata characteristics (size, density), growth (above- and belowground biomass, R/S), and physiological (Anet , E, WUE) responses were measured. Resource availabilities and cytotype identity influenced some plant responses but their effects were independent of each other. Plants grown in high-water and nutrient treatments were larger, plants grown in low-water or high-nutrient treatments had higher WUE but lower E, and Anet and E rates decreased as plants aged. Autotetraploids also had larger and fewer stomata, higher biomass and larger Anet than diploids. Nutrient and water availability could influence intra- and interspecific competitive outcomes. Although S. gigantea cytotypes were not differentially affected by resource treatments, genome size may influence cytogeographic range patterning and population establishment likelihood. For instance, the larger size of autotetraploid S. gigantea might render them more competitive for resources and niche space than diploids.
Collapse
Affiliation(s)
- A M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - E I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
10
|
Bitomský M, Kobrlová L, Hroneš M, Klimešová J, Duchoslav M. Stoichiometry versus ecology: the relationships between genome size and guanine-cytosine content, and tissue nitrogen and phosphorus in grassland herbs. ANNALS OF BOTANY 2022; 130:189-197. [PMID: 35700050 PMCID: PMC9445592 DOI: 10.1093/aob/mcac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Plant tissue nitrogen (N) and phosphorus (P) and genome traits, such as genome size and guanine-cytosine (GC) content, scale with growth or metabolic rates and are linked to plant ecological strategy spectra. Tissue NP stoichiometry and genome traits are reported to affect plant growth, metabolic rates or ecological strategies in contrasting ways, although the elemental costs for building and maintaining DNA are typically overlooked. METHODS We formulated stoichiometry- and ecology-based predictions on the relationship between genome size and GC content to tissue N, P and N : P and tested them on a set of 130 herbaceous species from a temperate grassland using ordinary, phylogenetic and quantile regression. KEY RESULTS Genome size was only negatively linked to plant N and N : P in species with very small genomes. We found no link between genome size and plant P. GC content was negatively linked to plant N and P but we found these significant links consistently in both GC-rich and GC-poor species. Finally, GC content correlated positively with plant N : P but only in species with GC-rich genomes. CONCLUSIONS Our results provide stronger support for the ecology-based predictions than the stoichiometry-based predictions, and for the links between GC content and plant N and P stoichiometry than for genome size. We argue that the theories of plant metabolic rates and ecological strategies (resource-acquisitive vs. conservative or ruderal vs. stress-tolerator spectra) better explain interspecific genome-NP stoichiometry relationships at the tissue level (although relatively weakly) than the stoichiometric theory based on the elemental costs for building and maintaining DNA.
Collapse
Affiliation(s)
| | - Lucie Kobrlová
- Department of Botany, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Michal Hroneš
- Department of Botany, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Jitka Klimešová
- Institute of Botany of the Czech Academy of Sciences, Dukelská, Třeboň, Czech Republic
- Department of Botany, Charles University, Benátská, Prague, Czech Republic
| | - Martin Duchoslav
- Department of Botany, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| |
Collapse
|
11
|
Ge Z, Ma Y, Xing W, Wu Y, Peng S, Mao L, Miao Z. Inorganic Nitrogen-Containing Aerosol Deposition Caused "Excessive Photosynthesis" of Herbs, Resulting in Increased Nitrogen Demand. PLANTS (BASEL, SWITZERLAND) 2022; 11:2225. [PMID: 36079607 PMCID: PMC9460276 DOI: 10.3390/plants11172225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
The amount of atmospheric nitrogen-containing aerosols has increased dramatically due to the globally rising levels of nitrogen from fertilization and atmospheric deposition. Although the balance of carbon and nitrogen in plants is a crucial component of physiological and biochemical indexes and plays a key role in adaptive regulation, our understanding of how nitrogen-containing aerosols affect this remains limited; in particular, regarding the associated mechanisms. Using a fumigation particle generator, we generated ammonium nitrate solution (in four concentrations of 0, 15, 30, 60 kg N hm-2 year-1) into droplets, in 90% of which the diameters were less than 2.5 μm, in the range of 0.35-4 μm, and fumigated Iris germanica L. and Portulaca grandiflora Hook. for 30 days in April and August. We found that the weight percentage of nitrogen in the upper epidermis, mesophyll tissue, and bulk of leaves decreased significantly with the N addition rate, which caused a decrease of carbon:nitrogen ratio, due to the enhanced net photosynthetic rate. Compared with Portulaca grandiflora Hook., Iris germanica L. responded more significantly to the disturbance of N addition, resulting in a decrease in the weight percentage of nitrogen in the roots, due to a lower nitrogen use efficiency. In addition, the superoxide dismutase activity of the two plants was inhibited with a higher concentration of nitrogen sol; a reduction of superoxide dismutase activity in plants means that the resistance of plants to various environmental stresses is reduced, and this decrease in superoxide dismutase activity may be related to ROS signaling. The results suggest that inorganic nitrogen-containing aerosols caused excessive stress to plants, especially for Iris germanica L.
Collapse
Affiliation(s)
- Zhiwei Ge
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- NFU Academy of Chinese Ecological Progress and Forestry Development Studies, Nanjing 210037, China
| | - Yunran Ma
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Xing
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Academy of Forestry, Nanjing 211100, China
| | - Yongbo Wu
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Sili Peng
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lingfeng Mao
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- NFU Academy of Chinese Ecological Progress and Forestry Development Studies, Nanjing 210037, China
| | - Zimei Miao
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- NFU Academy of Chinese Ecological Progress and Forestry Development Studies, Nanjing 210037, China
| |
Collapse
|
12
|
Moraes AP, Engel TBJ, Forni-Martins ER, de Barros F, Felix LP, Cabral JS. Are chromosome number and genome size associated with habit and environmental niche variables? Insights from the Neotropical orchids. ANNALS OF BOTANY 2022; 130:11-25. [PMID: 35143612 PMCID: PMC9295925 DOI: 10.1093/aob/mcac021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND AIMS The entangled relationship of chromosome number and genome size with species distribution has been the subject of study for almost a century, but remains an open question due to previous ecological and phylogenetic knowledge constraints. To better address this subject, we used the clade Maxillariinae, a widely distributed and karyotypically known orchid group, as a model system to infer such relationships in a robust methodological framework. METHODS Based on the literature and new data, we gathered the chromosome number and genome size for 93 and 64 species, respectively. We built a phylogenetic hypothesis and assessed the best macroevolutionary model for both genomic traits. Additionally, we collected together ecological data (preferences for bioclimatic variables, elevation and habit) used as explanatory variables in multivariate phylogenetic models explaining genomic traits. Finally, the impact of polyploidy was estimated by running the analyses with and without polyploids in the sample. KEY RESULTS The association between genomic and ecological data varied depending on whether polyploids were considered or not. Without polyploids, chromosome number failed to present consistent associations with ecological variables. With polyploids, there was a tendency to waive epiphytism and colonize new habitats outside humid forests. The genome size showed association with ecological variables: without polyploids, genome increase was associated with flexible habits, with higher elevation and with drier summers; with polyploids, genome size increase was associated with colonizing drier environments. CONCLUSIONS The chromosome number and genome size variations, essential but neglected traits in the ecological niche, are shaped in the Maxillariinae by both neutral and adaptive evolution. Both genomic traits are partially correlated to bioclimatic variables and elevation, even when controlling for phylogenetic constraints. While polyploidy was associated with shifts in the environmental niche, the genome size emerges as a central trait in orchid evolution by the association between small genome size and epiphytism, a key innovation to Neotropical orchid diversification.
Collapse
Affiliation(s)
| | - Thaissa Brogliato Junqueira Engel
- Universidade de Campinas – UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Programa de Pós Graduação em Biologia Vegetal, Campinas, 13083-970, São Paulo, Brazil
| | - Eliana R Forni-Martins
- Universidade de Campinas – UNICAMP, Instituto de Biologia, Departamento de Biologia Vegetal, Programa de Pós Graduação em Biologia Vegetal, Campinas, 13083-970, São Paulo, Brazil
| | - Fábio de Barros
- Instituto de Botânica, Núcleo de Pesquisa Orquidário do Estado, São Paulo, 04045-972, São Paulo, Brazil
| | - Leonardo P Felix
- Universidade Federal da Paraíba – UFPB, Campus II, Departamento de Ciências Biológicas, Areia, 58397-000, Paraíba, Brazil
| | - Juliano Sarmento Cabral
- University of Würzburg, Ecosystem Modeling, Center for Computational and Theoretical Biology (CCTB), Klara-Oppenheimer-Weg 32, D-97074, Würzburg, Germany
| |
Collapse
|
13
|
Faizullah L, Morton JA, Hersch-Green EI, Walczyk AM, Leitch AR, Leitch IJ. Exploring environmental selection on genome size in angiosperms. TRENDS IN PLANT SCIENCE 2021; 26:1039-1049. [PMID: 34219022 DOI: 10.1016/j.tplants.2021.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/22/2023]
Abstract
Angiosperms show a remarkable range in genome size (GS), yet most species have small genomes, despite the frequency of polyploidy and repeat amplification in the ancestries of most lineages. It has been suggested that larger genomes incur costs that have driven selection for GS reduction, although the nature of these costs and how they might impact selection remain unclear. We explore potential costs of increased GS encompassing impacts on minimum cell size with consequences for photosynthesis and water-use efficiency and effects of greater nitrogen and phosphorus demands of the nucleus leading to more severe trade-offs with photosynthesis. We suggest that nutrient-, water-, and/or CO2-stressed conditions might favour species with smaller genomes, with implications for species' ecological and evolutionary dynamics.
Collapse
Affiliation(s)
- Lubna Faizullah
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Joseph A Morton
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK.
| | - Ilia J Leitch
- Character Evolution Team, Royal Botanic Gardens, Kew, Richmond, Surrey, UK.
| |
Collapse
|
14
|
Urban A, Rogowski P, Wasilewska-Dębowska W, Romanowska E. Understanding Maize Response to Nitrogen Limitation in Different Light Conditions for the Improvement of Photosynthesis. PLANTS 2021; 10:plants10091932. [PMID: 34579465 PMCID: PMC8471034 DOI: 10.3390/plants10091932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022]
Abstract
The photosynthetic capacity of leaves is determined by their content of nitrogen (N). Nitrogen involved in photosynthesis is divided between soluble proteins and thylakoid membrane proteins. In C4 plants, the photosynthetic apparatus is partitioned between two cell types: mesophyll cells and bundle sheath. The enzymes involved in the C4 carbon cycle and assimilation of nitrogen are localized in a cell-specific manner. Although intracellular distribution of enzymes of N and carbon assimilation is variable, little is known about the physiological consequences of this distribution caused by light changes. Light intensity and nitrogen concentration influence content of nitrates in leaves and can induce activity of the main enzymes involved in N metabolism, and changes that reduce the photosynthesis rate also reduce photosynthetic N use efficiency. In this review, we wish to highlight and discuss how/whether light intensity can improve photosynthesis in maize during nitrogen limitation. We described the general regulation of changes in the main photosynthetic and nitrogen metabolism enzymes, their quantity and localization, thylakoid protein abundance, intracellular transport of organic acids as well as specific features connected with C4 photosynthesis, and addressed the major open questions related to N metabolism and effects of light on photosynthesis in C4 plants.
Collapse
|
15
|
Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1003-1015. [PMID: 34077584 DOI: 10.1111/tpj.15363] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 05/20/2023]
Abstract
An analysis of over 10 000 plant genome sizes (GSs) indicates that most species have smaller genomes than expected given the incidence of polyploidy in their ancestries, suggesting selection for genome downsizing. However, comparing ancestral GS with the incidence of ancestral polyploidy suggests that the rate of DNA loss following polyploidy is likely to have been very low (4-70 Mb/million years, 4-482 bp/generation). This poses a problem. How might such small DNA losses be visible to selection, overcome the power of genetic drift and drive genome downsizing? Here we explore that problem, focussing on the role that double-strand break (DSB) repair pathways (non-homologous end joining and homologous recombination) may have played. We also explore two hypotheses that could explain how selection might favour genome downsizing following polyploidy: to reduce (i) nitrogen (N) and phosphate (P) costs associated with nucleic acid synthesis in the nucleus and the transcriptome and (ii) the impact of scaling effects of GS on cell size, which influences CO2 uptake and water loss. We explore the hypothesis that losses of DNA must be fastest in early polyploid generations. Alternatively, if DNA loss is a more continuous process over evolutionary time, then we propose it is a byproduct of selection elsewhere, such as limiting the damaging activity of repetitive DNA. If so, then the impact of GS on photosynthesis, water use efficiency and/or nutrient costs at the nucleus level may be emergent properties, which have advantages, but not ones that could have been selected for over generational timescales.
Collapse
Affiliation(s)
- Xiaotong Wang
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Joseph A Morton
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Surrey, TW9 3AB, UK
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Passeig del Migdia sn, Barcelona, 08038, Spain
| | | | - Andrew R Leitch
- Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
16
|
The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat Commun 2021; 12:4247. [PMID: 34253727 PMCID: PMC8275611 DOI: 10.1038/s41467-021-24528-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
The gymnosperm Welwitschia mirabilis belongs to the ancient, enigmatic gnetophyte lineage. It is a unique desert plant with extreme longevity and two ever-elongating leaves. We present a chromosome-level assembly of its genome (6.8 Gb/1 C) together with methylome and transcriptome data to explore its astonishing biology. We also present a refined, high-quality assembly of Gnetum montanum to enhance our understanding of gnetophyte genome evolution. The Welwitschia genome has been shaped by a lineage-specific ancient, whole genome duplication (~86 million years ago) and more recently (1-2 million years) by bursts of retrotransposon activity. High levels of cytosine methylation (particularly at CHH motifs) are associated with retrotransposons, whilst long-term deamination has resulted in an exceptionally GC-poor genome. Changes in copy number and/or expression of gene families and transcription factors (e.g. R2R3MYB, SAUR) controlling cell growth, differentiation and metabolism underpin the plant's longevity and tolerance to temperature, nutrient and water stress.
Collapse
|
17
|
Bouvier JW, Emms DM, Rhodes T, Bolton JS, Brasnett A, Eddershaw A, Nielsen JR, Unitt A, Whitney SM, Kelly S. Rubisco Adaptation Is More Limited by Phylogenetic Constraint Than by Catalytic Trade-off. Mol Biol Evol 2021; 38:2880-2896. [PMID: 33739416 PMCID: PMC8233502 DOI: 10.1093/molbev/msab079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rubisco assimilates CO2 to form the sugars that fuel life on earth. Correlations between rubisco kinetic traits across species have led to the proposition that rubisco adaptation is highly constrained by catalytic trade-offs. However, these analyses did not consider the phylogenetic context of the enzymes that were analyzed. Thus, it is possible that the correlations observed were an artefact of the presence of phylogenetic signal in rubisco kinetics and the phylogenetic relationship between the species that were sampled. Here, we conducted a phylogenetically resolved analysis of rubisco kinetics and show that there is a significant phylogenetic signal in rubisco kinetic traits. We re-evaluated the extent of catalytic trade-offs accounting for this phylogenetic signal and found that all were attenuated. Following phylogenetic correction, the largest catalytic trade-offs were observed between the Michaelis constant for CO2 and carboxylase turnover (∼21-37%), and between the Michaelis constants for CO2 and O2 (∼9-19%), respectively. All other catalytic trade-offs were substantially attenuated such that they were marginal (<9%) or non-significant. This phylogenetically resolved analysis of rubisco kinetic evolution also identified kinetic changes that occur concomitant with the evolution of C4 photosynthesis. Finally, we show that phylogenetic constraints have played a larger role than catalytic trade-offs in limiting the evolution of rubisco kinetics. Thus, although there is strong evidence for some catalytic trade-offs, rubisco adaptation has been more limited by phylogenetic constraint than by the combined action of all catalytic trade-offs.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Timothy Rhodes
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jai S Bolton
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Amelia Brasnett
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Alice Eddershaw
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Jochem R Nielsen
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Anastasia Unitt
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Majda S, Beisser D, Boenigk J. Nutrient-driven genome evolution revealed by comparative genomics of chrysomonad flagellates. Commun Biol 2021; 4:328. [PMID: 33712682 PMCID: PMC7954800 DOI: 10.1038/s42003-021-01781-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
Phototrophic eukaryotes have evolved mainly by the primary or secondary uptake of photosynthetic organisms. A return to heterotrophy occurred multiple times in various protistan groups such as Chrysophyceae, despite the expected advantage of autotrophy. It is assumed that the evolutionary shift to mixotrophy and further to heterotrophy is triggered by a differential importance of nutrient and carbon limitation. We sequenced the genomes of 16 chrysophyte strains and compared them in terms of size, function, and sequence characteristics in relation to photo-, mixo- and heterotrophic nutrition. All strains were sequenced with Illumina and partly with PacBio. Heterotrophic taxa have reduced genomes and a higher GC content of up to 59% as compared to phototrophic taxa. Heterotrophs have a large pan genome, but a small core genome, indicating a differential specialization of the distinct lineages. The pan genome of mixotrophs and heterotrophs taken together but not the pan genome of the mixotrophs alone covers the complete functionality of the phototrophic strains indicating a random reduction of genes. The observed ploidy ranges from di- to tetraploidy and was found to be independent of taxonomy or trophic mode. Our results substantiate an evolution driven by nutrient and carbon limitation.
Collapse
Affiliation(s)
- Stephan Majda
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany.
| | - Daniela Beisser
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Hess J, Balasundaram SV, Bakkemo RI, Drula E, Henrissat B, Högberg N, Eastwood D, Skrede I. Niche differentiation and evolution of the wood decay machinery in the invasive fungus Serpula lacrymans. THE ISME JOURNAL 2021; 15:592-604. [PMID: 33077886 PMCID: PMC8027034 DOI: 10.1038/s41396-020-00799-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022]
Abstract
Ecological niche breadth and the mechanisms facilitating its evolution are fundamental to understanding adaptation to changing environments, persistence of generalist and specialist lineages and the formation of new species. Woody substrates are structurally complex resources utilized by organisms with specialized decay machinery. Wood-decaying fungi represent ideal model systems to study evolution of niche breadth, as they vary greatly in their host range and preferred decay stage of the substrate. In order to dissect the genetic basis for niche specialization in the invasive brown rot fungus Serpula lacrymans, we used phenotyping and integrative analysis of phylogenomic and transcriptomic data to compare this species to wild relatives in the Serpulaceae with a range of specialist to generalist decay strategies. Our results indicate specialist species have rewired regulatory networks active during wood decay towards decreased reliance on enzymatic machinery, and therefore nitrogen-intensive decay components. This shift was likely accompanied with adaptation to a narrow tree line habitat and switch to a pioneer decomposer strategy, both requiring rapid colonization of a nitrogen-limited substrate. Among substrate specialists with narrow niches, we also found evidence for pathways facilitating reversal to generalism, highlighting how evolution may move along different axes of niche space.
Collapse
Affiliation(s)
- Jaqueline Hess
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria.
- Department of Soil Ecology, Helmholtz Centre for Environmental Research, UFZ, Halle (Saale), Germany.
| | | | | | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, France
- INRA, USC1408 AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nils Högberg
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Daniel Eastwood
- Department of Biosciences, University of Swansea, Swansea, UK
| | - Inger Skrede
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Khan A, Wang Z, Xu K, Li L, He L, Hu H, Wang G. Validation of an Enzyme-Driven Model Explaining Photosynthetic Rate Responses to Limited Nitrogen in Crop Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:533341. [PMID: 33101324 PMCID: PMC7546270 DOI: 10.3389/fpls.2020.533341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The limited availability of nitrogen (N) is a fundamental challenge for many crop plants. We have hypothesized that the relative crop photosynthetic rate (P) is exponentially constrained by certain plant-specific enzyme activities, such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-G3PDH), 3-phosphoglyceric acid (PGA) kinase, and chloroplast fructose-1,6-bisphosphatase (cpFBPase), in Triticum aestivum and Oryza sativa. We conducted a literature search to compile information from previous studies on C3 and C4 crop plants, to examine the photosynthetic rate responses to limited leaf [N] levels. We found that in Zea mays, NADP-malic enzyme (NADP-ME), PEP carboxykinase (PCK), and Rubisco activities were positively correlated with P. A positive correlation was also observed between both phosphoenolpyruvate carboxylase (PEPC) and Rubisco activity with leaf [N] in Sorghum bicolor. Key enzyme activities responded differently to P in C3 and C4 plants, suggesting that other factors, such as leaf [N] and the stage of leaf growth, also limited specific enzyme activities. The relationships followed the best fitting exponential relationships between key enzymes and the P rate in both C3 and C4 plants. It was found that C4 species absorbed less leaf [N] but had higher [N] assimilation rates (A rate) and higher maximum photosynthesis rates (Pmax ), i.e., they were able to utilize and invest more [N] to sustain higher carbon gains. All C3 species studied herein had higher [N] storage (Nstore) and higher absorption of [N], when compared with the C4 species. Nstore was the main [N] source used for maintaining photosynthetic capacity and leaf expansion. Of the nine C3 species assessed, rice had the greatest Pmax , thereby absorbing more leaf [N]. Elevated CO2 (eCO2) was also found to reduce the leaf [N] and Pmax in rice but enhanced the leaf [N] and N use efficiency of photosynthesis in maize. We concluded that eCO2 affects [N] allocation, which directly or indirectly affects Pmax . These results highlight the need to further study these physiological and biochemical processes, to better predict how crops will respond to eCO2 concentrations and limited [N].
Collapse
Affiliation(s)
| | | | | | | | | | | | - Genxuan Wang
- Plant Physiology and Ecology Laboratory, Department of Ecology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Busch FA. Photorespiration in the context of Rubisco biochemistry, CO 2 diffusion and metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:919-939. [PMID: 31910295 DOI: 10.1111/tpj.14674] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/11/2023]
Abstract
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen-containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant's carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.
Collapse
Affiliation(s)
- Florian A Busch
- Research School of Biology and ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
22
|
Auboeuf D. Physicochemical Foundations of Life that Direct Evolution: Chance and Natural Selection are not Evolutionary Driving Forces. Life (Basel) 2020; 10:life10020007. [PMID: 31973071 PMCID: PMC7175370 DOI: 10.3390/life10020007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
The current framework of evolutionary theory postulates that evolution relies on random mutations generating a diversity of phenotypes on which natural selection acts. This framework was established using a top-down approach as it originated from Darwinism, which is based on observations made of complex multicellular organisms and, then, modified to fit a DNA-centric view. In this article, it is argued that based on a bottom-up approach starting from the physicochemical properties of nucleic and amino acid polymers, we should reject the facts that (i) natural selection plays a dominant role in evolution and (ii) the probability of mutations is independent of the generated phenotype. It is shown that the adaptation of a phenotype to an environment does not correspond to organism fitness, but rather corresponds to maintaining the genome stability and integrity. In a stable environment, the phenotype maintains the stability of its originating genome and both (genome and phenotype) are reproduced identically. In an unstable environment (i.e., corresponding to variations in physicochemical parameters above a physiological range), the phenotype no longer maintains the stability of its originating genome, but instead influences its variations. Indeed, environment- and cellular-dependent physicochemical parameters define the probability of mutations in terms of frequency, nature, and location in a genome. Evolution is non-deterministic because it relies on probabilistic physicochemical rules, and evolution is driven by a bidirectional interplay between genome and phenotype in which the phenotype ensures the stability of its originating genome in a cellular and environmental physicochemical parameter-depending manner.
Collapse
Affiliation(s)
- Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie, Site Jacques Monod, F-69007, Lyon, France
| |
Collapse
|
23
|
Yiotis C, McElwain JC. A Novel Hypothesis for the Role of Photosynthetic Physiology in Shaping Macroevolutionary Patterns. PLANT PHYSIOLOGY 2019; 181:1148-1162. [PMID: 31484680 PMCID: PMC6836816 DOI: 10.1104/pp.19.00749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/25/2019] [Indexed: 05/08/2023]
Abstract
The fossil record and models of atmospheric concentrations of O2 and CO2 suggest that past shifts in plant ecological dominance often coincided with dramatic changes in Earth's atmospheric composition. This study tested the effects of past changes in atmospheric composition on the photosynthetic physiology of a limited range of early-diverging angiosperms (eight), gymnosperms (three), and ferns (two). We performed physiological measurements on all species and used the results to parameterize simulations of their photosynthetic paleophysiology using three independent modeling approaches. Unique physiological attributes were identified for the three evolutionary groups: angiosperm taxa displayed significantly higher mesophyll conductance (g m), yet their stomatal conductance (g s) was lower than that of ferns. Gymnosperm taxa displayed low g s and g m, but they partially offset their significant diffusional limitations on photosynthesis through their higher maximum Rubisco carboxylation rate. Despite their high total conductance to CO2, fern taxa lacked an optimized control of g s, which was reflected in their low intrinsic water use efficiency. Simulations of the photosynthetic physiology of ferns, angiosperms, and gymnosperms through Earth's history demonstrated that past fluctuations in O2 and CO2 concentrations may have resulted in significant shifts in the relative competitiveness of the three evolutionary groups. Although preliminary because of limited species sampling, these findings hint at a potential mechanistic basis for the observed broad temporal correlation between atmospheric change and shifts in plant evolutionary group-level richness observed in the fossil record and are presented as a framework to be tested with paleophotosynthetic proxies and through increased species sampling.
Collapse
Affiliation(s)
- Charilaos Yiotis
- Botany Department, School of Natural Sciences, Trinity College, Dublin 2, Ireland
| | - Jennifer C McElwain
- Botany Department, School of Natural Sciences, Trinity College, Dublin 2, Ireland
| |
Collapse
|
24
|
Niklaus M, Kelly S. The molecular evolution of C4 photosynthesis: opportunities for understanding and improving the world's most productive plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:795-804. [PMID: 30462241 DOI: 10.1093/jxb/ery416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/09/2018] [Indexed: 05/28/2023]
Abstract
C4 photosynthesis is a convergent evolutionary trait that enhances photosynthetic efficiency in a variety of environmental conditions. It has evolved repeatedly following a fall in atmospheric CO2 concentration such that there is up to a 30 million year difference in the amount of time that natural selection has had to improve C4 function between the oldest and youngest C4 lineages. This large difference in time, coupled with the phylogenetic distance between lineages, has resulted in a large disparity in anatomy, physiology, and biochemistry between extant C4 species. This review summarizes the myriad of molecular sequence changes that have been linked to the evolution of C4 photosynthesis. These range from single nucleotide changes to duplication of entire genes, and provide a roadmap for how natural selection has adapted enzymes and pathways for enhanced C4 function. Finally, this review discusses how this molecular diversity can provide opportunities for understanding and improving photosynthesis for multiple important C4 food, feed, and bioenergy crops.
Collapse
Affiliation(s)
- Michael Niklaus
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Bales AL, Hersch‐Green EI. Effects of soil nitrogen on diploid advantage in fireweed, Chamerion angustifolium (Onagraceae). Ecol Evol 2019; 9:1095-1109. [PMID: 30805143 PMCID: PMC6374662 DOI: 10.1002/ece3.4797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/15/2023] Open
Abstract
In many ecosystems, plant growth and reproduction are nitrogen limited. Current and predicted increases of global reactive nitrogen could alter the ecological and evolutionary trajectories of plant populations. Nitrogen is a major component of nucleic acids and cell structures, and it has been predicted that organisms with larger genomes should require more nitrogen for growth and reproduction and be more negatively affected by nitrogen scarcities than organisms with smaller genomes. In a greenhouse experiment, we tested this hypothesis by examining whether the amount of soil nitrogen supplied differentially influenced the performance (fitness, growth, and resource allocation strategies) of diploid and autotetraploid fireweed (Chamerion angustifolium). We found that soil nitrogen levels differentially impacted cytotype performance, and in general, diploids were favored under low nitrogen conditions, but this diploid advantage disappeared under nitrogen enrichment. Specifically, when nitrogen was scarce, diploids produced more seeds and allocated more biomass toward seed production relative to investment in plant biomass or total plant nitrogen than did tetraploids. As nitrogen supplied increased, such discrepancies between cytotypes disappeared. We also found that cytotype resource allocation strategies were differentially dependent on soil nitrogen, and that whereas diploids adopted resource allocation strategies that favored current season reproduction when nitrogen was limiting and future reproduction when nitrogen was more plentiful, tetraploids adopted resource allocation strategies that favored current season reproduction under nitrogen enrichment. Together these results suggest nitrogen enrichment could differentially affect cytotype performance, which could have implications for cytotypes' ecological and evolutionary dynamics under a globally changing climate.
Collapse
Affiliation(s)
- Alex L. Bales
- Microbiology DepartmentUniversity of MassachusettsAmherstMassachusetts
| | | |
Collapse
|
26
|
Flexas J, Gago J. A role for ecophysiology in the 'omics' era. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:251-259. [PMID: 30091802 DOI: 10.1111/tpj.14059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 05/24/2023]
Abstract
Plant Ecophysiology is the study on how Plant Physiology is modulated by the environment. This discipline could have benefited greatly from the development of the different 'omic' technologies (from genomics to metabolomics). Instead, the overall impression is that ecophysiology and 'omics' have developed mostly independent each other. Here we provide a literature analysis over the past 20 years which fully confirms this view. Then, we review a few examples of studies in which ecophysiology and 'omics' studies have combined to different extents to illustrate the potential benefits from their mutualistic interaction. In addition, we debate on the possibilities of working with plants other than Arabidopsis, which is illustrated with some examples of fascinating plants from extreme environments of the world, what we call the 'sherplants'. Finally, we raise a call to both communities (ecophysiology and 'omics') to integrate these disciplines to enter an 'ecophysiolomics era' to maximize our understanding about plant mechanisms from a multidisciplinary approach.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), cta. Valldemossa km 7, 5 Palma de Mallorca, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB)-Instituto de Agroecología y Economía del Agua (INAGEA), cta. Valldemossa km 7, 5 Palma de Mallorca, Spain
| |
Collapse
|