1
|
El-Zeiny ME, Abu Samak OA, Fahmy SA, Khidr AAA. Evaluation of the effect of larval metamorphosis of some digenetic parasites within the digestive gland tissues of the freshwater ampullariid snails, Lanistes carinatus (Olivier, 1804). Parasitol Int 2025; 108:103078. [PMID: 40199418 DOI: 10.1016/j.parint.2025.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/10/2025]
Abstract
Ampullariid snail, Lanistes carinatus, was infected with larval stages of the two digenean parasites, one of which belonged to the genus Echinochasmus, and the other belonged to the genus Phaneropsolus. The first genus has gymnocephalus cercariae type, while the other has xiphidicercariae type. The later cercariae characterized with presence of xiphoid spine at oral sucker, while the first one has spines on its oral sucker. When examining the digestive gland of snails, it is the presence of growth and metamorphosis for both parasites. The histological study of the digestive gland infected with the larval stages showed that the larval development of Echinochasmus parasites progresses from sporocyst to mother sporocyst to the redia before it turns into gymnocephalus cercariae. As for the larval development of the genus Phaneropsolus, it appears to have undergone the larval transformation from the sporocyst stage only before reaching the cercaria stage of the type xiphidiocercaria. The histopathological study of the tissues of the affected digestive glands showed that the effect of the presence of the larval stages was severe and destructive to the cells of the glands. It appears from the observation that mechanical and physiological activity of the larvae was the cause of a major change in the normal structure of tissue of the affected glands. Therefore, the present study traces the pathological effect caused by any parasite within the tissues of any host, is noted, but a fingerprint specific to it that can be taken as evidence of its presence and no other.
Collapse
Affiliation(s)
- Mohammed E El-Zeiny
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Ola A Abu Samak
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Shereen A Fahmy
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| | - Abdel Aziz A Khidr
- Zoology Department, Faculty of Science, Damietta University, New Damietta, P.O. 34517, Damietta, Egypt
| |
Collapse
|
2
|
Zhou Y, Gao Y, Chen X, Zhang H, Jiang Q, Qiu JW, Ip JCH, Sun J. Juvenile apple snails as new biomonitors of freshwater pollution: Insight into copper and lead toxicity and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178844. [PMID: 39954471 DOI: 10.1016/j.scitotenv.2025.178844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/21/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Environmental pollutants, such as heavy metals, pose significant threats to organisms across different trophic levels in the aquatic environment. Although the effects of heavy metals have been extensively studied in a limited number of model organisms, their toxicity and underlying mechanisms remain poorly understood in numerous aquatic invertebrates. Here, we underscore the potential of the apple snail Pomacea canaliculata as an environmental bioindicator for freshwater heavy metal pollution, advancing biomonitoring methodologies. By integrating physiological, enzymatic, transcriptomic, and proteomic analyses, we conducted a thorough evaluation of the toxic effects and mechanisms of copper (Cu) and lead (Pb) on juvenile snails. Our results demonstrated that juvenile P. canaliculata was more sensitive to Cu and Pb compared with other aquatic invertebrates with heart rate drop serving as a reliable indicator of metal exposure. Antioxidant enzyme activity exhibited a distinct response, increasing at low Pb concentrations but decreasing at high concentrations, while Cu suppressed the activity even at a low concentration. At the molecular level, a total of 467 and 267 differentially expressed genes and 629 and 204 differentially expressed proteins were identified in the juveniles exposed to sublethal concentrations of Cu (40 μg/L) and Pb (1500 μg/L) for 72 h, respectively. Functional analysis further revealed distinct molecular toxicity in P. canaliculata. Under Pb exposure, key pathways related to cellular oxidant detoxification, transmembrane transporter activity, and ATP hydrolysis activity were enriched, while Cu significantly activated chitin binding, oxidoreductase activity and extracellular region. Overall, our findings highlight the exceptional capacity of P. canaliculata juveniles to differentiate the toxicity and molecular toxic mechanisms of heavy metals, establishing this species as an important and sensitive biomonitor for accurately assessing freshwater heavy metal pollution. This advancement enhances our understanding of ecological health and offers valuable tools for policymakers and conservationists to address the impacts of environmental contaminants.
Collapse
Affiliation(s)
- Yufei Zhou
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Yue Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Xi Chen
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Hongyin Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Qingqiu Jiang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong
| | | | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
3
|
Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, Kocot KM, Arbizu PM, Moles J, Schell T, Schwabe E, Sun J, Wong NLWS, Yap-Chiongco M, Sigwart JD. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science 2025; 387:1001-1007. [PMID: 40014700 DOI: 10.1126/science.ads0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 03/01/2025]
Abstract
Extreme morphological disparity within Mollusca has long confounded efforts to reconstruct a stable backbone phylogeny for the phylum. Familiar molluscan groups-gastropods, bivalves, and cephalopods-each represent a diverse radiation with myriad morphological, ecological, and behavioral adaptations. The phylum further encompasses many more unfamiliar experiments in animal body-plan evolution. In this work, we reconstructed the phylogeny for living Mollusca on the basis of metazoan BUSCO (Benchmarking Universal Single-Copy Orthologs) genes extracted from 77 (13 new) genomes, including multiple members of all eight classes with two high-quality genome assemblies for monoplacophorans. Our analyses confirm a phylogeny proposed from morphology and show widespread genomic variation. The flexibility of the molluscan genome likely explains both historic challenges with their genomes and their evolutionary success.
Collapse
Affiliation(s)
- Zeyuan Chen
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Departamento de Biologia Marina, Universidad Catolica del Norte, Coquimbo, Chile
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Maria Teresa Gonzalez
- Instituto Ciencias Naturales "Alexander von Humboldt," Universidad de Antofagasta, FACIMAR, Antofagasta, Chile
| | - Vanessa Liz González
- Informatics and Data Science Center, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Carola Greve
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL, USA
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Juan Moles
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Tilman Schell
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | | | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Nur Leena W S Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Malaysia
| | - Meghan Yap-Chiongco
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Julia D Sigwart
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany
| |
Collapse
|
4
|
Chiumiento IR, Tricerri MA, Cortéz MF, Ituarte S, Tau J, Mariño KV, Smaldini PL, Heras H, Dreon MS. Pomacea canaliculata hemocyanin as a novel natural immunostimulant in mammals. Front Immunol 2025; 15:1490260. [PMID: 39845952 PMCID: PMC11750813 DOI: 10.3389/fimmu.2024.1490260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Gastropod hemocyanins are potent immunostimulants in mammals, a trait associated with their large molecular size and unusual glycosylation patterns. While the hemocyanin from the marine snail keyhole limpet (KLH), has been widely studied and successfully employed as a carrier/adjuvant in several immunological applications, as well as a non-specific immunostimulant for bladder cancer treatment, few other gastropod hemocyanins have been biochemically and immunologically characterized. In this work, we investigated the immunogenic properties of the hemocyanin from Pomacea canaliculata (PcH), an invasive south American freshwater snail. This species, known for its high reproductive rate and easy rearing, represents a promising source of potential biomedical compounds, including hemocyanin. Methods Employing flow cytometry, fluorescence microscopy, immunoassays, and quantitative PCR, we analysed the effects of PcH on THP-1 monocytes and their derived macrophages, as well as its ability to induce humoral response on C57BL/6 mice. Additionally, we evaluated the structural stability of PcH across a wide range of temperature and pH values. Results and discussion Our findings demonstrate that PcH is a structurally stable protein that not only triggers a pro-inflammatory effect on THP-1 derived-macrophages by increasing IL1-β and TNF-α levels, but also promotes phenotypic changes associated with the monocyte-to-macrophage differentiation. Moreover, the humoral response induced by PcH in mice was indistinguishable from that of KLH, highlighting the promising immunostimulatory properties of this freshwater snail hemocyanin.
Collapse
Affiliation(s)
- Ignacio Rafael Chiumiento
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner”, (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - María Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner”, (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Cátedra de Bioquímica Clínica I, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - María Fernanda Cortéz
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner”, (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner”, (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Julia Tau
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner”, (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
| | - Karina Valeria Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Paola Lorena Smaldini
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP - CONICET, La Plata, Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner”, (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, La Plata, Argentina
| | - Marcos Sebastián Dreon
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner”, (INIBIOLP), Universidad Nacional de La Plata (UNLP) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
5
|
Dellagnola FA, Godoy MS, Vega IA. Zymography Techniques for the Profiling of Digestive Protease in a Freshwater Invertebrate Model. Methods Mol Biol 2025; 2918:107-123. [PMID: 40261617 DOI: 10.1007/978-1-0716-4482-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Zymography is a sensitive and specific technique that enables the detection and characterization of proteases of low abundance. Here, we describe two zymographic techniques, in-gel and in situ zymography, to discover proteases (20-120 kDa) along the gut of apple snails. Proteases of different molecular weights are separated by electrophoresis in gelatin copolymerized sodium dodecyl sulfate (SDS) polyacrylamide gels and then enzymatic activities revealed by Coomassie Blue negative staining. Protease families can be identified in the presence of specific inhibitors. We also use in situ zymography for localizing proteases in intracellular symbiotic corpuscles that habit in the digestive gland of the gastropod Pomacea canaliculata. Different spatial-temporal scenarios of protease synthesis, secretion, and hydrolysis of dietary proteins may be identified by a combination of in-gel and in situ zymography.
Collapse
Affiliation(s)
- Federico A Dellagnola
- Institute of Histology and Embryology of Mendoza, National Scientific and Technical Research Council and National University of Cuyo (IHEM-CONICET, UNCuyo), Mendoza, Argentina
- Institute of Physiology, School of Medical Sciences, National University of Cuyo (FCM-UNCuyo), Mendoza, Argentina
| | - Martín S Godoy
- Institute of Research in Chemical Sciences, School of Chemical and Technological Sciences, Catholic University of Cuyo (FCQyT, UCCuyo), San Juan, Argentina
| | - Israel A Vega
- Institute of Histology and Embryology of Mendoza, National Scientific and Technical Research Council and National University of Cuyo (IHEM-CONICET, UNCuyo), Mendoza, Argentina.
- Institute of Physiology, School of Medical Sciences, National University of Cuyo (FCM-UNCuyo), Mendoza, Argentina.
- School of Exact and Natural Sciences, National University of Cuyo (FCEN, UNCuyo), Mendoza, Argentina.
| |
Collapse
|
6
|
Zou Y, Fu J, Liang Y, Luo X, Shen M, Huang M, Chen Y, You W, Ke C. Chromosome-level genome assembly of the ivory shell Babylonia areolata. Sci Data 2024; 11:1201. [PMID: 39505919 PMCID: PMC11542075 DOI: 10.1038/s41597-024-04001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
The ivory shell Babylonia areolata is an economically important marine benthic gastropod known for its rapid growth and high nutritional value. B. areolata is distributed in Southeast Asia and the southeast coastal areas of China. In this study, we constructed a high-quality genome for B. areolata using PacBio, Illumina, and Hi-C sequencing technologies. The genome assembly comprised 35 chromosomal sequences with a total length of 1.65 Gb. The scaffold and contig N50 lengths were 53.17 Mb and 2.64 Mb, respectively, with repeat sequences constituting 64.46% of the genome. Furthermore, 26,130 protein-coding genes and 96.75% of the genome's BUSCOs were identified. This inaugural report of a B. areolata genome provides crucial foundational information for further investigations into the biology, genomics, and genetic improvement of economic traits of this species.
Collapse
Affiliation(s)
- Yu Zou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361102, PR China
| | - Jingqiang Fu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361102, PR China
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Yuan Liang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361102, PR China
| | - Xuan Luo
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361102, PR China
| | - Minghui Shen
- Hainan Provincial Key Laboratory of Tropical Maricultural Technologies, Hainan Academy of Ocean and Fisheries Sciences, Haikou, 571126, PR China
| | - Miaoqin Huang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361102, PR China
| | - Yexin Chen
- Fujian Minruibao Marine Biotechnology Co., Ltd, Xiamen, 361102, PR China
| | - Weiwei You
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361102, PR China.
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, PR China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, Xiamen, 361102, PR China.
| |
Collapse
|
7
|
Li J, Zhan Z, Li Y, Sun Y, Zhou T, Xu K. Chromosome-level genome assembly of a deep-sea Venus flytrap sea anemone sheds light upon adaptations to an extremely oligotrophic environment. Mol Ecol 2024; 33:e17504. [PMID: 39166453 DOI: 10.1111/mec.17504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The Venus flytrap sea anemone Actinoscyphia liui inhabits the nutrient-limited deep ocean in the tropical western Pacific. Compared with most other sea anemones, it has undergone a distinct modification of body shape similar to that of the botanic flytrap. However, the molecular mechanism by which such a peculiar sea anemone adapts to a deep-sea oligotrophic environment is unknown. Here, we report the chromosomal-level genome of A. liui constructed from PacBio and Hi-C data. The assembled genome is 522 Mb in size and exhibits a continuous scaffold N50 of 58.4 Mb. Different from most other sea anemones, which typically possess 14-18 chromosomes per haplotype, A. liui has only 11. The reduced number of chromosomes is associated with chromosome fusion, which likely represents an adaptive strategy to economize energy in oligotrophic deep-sea environments. Comparative analysis with other deep-sea sea anemones revealed adaptive evolution in genes related to cellular autophagy (TMBIM6, SESN1, SCOCB and RPTOR) and mitochondrial energy metabolism (MDH1B and KAD2), which may aid in A. liui coping with severe food scarcity. Meanwhile, the genome has undergone at least two rounds of expansion in gene families associated with fast synaptic transmission, facilitating rapid responses to water currents and prey. Positive selection was detected on putative phosphorylation sites of muscle contraction-related proteins, possibly further improving feeding efficiency. Overall, the present study provides insights into the molecular adaptation to deep-sea oligotrophic environments and sheds light upon potential effects of a novel morphology on the evolution of Cnidaria.
Collapse
Affiliation(s)
- Junyuan Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Zifeng Zhan
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Pasquevich MY, Dreon MS, Diupotex-Chong ME, Heras H. Phylogenetic variations in a novel family of hyperstable apple snail egg proteins: insights into structural stability and functional trends. J Exp Biol 2024; 227:jeb247277. [PMID: 39022896 DOI: 10.1242/jeb.247277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
The relationship between protein stability and functional evolution is little explored in proteins purified from natural sources. Here, we investigated a novel family of egg proteins (Perivitellin-1, PV1) from Pomacea snails. Their remarkable stability and clade-related functions in most derived clades (Canaliculata and Bridgesii) make them excellent candidates for exploring this issue. To that aim, we studied PV1 (PpaPV1) from the most basal lineage, Flagellata. PpaPV1 displays unparalleled structural and kinetic stability, surpassing PV1s from derived clades, ranking among the most hyperstable proteins documented in nature. Its spectral features contribute to a pale egg coloration, exhibiting a milder glycan binding lectin activity with a narrower specificity than PV1s from the closely related Bridgesii clade. These findings provide evidence for substantial structural and functional changes throughout the genus' PV1 evolution. We observed that structural and kinetic stability decreased in a clade-related fashion and was associated with large variations in defensive traits. For instance, pale PpaPV1 lectin turns potent in the Bridgesii clade, adversely affecting gut morphology, while giving rise to brightly colored PV1s providing eggs with a conspicuous, probably warning signal in the Canaliculata clade. This work provides a comprehensive comparative analysis of PV1s from various apple snail species within a phylogenetic framework, offering insights into the interplay among their structural features, stability profiles and functional roles. More broadly, our work provides one of the first examples from natural evolution showing the crucial link among protein structure, stability and evolution of new functions.
Collapse
Affiliation(s)
- María Y Pasquevich
- Instituto de Investigaciones Bioquímicas de La Plata 'Prof. Dr. Rodolfo R. Brenner' (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET, C. P. 1900 La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, C. P. 1900 La Plata, Argentina
| | - Marcos S Dreon
- Instituto de Investigaciones Bioquímicas de La Plata 'Prof. Dr. Rodolfo R. Brenner' (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET, C. P. 1900 La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, C. P. 1900 La Plata, Argentina
| | - María E Diupotex-Chong
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata 'Prof. Dr. Rodolfo R. Brenner' (INIBIOLP), Universidad Nacional de La Plata (UNLP) - CONICET, C. P. 1900 La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, C. P. 1900 La Plata, Argentina
| |
Collapse
|
9
|
Lu Y, Luo F, Zhou A, Yi C, Chen H, Li J, Guo Y, Xie Y, Zhang W, Lin D, Yang Y, Wu Z, Zhang Y, Xu S, Hu W. Whole-genome sequencing of the invasive golden apple snail Pomacea canaliculata from Asia reveals rapid expansion and adaptive evolution. Gigascience 2024; 13:giae064. [PMID: 39311763 PMCID: PMC11417965 DOI: 10.1093/gigascience/giae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/08/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Pomacea canaliculata, an invasive species native to South America, is recognized for its broad geographic distribution and adaptability to a variety of ecological conditions. The details concerning the evolution and adaptation of P. canaliculate remain unclear due to a lack of whole-genome resequencing data. We examined 173 P. canaliculata genomes representing 17 geographic populations in East and Southeast Asia. Interestingly, P. canaliculata showed a higher level of genetic diversity than other mollusks, and our analysis suggested that the dispersal of P. canaliculata could have been driven by climate changes and human activities. Notably, we identified a set of genes associated with low temperature adaptation, including Csde1, a cold shock protein coding gene. Further RNA sequencing analysis and reverse transcription quantitative polymerase chain reaction experiments demonstrated the gene's dynamic pattern and biological functions during cold exposure. Moreover, both positive selection and balancing selection are likely to have contributed to the rapid environmental adaptation of P. canaliculata populations. In particular, genes associated with energy metabolism and stress response were undergoing positive selection, while a large number of immune-related genes showed strong signatures of balancing selection. Our study has advanced our understanding of the evolution of P. canaliculata and has provided a valuable resource concerning an invasive species.
Collapse
Affiliation(s)
- Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - An Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai 200438, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Li
- China Basic Medical College, Guangxi Traditional Chinese Medical University, Nanning 530005, China
| | - Yunhai Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai 200438, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai 200438, China
| | - Datao Lin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaming Yang
- Yunnan Institute of Parasitic Diseases, Yunnan 665000, China
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai 200438, China
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
10
|
Liu Z, Huang Y, Chen H, Liu C, Wang M, Bian C, Wang L, Song L. Chromosome-level genome assembly of the deep-sea snail Phymorhynchus buccinoides provides insights into the adaptation to the cold seep habitat. BMC Genomics 2023; 24:679. [PMID: 37950158 PMCID: PMC10638732 DOI: 10.1186/s12864-023-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The deep-sea snail Phymorhynchus buccinoides belongs to the genus Phymorhynchus (Neogastropoda: Raphitomidae), and it is a dominant specie in the cold seep habitat. As the environment of the cold seep is characterized by darkness, hypoxia and high concentrations of toxic substances such as hydrogen sulfide (H2S), exploration of the diverse fauna living around cold seeps will help to uncover the adaptive mechanisms to this unique habitat. In the present study, a chromosome-level genome of P. buccinoides was constructed and a series of genomic and transcriptomic analyses were conducted to explore its molecular adaptation mechanisms to the cold seep environments. RESULTS The assembled genome size of the P. buccinoides was approximately 2.1 Gb, which is larger than most of the reported snail genomes, possibly due to the high proportion of repetitive elements. About 92.0% of the assembled base pairs of contigs were anchored to 34 pseudo-chromosomes with a scaffold N50 size of 60.0 Mb. Compared with relative specie in the shallow water, the glutamate regulative and related genes were expanded in P. buccinoides, which contributes to the acclimation to hypoxia and coldness. Besides, the relatively high mRNA expression levels of the olfactory/chemosensory genes in osphradium indicate that P. buccinoides might have evolved a highly developed and sensitive olfactory organ for its orientation and predation. Moreover, the genome and transcriptome analyses demonstrate that P. buccinoides has evolved a sulfite-tolerance mechanism by performing H2S detoxification. Many genes involved in H2S detoxification were highly expressed in ctenidium and hepatopancreas, suggesting that these tissues might be critical for H2S detoxification and sulfite tolerance. CONCLUSIONS In summary, our report of this chromosome-level deep-sea snail genome provides a comprehensive genomic basis for the understanding of the adaptation strategy of P. buccinoides to the extreme environment at the deep-sea cold seeps.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuting Huang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
11
|
Pasquevich MY, Dreon MS, Diupotex-Chong ME, Heras H. Phylogenetic variations in a novel family of hyperstable apple snail egg proteins: insights into structural stability and functional trends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538759. [PMID: 37162868 PMCID: PMC10168382 DOI: 10.1101/2023.04.28.538759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The relationship between protein stability and function evolution has not been explored in proteins from natural sources. Here, we investigate the phylogenetic differences of Perivitellin-1 (PV1) a novel family of hyperstable egg carotenoproteins crucial to the reproductive success of Pomacea snails, as they have evolved clade-specific protective functions. We studied P. patula PV1 (PpaPV1) from Flagellata clade eggs, the most basal of Pomacea and compared it with PV1s orthologs from derived clades. PpaPV1 stands as the most stable, with longer unfolding half-life, resistance to detergent unfolding, and therefore higher kinetic stability than PV1s from derived clades. In fact, PpaPV1 is among the most hyperstable proteins described in nature. In addition, its spectral characteristics providing a pale egg coloration, mild lectin activity and glycan specificity are narrower than derived clades. Our results provide evidence indicating large structural and functional changes along the evolution of the genus. Notably, the lectin binding of PpaPV1 is less pronounced, and its glycan specificity is narrower compared to PV1s in the sister Bridgesii clade. Our findings underscore the phylogenetic disparities in terms of structural and kinetic stability, as well as defensive traits like a potent lectin activity affecting the gut morphology of potential predators within the Bridgesii clade or a conspicuous, likely warning coloration, within the Canaliculata clade. This work provides a comprehensive comparison of the structural attributes, stability profiles, and functional roles of apple snail egg PV1s from multiple species within a phylogenetic context. Furthermore, it proposes an evolutionary hypothesis suggesting a trade-off between structural stability and the functional aspects of apple snail's major egg defense protein.
Collapse
Affiliation(s)
- M Y Pasquevich
- Instituto de Investigaciones Bioquímicas de La Plata ¨Prof. Dr. Rodolfo R. Brenner¨ (INIBIOLP), Universidad Nacional de La Plata (UNLP) -CONICET CCT-La Plata, La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, Argentina
| | - M S Dreon
- Instituto de Investigaciones Bioquímicas de La Plata ¨Prof. Dr. Rodolfo R. Brenner¨ (INIBIOLP), Universidad Nacional de La Plata (UNLP) -CONICET CCT-La Plata, La Plata, Argentina
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNLP, Argentina
| | - M E Diupotex-Chong
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - H Heras
- Instituto de Investigaciones Bioquímicas de La Plata ¨Prof. Dr. Rodolfo R. Brenner¨ (INIBIOLP), Universidad Nacional de La Plata (UNLP) -CONICET CCT-La Plata, La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina
| |
Collapse
|
12
|
Cruz-Flores C, Rodriguez C, Giai C, Vega IA, Castro-Vazquez A. Pathogenesis of an experimental mycobacteriosis in an apple snail. Front Immunol 2023; 14:1253099. [PMID: 37876924 PMCID: PMC10593440 DOI: 10.3389/fimmu.2023.1253099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023] Open
Abstract
In this work, we aimed at investigating cell and tissue responses of the apple snail Pomacea canaliculata, following the inoculation of the zoonotic pathogen Mycobacterium marinum. Different doses were tested (10, 20, 65, and 100 M CFU) and the mortality rate was negligible. The histopathogenesis was followed at 4, 9, and 28 days after inoculation. Overt histopathological lesions were consistently observed after the two largest doses only. In the lung, marked hemocyte aggregations, including intravascular nodule formation, were observed within the large blood veins that run along the floor and roof of this organ. Hemocyte aggregations were found occluding many of the radial sinuses supplying the respiratory lamina. Acid-fast bacilli were contained in the different hemocyte aggregations. In addition, hemocytes were observed infiltrating the storage tissue, which makes up most of the lung wall, and the connective tissue of the mantle edge. Additionally, signs of degradation in the storage tissue were observed in the lung wall on day 28. In the kidney, nodules were formed associated with the constitutive hemocyte islets and with the subpallial hemocoelic space, in whose hemocytes the acid-fast structures were found. Electron microscopy analysis revealed the presence of bacteria-containing phagosomes within hemocytes located in the surface zone of the islets. Additionally, electron-dense spheroidal structures, which are likely remnants of digested mycobacteria, were observed in close proximity to the hemocytes' nuclei. The size attained by the hemocyte nodules varied during the observation period, but there was no clear dependence on dose or time after inoculation. Nodules were also formed subpallially. Some of these nodules showed 2-3 layers with different cellular composition, suggesting they may also form through successive waves of circulating cells reaching them. Nodular cores, including those formed intravascularly in the lung, would exhibit signs of hemocyte dedifferentiation, possibly proliferation, and death. Hemocyte congestion was observed in the hemocoelic spaces surrounding the pallial ends of the renal crypts, and the renal crypts themselves showed de-epithelization, particularly on day 28. The diverse cellular responses of P. canaliculata to M. marinum inoculation and the high resilience of this snail to the pathogen make it a suitable species for studying mycobacterial infections and their effects on cellular and physiological processes.
Collapse
Affiliation(s)
- Cesar Cruz-Flores
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Constanza Giai
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A. Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
13
|
Aristide L, Fernández R. Genomic Insights into Mollusk Terrestrialization: Parallel and Convergent Gene Family Expansions as Key Facilitators in Out-of-the-Sea Transitions. Genome Biol Evol 2023; 15:evad176. [PMID: 37793176 PMCID: PMC10581543 DOI: 10.1093/gbe/evad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Animals abandoned their marine niche and successfully adapted to life on land multiple times throughout evolution, providing a rare opportunity to study the mechanisms driving large scale macroevolutionary convergence. However, the genomic factors underlying this process remain largely unknown. Here, we investigate the macroevolutionary dynamics of gene repertoire evolution during repeated transitions out of the sea in mollusks, a lineage that has transitioned to freshwater and terrestrial environments multiple independent times. Through phylogenomics and phylogenetic comparative methods, we examine ∼100 genomic data sets encompassing all major molluskan lineages. We introduce a conceptual framework for identifying and analyzing parallel and convergent evolution at the orthogroup level (groups of genes derived from a single ancestral gene in the species in question) and explore the extent of these mechanisms. Despite deep temporal divergences, we found that parallel expansions of ancient gene families played a major role in facilitating adaptation to nonmarine habitats, highlighting the relevance of the preexisting genomic toolkit in facilitating adaptation to new environments. The expanded functions primarily involve metabolic, osmoregulatory, and defense-related systems. We further found functionally convergent lineage-exclusive gene gains, while family contractions appear to be driven by neutral processes. Also, genomic innovations likely contributed to fuel independent habitat transitions. Overall, our study reveals that various mechanisms of gene repertoire evolution-parallelism, convergence, and innovation-can simultaneously contribute to major evolutionary transitions. Our results provide a genome-wide gene repertoire atlas of molluskan terrestrialization that paves the way toward further understanding the functional and evolutionary bases of this process.
Collapse
Affiliation(s)
- Leandro Aristide
- Metazoa Phylogenomics Laboratory Biodiversity Program, Institute of Evolutionary Biology (Spanish Research Council-University Pompeu Fabra), BarcelonaSpain
| | - Rosa Fernández
- Metazoa Phylogenomics Laboratory Biodiversity Program, Institute of Evolutionary Biology (Spanish Research Council-University Pompeu Fabra), BarcelonaSpain
| |
Collapse
|
14
|
Barrera Grijalba CC, Rodríguez Monje SV, Gestal C, Wollesen T. Octopod Hox genes and cephalopod plesiomorphies. Sci Rep 2023; 13:15492. [PMID: 37726311 PMCID: PMC10509229 DOI: 10.1038/s41598-023-42435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
Few other invertebrates captivate our attention as cephalopods do. Octopods, cuttlefish, and squids amaze with their behavior and sophisticated body plans that belong to the most intriguing among mollusks. Little is, however, known about their body plan formation and the role of Hox genes. The latter homeobox genes pattern the anterior-posterior body axis and have only been studied in a single decapod species so far. Here, we study developmental Hox and ParaHox gene expression in Octopus vulgaris. Hox genes are expressed in a near-to-staggered fashion, among others in homologous organs of cephalopods such as the stellate ganglia, the arms, or funnel. As in other mollusks Hox1 is expressed in the nascent octopod shell rudiment. While ParaHox genes are expressed in an evolutionarily conserved fashion, Hox genes are also expressed in some body regions that are considered homologous among mollusks such as the cephalopod arms and funnel with the molluscan foot. We argue that cephalopod Hox genes are recruited to a lesser extent into the formation of non-related organ systems than previously thought and emphasize that despite all morphological innovations molecular data still reveal the ancestral molluscan heritage of cephalopods.
Collapse
Affiliation(s)
| | - Sonia Victoria Rodríguez Monje
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Camino Gestal
- Institute of Marine Research (IIM-CSIC), Eduardo Cabello 6, 36208, Vigo, Spain
| | - Tim Wollesen
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|
15
|
Farhat S, Modica MV, Puillandre N. Whole Genome Duplication and Gene Evolution in the Hyperdiverse Venomous Gastropods. Mol Biol Evol 2023; 40:msad171. [PMID: 37494290 PMCID: PMC10401626 DOI: 10.1093/molbev/msad171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The diversity of venomous organisms and the toxins they produce have been increasingly investigated, but taxonomic bias remains important. Neogastropods, a group of marine predators representing almost 22% of the known gastropod diversity, evolved a wide range of feeding strategies, including the production of toxins to subdue their preys. However, whether the diversity of these compounds is at the origin of the hyperdiversification of the group and how genome evolution may correlate with both the compounds and species diversities remain understudied. Among the available gastropods genomes, only eight, with uneven quality assemblies, belong to neogastropods. Here, we generated chromosome-level assemblies of two species belonging to the Tonnoidea and Muricoidea superfamilies (Monoplex corrugatus and Stramonita haemastoma). The two obtained high-quality genomes had 3 and 2.2 Gb, respectively, and 92-89% of the total assembly conformed 35 pseudochromosomes in each species. Through the analysis of syntenic blocks, Hox gene cluster duplication, and synonymous substitutions distribution pattern, we inferred the occurrence of a whole genome duplication event in both genomes. As these species are known to release venom, toxins were annotated in both genomes, but few of them were found in homologous chromosomes. A comparison of the expression of ohnolog genes (using transcriptomes from osphradium and salivary glands in S. haemastoma), where both copies were differentially expressed, showed that most of them had similar expression profiles. The high quality of these genomes makes them valuable reference in their respective taxa, facilitating the identification of genome-level processes at the origin of their evolutionary success.
Collapse
Affiliation(s)
- Sarah Farhat
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Maria Vittoria Modica
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Roma, Italy
| | - Nicolas Puillandre
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
16
|
Patra AK, Ho PT, Jun S, Lee SJ, Kim Y, Won YJ. Genome assembly of the Korean intertidal mud-creeper Batillaria attramentaria. Sci Data 2023; 10:498. [PMID: 37507420 PMCID: PMC10382545 DOI: 10.1038/s41597-023-02403-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Batillaridae is a common gastropod family that occurs abundantly in the shallow coastal zone of the intertidal mudflats of the northwest Pacific Ocean, Australasia, and North America. In this family, Batillaria attramentaria is known for its biological invasion and colonization in estuarine and intertidal zones. It can endure and adapt the harsh intertidal conditions such as frequent temperature alteration, salinity, and air exposure. Therefore, we sequenced and assembled this Korean batillariid genome to get insight into its intertidal adaptive features. Approximately 53 Gb of DNA sequences were generated, and 863 scaffolds were assembled into a draft genome of 0.715 Gb with 97.1% BUSCO completeness value. A total of 40,596 genes were predicted. We estimated that B. attramentaria and Conus consors diverged about 230 million years ago (MYA) based on the phylogenetic analysis of closely related gastropod species. This genome study sets the footstep for genomics studies among native and introduced Batillaria populations and the Batillaridae family members.
Collapse
Affiliation(s)
- Ajit Kumar Patra
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | - Phuong-Thao Ho
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
- Department of International Program, US Vietnam Talent International School, Ho Chi Minh city, Viet Nam
| | - Siyeong Jun
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | | - Yuseob Kim
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea.
| | - Yong-Jin Won
- Department of Life Science, Division of EcoScience, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
17
|
Bergamini G, Sacchi S, Ferri A, Franchi N, Montanari M, Ahmad M, Losi C, Nasi M, Cocchi M, Malagoli D. Clodronate Liposome-Mediated Phagocytic Hemocyte Depletion Affects the Regeneration of the Cephalic Tentacle of the Invasive Snail, Pomacea canaliculata. BIOLOGY 2023; 12:992. [PMID: 37508422 PMCID: PMC10376890 DOI: 10.3390/biology12070992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
After amputation, granular hemocytes infiltrate the blastema of regenerating cephalic tentacles of the freshwater snail Pomacea canaliculata. Here, the circulating phagocytic hemocytes were chemically depleted by injecting the snails with clodronate liposomes, and the effects on the cephalic tentacle regeneration onset and on Pc-Hemocyanin, Pc-transglutaminase (Pc-TG) and Pc-Allograft Inflammatory Factor-1 (Pc-AIF-1) gene expressions were investigated. Flow cytometry analysis demonstrated that clodronate liposomes targeted large circulating hemocytes, resulting in a transient decrease in their number. Corresponding with the phagocyte depletion, tentacle regeneration onset was halted, and it resumed at the expected pace when clodronate liposome effects were no longer visible. In addition to the regeneration progress, the expressions of Pc-Hemocyanin, Pc-TG, and Pc-AIF-1, which are markers of hemocyte-mediated functions like oxygen transport and immunity, clotting, and inflammation, were modified. After the injection of clodronate liposomes, a specific computer-assisted image analysis protocol still evidenced the presence of granular hemocytes in the tentacle blastema. This is consistent with reports indicating the large and agranular hemocyte population as the most represented among the professional phagocytes of P. canaliculata and with the hypothesis that different hemocyte morphologies could exert diverse biological functions, as it has been observed in other invertebrates.
Collapse
Affiliation(s)
- Giulia Bergamini
- Department Biology and Evolution of Marine Organisms, Zoological Station "Anton Dohrn", 80121 Naples, Italy
| | - Sandro Sacchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anita Ferri
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Nicola Franchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Monica Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mohamad Ahmad
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- LASIRE, Université de Lille, Cité Scientifique, 59650 Villeneuve-d'Ascq, France
| | - Chiara Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Milena Nasi
- Department of Surgical, Medical and Dental Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marina Cocchi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
18
|
Nualnisachol P, Chumnanpuen P, E-Kobon T. Understanding Snail Mucus Biosynthesis and Shell Biomineralisation through Genomic Data Mining of the Reconstructed Carbohydrate and Glycan Metabolic Pathways of the Giant African Snail ( Achatina fulica). BIOLOGY 2023; 12:836. [PMID: 37372121 DOI: 10.3390/biology12060836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The giant African snail (Order Stylommatophora: Family Achatinidae), Achatina fulica (Bowdich, 1822), is the most significant and invasive land snail pest. The ecological adaptability of this snail involves high growth rate, reproductive capacity, and shell and mucus production, driven by several biochemical processes and metabolism. The available genomic information for A. fulica provides excellent opportunities to hinder the underlying processes of adaptation, mainly carbohydrate and glycan metabolic pathways toward the shell and mucus formation. The authors analysed the 1.78 Gb draft genomic contigs of A. fulica to identify enzyme-coding genes and reconstruct biochemical pathways related to the carbohydrate and glycan metabolism using a designed bioinformatic workflow. Three hundred and seventy-seven enzymes involved in the carbohydrate and glycan metabolic pathways were identified based on the KEGG pathway reference in combination with protein sequence comparison, structural analysis, and manual curation. Fourteen complete pathways of carbohydrate metabolism and seven complete pathways of glycan metabolism supported the nutrient acquisition and production of the mucus proteoglycans. Increased copy numbers of amylases, cellulases, and chitinases highlighted the snail advantage in food consumption and fast growth rate. The ascorbate biosynthesis pathway identified from the carbohydrate metabolic pathways of A. fulica was involved in the shell biomineralisation process in association with the collagen protein network, carbonic anhydrases, tyrosinases, and several ion transporters. Thus, our bioinformatic workflow was able to reconstruct carbohydrate metabolism, mucus biosynthesis, and shell biomineralisation pathways from the A. fulica genome and transcriptome data. These findings could reveal several evolutionary advantages of the A. fulica snail, and will benefit the discovery of valuable enzymes for industrial and medical applications.
Collapse
Affiliation(s)
- Pornpavee Nualnisachol
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Pramote Chumnanpuen
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Teerasak E-Kobon
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
19
|
Ortiz-Sepulveda CM, Genete M, Blassiau C, Godé C, Albrecht C, Vekemans X, Van Bocxlaer B. Target enrichment of long open reading frames and ultraconserved elements to link microevolution and macroevolution in non-model organisms. Mol Ecol Resour 2023; 23:659-679. [PMID: 36349833 DOI: 10.1111/1755-0998.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
Despite the increasing accessibility of high-throughput sequencing, obtaining high-quality genomic data on non-model organisms without proximate well-assembled and annotated genomes remains challenging. Here, we describe a workflow that takes advantage of distant genomic resources and ingroup transcriptomes to select and jointly enrich long open reading frames (ORFs) and ultraconserved elements (UCEs) from genomic samples for integrative studies of microevolutionary and macroevolutionary dynamics. This workflow is applied to samples of the African unionid bivalve tribe Coelaturini (Parreysiinae) at basin and continent-wide scales. Our results indicate that ORFs are efficiently captured without prior identification of intron-exon boundaries. The enrichment of UCEs was less successful, but nevertheless produced substantial data sets. Exploratory continent-wide phylogenetic analyses with ORF supercontigs (>515,000 parsimony informative sites) resulted in a fully resolved phylogeny, the backbone of which was also retrieved with UCEs (>11,000 informative sites). Variant calling on ORFs and UCEs of Coelaturini from the Malawi Basin produced ~2000 SNPs per population pair. Estimates of nucleotide diversity and population differentiation were similar for ORFs and UCEs. They were low compared to previous estimates in molluscs, but comparable to those in recently diversifying Malawi cichlids and other taxa at an early stage of speciation. Skimming off-target sequence data from the same enriched libraries of Coelaturini from the Malawi Basin, we reconstructed the maternally-inherited mitogenome, which displays the gene order inferred for the most recent common ancestor of Unionidae. Overall, our workflow and results provide exciting perspectives for integrative genomic studies of microevolutionary and macroevolutionary dynamics in non-model organisms.
Collapse
Affiliation(s)
| | - Mathieu Genete
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | | - Cécile Godé
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Christian Albrecht
- Department of Animal Ecology and Systematics, Justus Liebig University, D-35392 Giessen, Germany.,Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | | |
Collapse
|
20
|
Escobar-Correas S, Mendoza-Porras O, Castro-Vazquez A, Vega IA, Colgrave ML. Proteomic analysis of digestive tract peptidases and lipases from the invasive gastropod Pomacea canaliculata. PEST MANAGEMENT SCIENCE 2023; 79:1420-1430. [PMID: 36464640 DOI: 10.1002/ps.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The invasive gastropod Pomacea canaliculata has received great attention in the last decades as a result of its negative impact on crops agriculture, yet knowledge of their digestive physiology remains incomplete, particularly the enzymatic breakdown of macromolecules such as proteins and lipids. RESULTS Discovery proteomics revealed aspartic peptidases, cysteine peptidases, serine peptidases, metallopeptidases and threonine peptidases, as well as acid and neutral lipases and phospholipases along the digestive tract of P. canaliculata. Peptides specific to peptidases (139) and lipases (14) were quantified by targeted mass spectrometry. Digestion begins in the mouth via diverse salivary peptidases (nine serine peptidases; seven cysteine peptidases, one aspartic peptidase and 22 metallopeptidases) and then continues in the oesophagus (crop) via three luminal metallopeptidases (Family M12) and six serine peptidases (Family S1). Downstream, the digestive gland provides a battery of enzymes composed of aspartic peptidase (one), cysteine peptidases (nine), serine peptidases (12) and metallopeptidases (24), including aminopeptidases, carboxypeptidases and dipeptidases). The coiled gut has M1 metallopeptidases that complete the digestion of small peptides. Lipid extracellular digestion is completed by triglyceride lipases. CONCLUSION From an integrative physiological and anatomical perspective, P. canaliculata shows an unexpected abundance and diversity of peptidases, which participate mainly in extracellular digestion. Moreover, the previously unknown occurrence of luminal lipases from the digestive gland is reported for the first time. Salivary and digestive glands were the main tissues involved in the synthesis and secretion of these enzymes, but plausibly the few luminally exclusive peptidases are secreted by ventrolateral pouches or epithelial unicellular glands. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sophia Escobar-Correas
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- CSIRO, Agriculture & Food, St. Lucia, Queensland, Australia
| | | | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | |
Collapse
|
21
|
Li X, Bai Y, Dong Z, Xu C, Liu S, Yu H, Kong L, Li Q. Chromosome-level genome assembly of the European flat oyster (Ostrea edulis) provides insights into its evolution and adaptation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101045. [PMID: 36470107 DOI: 10.1016/j.cbd.2022.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The European flat oyster (Ostrea edulis) is an endangered and economically important marine bivalve species that plays a critical role in the coastal ecosystem. Here, we report a high-quality chromosome-level genome assembly of O. edulis, generated using PacBio HiFi-CCS long reads and annotated with Nanopore full-length transcriptome. The O. edulis genome covers 946.06 Mb (scaffold N50 94.82 Mb) containing 34,495 protein-coding genes and a high proportion of repeat sequences (58.49 %). The reconstructed demographic histories show that O. edulis population might be shaped by breeding habit (embryo brooding) and historical climatic change. Comparative genomic analysis indicates that transposable elements may drive lineage-specific evolution in oysters. Notably, the O. edulis genome has a Hox gene cluster rearrangement that has never been reported in bivalves, making this species valuable for evolutionary studies of molluscan diversification. Moreover, genome expansion of O. edulis is probably central to its adaptation to filter-feeding and sessile lifestyles, as well as embryo brooding and pathogen resistance, in coastal ecosystems. This chromosome-level genome assembly provides new insights into the genome feature of oysters, and presents an important resource for genetic research, evolutionary studies, and biological conservation of O. edulis.
Collapse
Affiliation(s)
- Xinchun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yitian Bai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhen Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
22
|
Campoy-Diaz AD, Malanga G, Giraud-Billoud M, Vega IA. Changes in the oxidative status and damage by non-essential elements in the digestive gland of the gastropod Pomacea canaliculata. Front Physiol 2023; 14:1123977. [PMID: 37035656 PMCID: PMC10073435 DOI: 10.3389/fphys.2023.1123977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
The freshwater gastropod Pomacea canaliculata fulfills the ideal conditions of a bioindicator species since its digestive gland bioconcentrates elements toxic for human and ecosystems health. The aim of this work was to study the balance between production of free radicals and antioxidant defenses, and the generation of oxidative damage in the digestive gland of this mollusk after exposure (96 h) to three elements with differential affinities for functional biological groups: mercury (5.5 μg/L of Hg+2 as HgCl2), arsenic [500 μg/L of (AsO4)-3 as Na3AsO47H2O], or uranium [700 μg/L of (UO2)+2 as UO2(CH2COOH)2]. Bioconcentration factors of Hg, As, and U were 25, 23, and 53, respectively. Snails exhibited a sustained increase of reactive species (RS), and protein and lipid damage. Lipid radicals increased between 72 and 96 h, respectively, in snails exposed to U and Hg while this parameter changed early (24 h) in As- exposed snails. Snails showed protein damage, reaching maximum values at different endpoints. This redox disbalance was partially compensated by non-enzymatic antioxidant defenses α-tocopherol (α-T), β-carotene (β-C), uric acid, metallothionein (MTs). Snails consumed α-T and β-C in an element-dependent manner. The digestive gland consumed rapidly uric acid and this molecule was not recovered at 96 h. Digestive gland showed a significant increase in MTs after elemental exposure at different endpoints. The enzymatic antioxidant defenses, represented by the catalase and glutathione-S-transferase activities, seems to be not necessary for the early stages of the oxidative process by metals. This work is the first attempt to elucidate cellular mechanisms involved in the tolerance of this gastropod to non-essential elements. The bioconcentration factors and changes in the oxidative status and damage confirm that this species can be used as a bioindicator species of metal pollution in freshwater bodies.
Collapse
Affiliation(s)
- Alejandra D. Campoy-Diaz
- IHEM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
| | - Gabriela Malanga
- Facultad de Farmacia y Bioquímica, Fisicoquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Bioquímica y Medicina Molecular (IBIMOL), CONICET—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maximiliano Giraud-Billoud
- IHEM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
| | - Israel A. Vega
- IHEM—CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- *Correspondence: Israel A. Vega, ,
| |
Collapse
|
23
|
Barbosa KP, Hayes KA, do V. Vilela R, Barbosa HS, Marchi CR, Thiengo SC. Phylogenetic Systematics and Distribution of Pomacea sordida (Swainson, 1823) and Pomacea intermedia (Férussac in Quoy & Gaimard, 1825) (Caenogastropoda: Ampullariidae). MALACOLOGIA 2022. [DOI: 10.4002/040.065.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kevin P. Barbosa
- Laboratório de Malacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil
| | - Kenneth A. Hayes
- Bernice Pauahi Bishop Museum, Pacific Center for Molecular Biodiversity, 1525 Bernice Street, Honolulu, Hawaii 96817, U.S.A
| | - Roberto do V. Vilela
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil
| | - Helene S. Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, CEP 21040-360, Rio de Janeiro, RJ, Brazil
| | - Carolina R. Marchi
- Laboratório de Malacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil
| | - Silvana C. Thiengo
- Laboratório de Malacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, CEP 21040-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Jiang D, Liu Q, Sun J, Liu S, Fan G, Wang L, Zhang Y, Seim I, An S, Liu X, Li Q, Zheng X. The gold-ringed octopus (Amphioctopus fangsiao) genome and cerebral single-nucleus transcriptomes provide insights into the evolution of karyotype and neural novelties. BMC Biol 2022; 20:289. [PMID: 36575497 PMCID: PMC9795677 DOI: 10.1186/s12915-022-01500-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Coleoid cephalopods have distinctive neural and morphological characteristics compared to other invertebrates. Early studies reported massive genomic rearrangements occurred before the split of octopus and squid lineages (Proc Natl Acad Sci U S A 116:3030-5, 2019), which might be related to the neural innovations of their brain, yet the details remain elusive. Here we combine genomic and single-nucleus transcriptome analyses to investigate the octopod chromosome evolution and cerebral characteristics. RESULTS We present a chromosome-level genome assembly of a gold-ringed octopus, Amphioctopus fangsiao, and a single-nucleus transcriptome of its supra-esophageal brain. Chromosome-level synteny analyses estimate that the chromosomes of the ancestral octopods experienced multiple chromosome fission/fusion and loss/gain events by comparing with the nautilus genome as outgroup, and that a conserved genome organization was detected during the evolutionary process from the last common octopod ancestor to their descendants. Besides, protocadherin, GPCR, and C2H2 ZNF genes are thought to be highly related to the neural innovations in cephalopods (Nature 524:220-4, 2015), and the chromosome analyses pinpointed several collinear modes of these genes on the octopod chromosomes, such as the collinearity between PCDH and C2H2 ZNF, as well as between GPCR and C2H2 ZNF. Phylogenetic analyses show that the expansion of the octopod protocadherin genes is driven by a tandem-duplication mechanism on one single chromosome, including two separate expansions at 65 million years ago (Ma) and 8-14 Ma, respectively. Furthermore, we identify eight cell types (i.e., cholinergic and glutamatergic neurons) in the supra-esophageal brain of A. fangsiao, and the single-cell expression analyses reveal the co-expression of protocadherin and GPCR in specific neural cells, which may contribute to the neural development and signal transductions in the octopod brain. CONCLUSIONS The octopod genome analyses reveal the dynamic evolutionary history of octopod chromosomes and neural-related gene families. The single-nucleus transcriptomes of the supra-esophageal brain indicate their cellular heterogeneities and functional interactions with other tissues (i.e., gill), which provides a foundation for further octopod cerebral studies.
Collapse
Affiliation(s)
- Dianhang Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Qun Liu
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
| | - Guangyi Fan
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lihua Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China
| | - Yaolei Zhang
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia
| | - Shucai An
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Liu
- BGI-QingDao, BGI-Shenzhen, Qingdao, 266555, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Ocean University of China, Qingdao, 266003, China.
- Institute of Evolution & Marine Biodiversity (IEMB), Qingdao, 266003, China.
| |
Collapse
|
25
|
Gao Y, Li JN, Pu JJ, Tao KX, Zhao XX, Yang QQ. Genome-wide identification and characterization of the HSP gene superfamily in apple snails (Gastropoda: Ampullariidae) and expression analysis under temperature stress. Int J Biol Macromol 2022; 222:2545-2555. [DOI: 10.1016/j.ijbiomac.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
|
26
|
Chen Z, Doğan Ö, Guiglielmoni N, Guichard A, Schrödl M. Pulmonate slug evolution is reflected in the de novo genome of Arion vulgaris Moquin-Tandon, 1855. Sci Rep 2022; 12:14226. [PMID: 35987814 PMCID: PMC9392753 DOI: 10.1038/s41598-022-18099-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Stylommatophoran pulmonate land slugs and snails successfully completed the water-to-land transition from an aquatic ancestor and flourished on land. Of the 30,000 estimated species, very few genomes have so far been published. Here, we assembled and characterized a chromosome-level genome of the "Spanish" slug, Arion vulgaris Moquin-Tandon, 1855, a notorious pest land slug in Europe. Using this reference genome, we conclude that a whole-genome duplication event occurred approximately 93-109 Mya at the base of Stylommatophora and might have promoted land invasion and adaptive radiation. Comparative genomic analyses reveal that genes related to the development of kidney, blood vessels, muscle, and nervous systems had expanded in the last common ancestor of land pulmonates, likely an evolutionary response to the terrestrial challenges of gravity and water loss. Analyses of A. vulgaris gene families and positively selected genes show the slug has evolved a stronger ability to counteract the greater threats of external damage, radiation, and water loss lacking a protective shell. Furthermore, a recent burst of long interspersed elements in the genome of A. vulgaris might affect gene regulation and contribute to rapid phenotype changes in A. vulgaris, which might be conducive to its rapid adaptation and invasiveness.
Collapse
Affiliation(s)
- Zeyuan Chen
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany.
- Department Biology II, Ludwig-Maximilians-Universität, Planegg-Martinsried, 82152, Munich, Germany.
| | - Özgül Doğan
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - Nadège Guiglielmoni
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Anne Guichard
- INRAE, Agrocampus Ouest, Université de Rennes, IGEPP, 35650, Le Rheu, France
- Univ. Rennes, CNRS, Inria, IRISA-UMR 6074, 35000, Rennes, France
| | - Michael Schrödl
- SNSB-Bavarian State Collection of Zoology, Münchhausenstr. 21, 81247, Munich, Germany
- Department Biology II, Ludwig-Maximilians-Universität, Planegg-Martinsried, 82152, Munich, Germany
- GeoBio-Center LMU, 80333, Munich, Germany
| |
Collapse
|
27
|
Giglio ML, Boland W, Heras H. Egg toxic compounds in the animal kingdom. A comprehensive review. Nat Prod Rep 2022; 39:1938-1969. [PMID: 35916025 DOI: 10.1039/d2np00029f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1951 to 2022Packed with nutrients and unable to escape, eggs are the most vulnerable stage of an animal's life cycle. Consequently, many species have evolved chemical defenses and teamed up their eggs with a vast array of toxic molecules for defense against predators, parasites, or pathogens. However, studies on egg toxins are rather scarce and the available information is scattered. The aim of this review is to provide an overview of animal egg toxins and to analyze the trends and patterns with respect to the chemistry and biosynthesis of these toxins. We analyzed their ecology, distribution, sources, occurrence, structure, function, relative toxicity, and mechanistic aspects and include a brief section on the aposematic coloration of toxic eggs. We propose criteria for a multiparametric classification that accounts for the complexity of analyzing the full set of toxins of animal eggs. Around 100 properly identified egg toxins are found in 188 species, distributed in 5 phyla: cnidarians (2) platyhelminths (2), mollusks (9), arthropods (125), and chordates (50). Their scattered pattern among animals suggests that species have evolved this strategy independently on numerous occasions. Alkaloids are the most abundant and widespread, among the 13 types of egg toxins recognized. Egg toxins are derived directly from the environment or are endogenously synthesized, and most of them are transferred by females inside the eggs. Their toxicity ranges from ρmol kg-1 to mmol kg-1, and for some species, experiments support their role in predation deterrence. There is still a huge gap in information to complete the whole picture of this field and the number of toxic eggs seems largely underestimated.
Collapse
Affiliation(s)
- Matías L Giglio
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina. .,Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
28
|
Rodriguez C, Vega IA, Castro-Vazquez A. A Dissenters' View on AppleSnail Immunobiology. Front Immunol 2022; 13:879122. [PMID: 35693764 PMCID: PMC9178244 DOI: 10.3389/fimmu.2022.879122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
We stand as dissenters against the acceptance of scientific knowledge that has not been built on empirical data. With this in mind, this review synthesizes selected aspects of the immunobiology of gastropods and of apple snails (Ampullariidae) in particular, from morphological to molecular and "omics" studies. Our trip went through more than two centuries of history and was guided by an evo-devo hypothesis: that the gastropod immune system originally developed in the mesenchymal connective tissue of the reno-pericardial complex, and that in that tissue some cells differentiated into hematopoietically committed progenitor cells that integrate constitutive hemocyte aggregations in the reno-pericardial territory, whether concentrated in the pericardium or the kidney in a species-specific manner. However, some of them may be freed from those aggregations, circulate in the blood, and form distant contingent aggregations anywhere in the body, but always in response to intruders (i.e., pathogens or any other immune challenge). After that, we reviewed the incipient immunology of the Ampullariidae by critically revising the findings in Pomacea canaliculata and Marisa cornuarietis, the only ampullariid species that have been studied in this respect, and we attempted to identify the effectors and the processes in which they are involved. Particularly for P. canaliculata, which is by far the most studied species, we ask which hemocytes are involved, in which tissues or organs are integrated, and what cellular reactions to intruders this species has in common with other animals. Furthermore, we wondered what humoral factors could also integrate its internal defense system. Among the cellular defenses, we give an outstanding position to the generation of hemocyte nodules, which seems to be an important process for these snails, serving the isolation and elimination of intruders. Finally, we discuss hematopoiesis in apple snails. There have been contrasting views about some of these aspects, but we envision a hematopoietic system centered in the constitutive hemocyte islets in the ampullariid kidney.
Collapse
Affiliation(s)
- Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A. Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
29
|
Chen Z, Schrödl M. How many single-copy orthologous genes from whole genomes reveal deep gastropod relationships? PeerJ 2022; 10:e13285. [PMID: 35497189 PMCID: PMC9048639 DOI: 10.7717/peerj.13285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
The Gastropoda contains 80% of existing mollusks and is the most diverse animal class second only to the Insecta. However, the deep phylogeny of gastropods has been controversial for a long time. Especially the position of Patellogastropoda is a major uncertainty. Morphology and some mitochondria studies concluded that Patellogastropoda is likely to be sister to all other gastropods (Orthogastropoda hypothesis), while transcriptomic and other mitogenomic studies indicated that Patellogastropoda and Vetigastropoda are sister taxa (Psilogastropoda). With the release of high-quality genomes, orthologous genes can be better identified and serve as powerful candidates for phylogenetic analysis. The question is, given the current limitations on the taxon sampling side, how many markers are needed to provide robust results. Here, we identified single-copy orthologous genes (SOGs) from 14 gastropods species with whole genomes available which cover five main gastropod subclasses. We generated different datasets from 395 to 1610 SOGs by allowing species missing in different levels. We constructed gene trees of each SOG, and inferred species trees from different collections of gene trees. We found as the number of SOGs increased, the inferred topology changed from Patellogastropoda being sister to all other gastropods to Patellogastropoda being sister to Vetigastropoda + Neomphalina (Psilogastropoda s.l.), with considerable support. Our study thus rejects the Orthogastropoda concept showing that the selection of the representative species and use of sufficient informative sites greatly influence the analysis of deep gastropod phylogeny.
Collapse
Affiliation(s)
- Zeyuan Chen
- Mollusca, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany,Department Biology II, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany
| | - Michael Schrödl
- Mollusca, SNSB-Bavarian State Collection of Zoology, Munich, Bavaria, Germany,Department Biology II, Ludwig-Maximilians-Universität München, Munich, Bavaria, Germany,GeoBio-Center LMU, Munich, Bavaria, Germany
| |
Collapse
|
30
|
Giraud-Billoud M, Campoy-Diaz AD, Dellagnola FA, Rodriguez C, Vega IA. Antioxidant Responses Induced by Short-Term Activity–Estivation–Arousal Cycle in Pomacea canaliculata. Front Physiol 2022; 13:805168. [PMID: 35185614 PMCID: PMC8847974 DOI: 10.3389/fphys.2022.805168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Long-term estivation (45 days) in the apple snail Pomacea canaliculata induces an increase of non-enzymatic antioxidants, such as uric acid and reduced glutathione (GSH), which constitutes an alternative to the adaptive physiological strategy of preparation for oxidative stress (POS). Here, we studied markers of oxidative stress damage, uric acid levels, and non-enzymatic antioxidant capacity, enzymatic antioxidant defenses, such as superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), and transcription factors expression [forkhead box protein O (FOXO), hypoxia-inducible factor-1 alpha (HIF1α), and nuclear factor erythroid 2-related factor 2 (Nrf2)] in control active animals, 7-day estivating and aroused snails, in digestive gland, gill, and lung tissue samples. In the digestive gland, SOD and CAT activities significantly increased after estivation and decreased during arousal. Meanwhile, GST activity decreased significantly during the activity–estivation–arousal cycle. Gill CAT activity increased significantly at 7 days of estivation, and it decreased during arousal. In the lung, the CAT activity level increased significantly during the cycle. FOXO upregulation was observed in the studied tissues, decreasing its expression only in the gill of aroused animals during the cycle. HIF1α and Nrf2 transcription factors decreased their expression during estivation in the gill, while in the lung and the digestive gland, both transcription factors did not show significant changes. Our results showed that the short-term estivation induced oxidative stress in different tissues of P. canaliculata thereby increasing overall antioxidant enzymes activity and highlighting the role of FOXO regulation as a possible underlying mechanism of the POS strategy.
Collapse
Affiliation(s)
- Maximiliano Giraud-Billoud
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
- *Correspondence: Maximiliano Giraud-Billoud,
| | - Alejandra D. Campoy-Diaz
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Ciencias Básicas, Escuela de Ciencias de la Salud-Medicina, Universidad Nacional de Villa Mercedes, San Luis, Argentina
| | - Federico A. Dellagnola
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A. Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
31
|
Yin Y, He Q, Pan X, Liu Q, Wu Y, Li X. Predicting Current Potential Distribution and the Range Dynamics of Pomacea canaliculata in China under Global Climate Change. BIOLOGY 2022; 11:biology11010110. [PMID: 35053108 PMCID: PMC8772860 DOI: 10.3390/biology11010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary Pomacea canaliculata is one of the 100 worst invasive alien species in the world, causing significant effects and harm to native species, ecological environment, human health, and social economy. In this study, we used species distribution modeling (SDM) methods to predict the potential distribution of P. canaliculata in China and found that with climate change, there would be a trend of expanding and moving northward in the future. Abstract Pomacea canaliculata is one of the 100 worst invasive alien species in the world, which has significant effects and harm to native species, ecological environment, human health, and social economy. Climate change is one of the major causes of species range shifts. With recent climate change, the distribution of P. canaliculata has shifted northward. Understanding the potential distribution under current and future climate conditions will aid in the management of the risk of its invasion and spread. Here, we used species distribution modeling (SDM) methods to predict the potential distribution of P. canaliculata in China, and the jackknife test was used to assess the importance of environmental variables for modeling. Our study found that precipitation of the warmest quarter and maximum temperature in the coldest months played important roles in the distribution of P. canaliculata. With global warming, there will be a trend of expansion and northward movement in the future. This study could provide recommendations for the management and prevention of snail invasion and expansion.
Collapse
Affiliation(s)
- Yingxuan Yin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.Y.); (Q.H.); (X.P.)
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing 100048, China
| | - Qing He
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.Y.); (Q.H.); (X.P.)
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing 100048, China
| | - Xiaowen Pan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.Y.); (Q.H.); (X.P.)
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing 100048, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Yinjuan Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.Y.); (Q.H.); (X.P.)
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing 100048, China
- Correspondence: (Y.W.); (X.L.)
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (Y.Y.); (Q.H.); (X.P.)
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou 510080, China
- China Atomic Energy Authority Center of Excellence on Nuclear Technology Applications for Insect Control, Beijing 100048, China
- Correspondence: (Y.W.); (X.L.)
| |
Collapse
|
32
|
Boraldi F, Lofaro FD, Bergamini G, Ferrari A, Malagoli D. Pomacea canaliculata Ampullar Proteome: A Nematode-Based Bio-Pesticide Induces Changes in Metabolic and Stress-Related Pathways. BIOLOGY 2021; 10:1049. [PMID: 34681148 PMCID: PMC8533556 DOI: 10.3390/biology10101049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
Pomacea canaliculata is a freshwater gastropod known for being both a highly invasive species and one of the possible intermediate hosts of the mammalian parasite Angiostrongylus cantonensis. With the aim of providing new information concerning P. canaliculata biology and adaptability, the first proteome of the ampulla, i.e., a small organ associated with the circulatory system and known as a reservoir of nitrogen-containing compounds, was obtained. The ampullar proteome was derived from ampullae of control snails or after exposure to a nematode-based molluscicide, known for killing snails in a dose- and temperature-dependent fashion. Proteome analysis revealed that the composition of connective ampulla walls, cell metabolism and oxidative stress response were affected by the bio-pesticide. Ultrastructural investigations have highlighted the presence of rhogocytes within the ampullar walls, as it has been reported for other organs containing nitrogen storage tissue. Collected data suggested that the ampulla may belong to a network of organs involved in controlling and facing oxidative stress in different situations. The response against the nematode-based molluscicide recalled the response set up during early arousal after aestivation and hibernation, thus encouraging the hypothesis that metabolic pathways and antioxidant defences promoting amphibiousness could also prove useful in facing other challenges stimulating an oxidative stress response, e.g., immune challenges or biocide exposure. Targeting the oxidative stress resistance of P. canaliculata may prove helpful for increasing its susceptibility to bio-pesticides and may help the sustainable control of this pest's diffusion.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (A.F.)
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (A.F.)
| | - Giulia Bergamini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Agnese Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (A.F.)
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (A.F.)
| |
Collapse
|
33
|
Gerdol M, La Vecchia C, Strazzullo M, De Luca P, Gorbi S, Regoli F, Pallavicini A, D’Aniello E. Evolutionary History of DNA Methylation Related Genes in Bivalvia: New Insights From Mytilus galloprovincialis. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is an essential epigenetic mechanism influencing gene expression in all organisms. In metazoans, the pattern of DNA methylation changes during embryogenesis and adult life. Consequently, differentiated cells develop a stable and unique DNA methylation pattern that finely regulates mRNA transcription during development and determines tissue-specific gene expression. Currently, DNA methylation remains poorly investigated in mollusks and completely unexplored in Mytilus galloprovincialis. To shed light on this process in this ecologically and economically important bivalve, we screened its genome, detecting sequences homologous to DNA methyltransferases (DNMTs), methyl-CpG-binding domain (MBD) proteins and Ten-eleven translocation methylcytosine dioxygenase (TET) previously described in other organisms. We characterized the gene architecture and protein domains of the mussel sequences and studied their phylogenetic relationships with the ortholog sequences from other bivalve species. We then comparatively investigated their expression levels across different adult tissues in mussel and other bivalves, using previously published transcriptome datasets. This study provides the first insights on DNA methylation regulators in M. galloprovincialis, which may provide fundamental information to better understand the complex role played by this mechanism in regulating genome activity in bivalves.
Collapse
|
34
|
Ip JCH, Qiu JW, Chan BKK. Genomic insights into the sessile life and biofouling of barnacles (Crustacea: Cirripedia). Heliyon 2021; 7:e07291. [PMID: 34189321 PMCID: PMC8220330 DOI: 10.1016/j.heliyon.2021.e07291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 12/01/2022] Open
Abstract
Members of the infraclass Cirripedia, commonly called barnacles, are unique among the subphylum Crustacea in that they exhibit a biphasic life cycle with a planktonic larval stage and a sessile adult stage. Understanding their unique sessile life and mechanisms of attachment are hampered by the lack of genomic resources. Here, we present a 746 Mb genome assembly of Lepas anserifera – the first sequenced stalked barnacle genome. We estimate that Cirripedia first arose ~495 million years ago (MYA) and further diversified since Mesozoic. A demographic analysis revealed remarkable population changes of the barnacle in relation to sea-level fluctuations in the last 2 MYA. Comparative genomic analyses revealed the expansion of a number of developmental related genes families in barnacle genomes, such as Br–C, PCP20 and Lola, which are potentially important for the evolution of metamorphosis, cuticle development and central nervous system. Phylogenetic analysis and tissue expression profiling showed the possible roles of gene duplication, functional diversification and co-option in shaping the genomic evolution of barnacles. Overall, our study provides not only a valuable draft genome for comparative genomic analysis of crustacean evolution, but also facilitates studies of biofouling control.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology and Hong Kong Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong.,Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong.,Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China
| | - Benny K K Chan
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
35
|
Sun J, Li R, Chen C, Sigwart JD, Kocot KM. Benchmarking Oxford Nanopore read assemblers for high-quality molluscan genomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200160. [PMID: 33813888 PMCID: PMC8059532 DOI: 10.1098/rstb.2020.0160] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Choosing the optimum assembly approach is essential to achieving a high-quality genome assembly suitable for comparative and evolutionary genomic investigations. Significant recent progress in long-read sequencing technologies such as PacBio and Oxford Nanopore Technologies (ONT) has also brought about a large variety of assemblers. Although these have been extensively tested on model species such as Homo sapiens and Drosophila melanogaster, such benchmarking has not been done in Mollusca, which lacks widely adopted model species. Molluscan genomes are notoriously rich in repeats and are often highly heterozygous, making their assembly challenging. Here, we benchmarked 10 assemblers based on ONT raw reads from two published molluscan genomes of differing properties, the gastropod Chrysomallon squamiferum (356.6 Mb, 1.59% heterozygosity) and the bivalve Mytilus coruscus (1593 Mb, 1.94% heterozygosity). By optimizing the assembly pipeline, we greatly improved both genomes from previously published versions. Our results suggested that 40-50X of ONT reads are sufficient for high-quality genomes, with Flye being the recommended assembler for compact and less heterozygous genomes exemplified by C. squamiferum, while NextDenovo excelled for more repetitive and heterozygous molluscan genomes exemplified by M. coruscus. A phylogenomic analysis using the two updated genomes with 32 other published high-quality lophotrochozoan genomes resulted in maximum support across all nodes, and we show that improved genome quality also leads to more complete matrices for phylogenomic inferences. Our benchmarking will ensure efficiency in future assemblies for molluscs and perhaps also for other marine phyla with few genomes available. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Jin Sun
- Institute of Evolution and Marine Biodiversity, Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, People's Republic of China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa Prefecture 237-0061, Japan
| | - Julia D. Sigwart
- Senckenberg Museum, 60325 Frankfurt, Germany
- Marine Laboratory Queen's University Belfast, Portaferry, BT22 1PF, Northern Ireland
| | - Kevin M. Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
36
|
Gomes-Dos-Santos A, Lopes-Lima M, Machado AM, Marcos Ramos A, Usié A, Bolotov IN, Vikhrev IV, Breton S, Castro LFC, da Fonseca RR, Geist J, Österling ME, Prié V, Teixeira A, Gan HM, Simakov O, Froufe E. The Crown Pearl: a draft genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758). DNA Res 2021; 28:6182681. [PMID: 33755103 PMCID: PMC8088596 DOI: 10.1093/dnares/dsab002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
Since historical times, the inherent human fascination with pearls turned the freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758) into a highly valuable cultural and economic resource. Although pearl harvesting in M. margaritifera is nowadays residual, other human threats have aggravated the species conservation status, especially in Europe. This mussel presents a myriad of rare biological features, e.g. high longevity coupled with low senescence and Doubly Uniparental Inheritance of mitochondrial DNA, for which the underlying molecular mechanisms are poorly known. Here, the first draft genome assembly of M. margaritifera was produced using a combination of Illumina Paired-end and Mate-pair approaches. The genome assembly was 2.4 Gb long, possessing 105,185 scaffolds and a scaffold N50 length of 288,726 bp. The ab initio gene prediction allowed the identification of 35,119 protein-coding genes. This genome represents an essential resource for studying this species’ unique biological and evolutionary features and ultimately will help to develop new tools to promote its conservation.
Collapse
Affiliation(s)
- André Gomes-Dos-Santos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel Lopes-Lima
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal.,IUCN SSC Mollusc Specialist Group, c/o IUCN, Cambridge, England
| | - André M Machado
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.,MED-Mediterranean Institute for Agriculture, Environment and Development, CEBAL-Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908 Beja, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.,MED-Mediterranean Institute for Agriculture, Environment and Development, CEBAL-Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo, 7801-908 Beja, Portugal
| | - Ivan N Bolotov
- Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk 163000, Russia
| | - Ilya V Vikhrev
- Federal Center for Integrated Arctic Research, Russian Academy of Sciences, Arkhangelsk 163000, Russia
| | - Sophie Breton
- Department of Biological Sciences, University of Montreal, Montreal, Canada
| | - L Filipe C Castro
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Juergen Geist
- Aquatic Systems Biology Unit, Technical University of Munich, TUM School of Life Sciences, D-85354 Freising, Germany
| | - Martin E Österling
- Department of Environmental and Life Sciences-Biology, Karlstad University, 651 88 Karlstad, Sweden
| | - Vincent Prié
- Research Associate, Institute of Systematics, Evolution, Biodiversity (ISYEB), National Museum of Natural History (MNHN), CNRS, SU, EPHE, 75005 Paris, France
| | - Amílcar Teixeira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Han Ming Gan
- GeneSEQ Sdn Bhd, Bandar Bukit Beruntung, Rawang 48300, Selangor, Malaysia
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, 1010 Vienna, Austria
| | - Elsa Froufe
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, P 4450-208 Matosinhos, Portugal
| |
Collapse
|
37
|
Rodriguez C, Prieto GI, Vega IA, Castro-Vazquez A. Morphological grounds for the obligate aerial respiration of an aquatic snail: functional and evolutionary perspectives. PeerJ 2021; 9:e10763. [PMID: 33954023 PMCID: PMC8052964 DOI: 10.7717/peerj.10763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022] Open
Abstract
The freshwater caenogastropod family Ampullariidae is emerging as a model for a variety of studies, among them, the evolution of terrestriality. A common character of the family is that all its members bear a lung while retaining the ancestral gill. This ensures that many ampullariids are able to inhabit poorly oxygenated waters, to bury in the mud during estivation, and to temporarily leave the water, in some species for oviposition. To these characters Pomacea canaliculata (Caenogastropoda, Ampullariidae) adds that is an obligate air-breather. In a recent paper, we showed the gill epithelium of P. canaliculata has a set of characteristics that suggest its role for oxygen uptake may be less significant than its role in ionic/osmotic regulation and immunity. We complement here our morphological investigation on the respiratory organs of P. canaliculata by studying the lung of this species at the anatomical (3D reconstructions of the blood system and nerve supply), histological and ultrastructural levels. The circulation of the gill and the lung are interconnected so that the effluence of blood from the gill goes to the lung where it completes oxygenation. Besides that, we found the lung cavity is lined by a pavement epithelium that encloses an anastomosing network of small blood spaces resting over a fibromuscular layer, which altogether form the respiratory lamina. The pavement cells form a blood-gas barrier that is 80–150 nm thick and thus fulfils the requirements for an efficient gas exchanger. Tufts of ciliary cells, together with some microvillar and secretory cells, are interspersed in the respiratory lamina. Rhogocytes, which have been proposed to partake in metal depuration and in the synthesis of hemocyanin in other gastropods, were found below the respiratory lamina, in close association with the storage cell tissue. In light of these findings, we discuss the functional role of the lung in P. canaliculata and compare it with that of other gastropods. Finally, we point to some similarities in the pattern of the evolution of air dependence in this family.
Collapse
Affiliation(s)
- Cristian Rodriguez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Guido I Prieto
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.,Department of Philosophy I, Ruhr University Bochum, Bochum, Germany
| | - Israel A Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina.,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.,Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
38
|
Sullivan AP, Marciniak S, O'Dea A, Wake TA, Perry GH. Modern, archaeological, and paleontological DNA analysis of a human-harvested marine gastropod (Strombus pugilis) from Caribbean Panama. Mol Ecol Resour 2021; 21:1517-1528. [PMID: 33595921 DOI: 10.1111/1755-0998.13361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Although protocols exist for the recovery of ancient DNA from land snail and marine bivalve shells, marine conch shells have yet to be studied from a paleogenomic perspective. We first present reference assemblies for both a 623.7 Mbp nuclear genome and a 15.4 kbp mitochondrial genome for Strombus pugilis, the West Indian fighting conch. We next detail a method to extract and sequence DNA from conch shells and apply it to conch from Bocas del Toro, Panama across three time periods: recently-eaten and discarded (n = 3), Late Holocene (984-1258 before present [BP]) archaeological midden (n = 5), and mid-Holocene (5711-7187 BP) paleontological fossil coral reef (n = 5). These results are compared to control DNA extracted from live-caught tissue and fresh shells (n = 5). Using high-throughput sequencing, we were able to obtain S. pugilis nuclear sequence reads from shells across all age periods: up to 92.5 thousand filtered reads per sample in live-caught shell material, 4.57 thousand for modern discarded shells, 12.1 thousand reads for archaeological shells, and 114 reads in paleontological shells. We confirmed authenticity of the ancient DNA recovered from the archaeological and paleontological shells based on 5.7× higher average frequency of deamination-driven misincorporations and 15% shorter average read lengths compared to the modern shells. Reads also mapped to the S. pugilis mitochondrial genome for all but the paleontological shells, with consistent ratios of mitochondrial to nuclear mapped reads across sample types. Our methods can be applied to diverse archaeological sites to facilitate reconstructions of the long-term impacts of human behaviour on mollusc evolutionary biology.
Collapse
Affiliation(s)
- Alexis P Sullivan
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA, USA
| | - Aaron O'Dea
- Smithsonian Tropical Research Institute, Panama City, Panama.,Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Thomas A Wake
- Smithsonian Tropical Research Institute, Panama City, Panama.,Department of Anthropology and the Costen Institute of Archaeology, University of California, Los Angeles, CA, USA
| | - George H Perry
- Department of Biology, Pennsylvania State University, University Park, PA, USA.,Department of Anthropology, Pennsylvania State University, University Park, PA, USA.,Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
39
|
Brola TR, Dreon MS, Fernández PE, Portiansky EL, Heras H. Ingestion of Poisonous Eggs of the Invasive Apple Snail Pomacea canaliculata Adversely Affects Bullfrog Lithobathes catesbeianus Intestine Morphophysiology. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tabata R. Brola
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), CONICET – UNLP, La Plata, Argentina
| | - Marcos S. Dreon
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), CONICET – UNLP, La Plata, Argentina
| | - Patricia E. Fernández
- Instituto de Patología B. Epstein. Cátedra de Patología General, Facultad de Cs. Veterinarias, UNLP, Argentina
| | - Enrique L. Portiansky
- Laboratorio de Análisis de Imágenes (LAI), Cátedra de Patología General, Facultad de Cs. Veterinarias, Universidad Nacional de La Plata (UNLP), Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata “Profesor Doctor Rodolfo R. Brenner” (INIBIOLP), CONICET – UNLP, La Plata, Argentina
| |
Collapse
|
40
|
Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, Zhang W, Li R, Zhou K, Wong WC, Kwan YH, Cheng A, Bougouffa S, Van Dover CL, Qiu JW, Qian PY. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun 2021; 12:1165. [PMID: 33608555 PMCID: PMC7895826 DOI: 10.1038/s41467-021-21450-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023] Open
Abstract
Animals endemic to deep-sea hydrothermal vents often form obligatory symbioses with bacteria, maintained by intricate host-symbiont interactions. Most genomic studies on holobionts have not investigated both sides to similar depths. Here, we report dual symbiosis in the peltospirid snail Gigantopelta aegis with two gammaproteobacterial endosymbionts: a sulfur oxidiser and a methane oxidiser. We assemble high-quality genomes for all three parties, including a chromosome-level host genome. Hologenomic analyses reveal mutualism with nutritional complementarity and metabolic co-dependency, highly versatile in transporting and using chemical energy. Gigantopelta aegis likely remodels its immune system to facilitate dual symbiosis. Comparisons with Chrysomallon squamiferum, a confamilial snail with a single sulfur-oxidising gammaproteobacterial endosymbiont, show that their sulfur-oxidising endosymbionts are phylogenetically distant. This is consistent with previous findings that they evolved endosymbiosis convergently. Notably, the two sulfur-oxidisers share the same capabilities in biosynthesising nutrients lacking in the host genomes, potentially a key criterion in symbiont selection.
Collapse
Affiliation(s)
- Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jin Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yanan Sun
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yadong Zhou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yi Yang
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Weipeng Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Kun Zhou
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Wai Chuen Wong
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yick Hang Kwan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Aifang Cheng
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Salim Bougouffa
- Computational Bioscience Research Centre, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Cindy Lee Van Dover
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, United States
| | - Jian-Wen Qiu
- Department of Biology and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
41
|
Yang QQ, He C, Liu GF, Yin CL, Xu YP, Liu SW, Qiu JW, Yu XP. Introgressive hybridization between two non-native apple snails in China: widespread hybridization and homogenization in egg morphology. PEST MANAGEMENT SCIENCE 2020; 76:4231-4239. [PMID: 32594654 DOI: 10.1002/ps.5980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Apple snails from the genus Pomacea have spread widely in paddy fields and other wetlands of southern China since their introduction in the 1980s. Pomacea spp. are commonly identified using mitochondrial COI sequences. However, sequencing the nuclear elongation factor 1-alpha (EF1α) gene revealed genetic introgression between field populations of P. canaliculata and P. maculata, which produce surviving hybrids in laboratory crossbreeding experiments. RESULTS In this study, we sequenced 1054 EF1α clones to design specific primers and established a fast and accurate multiplex polymerase chain reaction (PCR) method for genotyping EF1α. Combined with genotyping P. canaliculata and P. maculata based on mitochondrial COI and nuclear EF1α, we revealed the genetic introgression patterns of 30 apple snail populations in China. Purebred and hybrid individuals of P. canaliculata were widely distributed, while pure maculata-EF1α type was detected only in a few individuals identified as P. canaliculata based on COI sequences. Each egg clutch had one to three genetic patterns, indicating multiple paternity or segregation in the progeny of hybrids. The higher percentages of hybrids in both wild populations and progeny than the homozygotes indicated a potential heterosis in the apple snail populations. Additionally, egg size and clutch size of the apple snails became homogeneous among the non-native populations exhibiting introgression hybridization. CONCLUSION Our findings emphasize the value of apple snails as a model to study the mechanisms and impacts of introgressive hybridization on fitness traits. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian-Qian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chao He
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Guang-Fu Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chuan-Lin Yin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yi-Peng Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Su-Wen Liu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
42
|
The Immune Response of the Invasive Golden Apple Snail to a Nematode-Based Molluscicide Involves Different Organs. BIOLOGY 2020; 9:biology9110371. [PMID: 33143352 PMCID: PMC7692235 DOI: 10.3390/biology9110371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary Sustainable solutions to the spreading of invasive species are difficult to find due to the absence of biological information about basic immune mechanisms of the target pests. Here, we present evidence of the effects of a commercially available roundworm, Phasmarhabditis hermaphrodita, against the invasive apple snail Pomacea canaliculata. The effects are principally evaluated in terms of snail survival and immune activation. Via molecular and microscopy-based approaches, we demonstrate that dosage and temperature are critical in determining the effects of the roundworm, and that the apple snail response to this immune challenge involves different organs. To our knowledge, these findings are the first demonstration that a P. hermaphrodita-based molluscicide can effectively kill P. canaliculata and that the snail can mount a multi-organ response against this pathogenic roundworm. Abstract The spreading of alien and invasive species poses new challenges for the ecosystem services, the sustainable production of food, and human well-being. Unveiling and targeting the immune system of invasive species can prove helpful for basic and applied research. Here, we present evidence that a nematode (Phasmarhabditis hermaphrodita)-based molluscicide exerts dose-dependent lethal effects on the golden apple snail, Pomacea canaliculata. When used at 1.7 g/L, this biopesticide kills about 30% of snails within one week and promotes a change in the expression of Pc-bpi, an orthologue of mammalian bactericidal/permeability increasing protein (BPI). Changes in Pc-bpi expression, as monitored by quantitative PCR (qPCR), occurred in two immune-related organs, namely the anterior kidney and the gills, after exposure at 18 and 25 °C, respectively. Histological analyses revealed the presence of the nematode in the snail anterior kidney and the gills at both 18 and 25 °C. The mantle and the central nervous system had a stable Pc-bpi expression and seemed not affected by the nematodes. Fluorescence in situ hybridization (FISH) experiments demonstrated the expression of Pc-bpi in circulating hemocytes, nurturing the possibility that increased Pc-bpi expression in the anterior kidney and gills may be due to the hemocytes patrolling the organs. While suggesting that P. hermaphrodita-based biopesticides enable the sustainable control of P. canaliculata spread, our experiments also unveiled an organ-specific and temperature-dependent response in the snails exposed to the nematodes. Overall, our data indicate that, after exposure to a pathogen, the snail P. canaliculata can mount a complex, multi-organ innate immune response.
Collapse
|
43
|
Li Y, Nong W, Baril T, Yip HY, Swale T, Hayward A, Ferrier DEK, Hui JHL. Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome. BMC Genomics 2020; 21:713. [PMID: 33059600 PMCID: PMC7566022 DOI: 10.1186/s12864-020-07027-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Homeobox-containing genes encode crucial transcription factors involved in animal, plant and fungal development, and changes to homeobox genes have been linked to the evolution of novel body plans and morphologies. In animals, some homeobox genes are clustered together in the genome, either as remnants from ancestral genomic arrangements, or due to coordinated gene regulation. Consequently, analyses of homeobox gene organization across animal phylogeny provide important insights into the evolution of genome organization and developmental gene control, and their interaction. However, homeobox gene organization remains to be fully elucidated in several key animal ancestors, including those of molluscs, lophotrochozoans and bilaterians. RESULTS Here, we present a high-quality chromosome-level genome assembly of the Hong Kong oyster, Magallana hongkongensis (2n = 20), for which 93.2% of the genomic sequences are contained on 10 pseudomolecules (~ 758 Mb, scaffold N50 = 72.3 Mb). Our genome assembly was scaffolded using Hi-C reads, facilitating a larger scaffold size compared to the recently published M. hongkongensis genome of Peng et al. (Mol Ecol Resources, 2020), which was scaffolded using the Crassostrea gigas assembly. A total of 46,963 predicted gene models (45,308 protein coding genes) were incorporated in our genome, and genome completeness estimated by BUSCO was 94.6%. Homeobox gene linkages were analysed in detail relative to available data for other mollusc lineages. CONCLUSIONS The analyses performed in this study and the accompanying genome sequence provide important genetic resources for this economically and culturally valuable oyster species, and offer a platform to improve understanding of animal biology and evolution more generally. Transposable element content is comparable to that found in other mollusc species, contrary to the conclusion of another recent analysis. Also, our chromosome-level assembly allows the inference of ancient gene linkages (synteny) for the homeobox-containing genes, even though a number of the homeobox gene clusters, like the Hox/ParaHox clusters, are undergoing dispersal in molluscs such as this oyster.
Collapse
Affiliation(s)
- Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tobias Baril
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Alexander Hayward
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK.
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Martine Laboratory, University of St. Andrews, St Andrews, UK.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
44
|
Cannicci S, Fratini S, Meriggi N, Bacci G, Iannucci A, Mengoni A, Cavalieri D. To the Land and Beyond: Crab Microbiomes as a Paradigm for the Evolution of Terrestrialization. Front Microbiol 2020; 11:575372. [PMID: 33117320 PMCID: PMC7575764 DOI: 10.3389/fmicb.2020.575372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
The transition to terrestrial environments by formerly aquatic species has occurred repeatedly in many animal phyla and lead to the vast diversity of extant terrestrial species. The differences between aquatic and terrestrial habitats are enormous and involved remarkable morphological and physiological changes. Convergent evolution of various traits is evident among phylogenetically distant taxa, but almost no information is available about the role of symbiotic microbiota in such transition. Here, we suggest that intertidal and terrestrial brachyuran crabs are a perfect model to study the evolutionary pathways and the ecological role of animal-microbiome symbioses, since their transition to land is happening right now, through a number of independent lineages. The microorganisms colonizing the gut of intertidal and terrestrial crabs are expected to play a major role to conquer the land, by reducing water losses and permitting the utilization of novel food sources. Indeed, it has been shown that the microbiomes hosted in the digestive system of terrestrial isopods has been critical to digest plant items, but nothing is known about the microbiomes present in the gut of truly terrestrial crabs. Other important physiological regulations that could be facilitated by microbiomes are nitrogen excretion and osmoregulation in the new environment. We also advocate for advances in comparative and functional genomics to uncover physiological aspects of these ongoing evolutionary processes. We think that the multidisciplinary study of microorganisms associated with terrestrial crabs will shed a completely new light on the biological and physiological processes involved in the sea-land transition.
Collapse
Affiliation(s)
- Stefano Cannicci
- Swire Institute of Marine Science and Division of Ecology and Biodiversity, The University of Hong Kong, Pokfulam, Hong Kong.,Department of Biology, University of Florence, Florence, Italy
| | - Sara Fratini
- Department of Biology, University of Florence, Florence, Italy
| | - Niccolò Meriggi
- Department of Biology, University of Florence, Florence, Italy
| | - Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | | |
Collapse
|
45
|
Giglio ML, Ituarte S, Milesi V, Dreon MS, Brola TR, Caramelo J, Ip JCH, Maté S, Qiu JW, Otero LH, Heras H. Exaptation of two ancient immune proteins into a new dimeric pore-forming toxin in snails. J Struct Biol 2020; 211:107531. [PMID: 32446810 DOI: 10.1016/j.jsb.2020.107531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/01/2020] [Accepted: 05/14/2020] [Indexed: 11/24/2022]
Abstract
The Membrane Attack Complex-Perforin (MACPF) family is ubiquitously found in all kingdoms. They have diverse cellular roles, however MACPFs with pore-forming toxic function in venoms and poisons are very rare in animals. Here we present the structure of PmPV2, a MACPF toxin from the poisonous apple snail eggs, that can affect the digestive and nervous systems of potential predators. We report the three-dimensional structure of PmPV2, at 17.2 Å resolution determined by negative-stain electron microscopy and its solution structure by small angle X-ray scattering (SAXS). We found that PV2s differ from nearly all MACPFs in two respects: it is a dimer in solution and protomers combine two immune proteins into an AB toxin. The MACPF chain is linked by a single disulfide bond to a tachylectin chain, and two heterodimers are arranged head-to-tail by non-covalent forces in the native protein. MACPF domain is fused with a putative new Ct-accessory domain exclusive to invertebrates. The tachylectin is a six-bladed β-propeller, similar to animal tectonins. We experimentally validated the predicted functions of both subunits and demonstrated for the first time that PV2s are true pore-forming toxins. The tachylectin "B" delivery subunit would bind to target membranes, and then the MACPF "A" toxic subunit would disrupt lipid bilayers forming large pores altering the plasma membrane conductance. These results indicate that PV2s toxicity evolved by linking two immune proteins where their combined preexisting functions gave rise to a new toxic entity with a novel role in defense against predation. This structure is an unparalleled example of protein exaptation.
Collapse
Affiliation(s)
- M L Giglio
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas,1900 La Plata, Argentina
| | - S Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas,1900 La Plata, Argentina
| | - V Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos, IIFP CONICET CCT La Plata - UNLP, Facultad de Ciencias Exactas, 1900 La Plata, Argentina
| | - M S Dreon
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas,1900 La Plata, Argentina
| | - T R Brola
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas,1900 La Plata, Argentina
| | - J Caramelo
- Instituto de Investigaciones Bioquímicas de Buenos Aires, IIBBA, CONICET - Fundación Instituto Leloir, Av Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
| | - J C H Ip
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong, China
| | - S Maté
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas,1900 La Plata, Argentina
| | - J W Qiu
- Department of Biology, Hong Kong Baptist University, 224 Waterloo Road, Hong Kong, China
| | - L H Otero
- Instituto de Investigaciones Bioquímicas de Buenos Aires, IIBBA, CONICET - Fundación Instituto Leloir, Av Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| | - H Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas,1900 La Plata, Argentina; Cátedra de Química Biologica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina.
| |
Collapse
|
46
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
47
|
Kenny NJ, McCarthy SA, Dudchenko O, James K, Betteridge E, Corton C, Dolucan J, Mead D, Oliver K, Omer AD, Pelan S, Ryan Y, Sims Y, Skelton J, Smith M, Torrance J, Weisz D, Wipat A, Aiden EL, Howe K, Williams ST. The gene-rich genome of the scallop Pecten maximus. Gigascience 2020; 9:giaa037. [PMID: 32352532 PMCID: PMC7191990 DOI: 10.1093/gigascience/giaa037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The king scallop, Pecten maximus, is distributed in shallow waters along the Atlantic coast of Europe. It forms the basis of a valuable commercial fishery and plays a key role in coastal ecosystems and food webs. Like other filter feeding bivalves it can accumulate potent phytotoxins, to which it has evolved some immunity. The molecular origins of this immunity are of interest to evolutionary biologists, pharmaceutical companies, and fisheries management. FINDINGS Here we report the genome assembly of this species, conducted as part of the Wellcome Sanger 25 Genomes Project. This genome was assembled from PacBio reads and scaffolded with 10X Chromium and Hi-C data. Its 3,983 scaffolds have an N50 of 44.8 Mb (longest scaffold 60.1 Mb), with 92% of the assembly sequence contained in 19 scaffolds, corresponding to the 19 chromosomes found in this species. The total assembly spans 918.3 Mb and is the best-scaffolded marine bivalve genome published to date, exhibiting 95.5% recovery of the metazoan BUSCO set. Gene annotation resulted in 67,741 gene models. Analysis of gene content revealed large numbers of gene duplicates, as previously seen in bivalves, with little gene loss, in comparison with the sequenced genomes of other marine bivalve species. CONCLUSIONS The genome assembly of P. maximus and its annotated gene set provide a high-quality platform for studies on such disparate topics as shell biomineralization, pigmentation, vision, and resistance to algal toxins. As a result of our findings we highlight the sodium channel gene Nav1, known to confer resistance to saxitoxin and tetrodotoxin, as a candidate for further studies investigating immunity to domoic acid.
Collapse
Affiliation(s)
- Nathan J Kenny
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | - Shane A McCarthy
- University of Cambridge, Department of Genetics,Cambridge CB2 3EH, UK
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
| | - Katherine James
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| | | | - Craig Corton
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Jale Dolucan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Dan Mead
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Karen Oliver
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Arina D Omer
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah Pelan
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Yan Ryan
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Institute of Infection and Global Health, Liverpool University, iC2, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Ying Sims
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | | | | | | | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Erez L Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Center for Theoretical Biological Physics, Rice University, 6100 Main St, Houston, TX 77005-1827, USA
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
- School of Agriculture and Environment, University of Western Australia, Perth, Australia
| | - Kerstin Howe
- Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Suzanne T Williams
- Natural History Museum, Department of Life Sciences,Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
48
|
Ip JCH, Mu H, Zhang Y, Heras H, Qiu JW. Egg perivitelline fluid proteome of a freshwater snail: Insight into the transition from aquatic to terrestrial egg deposition. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8605. [PMID: 31657488 DOI: 10.1002/rcm.8605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Proteins from the egg perivitelline fluid (PVF) are assumed to play critical roles in embryonic development, but for many groups of animals their identities remain unknown. Identifying egg PVF proteins is a critical step towards understanding their functions including their roles in evolutionary transition in habitats. METHODS We applied proteomic and transcriptomic analysis to investigate the PVF proteome of the eggs of Pomacea diffusa, an aerial ovipositing freshwater snail in the family Ampullariidae. The PVF proteins were separated with the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) method, and proteomic analysis was conducted using an LTQ Velos ion trap mass spectrometer coupled with liquid chromatography. Comparison of PVF proteomes and evolution analyses was performed between P. diffusa and other ampullariids. RESULTS In total, 32 egg PVF proteins were identified from P. diffusa. They were categorized as PV1-like subunits, immune-responsive proteins, protein degradation, signaling and binding, transcription and translation, metabolism, oxidation-reduction and proteins with unknown function. Interestingly, the proteome includes a calcium-binding protein important in forming the hard eggshell that enabled the terrestrial transition. However, it does not include PV2, a neurotoxic protein that was assumed to be present in all Pomacea species. CONCLUSIONS The PVF proteome data from P. diffusa can help us better understand the roles that reproductive proteins played during the transition from underwater to terrestrial egg deposition. Moreover, they could be useful in comparative studies of the terrestrialization in several groups of animals that occurred independently during their evolution.
Collapse
Affiliation(s)
- Jack C H Ip
- HKBU Institute of Research and Continuing Education, Shenzhen, P. R. China
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Huawei Mu
- School of Life Sciences, University of Science and Technology of China, Hefei, P. R. China
| | - Yanjie Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata -CONICET CCT-La Plata, La Plata, Argentina
- Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, UNLP, Argentina
| | - Jian-Wen Qiu
- HKBU Institute of Research and Continuing Education, Shenzhen, P. R. China
- Department of Biology, Hong Kong Baptist University, Hong Kong, P. R. China
| |
Collapse
|
49
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|
50
|
Xiao Y, Xiao Z, Ma D, Zhao C, Liu L, Wu H, Nie W, Xiao S, Liu J, Li J, Herrera-Ulloa A. Chromosome-Level Genome Reveals the Origin of Neo-Y Chromosome in the Male Barred Knifejaw Oplegnathus fasciatus. iScience 2020; 23:101039. [PMID: 32305860 PMCID: PMC7171519 DOI: 10.1016/j.isci.2020.101039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/05/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022] Open
Abstract
The barred knifejaw, Oplegnathus fasciatus, is characterized by an X1X2Y system with a neo-Y chromosome for males. Here, a chromosome-level genome was assembled to investigate the origin of neo-Y chromosome to the male O. fasciatus. Twenty-three chromosomes corresponding to the male karyotypes were scaffolded to 762-Mb genome with a contig N50 length of 2.18 Mb. A large neo-Y chromosome (Ch9) in the male O. fasciatus genome was also assembled and exhibited high identity to those of the female chromosomes Ch8 and Ch10. Chromosome rearrangements events were detected in the neo-chromosome Ch9. Our results suggested that a centric fusion of acrocentric chromosomes Ch8 and Ch10 should be responsible for the formation of the X1X2Y system. The high-quality genome will not only provide a solid foundation for further sex-determining mechanism research in the X1X2Y system but also facilitate the artificial breeding aiming to improve the yield and disease resistance for Oplegnathus. Construction of a chromosome-level reference genome for the male O. fasciatus Identification of the origin of neo-Y chromosome to the X1X2Y system Accurate comparisons of sequences and genes between female X1X1X2X2 and male X1X2Y
Collapse
Affiliation(s)
- Yongshuang Xiao
- Center for Ocean Mega-Science, The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhizhong Xiao
- Center for Ocean Mega-Science, The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Daoyuan Ma
- Center for Ocean Mega-Science, The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenxi Zhao
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd. East Lake High-Tech Zone, Wuhan, China
| | - Hao Wu
- Wuhan Frasergen Bioinformatics Co., Ltd. East Lake High-Tech Zone, Wuhan, China
| | - Wenchao Nie
- Wuhan Frasergen Bioinformatics Co., Ltd. East Lake High-Tech Zone, Wuhan, China
| | - Shijun Xiao
- College of Plant Protection, Jilin Agriculture University, Changchun, Jilin, China; School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China.
| | - Jing Liu
- Center for Ocean Mega-Science, The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jun Li
- Center for Ocean Mega-Science, The Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | | |
Collapse
|