1
|
Nagasawa K, Setoguchi H, Sakaguchi S. Recent Advances in Adaptation Genomics in Fumarole Fields: An Overlooked Extreme Environment. PLANT & CELL PHYSIOLOGY 2025; 66:496-505. [PMID: 39412112 DOI: 10.1093/pcp/pcae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 05/18/2025]
Abstract
Extreme environments and plants thriving in them, known as extremophytes, offer promising platforms for studying the diverse adaptive mechanisms that have evolved in plants. However, research on adaptation to extreme environments is still limited to those environments where model species or their relative can survive. Fumarole fields, an extreme environment often overlooked, are characterized by multi-hazardous abiotic stressors, including atmospheric contamination (high concentration of H2S, SO2 and CO2), high soil temperature (∼60°C) and strong soil acidification (pH = 2-3). These conditions make fumarole fields a rich source for studying stress tolerance mechanisms in plants. In this review, we highlight the recent ecological, physiological and genomic advances involved in fumarole field adaptation and discuss the forward avenues. The studies outlined in this paper demonstrate that the extreme levels of abiotic stressors found in fumarole fields make them unparalleled field laboratories for studying the unknown stress tolerance mechanisms, warranting further genomic assessments. Some studies succeeded in identifying genes associated with fumarole field adaptation and shedding light on evolutionary implications; however, they have also encountered challenges such as limited genome resources and high genetic differentiation from related species and/or neighboring populations. To overcome such difficulties, we propose integrating ecophysiological and genomic approaches, drawing from the recent studies in other extreme environments. We expect that further studies in the fumarole fields will contribute to broadening our general knowledge of the limits of life.
Collapse
Affiliation(s)
- Koki Nagasawa
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 6068501 Japan
- Research Center of Genetic Resources, National Agriculture and Food Research Organization, Kannondai, Tsukuba, Ibaraki, 3058517 Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 6068501 Japan
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto, 6068501 Japan
| |
Collapse
|
2
|
Xiao Y, Hua W, Zhang Y, Wu H, Li D, Qi Y. Overexpression of auxin early response gene LcSAUR1 (Leymus chinensis) increases sensitivity to alkali and drought stresses in Arabidopsis and rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110019. [PMID: 40403620 DOI: 10.1016/j.plaphy.2025.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/27/2025] [Accepted: 05/12/2025] [Indexed: 05/24/2025]
Abstract
Alkali and drought stresses are two common abiotic factors affecting plants growth and development. Auxin signal also regulates plant responses to abiotic stresses. Especially, auxin early response genes can quickly respond after sensing auxin signal. However, auxin early response genes related to alkali and drought stresses are rarely reported in Leymus chinensis. In this study, LcSAUR1 (small auxin-up RNA) was isolated from the difference expression analysis of the transcriptome data in Leymus chinensis under alkali and drought stresses. And LcSAUR1 exhibited inhibitory expression under alkali and drought stresses. Further research showed that LcSAUR1 was localized in the nucleus, cell membrane, and chloroplast, suggesting that it might has special biofunction. Overexpression of LcSAUR1 led to shorter root lengths in LcSAUR1-transgenic Arabidopsis and rice. Under alkali and drought stresses, the OE-LcSAUR1-Col lines showed delayed germination and larger stomatal aperture, and the OE-LcSAUR1-NIP lines had lower survival rates. The determination of physiological indicators including hydrogen peroxide (H2O2), malondialdehyde (MDA), catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), the contents of proline (PRO), and the staining of nitro-blue tetrazolium (NBT) and Diaminobenzidine (DAB) indicated that the overexpressed LcSAUR1-transgenic Arabidopsis and rice produced more reactive oxygen species (ROS). In addition, for the genes related to abiotic stresses, the expression of AtSnRK2.6, AtNCEB3, AtCAT2, and AtAPX1 in the OE-LcSAUR1-Col lines, and OsLEA3-2, OsABF1, OsCAT2, and OsAPX2 in the OE-LcSAUR1-NIP lines were all lower than their WT under alkali and drought stresses, suggesting that LcSAUR1 regulates alkali and drought tolerances might through those abiotic-related genes. The study suggests that the LcSAUR1 negatively regulates alkali and drought stresses, providing a novel insight into auxin signal and abiotic stresses.
Collapse
Affiliation(s)
- Yan Xiao
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Wenzhi Hua
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Yanjun Zhang
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Huimin Wu
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China.
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China.
| |
Collapse
|
3
|
Chi Y, Yu M, Wang Z, Zhou M, Zhao L, Shi J, Wang F, Wang C. Birch (Betula platyphylla) BES/BZR transcription factor BpBZR1-6 improves salt tolerance in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:1136. [PMID: 39604893 PMCID: PMC11603886 DOI: 10.1186/s12870-024-05738-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Salt stress is one of the major environmental factors affecting plant growth and productivity. BRI1-EMS suppressor 1/brassinazole-resistant 1 ((BES1/BZR1) plays an important role in responding to abiotic stress in plants. Although the impacts of BES1/BZR1 on plant growth and resistance have been documented, the potential mechanisms are not fully elucidated in Betula platyphylla. This work contributes to the understanding of how BES1/BZR1 promotes stress tolerance in woody plants. RESULTS Six BES1/BZR1 family members were identified from Betula platyphylla. Cis-element analysis showed that the promoters of six genes were rich in ABA-responsive element (ABRE), MYB and MBS cis-acting elements, which are reported to be involved in abiotic stress responses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that BpBZR1-6 (BPChr10G06000) could be induced by salt stress, ABA and BRs. BpBZR1-6 was localized in the nucleus and had transactivation activity. Ectopic expression of BpBZR1-6 enhanced Arabidopsis tolerance and decreased abscisic acid (ABA) sensitivity under salt treatment. Specifically, the seed germination rate, root length, fresh weight and chlorophyll content were significantly higher in BpBZR1-6-overexpressing (OE) transgenic plants than in wild-type (WT) plants after salt stress (P < 0.05). Additionally, BpBZR1-6 overexpression showed enhanced the reactive oxygen species (ROS) scavenging capability under salt stress, including increasing the activities of antioxidant enzyme, resulting in a decrease in O2- and H2O2 accumulation, and reducing malondialdehyde (MDA) content. Meanwhile, the expression levels of six antioxidant enzyme genes were higher in OE plants than in WT plants after stress. CONCLUSION BpBZR1-6 overexpression enhanced the salt tolerance of transgenic plants by modulating antioxidant enzyme gene expression and ROS scavenging, which may provide underlying strategy for breeding of salt-tolerant plants.
Collapse
Affiliation(s)
- Yao Chi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Mingyu Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Zihan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Meiqi Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Leifei Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Jingjing Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Fude Wang
- Heilongjiang Academy of Forestry, 143 Haping Road, Harbin, 150081, China.
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
4
|
Mir R, Mircea DM, Ruiz-González MX, Brocal-Rubio P, Boscaiu M, Vicente O. Cakile maritima: A Halophyte Model to Study Salt Tolerance Mechanisms and Potential Useful Crop for Sustainable Saline Agriculture in the Context of Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:2880. [PMID: 39458826 PMCID: PMC11511379 DOI: 10.3390/plants13202880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Salinity is an increasing problem for agriculture. Most plant species tolerate low or, at best, moderate soil salinities. However, a small (<1%) proportion of species, termed halophytes, can survive and complete their life cycle in natural habitats with salinities equivalent to 200 mM NaCl or more. Cakile maritima is a succulent annual halophyte belonging to the Brassicaceae family; it is dispersed worldwide and mainly grows in foreshores. Cakile maritima growth is optimal under slight (i.e., 100 mM NaCl) saline conditions, measured by biomass and seed production. Higher salt concentrations, up to 500 mM NaCl, significantly impact its growth but do not compromise its survival. Cakile maritima alleviates sodium toxicity through different strategies, including anatomical and morphological adaptations, ion transport regulation, biosynthesis of osmolytes, and activation of antioxidative mechanisms. The species is potentially useful as a cash crop for the so-called biosaline agriculture due to its production of secondary metabolites of medical and nutritional interest and the high oil accumulation in its seeds. In this review, we highlight the relevance of this species as a model for studying the basic mechanisms of salt tolerance and for sustainable biosaline agriculture in the context of soil salination and climate change.
Collapse
Affiliation(s)
- Ricardo Mir
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Diana M. Mircea
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (D.M.M.); (M.B.)
| | - Mario X. Ruiz-González
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | | | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; (D.M.M.); (M.B.)
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
5
|
Zhang Y, Li Q, Jiang M, Tian H, Khalid MHB, Wang Y, Yu H. The Small Auxin-Up RNA 50 (SAUR50) Gene from Ammopiptanthus nanus Negatively Regulates Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2512. [PMID: 39273996 PMCID: PMC11397199 DOI: 10.3390/plants13172512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
Drought stress is a primary abiotic stress that causes significant losses to forestry and agricultural production. Therefore, exploring drought-responsive genes and their regulatory mechanism is crucial for plant molecular breeding for forestry and agriculture production safety. Small auxin-up RNA (SAUR) proteins are essential in plant growth and development but show functional diversity in stress response. In this study, the transcriptome sequencing data of Ammopiptanthus nanus seedlings revealed that the expression of AnSAUR50 was continuously downregulated under drought stress. Hence, the AnSAUR50 gene was cloned and functionally analyzed in drought response. The results showed that the coding sequence of AnSAUR50 was 315 bp in length and encoded 104 amino acids. The AnSAUR50 protein showed high conservation, possessed a SAUR-specific domain, and localized in the nucleus and cell membrane. The heterologous expression of the AnSAUR50 gene enhanced the drought sensitivity of the transgenic Arabidopsis with a lower survival rate, biomass, and higher malondialdehyde content and relative electrolyte leakage. Moreover, transgenic plants showed shorter root lengths and bigger stomatal apertures, resulting in facilitating water loss under drought stress. The study indicates that AnSAUR50 negatively regulates drought tolerance by inhibiting root growth and stomatal closure, which provides insights into the underlying function and regulatory mechanism of SAURs in plant stress response.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Qi Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengyang Jiang
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Hui Tian
- Ecological Security and Protection Key Laboratory of Sichuan Province, College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Muhammad Hayder Bin Khalid
- National Research Centre of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yingge Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Chen J, Wang Y. Understanding the salinity resilience and productivity of halophytes in saline environments. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112171. [PMID: 38969140 DOI: 10.1016/j.plantsci.2024.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
The escalating salinity levels in cultivable soil pose a significant threat to agricultural productivity and, consequently, human sustenance. This problem is being exacerbated by natural processes and human activities, coinciding with a period of rapid population growth. Developing halophytic crops is needed to ensure food security is not impaired and land resources can be used sustainably. Evolution has created many close halophyte relatives of our major glycophytic crops, such as Puccinellia tenuiflora (relative of barley and wheat), Oryza coarctata (relative of rice) and Glycine soja (relative of soybean). There are also some halophytes have been subjected to semi-domestication and are considered as minor crops, such as Chenopodium quinoa. In this paper, we examine the prevailing comprehension of robust salinity resilience in halophytes. We summarize the existing strategies and technologies that equip researchers with the means to enhance the salt tolerance capabilities of primary crops and investigate the genetic makeup of halophytes.
Collapse
Affiliation(s)
- Jiahong Chen
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China; Dalian Practical Biotechnology Co. LTD., Dalian, Liaoning 116200, China.
| |
Collapse
|
7
|
Wang D, Lv S, Guo Z, Lin K, Zhang X, Jiang P, Lou T, Yi Z, Zhang B, Xie W, Li Y. PHT1;5 Repressed by ANT Mediates Pi Acquisition and Distribution under Low Pi and Salinity in Salt Cress. PLANT & CELL PHYSIOLOGY 2024; 65:20-34. [PMID: 37758243 DOI: 10.1093/pcp/pcad114] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Salinity and phosphate (Pi) starvation are the most common abiotic stresses that threaten crop productivity. Salt cress (Eutrema salsugineum) displays good tolerance to both salinity and Pi limitation. Previously, we found several Phosphate Transporter (PHT) genes in salt cress upregulated under salinity. Here, EsPHT1;5 induced by both low Pi (LP) and salinity was further characterized. Overexpression of EsPHT1;5 in salt cress enhanced plant tolerance to LP and salinity, while the knock-down lines exhibited growth retardation. The analysis of phosphorus (P) content and shoot/root ratio of total P in EsPHT1;5-overexpressing salt cress seedlings and the knock-down lines as well as arsenate uptake assays suggested the role of EsPHT1;5 in Pi acquisition and root-shoot translocation under Pi limitation. In addition, overexpression of EsPHT1;5 driven by the native promoter in salt cress enhanced Pi mobilization from rosettes to siliques upon a long-term salt treatment. Particularly, the promoter of EsPHT1;5 outperformed that of AtPHT1;5 in driving gene expression under salinity. We further identified a transcription factor EsANT, which negatively regulated EsPHT1;5 expression and plant tolerance to LP and salinity. Taken together, EsPHT1;5 plays an integral role in Pi acquisition and distribution in plant response to LP and salt stress. Further, EsANT may be involved in the cross-talk between Pi starvation and salinity signaling pathways. This work provides further insight into the mechanism underlying high P use efficiency in salt cress in its natural habitat, and evidence for a link between Pi and salt signaling.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Wenzhu Xie
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
8
|
Li C, Zhang H, Qi Y, Zhao Y, Duan C, Wang Y, Meng Z, Zhang Q. Genome-wide identification of PYL/PYR-PP2C (A)-SnRK2 genes in Eutrema and their co-expression analysis in response to ABA and abiotic stresses. Int J Biol Macromol 2023; 253:126701. [PMID: 37673165 DOI: 10.1016/j.ijbiomac.2023.126701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
ABA signaling core components PYR/PYL, group A PP2C and SnRK2 play important roles in various environmental stress responses of plants. This study identified 14 PYR/PYL, 9 PP2C (A), and 10 SnRK2 genes from halophytic Eutrema. Phylogenetic analysis showed 4 EsPYR/PYL, 4 EsPP2C (A) and 3 EsSnRK2 subfamilies characterized, which was supported by their gene structures and protein motifs. Large-scale segmental duplication event was demonstrated to be a major contributor to expansion of the EsPYL-PP2C (A)-SnRK2 gene families. Synteny relationship analysis revealed more orthologous PYL-PP2C (A)-SnRK2 gene pairs located in collinear blocks between Eutrema and Brassica than that between Eutrema and Arabidopsis. RNA-seq and qRT-PCR revealed EsABI1, EsABI2 and EsHAL2 showed a significantly up-regulated expression in leaves and roots in response to ABA, NaCl or cold stress. Three markedly co-expression modules of ABA/R-brown, NaCl/L-lightsteelblue1 and Cold/R-lightgreen were uncovered to contain EsPYL-PP2C (A)-SnRK2 genes by WGCNA analysis. GO and KEGG analysis indicated that the genes of ABA/R-brown module containing EsHAB1, EsHAI2 and EsSnRK2.6 were enriched in proteasome pathway. Further, EsHAI2-OE transgenic Arabidopsis lines showed significantly enhanced seeds germination and seedlings growth. This work provides a new insight for elucidating potential molecular functions of PYL-PP2C (A)-SnRK2 responding to ABA and abiotic stresses.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yujiao Wang
- Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China.
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China; Research team of plant pathogen microbiology and immunology, College of Life Science, Shandong Normal University, Jinan, China.
| |
Collapse
|
9
|
Guo J, Yang Y, Wang T, Wang Y, Zhang X, Min D, Zhang X. Analysis of Raffinose Synthase Gene Family in Bread Wheat and Identification of Drought Resistance and Salt Tolerance Function of TaRS15-3B. Int J Mol Sci 2023; 24:11185. [PMID: 37446364 DOI: 10.3390/ijms241311185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Raffinose synthase (RS) plays a crucial role in plant growth and development, as well as in responses to biotic stresses and abiotic stresses, yet few studies have been conducted on its role in bread wheat. Therefore, in this study we screened and identified a family of bread wheat raffinose synthase genes based on bread wheat genome information and analyzed their physicochemical properties, phylogenetic evolutionary relationships, conserved structural domains, promoter cis-acting elements, and expression patterns. The BSMV-induced silencing of TaRS15-3B resulted in the bread wheat seedlings being susceptible to drought and salt stress and reduced the expression levels of stress-related and ROS-scavenging genes in bread wheat plants. This further affected the ability of bread wheat to cope with drought and salt stress. In conclusion, this study revealed that the RS gene family in bread wheat plays an important role in plant response to abiotic stresses and that the TaRS15-3B gene can improve the tolerance of transgenic bread wheat to drought and salt stresses, provide directions for the study of other RS gene families in bread wheat, and supply candidate genes for use in molecular breeding of bread wheat for stress resistance.
Collapse
Affiliation(s)
- Jiagui Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Tingting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yizhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Donghong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Xiaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
10
|
Xiao M, Hao G, Guo X, Feng L, Lin H, Yang W, Chen Y, Zhao K, Xiang L, Jiang X, Mei D, Hu Q. A high-quality chromosome-level Eutrema salsugineum genome, an extremophile plant model. BMC Genomics 2023; 24:174. [PMID: 37020189 PMCID: PMC10077641 DOI: 10.1186/s12864-023-09256-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Eutrema salsugineum (2n = 14), a halophyte in the family Brassicaceae, is an attractive model to study abiotic stress tolerance in plants. Two versions of E. salsugineum genomes that previously reported were based on relatively short reads; thus, the repetitive regions were difficult to characterize. RESULTS We report the sequencing and assembly of the E. salsugineum (Shandong accession) genome using long-read sequencing and chromosome conformation capture data. We generated Oxford Nanopore long reads at high depth (> 60X) of genome coverage with additional short reads for error correction. The new assembly has a total size of 295.5 Mb with 52.8% repetitive sequences, and the karyotype of E. salsugineum is consistent with the ancestral translocation Proto-Calepineae Karyotype structure in both order and orientation. Compared with previous assemblies, this assembly has higher contiguity, especially in the centromere region. Based on this new assembly, we predicted 25,399 protein-coding genes and identified the positively selected genes associated with salt and drought stress responses. CONCLUSION The new genome assembly will provide a valuable resource for future genomic studies and facilitate comparative genomic analysis with other plants.
Collapse
Grants
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
- 31700164, 32171606, 31700323 the National Natural Science Foundation of China
Collapse
Affiliation(s)
- Meng Xiao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Guoqian Hao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644007, Sichuan, China
| | - Xinyi Guo
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Landi Feng
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Hao Lin
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Wenjie Yang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Yanyu Chen
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Kexin Zhao
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Ling Xiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Xinyao Jiang
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Dong Mei
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Quanjun Hu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Eshel G, Duppen N, Wang G, Oh D, Kazachkova Y, Herzyk P, Amtmann A, Gordon M, Chalifa‐Caspi V, Oscar MA, Bar‐David S, Marshall‐Colon A, Dassanayake M, Barak S. Positive selection and heat-response transcriptomes reveal adaptive features of the Brassicaceae desert model, Anastatica hierochuntica. THE NEW PHYTOLOGIST 2022; 236:1006-1026. [PMID: 35909295 PMCID: PMC9804903 DOI: 10.1111/nph.18411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.
Collapse
Affiliation(s)
- Gil Eshel
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Nick Duppen
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Guannan Wang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Dong‐Ha Oh
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Yana Kazachkova
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Anna Amtmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Michal Gordon
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Vered Chalifa‐Caspi
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Michelle Arland Oscar
- Blaustein Center for Scientific CooperationBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Shirli Bar‐David
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Amy Marshall‐Colon
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| |
Collapse
|
12
|
Li C, Duan C, Zhang H, Zhao Y, Meng Z, Zhao Y, Zhang Q. Adaptative Mechanisms of Halophytic Eutrema salsugineum Encountering Saline Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:909527. [PMID: 35837468 PMCID: PMC9274170 DOI: 10.3389/fpls.2022.909527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Salt cress (Eutrema salsugineum), an Arabidopsis-related halophyte, can naturally adapt to various harsh climates and soil conditions; thus, it is considered a desirable model plant for deciphering mechanisms of salt and other abiotic stresses. Accumulating evidence has revealed that compared with Arabidopsis, salt cress possesses stomata that close more tightly and more succulent leaves during extreme salt stress, a noticeably higher level of proline, inositols, sugars, and organic acids, as well as stress-associated transcripts in unstressed plants, and they are induced rapidly under stress. In this review, we systematically summarize the research on the morphology, physiology, genome, gene expression and regulation, and protein and metabolite profile of salt cress under salt stress. We emphasize the latest advances in research on the genome adaptive evolution encountering saline environments, and epigenetic regulation, and discuss the mechanisms underlying salt tolerance in salt cress. Finally, we discuss the existing questions and opportunities for future research in halophytic Eutrema. Together, the review fosters a better understanding of the mechanism of plant salt tolerance and provides a reference for the research and utilization of Eutrema as a model extremophile in the future. Furthermore, the prospects for salt cress applied to explore the mechanism of salt tolerance provide a theoretical basis to develop new strategies for agricultural biotechnology.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chonghao Duan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Hengyang Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yaoyao Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhe Meng
- Research Team of Plant Pathogen Microbiology and Immunology, College of Life Science, Shandong Normal University, Jinan, China
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
13
|
Wang F, Sun Z, Zhu M, Zhang Q, Sun Y, Sun W, Wu C, Li T, Zhao Y, Ma C, Zhang H, Zhao Y, Wang Z. Dissecting the Molecular Regulation of Natural Variation in Growth and Senescence of Two Eutrema salsugineum Ecotypes. Int J Mol Sci 2022; 23:ijms23116124. [PMID: 35682805 PMCID: PMC9181637 DOI: 10.3390/ijms23116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Salt cress (Eutrema salsugineum, aka Thellungiella salsuginea) is an extremophile and a close relative of Arabidopsis thaliana. To understand the mechanism of selection of complex traits under natural variation, we analyzed the physiological and proteomic differences between Shandong (SD) and Xinjiang (XJ) ecotypes. The SD ecotype has dark green leaves, short and flat leaves, and more conspicuous taproots, and the XJ ecotype had greater biomass and showed clear signs of senescence or leaf shedding with age. After 2-DE separation and ESI-MS/MS identification, between 25 and 28 differentially expressed protein spots were identified in shoots and roots, respectively. The proteins identified in shoots are mainly involved in cellular metabolic processes, stress responses, responses to abiotic stimuli, and aging responses, while those identified in roots are mainly involved in small-molecule metabolic processes, oxidation-reduction processes, and responses to abiotic stimuli. Our data revealed the evolutionary differences at the protein level between these two ecotypes. Namely, in the evolution of salt tolerance, the SD ecotype highly expressed some stress-related proteins to structurally adapt to the high salt environment in the Yellow River Delta, whereas the XJ ecotype utilizes the specialized energy metabolism to support this evolution of the short-lived xerophytes in the Xinjiang region.
Collapse
Affiliation(s)
- Fanhua Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Zhibin Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Min Zhu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Qikun Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yufei Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Wei Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Tongtong Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Correspondence: (Y.Z.); (Z.W.)
| | - Zenglan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (F.W.); (Z.S.); (M.Z.); (Q.Z.); (Y.S.); (W.S.); (C.W.); (T.L.); (Y.Z.); (C.M.); (H.Z.)
- Correspondence: (Y.Z.); (Z.W.)
| |
Collapse
|
14
|
Maize ZmBES1/BZR1-3 and -9 Transcription Factors Negatively Regulate Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23116025. [PMID: 35682705 PMCID: PMC9181540 DOI: 10.3390/ijms23116025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1(BZR1) transcription factors play crucial roles in plant growth, development, and stress response. However, little is known about the function of maize’s BES1/BZR1s. In this study, the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were cloned from maize’s inbred line, B73, and they were functionally evaluated by analyzing their expression pattern, subcellular localization, transcriptional activation activity, as well as their heterologous expression in Arabidopsis, respectively. The results of the qRT-PCR showed that the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were predominantly expressed in the root, and their expression was significantly down-regulated by drought stress. The ZmBES1/BZR1-3 and ZmBES1/BZR1-9 proteins localized in the nucleus but showed no transcriptional activation activity as a monomer. Subsequently, it was found that the heterologous expression of the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes in Arabidopsis decreased drought tolerance, respectively. The transgenic lines showed a more serious wilting phenotype, shorter root length, lower fresh weight, and higher relative electrolyte leakage (REL) and malondialdehyde (MDA) content compared to the control under drought stress. The RNA-sequencing data showed that the 70.67% and 93.27% differentially expressed genes (DEGs) were significantly down-regulated in ZmBES1/BZR1-3 and ZmBES1/BZR1-9 transgenic Arabidopsis, respectively. The DEGs of ZmBES1/BZR1-3 gene’s expressing lines were mainly associated with oxidative stress response and amino acid metabolic process and enriched in phenylpropanoid biosynthesis and protein processing in the endoplasmic reticulum. But the DEGs of the ZmBES1/BZR1-9 gene’s expressing lines were predominantly annotated with water deprivation, extracellular stimuli, and jasmonic acid and enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. Moreover, ZmBES1/BZR1-9 increased stomatal aperture in transgenic Arabidopsis under drought stress. This study indicates that ZmBES1/BZR1-3 and ZmBES1/BZR1-9 negatively regulate drought tolerance via different pathways in transgenic Arabidopsis, and it provides insights into the underlying the function of BES1/BZR1s in crops.
Collapse
|
15
|
Mir R, Romero I, González-Orenga S, Ferrer-Gallego PP, Laguna E, Boscaiu M, Oprică L, Grigore MN, Vicente O. Constitutive and Adaptive Traits of Environmental Stress Tolerance in the Threatened Halophyte Limonium angustebracteatum Erben (Plumbaginaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091137. [PMID: 35567138 PMCID: PMC9103948 DOI: 10.3390/plants11091137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/01/2023]
Abstract
Limonium angustebracteatum is a halophyte endemic to the E and SE Iberian Peninsula with interest in conservation. Salt glands represent an important adaptive trait in recretohalophytes like this and other Limonium species, as they allow the excretion of excess salts, reducing the concentration of toxic ions in foliar tissues. This study included the analysis of the salt gland structure, composed of 12 cells, 4 secretory and 8 accessory. Several anatomical, physiological and biochemical responses to stress were also analysed in adult plants subjected to one month of water stress, complete lack of irrigation, and salt stress, by watering with aqueous solutions of 200, 400, 600 and 800 mM NaCl. Plant growth was inhibited by the severe water deficit and, to a lesser extent, by high NaCl concentrations. A variation in the anatomical structure of the leaves was detected under conditions of salt and water stress; plants from the salt stress treatment showed salt glands sunken between epidermal cells, bordered by very large epidermal cells, whereas in those from the water stress treatment, the epidermal cells were heterogeneous in shape and size. In both, the palisade structure of the leaves was altered. Salt excretion is usually accompanied by the accumulation of salts in the foliar tissue. This was also found in L. angustebracteatum, in which the concentration of all ions analysed was higher in the leaves than in the roots. The increase of K+ in the roots of plants subjected to water stress was also remarkable. The multivariate analysis indicated differences in water and salt stress responses, such as the accumulation of Na and Cl, or proline, but K+ homeostasis played a relevant role in the mechanism of tolerance to both stressful conditions.
Collapse
Affiliation(s)
- Ricardo Mir
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| | - Ignacio Romero
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| | - Sara González-Orenga
- Mediterranean Agroforestry Institute (IAM, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - P. Pablo Ferrer-Gallego
- Centre for Forestry Research and Experimentation (CIEF), CIEF-Wildlife Service, Generalitat Valenciana, Avda Comarques del País Valencia, 114, 46930 Quart de Poblet, Valencia, Spain; (P.P.F.-G.); (E.L.)
| | - Emilio Laguna
- Centre for Forestry Research and Experimentation (CIEF), CIEF-Wildlife Service, Generalitat Valenciana, Avda Comarques del País Valencia, 114, 46930 Quart de Poblet, Valencia, Spain; (P.P.F.-G.); (E.L.)
| | - Monica Boscaiu
- Mediterranean Agroforestry Institute (IAM, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (S.G.-O.); (M.B.)
| | - Lăcrămioara Oprică
- Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bulevardul Carol I nr. 11, 700506 Iași, Romania;
| | - Marius-Nicușor Grigore
- Faculty of Medicine and Biological Sciences, “Ștefan cel Mare” University of Suceava, Str. Universității 13, 720229 Suceava, Romania
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV, UPV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain; (R.M.); (I.R.); (O.V.)
| |
Collapse
|
16
|
Hou Q, Zhang T, Zhao W, Wang L, Lu L, Qi Y, Bartels D. Genetic background and cis-organization regulate ALDH7B4 gene expression in Eutrema salsugineum: a promoter analysis case study. PLANTA 2022; 255:52. [PMID: 35091839 DOI: 10.1007/s00425-022-03836-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
ALDH7B4 promoter analysis in A. thaliana and E. salsugineum reveals that both genetic background and promoter architecture contribute to gene expression in response to stress in different species. Many genes are differentially regulated in a comparison of salinity-sensitive and salinity-tolerant plant species. The aldehyde dehydrogenase 7B4 (ALDH7B4) gene is turgor-responsive in A. thaliana and encodes a highly conserved detoxification enzyme in plants. This study compared the ALDH7B4 gene in A. thaliana (salinity-sensitive) and in the salinity-tolerant close relative Eutrema salsugineum. EsALDH7B4 in E. salsugineum is the ortholog of AtALDH7B4 and the expression is also salinity, drought, and wound responsive. However, E. salsugineum requires higher salinity stress to induce the EsALDH7B4 transcriptional response. The GUS expression driven either by the promoter AtALDH7B4 or EsALDH7B4 was induced under 300 mM NaCl treatment in A. thaliana while 600 mM NaCl treatment was required in E. salsugineum, suggesting that the genetic background plays a crucial role in regulation of gene expression. Promoter sequences of ALDH7B4 are less conserved than the protein coding region. A series of EsALDH7B4 promoter deletion fragments were fused to the GUS reporter gene and promoter activity was determined in A. thaliana. The promoter region that contains two conserved ACGT-containing motifs was identified to be essential for stress induction. Furthermore, a 38 bp "TC" rich motif in the EsALDH7B4 promoter, absent from the AtALDH7B4 promoter, negatively affects EsALDH7B4 expression. A MYB-like transcription factor was identified to bind the "TC" motif and to repress the EsALDH7B4 promoter activity. This study reveals that genetic background and cis-acting elements coordinately regulate gene expression.
Collapse
Affiliation(s)
- Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China.
- Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Tianye Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Wei Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Linlin Wang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Lu Lu
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Yuchen Qi
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Graduate School, Research Center of Biology and Agriculture, University of Science and Technology Beijing (USTB), Beijing, 100024, China
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
17
|
Rawat N, Wungrampha S, Singla-Pareek SL, Yu M, Shabala S, Pareek A. Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. MOLECULAR PLANT 2022; 15:45-64. [PMID: 34915209 DOI: 10.1016/j.molp.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Abiotic stress tolerance has been weakened during the domestication of all major staple crops. Soil salinity is a major environmental constraint that impacts over half of the world population; however, given the increasing reliance on irrigation and the lack of available freshwater, agriculture in the 21st century will increasingly become saline. Therefore, global food security is critically dependent on the ability of plant breeders to create high-yielding staple crop varieties that will incorporate salinity tolerance traits and account for future climate scenarios. Previously, we have argued that the current agricultural practices and reliance on crops that exclude salt from uptake is counterproductive and environmentally unsustainable, and thus called for a need for a major shift in a breeding paradigm to incorporate some halophytic traits that were present in wild relatives but were lost in modern crops during domestication. In this review, we provide a comprehensive physiological and molecular analysis of the key traits conferring crop halophytism, such as vacuolar Na+ sequestration, ROS desensitization, succulence, metabolic photosynthetic switch, and salt deposition in trichomes, and discuss the strategies for incorporating them into elite germplasm, to address a pressing issue of boosting plant salinity tolerance.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Silas Wungrampha
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute for Agriculture, University of Tasmania, Hobart Tas 7001, Australia.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; National Agri-Food Biotechnology Institute, Mohali 140306, India.
| |
Collapse
|
18
|
Li C, Qi Y, Zhao C, Wang X, Zhang Q. Transcriptome Profiling of the Salt Stress Response in the Leaves and Roots of Halophytic Eutrema salsugineum. Front Genet 2021; 12:770742. [PMID: 34868259 PMCID: PMC8637539 DOI: 10.3389/fgene.2021.770742] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Eutrema salsugineum can grow in natural harsh environments; however, the underlying mechanisms for salt tolerance of Eutrema need to be further understood. Herein, the transcriptome profiling of Eutrema leaves and roots exposed to 300 mM NaCl is investigated, and the result emphasized the role of genes involved in lignin biosynthesis, autophagy, peroxisome, and sugar metabolism upon salt stress. Furthermore, the expression of the lignin biosynthesis and autophagy-related genes, as well as 16 random selected genes, was validated by qRT-PCR. Notably, the transcript abundance of a large number of lignin biosynthesis genes such as CCoAOMT, C4H, CCR, CAD, POD, and C3′H in leaves was markedly elevated by salt shock. And the examined lignin content in leaves and roots demonstrated salt stress led to lignin accumulation, which indicated the enhanced lignin level could be an important mechanism for Eutrema responding to salt stress. Additionally, the differentially expressed genes (DEGs) assigned in the autophagy pathway including Vac8, Atg8, and Atg4, as well as DEGs enriched in the peroxisome pathway such as EsPEX7, EsCAT, and EsSOD2, were markedly induced in leaves and/or roots. In sugar metabolism pathways, the transcript levels of most DEGs associated with the synthesis of sucrose, trehalose, raffinose, and xylose were significantly enhanced. Furthermore, the expression of various stress-related transcription factor genes including WRKY, AP2/ERF-ERF, NAC, bZIP, MYB, C2H2, and HSF was strikingly improved. Collectively, the increased expression of biosynthesis genes of lignin and soluble sugars, as well as the genes in the autophagy and peroxisome pathways, suggested that Eutrema encountering salt shock possibly possess a higher capacity to adjust osmotically and facilitate water transport and scavenge reactive oxidative species and oxidative proteins to cope with the salt environment. Thus, this study provides a new insight for exploring the salt tolerance mechanism of halophytic Eutrema and discovering new gene targets for the genetic improvement of crops.
Collapse
Affiliation(s)
- Chuanshun Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuting Qi
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chuanzhi Zhao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China.,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Xingjun Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China.,Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan, China
| | - Quan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
19
|
Lv S, Wang D, Jiang P, Jia W, Li Y. Variation of PHT families adapts salt cress to phosphate limitation under salinity. PLANT, CELL & ENVIRONMENT 2021; 44:1549-1564. [PMID: 33560528 DOI: 10.1111/pce.14027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 05/25/2023]
Abstract
Salt cress (Eutrema salsugineum) presents relatively high phosphate (Pi) use efficiency cy in its natural habitat. Phosphate Transporters (PHTs) play critical roles in Pi acquisition and homeostasis. Here, a comparative study of PHT families between salt cress and Arabidopsis was performed. A total of 27 putative PHT genes were identified in E. salsugineum genome. Notably, seven tandem genes encoding PHT1;3 were found, and function analysis in Arabidopsis indicated at least six EsPHT1;3s participated in Pi uptake. Meanwhile, different expression profiles of PHT genes between the two species under Pi limitation and salt stress were documented. Most PHT1 genes were down-regulated in Arabidopsis while up-regulated in salt cress under salinity, among which EsPHT1;9 was further characterized. EsPHT1;9 was involved in root-to-shoot Pi translocation. Particularly, the promoter of EsPHT1;9 outperformed that of AtPHT1;9 in promoting Pi translocation, K+ /Na+ ratio, thereby salt tolerance. Through cis-element analysis, we identified a bZIP transcription factor EsABF5 negatively regulating EsPHT1;9 and plant tolerance to low-Pi and salt stress. Altogether, more copies and divergent transcriptional regulation of PHT genes contribute to salt cress adaptation to the co-occurrence of salinity and Pi limitation, which add our knowledge on the evolutionary and molecular component of multistress- tolerance of this species.
Collapse
Affiliation(s)
- Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Key Laboratory on Water Environment of Reservoir Watershed, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Ali A, Raddatz N, Pardo JM, Yun D. HKT sodium and potassium transporters in Arabidopsis thaliana and related halophyte species. PHYSIOLOGIA PLANTARUM 2021; 171:546-558. [PMID: 32652584 PMCID: PMC8048799 DOI: 10.1111/ppl.13166] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 05/10/2023]
Abstract
High salinity induces osmotic stress and often leads to sodium ion-specific toxicity, with inhibitory effects on physiological, biochemical and developmental pathways. To cope with increased Na+ in soil water, plants restrict influx, compartmentalize ions into vacuoles, export excess Na+ from the cell, and distribute ions between the aerial and root organs. In this review, we discuss our current understanding of how high-affinity K+ transporters (HKT) contribute to salinity tolerance, focusing on HKT1-like family members primarily involved in long-distance transport, and in the recent research in the model plant Arabidopsis and its halophytic counterparts of the Eutrema genus. Functional characterization of the salt overly sensitive (SOS) pathway and HKT1-type transporters in these species indicate that they utilize similar approaches to deal with salinity, regardless of their tolerance.
Collapse
Affiliation(s)
- Akhtar Ali
- Institute of Glocal Disease ControlKonkuk UniversitySeoul05029South Korea
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| | - Natalia Raddatz
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Jose M. Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC‐Universidad de SevillaAmerico Vespucio 49, Sevilla41092Spain
| | - Dae‐Jin Yun
- Department of Biomedical Science & EngineeringKonkuk UniversitySeoul05029South Korea
| |
Collapse
|
21
|
Xu T, Zhang L, Yang Z, Wei Y, Dong T. Identification and Functional Characterization of Plant MiRNA Under Salt Stress Shed Light on Salinity Resistance Improvement Through MiRNA Manipulation in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:665439. [PMID: 34220888 PMCID: PMC8247772 DOI: 10.3389/fpls.2021.665439] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/29/2021] [Indexed: 05/07/2023]
Abstract
Salinity, as a major environmental stressor, limits plant growth, development, and crop yield remarkably. However, plants evolve their own defense systems in response to salt stress. Recently, microRNA (miRNA) has been broadly studied and considered to be an important regulator of the plant salt-stress response at the post-transcription level. In this review, we have summarized the recent research progress on the identification, functional characterization, and regulatory mechanism of miRNA involved in salt stress, have discussed the emerging manipulation of miRNA to improve crop salt resistance, and have provided future direction for plant miRNA study under salt stress, suggesting that the salinity resistance of crops could be improved by the manipulation of microRNA.
Collapse
Affiliation(s)
- Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- *Correspondence: Tao Xu,
| | - Long Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhengmei Yang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yiliang Wei
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Tingting Dong
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Tingting Dong,
| |
Collapse
|
22
|
Bartusch K, Melnyk CW. Insights Into Plant Surgery: An Overview of the Multiple Grafting Techniques for Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:613442. [PMID: 33362838 PMCID: PMC7758207 DOI: 10.3389/fpls.2020.613442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 05/28/2023]
Abstract
Plant grafting, the ancient practice of cutting and joining different plants, is gaining popularity as an elegant way to generate chimeras that combine desirable traits. Grafting was originally developed in woody species, but the technique has evolved over the past century to now encompass a large number of herbaceous species. The use of plant grafting in science is accelerating in part due to the innovative techniques developed for the model plant Arabidopsis thaliana. Here, we review these developments and discuss the advantages and limitations associated with grafting various Arabidopsis tissues at diverse developmental stages.
Collapse
Affiliation(s)
- Kai Bartusch
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zurich, Switzerland
| | - Charles W. Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
23
|
Yang S, Zhao Y, Wang J. Function and application of the Eutrema salsugineum PHT1;1 gene in phosphate deficiency stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:1133-1139. [PMID: 32779343 DOI: 10.1111/plb.13169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Low availability of inorganic phosphate (Pi) in soil is often a limiting factor for plant growth and productivity. The Pi transporter plays an important role in the absorption and utilization of phosphorus in plants. Eutrema salsugineum shows strong tolerance under Pi stress conditions, but the function of the E. salsugineum PHT1 genes has not yet been systematically studied. This study isolated a phosphate transporter gene (EsPHT1;1) from the halophyte E. salsugineum and functionally characterized it in the herbaceous model plant, Arabidopsis thaliana, and in an important oil crop species, soybean (Glycine max (L.) Merr.). Under Pi deficient conditions, transgenic Arabidopsis and transgenic soybean grew better and exhibited significant improvement in root growth, biomass accumulation and seed yield compared with wild-type (WT) plants. These phenotypic enhancements were more apparent under inadequate Pi conditions than under sufficient or no Pi conditions, which is in agreement with the observation that the transgenic plants accumulated higher amounts of Pi and total P in shoots and roots than WT plants only when inadequate Pi was supplied. The results of the present study indicate that overexpression of EsPHT1;1 can efficiently enhance the growth and reproductive performance of both Arabidopsis and soybean plants challenged by low P stress, which results confirm the important role of PHT1;1 in dealing with Pi deficiency.
Collapse
Affiliation(s)
- S Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Y Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - J Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
Yang S, Feng Y, Zhao Y, Bai J, Wang J. Overexpression of a Eutrema salsugineum phosphate transporter gene EsPHT1;4 enhances tolerance to low phosphorus stress in soybean. Biotechnol Lett 2020; 42:2425-2439. [PMID: 32683523 DOI: 10.1007/s10529-020-02968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/12/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To enhance Pi absorption and utilization efficiency of soybean, a member of PHT1 gene family was isolated and characterized from E. salsugineum, which was a homologous gene of AtPHT1;4 and consequently designated as EsPHT1;4. RESULTS Quantitative real-time PCR (qRT-PCR) analysis showed that the transcript level of EsPHT1;4 significantly increased both in roots and leaves of E. salsugineum under Pi deficient conditions. Furthermore, EsPHT1;4 was transferred to soybean cultivar "YD22" using an Agrobacterium-mediated cotyledonary-node transformation method. Overexpression of EsPHT1;4 in soybean not only promoted the increase of plant biomass and yield of transgenic plants upon low P stress, but also increased the accumulation and transportation of Pi from roots to leaves in the transgenic soybean lines. CONCLUSION EsPHT1;4 was critical for controlling the accumulation and translocation of Pi in plants, and can be subsequently used as an effective foreign gene for the improvement of P use efficiency of crops by genetic manipulation.
Collapse
Affiliation(s)
- Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China.
| | - Yue Feng
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China
| | - Jingping Bai
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Nankai Area, Weijin Rd. 92, Tianjin, 300072, China
| |
Collapse
|
25
|
Dittami SM, Corre E, Brillet-Guéguen L, Lipinska AP, Pontoizeau N, Aite M, Avia K, Caron C, Cho CH, Collén J, Cormier A, Delage L, Doubleau S, Frioux C, Gobet A, González-Navarrete I, Groisillier A, Hervé C, Jollivet D, KleinJan H, Leblanc C, Liu X, Marie D, Markov GV, Minoche AE, Monsoor M, Pericard P, Perrineau MM, Peters AF, Siegel A, Siméon A, Trottier C, Yoon HS, Himmelbauer H, Boyen C, Tonon T. The genome of Ectocarpus subulatus - A highly stress-tolerant brown alga. Mar Genomics 2020; 52:100740. [PMID: 31937506 DOI: 10.1016/j.margen.2020.100740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/01/2020] [Indexed: 11/20/2022]
Abstract
Brown algae are multicellular photosynthetic stramenopiles that colonize marine rocky shores worldwide. Ectocarpus sp. Ec32 has been established as a genomic model for brown algae. Here we present the genome and metabolic network of the closely related species, Ectocarpus subulatus Kützing, which is characterized by high abiotic stress tolerance. Since their separation, both strains show new traces of viral sequences and the activity of large retrotransposons, which may also be related to the expansion of a family of chlorophyll-binding proteins. Further features suspected to contribute to stress tolerance include an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defence compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. Overall, E. subulatus has mainly lost members of gene families down-regulated in low salinities, and conserved those that were up-regulated in the same condition. However, 96% of genes that differed between the two examined Ectocarpus species, as well as all genes under positive selection, were found to encode proteins of unknown function. This underlines the uniqueness of brown algal stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies.
Collapse
Affiliation(s)
- Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France.
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Loraine Brillet-Guéguen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Agnieszka P Lipinska
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Noé Pontoizeau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Meziane Aite
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Komlan Avia
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Université de Strasbourg, INRA, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Christophe Caron
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Sylvie Doubleau
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | | | - Angélique Gobet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Irene González-Navarrete
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Agnès Groisillier
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Cécile Hervé
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment (ADME), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Hetty KleinJan
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Xi Liu
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Dominique Marie
- Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment (ADME), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - André E Minoche
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Misharl Monsoor
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pierre Pericard
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Marie-Mathilde Perrineau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, United Kingdom
| | | | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Amandine Siméon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Camille Trottier
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France; Laboratory of Digital Sciences of Nantes (LS2N) - University of Nantes, France
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heinz Himmelbauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190 Vienna, Austria
| | - Catherine Boyen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Thierry Tonon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
26
|
Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation (N Y) 2020; 1:100017. [PMID: 34557705 PMCID: PMC8454569 DOI: 10.1016/j.xinn.2020.100017] [Citation(s) in RCA: 331] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Soil salinity is a major environmental stress that restricts the growth and yield of crops. Understanding the physiological, metabolic, and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops. In this review, we provide a comprehensive summary of the mechanisms of salt stress responses in plants, including salt stress-triggered physiological responses, oxidative stress, salt stress sensing and signaling pathways, organellar stress, ion homeostasis, hormonal and gene expression regulation, metabolic changes, as well as salt tolerance mechanisms in halophytes. Important questions regarding salt tolerance that need to be addressed in the future are discussed.
Collapse
Affiliation(s)
- Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunpeng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
27
|
Maize ZmBES1/BZR1-5 Decreases ABA Sensitivity and Confers Tolerance to Osmotic Stress in Transgenic Arabidopsis. Int J Mol Sci 2020; 21:ijms21030996. [PMID: 32028614 PMCID: PMC7036971 DOI: 10.3390/ijms21030996] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 12/16/2022] Open
Abstract
The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors, key components in the brassinosteroid signaling pathway, play pivotal roles in plant growth and development. However, the function of BES1/BZR1 in crops during stress response remains poorly understood. In the present study, we characterized ZmBES1/BZR1-5 from maize, which was localized to the nucleus and was responsive to abscisic acid (ABA), salt and drought stresses. Heterologous expression of ZmBES1/BZR1-5 in transgenic Arabidopsis resulted in decreased ABA sensitivity, facilitated shoot growth and root development, and enhanced salt and drought tolerance with lower malondialdehyde (MDA) content and relative electrolyte leakage (REL) under osmotic stress. The RNA sequencing (RNA-seq) analysis revealed that 84 common differentially expressed genes (DEGs) were regulated by ZmBES1/BZR1-5 in transgenic Arabidopsis. Subsequently, gene ontology and KEGG pathway enrichment analyses showed that the DEGs were enriched in response to stress, secondary metabolism and metabolic pathways. Furthermore, 30 DEGs were assigned to stress response and possessed 2-15 E-box elements in their promoters, which could be potentially recognized and bound by ZmBES1/BZR1-5. Taken together, our results reveal that the ZmBES1/BZR1-5 transcription factor positively regulates salt and drought tolerance by binding to E-box to induce the expression of downstream stress-related genes. Therefore, our study contributes to the better understanding of BES1/BZR1 function in the stress response of plants.
Collapse
|
28
|
Xu X, Xue K, Tang S, He J, Song B, Zhou M, Zou Y, Zhou Y, Jenks MA. The relationship between cuticular lipids and associated gene expression in above ground organs of Thellungiella salsugineum (Pall.) Al-Shehbaz & Warwick. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110200. [PMID: 31481227 DOI: 10.1016/j.plantsci.2019.110200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/23/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The cuticle plays a critical role as barrier between plant and environment. Here, cuticular wax morphology, cuticular wax and cutin monomer composition, and expression of associated genes in five above ground organs were examined in model extremophyte Thellungiella salsugineum. Alkanes, ketones, and 2-alcohols were the predominant wax constitutes in rosette leaves, inflorescence stem leaves, stems, and siliques, whereas alkanes and acids were the predominant cuticular lipids in whole flowers. Unsubstituted acids were the most abundant cutin monomers in vegetative organs, especially C18:2 dioic acids, which reached the highest levels in stems. Hydroxy fatty acids were the predominant cutin monomers in flowers, especially 16-OH C16:0 and diOH C16:0. High-throughput RNA-Seq analysis using the Hiseq4000 platform was performed on these five above organs of T. salsugineum, and the differentially expressed lipid-associated genes and their associated metabolic pathways were identified. Expression of genes associated in previous reports to cuticle production, including those having roles in cuticle lipid biosynthesis, transport, and regulation were examined. The association of cuticle lipid composition and gene expression within different organs of T. salsugineum, and potential relationships between T. salsugineum's extreme cuticle and its adaptation to extreme environments is discussed.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Kun Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Shuai Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Junqing He
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Buerbatu Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Minqi Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yanli Zou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Matthew A Jenks
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
29
|
Qin S, Liu Y, Han Y, Xu G, Wan S, Cui F, Li G. Aquaporins and their function in root water transport under salt stress conditions in Eutrema salsugineum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110199. [PMID: 31481201 DOI: 10.1016/j.plantsci.2019.110199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 05/21/2023]
Abstract
Eutrema salsugineum is considered as extremophile model species. To gain insights into the root hydraulic conductivity and the role played by aquaporins in E. salsugineum, we investigated the aquaporin family profiles, plant water status and root hydraulic conductivity under standard (salt-free) and salt stress conditions. We found that there was no variation in the relative electric conductivity of the leaves when the salt concentration was less than 200 mM NaCl, and the transpiration rate dropped to 60.6% at 100 mM NaCl for 14 days compared to that at standard conditions. The pressure chamber techniques indicated that the root hydraulic conductivity of E. salsugineum was repressed by salt stress. However, propionic acid, usually used as an aquaporin inhibitor, unexpectedly enhanced the root hydraulic conductivity of E. salsugineum. The aquaporin family in E. salsugineum was profiled and the PIP aquaporin expression was investigated at the transcriptional and translational levels. Finally, two EsPIPs were identified to play a role in salt stress. The overall study provides evidence on how halophytes maintain their water status and aquaporin regulation pattern under salt stress conditions.
Collapse
Affiliation(s)
- Shenghao Qin
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China; College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Yiyang Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China; College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Yan Han
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China; College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Guoxin Xu
- Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, PR China
| | - Shubo Wan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China
| | - Feng Cui
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China.
| | - Guowei Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, PR China; College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
30
|
Chemical and Transcriptomic Analysis of Cuticle Lipids under Cold Stress in Thellungiella salsuginea. Int J Mol Sci 2019; 20:ijms20184519. [PMID: 31547275 PMCID: PMC6770325 DOI: 10.3390/ijms20184519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 11/17/2022] Open
Abstract
Plant cuticle lipids form outer protective layers to resist environmental stresses; however, the relationship between cuticle properties and cold tolerance is unclear. Here, the extremophyte Thellungiella salsuginea was stressed under cold conditions (4 °C) and the cuticle of rosette leaves was examined in terms of epicuticular wax crystal morphology, chemical composition, and cuticle-associated gene expression. The results show that cold induced formation of distinct lamellas within the cuticle ultrastructure. Cold stress caused 14.58% and 12.04% increases in the amount of total waxes and cutin monomer per unit of leaf area, respectively, probably associated with the increase in total fatty acids. The transcriptomic analysis was performed on rosette leaves of Thellungiella exposed to cold for 24 h. We analyzed the expression of 72 genes putatively involved in cuticle lipid metabolism, some of which were validated by qRT-PCR (quantitative reverse transcription PCR) after both 24 h and one week of cold exposure. Most cuticle-associated genes exhibited higher expression levels under cold conditions, and some key genes increased more dramatically over the one week than after just 24 h, which could be associated with increased amounts of some cuticle components. These results demonstrate that the cuticle provides some aspects of cold adaptation in T. salsuginea.
Collapse
|
31
|
Zhang Y, Shi SH, Li FL, Zhao CZ, Li AQ, Hou L, Xia H, Wang BS, Baltazar JL, Wang XJ, Zhao SZ. Global transcriptome analysis provides new insights in Thellungiella salsuginea stress response. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:796-804. [PMID: 31081576 DOI: 10.1111/plb.13006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/08/2019] [Indexed: 05/13/2023]
Abstract
Thellungiella salsuginea is highly tolerant to abiotic stress, while its a close relative Arabidopsis thaliana is sensitive to stress. This characteristic makes T. salsuginea an excellent model for uncovering the mechanisms of abiotic stress tolerance. Abscisic acid (ABA) plays essential roles in plant abiotic and biotic stress tolerance. To test the changes in gene expression of T. salsuginea under ABA treatment, in this study, the transcriptomes of T. salsuginea roots and leaves were compared in response to exogenously application of ABA. The results showed that ABA treatment caused different expression of 2,200 and 3,305 genes in leaves and roots, respectively, compared with the untreated control. In particular, genes encoding transcription factors such as WRKY, MYB, NAC, GATA, ethylene-responsive factors (ERFs), heat stress transcription factors, basic helix-loop-helix, PLATZ and B3 domain-containing family members were enriched. In addition, 49 and 114 differentially expressed genes were identified as ABA-regulated genes, separately in leaves and roots, respectively, which were related to biotic and abiotic stresses. The expression levels of some genes were validated by qRT-PCR. Different responses of genes to ABA treatment were discovered in T. salsuginea and A. thaliana. This transcriptome analysis expands our understanding of the role of ABA in stress tolerance in T. salsuginea. Our study provides a wealth of information for improving stress tolerance in crop plants.
Collapse
Affiliation(s)
- Y Zhang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - S H Shi
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - F L Li
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- Life Science College of Shandong University, Qingdao, China
| | - C Z Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - A Q Li
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - L Hou
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
| | - H Xia
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - B S Wang
- College of Life Science, Shandong Normal University, Jinan, China
| | - J L Baltazar
- Instituto Tecnologico del Valle de Oaxaca, Oaxaca, Mexico
| | - X J Wang
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| | - S Z Zhao
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, China
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
32
|
Molecular Evolution and Functional Analysis of Rubredoxin-Like Proteins in Plants. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2932585. [PMID: 31355252 PMCID: PMC6634066 DOI: 10.1155/2019/2932585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 11/17/2022]
Abstract
Rubredoxins are a class of iron-containing proteins that play an important role in the reduction of superoxide in some anaerobic bacteria and also act as electron carriers in many biochemical processes. Unlike the more widely studied about rubredoxin proteins in anaerobic bacteria, very few researches about the function of rubredoxins have been proceeded in plants. Previous studies indicated that rubredoxins in A. thaliana may play a critical role in responding to oxidative stress. In order to identify more rubredoxins in plants that maybe have similar functions as the rubredoxin-like protein of A. thaliana, we identified and analyzed plant rubredoxin proteins using bioinformatics-based methods. Totally, 66 candidate rubredoxin proteins were identified based on public databases, exhibiting lengths of 187-360 amino acids with molecular weights of 19.856-37.117 kDa. The results of subcellular localization showed that these candidate rubredoxins were localized to the chloroplast, which might be consistent with the fact that rubredoxins were predominantly expressed in leaves. Analyses of conserved motifs indicated that these candidate rubredoxins contained rubredoxin and PDZ domains. The expression patterns of rubredoxins in glycophyte and halophytic plant under salt/drought stress revealed that rubredoxin is one of the important stress response proteins. Finally, the coexpression network of rubredoxin in Arabidopsis thaliana under abiotic was extracted from ATTED-II to explore the function and regulation relationship of rubredoxin in Arabidopsis thaliana. Our results showed that putative rubredoxin proteins containing PDZ and rubredoxin domains, localized to the chloroplast, may act with other proteins in chloroplast to responses to abiotic stress in higher plants. These findings might provide value inference to promote the development of plant tolerance to some abiotic stresses and other economically important crops.
Collapse
|
33
|
Marín‐de la Rosa N, Lin C, Kang YJ, Dhondt S, Gonzalez N, Inzé D, Falter‐Braun P. Drought resistance is mediated by divergent strategies in closely related Brassicaceae. THE NEW PHYTOLOGIST 2019; 223:783-797. [PMID: 30955214 PMCID: PMC6771540 DOI: 10.1111/nph.15841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/29/2019] [Indexed: 05/08/2023]
Abstract
Droughts cause severe crop losses worldwide and climate change is projected to increase their prevalence in the future. Similar to the situation for many crops, the reference plant Arabidopsis thaliana (Ath) is considered drought-sensitive, whereas, as we demonstrate, its close relatives Arabidopsis lyrata (Aly) and Eutrema salsugineum (Esa) are drought-resistant. To understand the molecular basis for this plasticity we conducted a deep phenotypic, biochemical and transcriptomic comparison using developmentally matched plants. We demonstrate that Aly responds most sensitively to decreasing water availability with early growth reduction, metabolic adaptations and signaling network rewiring. By contrast, Esa is in a constantly prepared mode as evidenced by high basal proline levels, ABA signaling transcripts and late growth responses. The stress-sensitive Ath responds later than Aly and earlier than Esa, although its responses tend to be more extreme. All species detect water scarcity with similar sensitivity; response differences are encoded in downstream signaling and response networks. Moreover, several signaling genes expressed at higher basal levels in both Aly and Esa have been shown to increase water-use efficiency and drought resistance when overexpressed in Ath. Our data demonstrate contrasting strategies of closely related Brassicaceae to achieve drought resistance.
Collapse
Affiliation(s)
- Nora Marín‐de la Rosa
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
| | - Chung‐Wen Lin
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
| | - Yang Jae Kang
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
- Division of Life ScienceGyeongsang National UniversityJinju52828Korea
| | - Stijn Dhondt
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
| | - Nathalie Gonzalez
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
- UMR 1332Biologie du Fruit et PathologieINRAUniv. BordeauxVillenave d'Ornon Cedex33882France
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- VIB‐UGent Center for Plant Systems BiologyVIBGhent9052Belgium
| | - Pascal Falter‐Braun
- Institute of Network Biology (INET)Helmholtz Zentrum München (HMGU)München‐Neuherberg85764Germany
- Microbe–Host InteractionsLudwig‐Maximilians‐Universität (LMU) MünchenMunich80539Germany
| |
Collapse
|
34
|
Gandour M, Gharred J, Taamalli W, Abdelly C. Comparison of Salinity Tolerance in Geographically Diverse Collections of Thellungiella Accessions. RUSS J ECOL+ 2019. [DOI: 10.1134/s1067413619030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Oh DH, Dassanayake M. Landscape of gene transposition-duplication within the Brassicaceae family. DNA Res 2019; 26:21-36. [PMID: 30380026 PMCID: PMC6379040 DOI: 10.1093/dnares/dsy035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 11/12/2022] Open
Abstract
We developed the CLfinder-OrthNet pipeline that detects co-linearity among multiple closely related genomes, finds orthologous gene groups, and encodes the evolutionary history of each orthologue group into a representative network (OrthNet). Using a search based on network topology, we identified 1,394 OrthNets that included gene transposition-duplication (tr-d) events, out of 17,432 identified in six Brassicaceae genomes. Occurrences of tr-d shared by subsets of Brassicaceae genomes mirrored the divergence times between the genomes and their repeat contents. The majority of tr-d events resulted in truncated open reading frames (ORFs) in the duplicated loci. However, the duplicates with complete ORFs were significantly more frequent than expected from random events. These were derived from older tr-d events and had a higher chance of being expressed. We also found an enrichment of tr-d events with complete loss of intergenic sequence conservation between the original and duplicated loci. Finally, we identified tr-d events uniquely found in two extremophytes among the six Brassicaceae genomes, including tr-d of SALT TOLERANCE 32 and ZINC TRANSPORTER 3 that relate to their adaptive evolution. CLfinder-OrthNet provides a flexible toolkit to compare gene order, visualize evolutionary paths among orthologues as networks, and identify gene loci that share an evolutionary history.
Collapse
Affiliation(s)
- Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
36
|
Monihan SM, Ryu CH, Magness CA, Schumaker KS. Linking Duplication of a Calcium Sensor to Salt Tolerance in Eutrema salsugineum. PLANT PHYSIOLOGY 2019; 179:1176-1192. [PMID: 30606887 PMCID: PMC6393783 DOI: 10.1104/pp.18.01400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/16/2018] [Indexed: 05/24/2023]
Abstract
The SALT-OVERLY-SENSITIVE (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to prevent the toxic accumulation of sodium in the cytosol when plants are grown in salt-affected soils. In this pathway, the CALCINEURIN B-LIKE10 (AtCBL10) calcium sensor interacts with the AtSOS2 kinase to activate the AtSOS1 plasma membrane sodium/proton exchanger. CBL10 has been duplicated in Eutrema (Eutrema salsugineum), a salt-tolerant relative of Arabidopsis. Because Eutrema maintains growth in salt-affected soils that kill most crop plants, the duplication of CBL10 provides a unique opportunity to functionally test the outcome of gene duplication and its link to plant salt tolerance. In Eutrema, individual down-regulation of the duplicated CBL10 genes (EsCBL10a and EsCBL10b) decreased growth in the presence of salt and, in combination, led to an even greater decrease, suggesting that both genes function in response to salt and have distinct functions. Cross-species complementation assays demonstrated that EsCBL10b has an enhanced ability to activate the SOS pathway while EsCBL10a has a function not performed by AtCBL10 or EsCBL10b Chimeric EsCBL10a/EsCBL10b proteins revealed that the specific functions of the EsCBL10 proteins resulted from changes in the amino terminus. The duplication of CBL10 increased calcium-mediated signaling capacity in Eutrema and conferred increased salt tolerance to salt-sensitive Arabidopsis.
Collapse
Affiliation(s)
- Shea M Monihan
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Choong-Hwan Ryu
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | | | - Karen S Schumaker
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
37
|
Tang S, Chen N, Song B, He J, Zhou Y, Jenks MA, Xu X. Compositional and transcriptomic analysis associated with cuticle lipid production on rosette and inflorescence stem leaves in the extremophyte Thellungiella salsuginea. PHYSIOLOGIA PLANTARUM 2019; 165:584-603. [PMID: 29761500 DOI: 10.1111/ppl.12753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
The plant cuticle is a complex structure composed primarily of wax and cutin, but also contains cutan, glycerolipids, phenolics, polysaccharides and proteins. The cuticle plays an important protective role as barrier between plants and their environment. In this paper, 4-week-old leaves produced either on the rosette or on the inflorescence stem of the model extremophyte Thellungiella salsuginea were examined using scanning electron microscopy, cuticle permeability assays and chemical composition analysis. Results showed that stem leaves (SL) had more abundant cuticle lipids and lower cuticle permeability than rosette leaves (RL). SL were dominated by alkanes, especially the C29 and C31 homologs, whereas in RL the most abundant wax class was free very long-chain acids. The major cutin monomers for both leaf types were C18:2 dioic acids and 18-OH C18:2 acids. We performed Illumina high-throughput sequencing for SL and RL, and 3577 differentially expressed genes were identified. Sixty-five genes possibly involved in cuticular lipid biosynthesis, transport, or regulation was selected for further analysis. Many cuticle-associated genes exhibited differential expression levels that could be associated with compositional differences between these two leaf types. Furthermore, transcription factors and other regulatory proteins previously associated with cuticle production were expressed at higher levels in SL than in RL. The associations between gene expression and characteristics of this extremophile's leaf cuticles sheds new light on cuticle as an adaptive trait in extreme environments, and contributes new information that may guide efforts to modify crop cuticles for improved stress tolerance.
Collapse
Affiliation(s)
- Shuai Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Ningmei Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Buerbatu Song
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Junqing He
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Matthew A Jenks
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, 26506, USA
| | - Xiaojing Xu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
38
|
Del Pozo T, Miranda S, Latorre M, Olivares F, Pavez L, Gutiérrez R, Maldonado J, Hinrichsen P, Defilippi BG, Orellana A, González M. Comparative Transcriptome Profiling in a Segregating Peach Population with Contrasting Juiciness Phenotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1598-1607. [PMID: 30632375 DOI: 10.1021/acs.jafc.8b05177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cold storage of fruit is one of the methods most commonly employed to extend the postharvest lifespan of peaches ( Prunus persica (L.) Batsch). However, fruit quality in this species is affected negatively by mealiness, a physiological disorder triggered by chilling injury after long periods of exposure to low temperatures during storage and manifested mainly as a lack of juiciness, which ultimately modifies the organoleptic properties of peach fruit. The aim of this study was to identify molecular components and metabolic processes underlying mealiness in susceptible and nonsusceptible segregants. Transcriptome and qRT-PCR profiling were applied to individuals with contrasting juiciness phenotypes in a segregating F2 population. Our results suggest that mealiness is a multiscale phenomenon, because juicy and mealy fruit display distinctive reprogramming processes affecting translational machinery and lipid, sugar, and oxidative metabolism. The candidate genes identified may be useful tools for further crop improvement.
Collapse
Affiliation(s)
- Talía Del Pozo
- Centro Tecnológico de Recursos Vegetales, Faculty of Sciences , Universidad Mayor , Santiago, Chile, Camino La Pirámide 5750 , Huechuraba , Santiago , Chile
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Simón Miranda
- Centro Tecnológico de Recursos Vegetales, Faculty of Sciences , Universidad Mayor , Santiago, Chile, Camino La Pirámide 5750 , Huechuraba , Santiago , Chile
- Laboratorio de Genética Molecular Vegetal , INTA, Universidad de Chile , Av. El Líbano 5524 , Macul , Santiago , Chile
| | - Mauricio Latorre
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
- Instituto de Ingeniería , Universidad de O'Higgins , Av. Libertador Bernardo O'Higgins 611 , Rancagua , Chile
- Mathomics, Center for Mathematical Modeling , Universidad de Chile , Av. Almirante Beauchef 851, Seventh Floor , Santiago , Chile
| | - Felipe Olivares
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Leonardo Pavez
- Instituto de Ciencias Naturales , Universidad de Las Américas , Av. Manuel Montt 948 , Santiago , Chile
- Departamento de Ciencias Químicas y Biológicas , Universidad Bernardo O'Higgins , General Gana 1702 , Santiago , Chile
| | - Ricardo Gutiérrez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) , University of Cologne , Cologne , Germany
| | - Jonathan Maldonado
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
| | - Patricio Hinrichsen
- Laboratorio de Biotecnología , Instituto de Investigaciones Agropecuarias , INIA La Platina, Santa Rosa 11610 , Santiago , Chile
| | - Bruno G Defilippi
- Unidad de Poscosecha , Instituto de Investigaciones Agropecuarias , INIA La Platina, Santa Rosa 11610 , Santiago , Chile
| | - Ariel Orellana
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida , Universidad Andrés Bello , Santiago , Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica , Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile , Av. El Líbano 5524 , Santiago , Chile
- FONDAP Center for Genome Regulation, Av. Blanco Encalada 2085 , Santiago , Chile
| |
Collapse
|
39
|
|
40
|
He M, He CQ, Ding NZ. Abiotic Stresses: General Defenses of Land Plants and Chances for Engineering Multistress Tolerance. FRONTIERS IN PLANT SCIENCE 2018; 9:1771. [PMID: 30581446 PMCID: PMC6292871 DOI: 10.3389/fpls.2018.01771] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/14/2018] [Indexed: 05/19/2023]
Abstract
Abiotic stresses, such as low or high temperature, deficient or excessive water, high salinity, heavy metals, and ultraviolet radiation, are hostile to plant growth and development, leading to great crop yield penalty worldwide. It is getting imperative to equip crops with multistress tolerance to relieve the pressure of environmental changes and to meet the demand of population growth, as different abiotic stresses usually arise together in the field. The feasibility is raised as land plants actually have established more generalized defenses against abiotic stresses, including the cuticle outside plants, together with unsaturated fatty acids, reactive species scavengers, molecular chaperones, and compatible solutes inside cells. In stress response, they are orchestrated by a complex regulatory network involving upstream signaling molecules including stress hormones, reactive oxygen species, gasotransmitters, polyamines, phytochromes, and calcium, as well as downstream gene regulation factors, particularly transcription factors. In this review, we aimed at presenting an overview of these defensive systems and the regulatory network, with an eye to their practical potential via genetic engineering and/or exogenous application.
Collapse
Affiliation(s)
| | | | - Nai-Zheng Ding
- College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
41
|
Zhang H, Li Y, Zhu JK. Developing naturally stress-resistant crops for a sustainable agriculture. NATURE PLANTS 2018; 4:989-996. [PMID: 30478360 DOI: 10.1038/s41477-018-0309-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 10/17/2018] [Indexed: 05/19/2023]
Abstract
A major problem facing humanity is that our numbers are growing but the availability of land and fresh water for agriculture is not. This problem is being exacerbated by climate change-induced increases in drought, and other abiotic stresses. Stress-resistant crops are needed to ensure yield stability under stress conditions and to minimize the environmental impacts of crop production. Evolution has created thousands of species of naturally stress-resistant plants (NSRPs), some of which have already been subjected to human domestication and are considered minor crops. Broader cultivation of these minor crops will diversify plant agriculture and the human diet, and will therefore help improve global food security and human health. More research should be directed toward understanding and utilizing NSRPs. Technologies are now available that will enable researchers to rapidly improve the genetics of NSRPs, with the goal of increasing NSRP productivity while retaining NSRP stress resistance and nutritional value.
Collapse
Affiliation(s)
- Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yuanyuan Li
- Key Laboratory of Plant Stress Research, Shandong Normal University, Jinan, Shandong, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
42
|
Maggio A, Bressan RA, Zhao Y, Park J, Yun DJ. It's Hard to Avoid Avoidance: Uncoupling the Evolutionary Connection between Plant Growth, Productivity and Stress "Tolerance". Int J Mol Sci 2018; 19:E3671. [PMID: 30463352 PMCID: PMC6274854 DOI: 10.3390/ijms19113671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/03/2022] Open
Abstract
In the last 100 years, agricultural developments have favoured selection for highly productive crops, a fact that has been commonly associated with loss of key traits for environmental stress tolerance. We argue here that this is not exactly the case. We reason that high yield under near optimal environments came along with hypersensitization of plant stress perception and consequently early activation of stress avoidance mechanisms, such as slow growth, which were originally needed for survival over long evolutionary time periods. Therefore, mechanisms employed by plants to cope with a stressful environment during evolution were overwhelmingly geared to avoid detrimental effects so as to ensure survival and that plant stress "tolerance" is fundamentally and evolutionarily based on "avoidance" of injury and death which may be referred to as evolutionary avoidance (EVOL-Avoidance). As a consequence, slow growth results from being exposed to stress because genes and genetic programs to adjust growth rates to external circumstances have evolved as a survival but not productivity strategy that has allowed extant plants to avoid extinction. To improve productivity under moderate stressful conditions, the evolution-oriented plant stress response circuits must be changed from a survival mode to a continued productivity mode or to avoid the evolutionary avoidance response, as it were. This may be referred to as Agricultural (AGRI-Avoidance). Clearly, highly productive crops have kept the slow, reduced growth response to stress that they evolved to ensure survival. Breeding programs and genetic engineering have not succeeded to genetically remove these responses because they are polygenic and redundantly programmed. From the beginning of modern plant breeding, we have not fully appreciated that our crop plants react overly-cautiously to stress conditions. They over-reduce growth to be able to survive stresses for a period of time much longer than a cropping season. If we are able to remove this polygenic redundant survival safety net we may improve yield in moderately stressful environments, yet we will face the requirement to replace it with either an emergency slow or no growth (dormancy) response to extreme stress or use resource management to rescue crops under extreme stress (or both).
Collapse
Affiliation(s)
- Albino Maggio
- Department of Agricultural Science, University of Napoli Federico II, 80055 Portici, NA, Italy.
| | - Ray A Bressan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA.
| | - Yang Zhao
- Shanghai Center for Plant Stress Biology and CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Junghoon Park
- Department of Biomedical Science and Engineering Konkuk University, Seoul 05029, Korea.
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
43
|
Hmidi D, Abdelly C, Athar HUR, Ashraf M, Messedi D. Effect of salinity on osmotic adjustment, proline accumulation and possible role of ornithine-δ-aminotransferase in proline biosynthesis in Cakile maritima. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:1017-1033. [PMID: 30425420 PMCID: PMC6214428 DOI: 10.1007/s12298-018-0601-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 05/08/2023]
Abstract
The short time response to salt stress was studied in Cakile maritima. Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured. Plants of C. maritima maintained turgor and tissue hydration at low osmotic potential mainly at 400 mM NaCl. The results showed that, in leaves and stems, Na+ content increased significantly after the first 4 h of treatment. However, in roots, the increase of Na+ content remained relatively unchanged with increasing salt. The K+ content decreased sharply at 200 and 400 mM NaCl with treatment duration. This decrease was more pronounced in roots. The content of proline and amino acids increased with increasing salinity and treatment duration. These results indicated that the accumulation of inorganic and organic compounds was a central adaptive mechanism by which C. maritima maintained intracellular ionic balance under saline conditions. However, their percentage contribution to total osmotic adjustment varies from organ to organ; for example, Na+ accumulation mainly contributes in osmotic adjustment of stem tissue (60%). Proline contribution to osmotic adjustment reached 36% in roots. In all organs, proline as well as δ-OAT activity increased with salt concentration and treatment duration. Under normal growth conditions, δ-OAT is mainly involved in the mobilization of nitrogen required for plant growth. However, the highly significant positive correlation between proline and δ-OAT activity under salt-stress conditions suggests that ornithine pathway contributed to proline synthesis.
Collapse
Affiliation(s)
- Dorsaf Hmidi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, 60800 Pakistan
| | | | - Dorsaf Messedi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie, Technopole de Borj Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
44
|
Kazachkova Y, Eshel G, Pantha P, Cheeseman JM, Dassanayake M, Barak S. Halophytism: What Have We Learnt From Arabidopsis thaliana Relative Model Systems? PLANT PHYSIOLOGY 2018; 178:972-988. [PMID: 30237204 PMCID: PMC6236594 DOI: 10.1104/pp.18.00863] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 05/06/2023]
Abstract
Halophytes are able to thrive in salt concentrations that would kill 99% of other plant species, and identifying their salt-adaptive mechanisms has great potential for improving the tolerance of crop plants to salinized soils. Much research has focused on the physiological basis of halophyte salt tolerance, whereas the elucidation of molecular mechanisms has traditionally lagged behind due to the absence of a model halophyte system. However, over the last decade and a half, two Arabidopsis (Arabidopsis thaliana) relatives, Eutrema salsugineum and Schrenkiella parvula, have been established as transformation-competent models with various genetic resources including high-quality genome assemblies. These models have facilitated powerful comparative analyses with salt-sensitive Arabidopsis to unravel the genetic adaptations that enable a halophytic lifestyle. The aim of this review is to explore what has been learned about halophytism using E. salsugineum and S. parvula We consider evidence from physiological and molecular studies suggesting that differences in salt tolerance between related halophytes and salt-sensitive plants are associated with alterations in the regulation of basic physiological, biochemical, and molecular processes. Furthermore, we discuss how salt tolerance mechanisms of the halophytic models are reflected at the level of their genomes, where evolutionary processes such as subfunctionalization and/or neofunctionalization have altered the expression and/or functions of genes to facilitate adaptation to saline conditions. Lastly, we summarize the many areas of research still to be addressed with E. salsugineum and S. parvula as well as obstacles hindering further progress in understanding halophytism.
Collapse
Affiliation(s)
- Yana Kazachkova
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Gil Eshel
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| | - Pramod Pantha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - John M Cheeseman
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
45
|
Li W, Qiang XJ, Han XR, Jiang LL, Zhang SH, Han J, He R, Cheng XG. Ectopic Expression of a Thellungiella salsuginea Aquaporin Gene, TsPIP1;1, Increased the Salt Tolerance of Rice. Int J Mol Sci 2018; 19:ijms19082229. [PMID: 30061546 PMCID: PMC6122036 DOI: 10.3390/ijms19082229] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/25/2022] Open
Abstract
Aquaporins play important regulatory roles in the transport of water and small molecules in plants. In this study, a Thellungiella salsuginea TsPIP1;1 aquaporin was transformed into Kitaake rice, and three transgenic lines were evaluated by profiling the changes of the physiological metabolism, osmotic potential, and differentially expressed genes under salt stress. The TsPIP1;1 protein contains six transmembrane domains and is localized in the cytoplasm membrane. Overexpression of the TsPIP1;1 gene not only increased the accumulation of prolines, soluble sugars and chlorophyll, but also lowered the osmotic potential and malondialdehyde content in rice under salt stress, and alleviated the amount of salt damage done to rice organs by regulating the distribution of Na/K ions, thereby promoting photosynthetic rates. Transcriptome sequencing confirmed that the differentially expressed genes that are up-regulated in rice positively respond to salt stimulus, the photosynthetic metabolic process, and the accumulation profiles of small molecules and Na/K ions. The co-expressed Rubisco and LHCA4 genes in rice were remarkably up-regulated under salt stress. This data suggests that overexpression of the TsPIP1;1 gene is involved in the regulation of water transport, the accumulation of Na/K ions, and the translocation of photosynthetic metabolites, thus conferring enhanced salt tolerance to rice.
Collapse
Affiliation(s)
- Wei Li
- Lab of Plant Nutrition Molecular Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiao-Jing Qiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiao-Ri Han
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China.
| | - Lin-Lin Jiang
- Lab of Plant Nutrition Molecular Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shu-Hui Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiao Han
- College of Life Science, Shanxi Normal University, Linfen 041004, China.
| | - Rui He
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xian-Guo Cheng
- Lab of Plant Nutrition Molecular Biology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
46
|
Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep 2018; 45:1111-1124. [DOI: 10.1007/s11033-018-4262-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
47
|
Oscar MA, Barak S, Winters G. The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. FRONTIERS IN PLANT SCIENCE 2018; 9:950. [PMID: 30022993 PMCID: PMC6040085 DOI: 10.3389/fpls.2018.00950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/12/2018] [Indexed: 05/30/2023]
Abstract
The tropical seagrass species, Halophila stipulacea, originated from the Indian Ocean and the Red Sea, subsequently invading the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest in understanding this species' capacity to adapt to new conditions. One approach to understanding the natural tolerance of a plant is to compare the tolerant species with a closely related non-tolerant species. We compared the physiological responses of H. stipulacea exposed to different salinities, with that of its nearest freshwater relative, Vallisneria americana. To achieve this goal, H. stipulacea and V. americana plants were grown in dedicated microcosms, and exposed to the following salt regimes: (i) H. stipulacea: control (40 PSU, practical salinity units), hyposalinity (25 PSU) and hypersalinity (60 PSU) for 3 weeks followed by a 4-week recovery phase (back to 40 PSU); (ii) V. americana: control (1 PSU), and hypersalinity (12 PSU) for 3 weeks, followed by a 4-week recovery phase (back to 1 PSU). In H. stipulacea, leaf number and chlorophyll content showed no significant differences between control plants and plants under hypo and hypersalinities, but a significant decrease in leaf area under hypersalinity was observed. In addition, compared with control plants, H. stipulacea plants exposed to hypo and hypersalinity were found to have reduced below-ground biomass and C/N ratios, suggesting changes in the allocation of resources in response to both stresses. There was no significant effect of hypo/hypersalinity on dark-adapted quantum yield of photosystem II (Fv/Fm) suggesting that H. stipulacea photochemistry is resilient to hypo/hypersalinity stress. In contrast to the seagrass, V. americana exposed to hypersalinity displayed significant decreases in above-ground biomass, shoot number, leaf number, blade length and Fv/Fm, followed by significant recoveries of all these parameters upon return of the plants to non-saline control conditions. These data suggest that H. stipulacea shows remarkable tolerance to both hypo and hypersalinity. Resilience to a relatively wide range of salinities may be one of the traits explaining the invasive nature of this species in the Mediterranean and Caribbean Seas.
Collapse
Affiliation(s)
- Michelle A. Oscar
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Dead-Sea & Arava Science Center, Neve Zohar, Israel
| | - Simon Barak
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | |
Collapse
|
48
|
Gairola S, Al Shaer KI, Al Harthi EK, Mosa KA. Strengthening desert plant biotechnology research in the United Arab Emirates: a viewpoint. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:521-533. [PMID: 30042610 PMCID: PMC6041242 DOI: 10.1007/s12298-018-0551-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/19/2018] [Accepted: 05/08/2018] [Indexed: 05/09/2023]
Abstract
The biotechnology of desert plants is a vast subject. The main applications in this broad field of study comprises of plant tissue culture, genetic engineering, molecular markers and others. Biotechnology applications have the potential to address biodiversity conservation as well as agricultural, medicinal, and environmental issues. There is a need to increase our knowledge of the genetic diversity through the use of molecular genetics and biotechnological approaches in desert plants in the Arabian Gulf region including those in the United Arab Emirates (UAE). This article provides a prospective research for the study of UAE desert plant diversity through DNA fingerprinting as well as understanding the mechanisms of both abiotic stress resistance (including salinity, drought and heat stresses) and biotic stress resistance (including disease and insect resistance). Special attention is given to the desert halophytes and their utilization to alleviate the salinity stress, which is one of the major challenges in agriculture. In addition, symbioses with microorganisms are thought to be hypothesized as important components of desert plant survival under stressful environmental conditions. Thus, factors shaping the diversity and functionality of plant microbiomes in desert ecosystems are also emphasized in this article. It is important to establish a critical mass for biotechnology research and applications while strengthening the channels for collaboration among research/academic institutions in the area of desert plant biotechnology.
Collapse
Affiliation(s)
- Sanjay Gairola
- Sharjah Seed Bank and Herbarium, Sharjah Research Academy, University City, Sharjah, P. Box 60999, Sharjah, UAE
| | - Khawla I. Al Shaer
- Plant Molecular Biology and Biotechnology Laboratory, Sharjah Research Academy, University City, Sharjah, P. Box 60999, Sharjah, UAE
| | - Eman K. Al Harthi
- Plant Molecular Biology and Biotechnology Laboratory, Sharjah Research Academy, University City, Sharjah, P. Box 60999, Sharjah, UAE
| | - Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
49
|
Nikalje GC, Suprasanna P. Coping With Metal Toxicity - Cues From Halophytes. FRONTIERS IN PLANT SCIENCE 2018; 9:777. [PMID: 29971073 PMCID: PMC6018462 DOI: 10.3389/fpls.2018.00777] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/22/2018] [Indexed: 05/18/2023]
Abstract
Being the native flora of saline soil, halophytes are well studied for their salt tolerance and adaptation mechanism at the physiological, biochemical, molecular and metabolomic levels. However, these saline habitats are getting contaminated due to various anthropogenic activities like urban waste, agricultural runoff, mining, industrial waste that are rich in toxic metals and metalloids. These toxic metals impose detrimental effects on growth and development of most plant species. Halophytes by virtue of their tolerance to salinity also show high tolerance to heavy metals which is attributed to the enhanced root to shoot metal translocation and bioavailability. Halophytes rapidly uptake toxic ions from the root and transport them toward aerial parts by using different transporters which are involved in metal tolerance and homeostasis. A number of defense related physiological and biochemical strategies are known to be crucial for metal detoxification in halophytes however; there is paucity of information on the molecular regulators. Understanding of the phenomenon of cross-tolerance of salinity with other abiotic stresses in halophytes could very well boost their potential use in phytoremediation. In this article, we present an overview of heavy metal tolerance in case of halophytes, associated mechanisms and cross-tolerance of salinity with other abiotic stresses.
Collapse
Affiliation(s)
- Ganesh C. Nikalje
- Department of Botany, R. K. Talreja College of Arts, Science and Commerce, Ulhasnagar, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
50
|
Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:275-287. [DOI: 10.1016/j.jphotobiol.2018.04.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023]
|