1
|
Rajhi I, Nefissi Ouertani R, Ferchichi N, Khiari B, El-Bassi L, Mhadhbi H. Biochar alleviates single and combined effects of salinity and drought stress in faba bean plants. PHOTOSYNTHETICA 2024; 62:221-231. [PMID: 39651412 PMCID: PMC11613832 DOI: 10.32615/ps.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/30/2024] [Indexed: 12/11/2024]
Abstract
This study aimed to evaluate the impact of four biochar concentrations (0, 2, 5, and 8%) on single and interactive effects of salinity and drought stresses on the morphological, physiological, and photosynthetic parameters of faba bean plants. PCA analysis showed that plants displayed different behavior under non-stressed and stressed conditions. The most discriminating quantitative characters were related to plant biomass production and photosynthesis, especially shoot dry mass, root dry mass, plant fresh mass, internal CO2 concentration, net CO2 assimilation rate, and relative water content. The obtained results confirm the biochar's important role in promoting plant growth under normal or stressed conditions. Thus, a better understanding of the impact of biochar on plant growth under drought and salinity stresses will be beneficial for sustainable agriculture.
Collapse
Affiliation(s)
- I. Rajhi
- Laboratory of Legumes and Sustainable Agro Systems, Centre of Biotechnology of Borj Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - R. Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - N. Ferchichi
- Laboratory of Legumes and Sustainable Agro Systems, Centre of Biotechnology of Borj Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - B. Khiari
- Laboratory of Bioactive Substances, Biotechnology Center of Borj Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| | - L. El-Bassi
- Laboratory of Wastewater and Environment, Center of Water Research and Technologies, Borj Cedria Ecopark, P.B. 273, 8020 Soliman, Tunisia
| | - H. Mhadhbi
- Laboratory of Legumes and Sustainable Agro Systems, Centre of Biotechnology of Borj Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
2
|
Das Choudhury S, Guadagno CR, Bashyam S, Mazis A, Ewers BE, Samal A, Awada T. Stress phenotyping analysis leveraging autofluorescence image sequences with machine learning. FRONTIERS IN PLANT SCIENCE 2024; 15:1353110. [PMID: 38708393 PMCID: PMC11066247 DOI: 10.3389/fpls.2024.1353110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024]
Abstract
Background Autofluorescence-based imaging has the potential to non-destructively characterize the biochemical and physiological properties of plants regulated by genotypes using optical properties of the tissue. A comparative study of stress tolerant and stress susceptible genotypes of Brassica rapa with respect to newly introduced stress-based phenotypes using machine learning techniques will contribute to the significant advancement of autofluorescence-based plant phenotyping research. Methods Autofluorescence spectral images have been used to design a stress detection classifier with two classes, stressed and non-stressed, using machine learning algorithms. The benchmark dataset consisted of time-series image sequences from three Brassica rapa genotypes (CC, R500, and VT), extreme in their morphological and physiological traits captured at the high-throughput plant phenotyping facility at the University of Nebraska-Lincoln, USA. We developed a set of machine learning-based classification models to detect the percentage of stressed tissue derived from plant images and identified the best classifier. From the analysis of the autofluorescence images, two novel stress-based image phenotypes were computed to determine the temporal variation in stressed tissue under progressive drought across different genotypes, i.e., the average percentage stress and the moving average percentage stress. Results The study demonstrated that both the computed phenotypes consistently discriminated against stressed versus non-stressed tissue, with oilseed type (R500) being less prone to drought stress relative to the other two Brassica rapa genotypes (CC and VT). Conclusion Autofluorescence signals from the 365/400 nm excitation/emission combination were able to segregate genotypic variation during a progressive drought treatment under a controlled greenhouse environment, allowing for the exploration of other meaningful phenotypes using autofluorescence image sequences with significance in the context of plant science.
Collapse
Affiliation(s)
- Sruti Das Choudhury
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Srinidhi Bashyam
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Anastasios Mazis
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, WY, United States
| | - Ashok Samal
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Tala Awada
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, United States
- Agricultural Research Division, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
3
|
Williams BR, Miller AJ, Edwards CE. How do threatened plant species with low genetic diversity respond to environmental stress? Insights from comparative conservation epigenomics and phenotypic plasticity. Mol Ecol Resour 2023. [PMID: 37988186 DOI: 10.1111/1755-0998.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Many threatened plants have low genetic diversity, which may reduce their capacity for genetically based adaptation, increasing their extinction risk. Non-genetic variation (e.g. epigenomic modifications such as DNA methylation) and plasticity may facilitate the persistence of threatened plants, yet are rarely incorporated into conservation assessments. We present a case study investigating variation and plasticity in DNA methylation and phenotypic traits in four genetically depauperate species of Leavenworthia (Brassicaceae), including one widespread species and one asexual, threatened species. We grew individuals from several maternal lines and populations per species in contrasting watering treatments, measured phenotypic traits and analysed DNA methylation using whole-genome bisulphite sequencing. We addressed four questions: (1) How do patterns of DNA methylation differ within and among species? (2) Within species, how do phenotypic traits and patterns of DNA methylation vary in response to drought? (3) Does variation in DNA methylation correspond to phenotypic variation? (4) What are the implications for conservation? We found that taxa were epigenomically distinct and that each species exhibited variation in DNA methylation among populations that could be relevant for conservation. Within species, the DNA methylation response to environmental stress corresponded to its phenotypic response. Species differed in their DNA methylation and phenotypic responses to environmental stress, with the extent of plasticity possibly related to species geographic range size. We also found phenotypic and DNA methylation variation in the asexual, threatened species that may be relevant for conservation. Our results suggest that variation in DNA methylation may promote the persistence of genetically depauperate threatened plants, highlighting its potential as a novel conservation target to reduce extinction risk.
Collapse
Affiliation(s)
- Brigette R Williams
- Missouri Botanical Garden, Center for Conservation and Sustainable Development, St. Louis, Missouri, USA
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, St. Louis, Missouri, USA
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Christine E Edwards
- Missouri Botanical Garden, Center for Conservation and Sustainable Development, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Hannachi S, Signore A, Mechi L. Alleviation of Associated Drought and Salinity Stress' Detrimental Impacts on an Eggplant Cultivar ('Bonica F1') by Adding Biochar. PLANTS (BASEL, SWITZERLAND) 2023; 12:1399. [PMID: 36987085 PMCID: PMC10054642 DOI: 10.3390/plants12061399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
To investigate the impact of biochar on eggplant growth, physiology, and yield parameters under separate and associated drought and salt stress, a pot experiment was carried out. An eggplant variety ('Bonica F1') was exposed to one NaCl concentration (S1 = 300 mM), three irrigation regimes (FI: full irrigation; DI: deficit irrigation; ARD: alternate root-zone drying irrigation), and one dose of biochar (B1 = 6% by weight). Our findings demonstrated that associated drought and salt stress had a greater negative impact on 'Bonica F1' performance in comparison to single drought or salt stress. Whereas, adding biochar to the soil improved the ability of 'Bonica F1' to alleviate the single and associated effects of salt and drought stress. Moreover, in comparison to DI under salinity, biochar addition in ARD significantly increased plant height, aerial biomass, fruit number per plant, and mean fresh weight per fruit by 18.4%, 39.7%, 37.5%, and 36.3%, respectively. Furthermore, under limited and saline irrigation, photosynthetic rate (An), transpiration rate (E), and stomatal conductance (gs) declined. In addition, the interaction between ARD and biochar effectively restored the equilibrium between the plant chemical signal (ABA) and hydraulic signal (leaf water potential). As a result, mainly under salt stress, with ARD treatment, intrinsic water use efficiency (WUEi) and yield traits were much higher than those in DI. Overall, biochar in combination with ARD could be an efficient approach for preserving crop productivity.
Collapse
Affiliation(s)
- Sami Hannachi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Angelo Signore
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy
| | - Lassaad Mechi
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Ha’il 81451, Saudi Arabia
| |
Collapse
|
5
|
Yin Y, Zhou YB, Li H, Zhang SZ, Fang Y, Zhang YJ, Zou X. Linking tree water use efficiency with calcium and precipitation. TREE PHYSIOLOGY 2022; 42:2419-2431. [PMID: 35708583 DOI: 10.1093/treephys/tpac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Water use efficiency (WUE) is a key physiological trait in studying plant carbon and water relations. However, the determinants of WUE across a large geographical scale are not always clear, limiting our capacity to predict WUE in response to future global climate change. We propose that tree WUE is influenced by calcium (Ca) availability and precipitation. In addition, although it is well-known that transpiration is the major driving force for passive nutrient uptake, the linkage between these two processes has not been well-established. Because Ca uptake is an apoplastic and passive process that purely relies on transpiration, and there is no translocation once assimilated, we further developed a theoretical model to quantify the relationship between tree Ca accumulation and WUE using soil-to-plant calcium ratio (SCa/BCa) and tree WUE derived from δ13C. We tested our theoretical model and predicted relationships using three common tree species across their native habitats in Northern China, spanning 2300 km and a controlled greenhouse experiment with soil Ca concentrations manipulated. We found that tree WUE was negatively related to precipitation of the growing season (GSP) and positively with soil Ca. A multiple regression model and a path analysis suggested a higher contribution of soil Ca to WUE than GSP. As predicted by our theoretical model, we found a positive relationship between WUE and SCa/BCa across their distribution ranges in all three tree species and in the controlled experiment for one selected species. This relationship suggests a tight coupling between water and Ca uptake and the potential use of SCa/BCa to indicate WUE. A negative relationship between SCa/BCa and GSP also suggests a possible decrease in tree Ca accumulation efficiency in a drier future in Northern China.
Collapse
Affiliation(s)
- You Yin
- Research Station of Liaohe-River Plain Forest Ecosystem, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yong-Bin Zhou
- Institute of Modern Agricultural Research, Dalian University, Dalian, Liaoning 116622, China
| | - Hui Li
- Research Station of Liaohe-River Plain Forest Ecosystem, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Song-Zhu Zhang
- Research Station of Liaohe-River Plain Forest Ecosystem, College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shengyang, Liaoning 110016, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, the University of Maine, Orono, ME 04469, USA
| | - Xiaoming Zou
- Department of Environmental Sciences, University of Puerto Rico, PO Box 70377, San Juan, PR 00936-8377, USA
| |
Collapse
|
6
|
Irrigation Levels and Fertilization Rates as Pre-Harvest Factors Affecting the Growth and Quality of Hippeastrum. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growing Hippeastrum in an open field or a greenhouse requires precision irrigation and fertilizer to promote plant growth and development. Therefore, this research aimed to study the effect of irrigation level combined with fertilization rate on the growth and development of Hippeastrum. Two experiments were carried out to determine the influence of irrigation and fertilizer on the growth, flowering, and bulb quality of Hippeastrum. In the first experiment, bulbs of Hippeastrum ‘Red Lion’ with circumferences of 25 cm were grown in plastic plots using mixed soil as growing media under a 50% shading net. Plants were irrigated daily until drainage and water contained in macropores by gravity action (Field capacity: FC) for 90 days after planting (DAP) and supplied with three different 15N-15P2O5-15K2O fertilization rates, i.e., 0, 2.5, and 5 g per pot. Plant growth and water use efficiency were measured at 45, 60, and 90 DAP. The results showed that plants supplied with 0 g of fertilizer had the lowest plant height and number of leaves per plant at 90 DAP, whereas there was no significant effect of fertilizer rate treatments on flower quality. The water use efficiency, evapotranspiration rate (ET), crop evapotranspiration under standard condition (ETc), crop coefficient (Kc), photosynthetic rate, and stomatal conductance were decreased when plants were supplied with fertilizer at a rate of 0 g per pot at 90 DAP. In the second experiment, plants were irrigated with four levels, i.e., 100, 75, 50, and 25% ETc combined with three fertilization rates, i.e., 0, 2.5, and 5 g per pot. At 180 DAP, the results showed that water deficit treatment (50 and 25% ETc) decreased plant growth and bulb quality. Irrigation with 100% ETc combined with 2.5 or 5 g per pot and irrigation with 75% ETc combined with 5 g per pot were the optimum levels to promote plant growth and bulb quality in Hippeastrum.
Collapse
|
7
|
Monroe JG, Cai H, Des Marais DL. Diversity in nonlinear responses to soil moisture shapes evolutionary constraints in Brachypodium. G3 (BETHESDA, MD.) 2021; 11:jkab334. [PMID: 34570202 PMCID: PMC8664479 DOI: 10.1093/g3journal/jkab334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022]
Abstract
Water availability is perhaps the greatest environmental determinant of plant yield and fitness. However, our understanding of plant-water relations is limited because-like many studies of organism-environment interaction-it is primarily informed by experiments considering performance at two discrete levels-wet and dry-rather than as a continuously varying environmental gradient. Here, we used experimental and statistical methods based on function-valued traits to explore genetic variation in responses to a continuous soil moisture gradient in physiological and morphological traits among 10 genotypes across two species of the model grass genus Brachypodium. We find that most traits exhibit significant genetic variation and nonlinear responses to soil moisture variability. We also observe differences in the shape of these nonlinear responses between traits and genotypes. Emergent phenomena arise from this variation including changes in trait correlations and evolutionary constraints as a function of soil moisture. Our results point to the importance of considering diversity in nonlinear organism-environment relationships to understand plastic and evolutionary responses to changing climates.
Collapse
Affiliation(s)
- J Grey Monroe
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Haoran Cai
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- The Arnold Arboretum of Harvard University, Boston, MA 02130, USA
| |
Collapse
|
8
|
Guadagno C, Millar D, Lai R, Mackay D, Pleban J, McClung C, Weinig C, Wang D, Ewers B. Use of transcriptomic data to inform biophysical models via Bayesian networks. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Zhang Y, Ding J, Wang H, Su L, Zhao C. Biochar addition alleviate the negative effects of drought and salinity stress on soybean productivity and water use efficiency. BMC PLANT BIOLOGY 2020; 20:288. [PMID: 32571226 PMCID: PMC7310043 DOI: 10.1186/s12870-020-02493-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/15/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Environmental stress is a crucial factor restricting plant growth as well as crop productivity, thus influencing the agricultural sustainability. Biochar addition is proposed as an effective management to improve crop performance. However, there were few studies focused on the effect of biochar addition on crop growth and productivity under interactive effect of abiotic stress (e.g., drought and salinity). This study was conducted with a pot experiment to investigate the interaction effects of drought and salinity stress on soybean yield, leaf gaseous exchange and water use efficiency (WUE) under biochar addition. RESULTS Drought and salinity stress significantly depressed soybean phenology (e.g. flowering time) and all the leaf gas exchange parameters, but had inconsistent effects on soybean root growth and WUE at leaf and yield levels. Salinity stress significantly decreased photosynthetic rate, stomatal conductance, intercellular CO2 concentration and transpiration rate by 20.7, 26.3, 10.5 and 27.2%, respectively. Lower biomass production and grain yield were probably due to the restrained photosynthesis under drought and salinity stress. Biochar addition significantly enhanced soybean grain yield by 3.1-14.8%. Drought stress and biochar addition significantly increased WUE-yield by 27.5 and 15.6%, respectively, while salinity stress significantly decreased WUE-yield by 24.2%. Drought and salinity stress showed some negative interactions on soybean productivity and leaf gaseous exchange. But biochar addition alleviate the negative effects on soybean productivity and water use efficiency under drought and salinity stress. CONCLUSIONS The results of the present study indicated that drought and salinity stress could significantly depress soybean growth and productivity. There exist interactive effects of drought and salinity stress on soybean productivity and water use efficiency, while we could employ biochar to alleviate the negative effects. We should consider the interactive effects of different abiotic restriction factors on crop growth thus for sustainable agriculture in the future.
Collapse
Affiliation(s)
- Yaojun Zhang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Jiaqi Ding
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Hong Wang
- College of Resource and Environment, Anhui Science and Technology University, No. 9 Donghua Road, Chuzhou, 233100, China
| | - Lei Su
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Cancan Zhao
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
10
|
Lambrecht SC, Gujral AK, Renshaw LJ, Rosengreen LT. Evolutionary and plastic changes in a native annual plant after a historic drought. Ecol Evol 2020; 10:4570-4582. [PMID: 32551044 PMCID: PMC7297769 DOI: 10.1002/ece3.6156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 01/27/2023] Open
Abstract
Severe droughts are forecast to increase with global change. Approaches that enable the study of contemporary evolution, such as resurrection studies, are valuable for providing insights into the responses of populations to global change. In this study, we used a resurrection approach to study the evolution of the California native Leptosiphon bicolor (true babystars, Polemoniaceae) across populations differing in precipitation in response to the state's recent prolonged drought (2011-2017). In the Mediterranean climate region in which L. bicolor grows, this historic drought effectively shortened its growing season. We used seeds collected both before and after this drought from three populations found along a moisture availability gradient to assess contemporary evolution in a common garden greenhouse study. We coupled this with a drought experiment to examine plasticity. We found evolution toward earlier flowering after the historic drought in the wettest of the three populations, while plasticity to experimental drought was observed across all three. We also observed trade-offs associated with earlier flowering. In the driest population, plants that flowered earlier had lower intrinsic water-use efficiency than those flowering later, which was an expected pattern. Unexpectedly, earlier flowering plants had larger flowers. Two populations exhibited evolution and plasticity toward smaller flowers with drought. The third exhibited evolution toward larger flowers, but displayed no plasticity. Our results provide valuable insights into differences among native plant populations in response to drought.
Collapse
Affiliation(s)
- Susan C. Lambrecht
- Department of Biological SciencesSan Jose State UniversitySan JoseCalifornia
| | - Anjum K. Gujral
- Department of Biological SciencesSan Jose State UniversitySan JoseCalifornia
| | - Lani J. Renshaw
- Department of Biological SciencesSan Jose State UniversitySan JoseCalifornia
| | - Lars T. Rosengreen
- Department of Biological SciencesSan Jose State UniversitySan JoseCalifornia
| |
Collapse
|
11
|
Choquette NE, Ogut F, Wertin TM, Montes CM, Sorgini CA, Morse AM, Brown PJ, Leakey ADB, McIntyre LM, Ainsworth EA. Uncovering hidden genetic variation in photosynthesis of field-grown maize under ozone pollution. GLOBAL CHANGE BIOLOGY 2019; 25:4327-4338. [PMID: 31571358 PMCID: PMC6899704 DOI: 10.1111/gcb.14794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/14/2019] [Accepted: 07/31/2019] [Indexed: 05/20/2023]
Abstract
Ozone is the most damaging air pollutant to crops, currently reducing Midwest US maize production by up to 10%, yet there has been very little effort to adapt germplasm for ozone tolerance. Ozone enters plants through stomata, reacts to form reactive oxygen species in the apoplast and ultimately decreases photosynthetic C gain. In this study, 10 diverse inbred parents were crossed in a half-diallel design to create 45 F1 hybrids, which were tested for ozone response in the field using free air concentration enrichment (FACE). Ozone stress increased the heritability of photosynthetic traits and altered genetic correlations among traits. Hybrids from parents Hp301 and NC338 showed greater sensitivity to ozone stress, and disrupted relationships among photosynthetic traits. The physiological responses underlying sensitivity to ozone differed in hybrids from the two parents, suggesting multiple mechanisms of response to oxidative stress. FACE technology was essential to this evaluation because genetic variation in photosynthesis under elevated ozone was not predictable based on performance at ambient ozone. These findings suggest that selection under elevated ozone is needed to identify deleterious alleles in the world's largest commodity crop.
Collapse
Affiliation(s)
- Nicole E. Choquette
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Funda Ogut
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
- Present address:
Department of Forest EngineeringArtvin Coruh UniversityArtvinTurkey
| | - Timothy M. Wertin
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Christopher M. Montes
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Crystal A. Sorgini
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Alison M. Morse
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| | - Patrick J. Brown
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Andrew D. B. Leakey
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Lauren M. McIntyre
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFlorida
- Genetics InstituteUniversity of FloridaGainesvilleFlorida
| | - Elizabeth A. Ainsworth
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- USDA ARS Global Change and Photosynthesis Research UnitUrbanaIllinois
| |
Collapse
|
12
|
Panter PE, Muranaka T, Cuitun-Coronado D, Graham CA, Yochikawa A, Kudoh H, Dodd AN. Circadian Regulation of the Plant Transcriptome Under Natural Conditions. Front Genet 2019; 10:1239. [PMID: 31850080 PMCID: PMC6895068 DOI: 10.3389/fgene.2019.01239] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022] Open
Abstract
Circadian rhythms produce a biological measure of the time of day. In plants, circadian regulation forms an essential adaptation to the fluctuating environment. Most of our knowledge of the molecular aspects of circadian regulation in plants is derived from laboratory experiments that are performed under controlled conditions. However, it is emerging that the circadian clock has complex roles in the coordination of the transcriptome under natural conditions, in both naturally occurring populations of plants and in crop species. In this review, we consider recent insights into circadian regulation under natural conditions. We examine how circadian regulation is integrated with the acute responses of plants to the daily and seasonally fluctuating environment that also presents environmental stresses, in order to coordinate the transcriptome and dynamically adapt plants to their continuously changing environment.
Collapse
Affiliation(s)
- Paige E. Panter
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | | | - David Cuitun-Coronado
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Calum A. Graham
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Aline Yochikawa
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Antony N. Dodd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
13
|
Dubey AK, Kumar N, Kumar A, Ansari MA, Ranjan R, Gautam A, Sahu N, Pandey V, Behera SK, Mallick S, Pande V, Sanyal I. Over-expression of CarMT gene modulates the physiological performance and antioxidant defense system to provide tolerance against drought stress in Arabidopsis thaliana L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:54-65. [PMID: 30597317 DOI: 10.1016/j.ecoenv.2018.12.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Drought is one of the major abiotic stresses which negatively affect plant growth and crop yield. Metallothionein (MTs) is a low molecular weight protein, mainly involved in metal homeostasis, while, its role in drought stress is still to be largely explored. The present study was aimed to investigate the role of MT gene against drought stress. The chickpea MT based on its up-regulation under drought stress was overexpressed in Arabidopsis thaliana to explore its role in mitigation of drought stress. The total transcript of MT gene was up to 30 fold higher in transgenic lines. Arabidopsis plants transformed with MT gene showed longer roots, better efficiency of survival and germination, larger siliques and higher biomass compared to WT. The physiological variables (A, WUE, G, E, qP and ETR) of WT plants were reduced during drought stress which recovered in transgenic Arabidopsis lines. The enzymatic and non-enzymatic antioxidant (APX, GPX, POD, GR, GRX, GST, CAT, MDHAR, ASc and GSH) levels were also enhanced in transgenic lines to provide tolerance. Simultaneously, drought responsive amino acids, i.e. proline and cysteine contents were higher in transgenic lines. Overall, the results suggest that MT gene is actively involved in the mitigation of drought stress and could be the choice for genetic engineering strategy to overcome drought stress.
Collapse
Affiliation(s)
- Arvind Kumar Dubey
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Navin Kumar
- CSIR-National Botanical Research Institute, Lucknow, India
| | - Anil Kumar
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Mohd Akram Ansari
- CSIR-National Botanical Research Institute, Lucknow, India; Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | - Ruma Ranjan
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | - Nayan Sahu
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Vivek Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal Campus, Nainital, India
| | | |
Collapse
|
14
|
Sanad MNME, Smertenko A, Garland-Campbell KA. Differential Dynamic Changes of Reduced Trait Model for Analyzing the Plastic Response to Drought Phases: A Case Study in Spring Wheat. FRONTIERS IN PLANT SCIENCE 2019; 10:504. [PMID: 31080454 PMCID: PMC6497792 DOI: 10.3389/fpls.2019.00504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/01/2019] [Indexed: 05/21/2023]
Abstract
Current limited water availability due to climate changes results in severe drought stress and desiccation in plants. Phenotyping drought tolerance remains challenging. In particular, our knowledge about the discriminating power of traits for capturing a plastic phenotype in high-throughput settings is scant. The study is designed to investigate the differential performance and broad-sense heritability of a battery set of morphological, physiological, and cellular traits to understand the adaptive phenotypic response to drought in spring wheat during the tillering stage. The potential of peroxisome abundance to predict the adaptive response under severe drought was assessed using a high-throughput technique for peroxisome quantification in plants. The research dissected the dynamic changes of some phenological traits during three successive phases of drought using two contrasting genotypes of adaptability to drought. The research demonstrates 5 main findings: (1) a reduction of the overall dimension of the phenological traits for robust phenotyping of the adaptive performance under drought; (2) the abundance of peroxisomes in response to drought correlate negatively with grain yield; (3) the efficiency of ROS homeostasis through peroxisome proliferation which seems to be genetically programmed; and (4) the dynamics of ROS homeostasis seems to be timing dependent mechanism, the tolerant genotype response is earlier than the susceptible genotype. This work will contribute to the identification of robust plastic phenotypic tools and the understanding of the mechanisms for adaptive behavior under drought conditions. SUMMARY STATEMENT This study presents the estimated broad-sense heritability of 24 phenological traits under drought compared with non-stressed conditions. The results demonstrated a reduced model of the overall dimension of the phenological traits for phenotyping drought tolerant response including a novel trait (peroxisome abundance). Also, it displays that the adaptive mechanism through peroxisomes proliferation that is a genetic-dependent manner and related to the stress phase, since tolerant plants can sense the stress and maintain the cellular balance earlier than the sensitive plants.
Collapse
Affiliation(s)
- Marwa N. M. E. Sanad
- Department of Genetics and Cytology, National Research Centre, Giza, Egypt
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Kimberley A. Garland-Campbell
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Washington State University, Pullman, WA, United States
| |
Collapse
|
15
|
Yarkhunova Y, Guadagno CR, Rubin MJ, Davis SJ, Ewers BE, Weinig C. Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms. PLANT, CELL & ENVIRONMENT 2018; 41:2518-2529. [PMID: 29664141 DOI: 10.1111/pce.13216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The circadian clock regulates many aspects of leaf gas supply and biochemical demand for CO2 , and is hypothesized to improve plant performance. Yet the extent to which the clock may regulate the efficiency of photosystem II (PSII) and photoprotective mechanisms such as heat dissipation is less explored. Based on measurements of chlorophyll a fluorescence, we estimated the maximum efficiency of PSII in light (Fv'/Fm') and heat dissipation by nonphotochemical quenching (NPQ). We further dissected total NPQ into its main components, qE (pH-dependent quenching), qT (state-transition quenching), and qI (quenching related to photoinhibition), in clock mutant genotypes of Arabidopsis thaliana, the cognate wild-type genotypes, and a panel of recombinant inbred lines expressing quantitative variation in clock period. Compared with mutants with altered clock function, we observed that wild-type genotypes with clock period lengths of approximately 24 hr had both higher levels of Fv'/Fm', indicative of improved PSII function, and reduced NPQ, suggestive of lower stress on PSII light harvesting complexes. In the recombinant inbred lines, genetic variances were significant for Fv'/Fm' and all 3 components of NPQ, with qE explaining the greatest proportion of NPQ. Bivariate tests of association and structural equation models of hierarchical trait relationships showed that quantitative clock variation was empirically associated with Fv'/Fm' and NPQ, with qE mediating the relationship with gas exchange. The results demonstrate significant segregating variation for all photoprotective components, and suggest the adaptive significance of the clock may partly derive from its regulation of the light reactions of photosynthesis and of photoprotective mechanisms.
Collapse
Affiliation(s)
- Yulia Yarkhunova
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Carmela R Guadagno
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Matthew J Rubin
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Seth J Davis
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Cynthia Weinig
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
16
|
Baker RL, Leong WF, Welch S, Weinig C. Mapping and Predicting Non-Linear Brassica rapa Growth Phenotypes Based on Bayesian and Frequentist Complex Trait Estimation. G3 (BETHESDA, MD.) 2018; 8:1247-1258. [PMID: 29467188 PMCID: PMC5873914 DOI: 10.1534/g3.117.300350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/08/2018] [Indexed: 12/23/2022]
Abstract
Predicting phenotypes based on genotypes and understanding the effects of complex multi-locus traits on plant performance requires a description of the underlying developmental processes, growth trajectories, and their genomic architecture. Using data from Brassica rapa genotypes grown in multiple density settings and seasons, we applied a hierarchical Bayesian Function-Valued Trait (FVT) approach to fit logistic growth curves to leaf phenotypic data (length and width) and characterize leaf development. We found evidence of genetic variation in phenotypic plasticity of rate and duration of leaf growth to growing season. In contrast, the magnitude of the plastic response for maximum leaf size was relatively small, suggesting that growth dynamics vs. final leaf sizes have distinct patterns of environmental sensitivity. Consistent with patterns of phenotypic plasticity, several QTL-by-year interactions were significant for parameters describing leaf growth rates and durations but not leaf size. In comparison to frequentist approaches for estimating leaf FVT, Bayesian trait estimation resulted in more mapped QTL that tended to have greater average LOD scores and to explain a greater proportion of trait variance. We then constructed QTL-based predictive models for leaf growth rate and final size using data from one treatment (uncrowded plants in one growing season). Models successfully predicted non-linear developmental phenotypes for genotypes not used in model construction and, due to a lack of QTL-by-treatment interactions, predicted phenotypes across sites differing in plant density.
Collapse
Affiliation(s)
- R L Baker
- Department of Biology, Miami University, Oxford, OH 45056,
| | - W F Leong
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - S Welch
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - C Weinig
- Department of Molecular Biology and
- Department of Botany, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
17
|
Guadagno CR, Ewers BE, Weinig C. Circadian Rhythms and Redox State in Plants: Till Stress Do Us Part. FRONTIERS IN PLANT SCIENCE 2018; 9:247. [PMID: 29556244 PMCID: PMC5844964 DOI: 10.3389/fpls.2018.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 05/22/2023]
Abstract
A growing body of evidence demonstrates a significant relationship between cellular redox state and circadian rhythms. Each day these two vital components of plant biology influence one another, dictating the pace for metabolism and physiology. Diverse environmental stressors can disrupt this condition and, although plant scientists have made significant progress in re-constructing functional networks of plant stress responses, stress impacts on the clock-redox crosstalk is poorly understood. Inter-connected phenomena such as redox state and metabolism, internal and external environments, cellular homeostasis and rhythms can impede predictive understanding of coordinated regulation of plant stress response. The integration of circadian clock effects into predictive network models is likely to increase final yield and better predict plant responses to stress. To achieve such integrated understanding, it is necessary to consider the internal clock not only as a gatekeeper of environmental responses but also as a target of stress syndromes. Using chlorophyll fluorescence as a reliable and high-throughput probe of stress coupled to functional genomics and metabolomics will provide insights on the crosstalk across a wide range of stress severity and duration, including potential insights into oxidative stress response and signaling. We suggest the efficiency of photosystem II in light conditions (Fv'/Fm') to be the most dynamic of the fluorescence variables and therefore the most reliable parameter to follow the stress response from early sensing to mortality.
Collapse
Affiliation(s)
| | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
- Department of Molecular and Cellular Life Sciences, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
18
|
Baker RL, Leong WF, An N, Brock MT, Rubin MJ, Welch S, Weinig C. Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:283-298. [PMID: 29058049 DOI: 10.1007/s00122-017-3001-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max, because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.
Collapse
Affiliation(s)
- Robert L Baker
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.
- Biology Department, Miami University, Oxford, OH, 45056, USA.
| | - Wen Fung Leong
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Nan An
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Matthew J Rubin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Stephen Welch
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
19
|
Pleban JR, Mackay DS, Aston TL, Ewers BE, Weinig C. Phenotypic Trait Identification Using a Multimodel Bayesian Method: A Case Study Using Photosynthesis in Brassica rapa Genotypes. FRONTIERS IN PLANT SCIENCE 2018; 9:448. [PMID: 29719545 PMCID: PMC5913710 DOI: 10.3389/fpls.2018.00448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 03/22/2018] [Indexed: 05/21/2023]
Abstract
Agronomists have used statistical crop models to predict yield on a genotype-by-genotype basis. Mechanistic models, based on fundamental physiological processes common across plant taxa, will ultimately enable yield prediction applicable to diverse genotypes and crops. Here, genotypic information is combined with multiple mechanistically based models to characterize photosynthetic trait differentiation among genotypes of Brassica rapa. Infrared leaf gas exchange and chlorophyll fluorescence observations are analyzed using Bayesian methods. Three advantages of Bayesian approaches are employed: a hierarchical model structure, the testing of parameter estimates with posterior predictive checks and a multimodel complexity analysis. In all, eight models of photosynthesis are compared for fit to data and penalized for complexity using deviance information criteria (DIC) at the genotype scale. The multimodel evaluation improves the credibility of trait estimates using posterior distributions. Traits with important implications for yield in crops, including maximum rate of carboxylation (Vcmax ) and maximum rate of electron transport (Jmax ) show genotypic differentiation. B. rapa shows phenotypic diversity in causal traits with the potential for genetic enhancement of photosynthesis. This multimodel screening represents a statistically rigorous method for characterizing genotypic differences in traits with clear biophysical consequences to growth and productivity within large crop breeding populations with application across plant processes.
Collapse
Affiliation(s)
- Jonathan R. Pleban
- Department of Geography, University at Buffalo, Buffalo, NY, United States
- *Correspondence: Jonathan R. Pleban
| | - D. Scott Mackay
- Department of Geography, University at Buffalo, Buffalo, NY, United States
| | - Timothy L. Aston
- Department of Botany, University of Wyoming, Laramie, WY, United States
| | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, United States
- Program in Ecology, University of Wyoming, Laramie, WY, United States
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
20
|
Greenham K, Guadagno CR, Gehan MA, Mockler TC, Weinig C, Ewers BE, McClung CR. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. eLife 2017; 6:e29655. [PMID: 28826479 PMCID: PMC5628015 DOI: 10.7554/elife.29655] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop Brassica rapa during initial perception of drought, we applied a co-expression network approach to associate rhythmic gene expression changes with physiological responses. Coupled analysis of transcriptome and physiological parameters over a two-day time course in control and drought-stressed plants provided temporal resolution necessary for correlation of network modules with dynamic changes in stomatal conductance, photosynthetic rate, and photosystem II efficiency. This approach enabled the identification of drought-responsive genes based on their differential rhythmic expression profiles in well-watered versus droughted networks and provided new insights into the dynamic physiological changes that occur during drought.
Collapse
Affiliation(s)
- Kathleen Greenham
- Department of Biological SciencesDartmouth CollegeHanoverUnited States
| | | | - Malia A Gehan
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | - Todd C Mockler
- Donald Danforth Plant Science CenterSt. LouisUnited States
| | - Cynthia Weinig
- Department of BotanyUniversity of WyomingLaramieUnited States
- Department of Molecular BiologyUniversity of WyomingLaramieUnited States
- Program in EcologyUniversity of WyomingLaramieUnited States
| | - Brent E Ewers
- Department of BotanyUniversity of WyomingLaramieUnited States
- Program in EcologyUniversity of WyomingLaramieUnited States
| | | |
Collapse
|
21
|
Brock MT, Winkelman RL, Rubin MJ, Edwards CE, Ewers BE, Weinig C. Allocation to male vs female floral function varies by currency and responds differentially to density and moisture stress. Heredity (Edinb) 2017; 119:349-359. [PMID: 28767102 DOI: 10.1038/hdy.2017.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 01/29/2023] Open
Abstract
Allocation of finite resources to separate reproductive functions is predicted to vary across environments and affect fitness. Biomass is the most commonly measured allocation currency; however, in comparison with nutrients it may be less limited and express different environmental and evolutionary responses. Here, we measured carbon, nitrogen, phosphorus, and biomass allocation among floral whorls in recombinant inbred lines of Brassica rapa in multiple environments to characterize the genetic architecture of floral allocation, including its sensitivity to environmental heterogeneity and to choice of currency. Mass, carbon, and nitrogen allocation to female whorls (pistils and sepals) decreased under high density, whereas nitrogen allocation to male organs (stamens) decreased under drought. Phosphorus allocation decreased by half in pistils under drought, while stamen phosphorus was unaffected by environment. While the contents of each currency were positively correlated among whorls, selection to improve fitness through female (or male) function typically favored increased allocation to pistils (or stamens) but decreased allocation to other whorls. Finally, genomic regions underlying correlations among allocation metrics were mapped, and loci related to nitrogen uptake and floral organ development were located within mapped quantitative trait loci. Our candidate gene identification suggests that nutrient uptake may be a limiting step in maintaining male allocation. Taken together, allocation to male vs female function is sensitive to distinct environmental stresses, and the choice of currency affects the interpretation of floral allocation responses to the environment. Further, genetic correlations may counter the evolution of allocation patterns that optimize fitness through female or male function.
Collapse
Affiliation(s)
- M T Brock
- Department of Botany, University of Wyoming, Laramie, WY, USA
| | - R L Winkelman
- Department of Botany, University of Wyoming, Laramie, WY, USA
| | - M J Rubin
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - C E Edwards
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, USA
| | - B E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - C Weinig
- Department of Botany, University of Wyoming, Laramie, WY, USA.,Program in Ecology, University of Wyoming, Laramie, WY, USA.,Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
22
|
|
23
|
Edwards CE, Ewers BE, Weinig C. Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology. BMC PLANT BIOLOGY 2016; 16:185. [PMID: 27558796 PMCID: PMC4997677 DOI: 10.1186/s12870-016-0876-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/16/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. RESULTS Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. CONCLUSIONS Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.
Collapse
Affiliation(s)
- Christine E Edwards
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.
- Current Address: Center for Conservation and Sustainable Development, Missouri Botanical Garden, PO Box 299, St. Louis, MO, 63166, USA.
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
24
|
Baker RL, Leong WF, Brock MT, Markelz RJC, Covington MF, Devisetty UK, Edwards CE, Maloof J, Welch S, Weinig C. Modeling development and quantitative trait mapping reveal independent genetic modules for leaf size and shape. THE NEW PHYTOLOGIST 2015; 208:257-68. [PMID: 26083847 DOI: 10.1111/nph.13509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/11/2015] [Indexed: 05/24/2023]
Abstract
Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange.
Collapse
Affiliation(s)
- Robert L Baker
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Wen Fung Leong
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - R J Cody Markelz
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Michael F Covington
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Upendra K Devisetty
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Christine E Edwards
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, 63166, USA
| | - Julin Maloof
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Stephen Welch
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
25
|
Aspinwall MJ, Loik ME, Resco de Dios V, Tjoelker MG, Payton PR, Tissue DT. Utilizing intraspecific variation in phenotypic plasticity to bolster agricultural and forest productivity under climate change. PLANT, CELL & ENVIRONMENT 2015; 38:1752-64. [PMID: 25132508 DOI: 10.1111/pce.12424] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/21/2014] [Accepted: 07/28/2014] [Indexed: 05/15/2023]
Abstract
Climate change threatens the ability of agriculture and forestry to meet growing global demands for food, fibre and wood products. Information gathered from genotype-by-environment interactions (G × E), which demonstrate intraspecific variation in phenotypic plasticity (the ability of a genotype to alter its phenotype in response to environmental change), may prove important for bolstering agricultural and forest productivity under climate change. Nonetheless, very few studies have explicitly quantified genotype plasticity-productivity relationships in agriculture or forestry. Here, we conceptualize the importance of intraspecific variation in agricultural and forest species plasticity, and discuss the physiological and genetic factors contributing to intraspecific variation in phenotypic plasticity. Our discussion highlights the need for an integrated understanding of the mechanisms of G × E, more extensive assessments of genotypic responses to climate change under field conditions, and explicit testing of genotype plasticity-productivity relationships. Ultimately, further investigation of intraspecific variation in phenotypic plasticity in agriculture and forestry may prove important for identifying genotypes capable of increasing or sustaining productivity under more extreme climatic conditions.
Collapse
Affiliation(s)
- Michael J Aspinwall
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, 2751, Australia
| | - Michael E Loik
- Department of Environmental Studies, University of California - Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Victor Resco de Dios
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, 2751, Australia
- Department of Crop and Forest Sciences - AGROTECNIO Center, Universitat de Lleida, Lleida, E25198, Spain
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, 2751, Australia
| | - Paxton R Payton
- USDA-ARS Cropping Systems Research Laboratory, Lubbock, TX, 74915, USA
| | - David T Tissue
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
26
|
Kooyers NJ. The evolution of drought escape and avoidance in natural herbaceous populations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:155-62. [PMID: 25804818 DOI: 10.1016/j.plantsci.2015.02.012] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 05/03/2023]
Abstract
While the functional genetics and physiological mechanisms controlling drought resistance in crop plants have been intensely studied, less research has examined the genetic basis of adaptation to drought stress in natural populations. Drought resistance adaptations in nature reflect natural rather than human-mediated selection and may identify novel mechanisms for stress tolerance. Adaptations conferring drought resistance have historically been divided into alternative strategies including drought escape (rapid development to complete a life cycle before drought) and drought avoidance (reducing water loss to prevent dehydration). Recent studies in genetic model systems such as Arabidopsis, Mimulus, and Panicum have begun to elucidate the genes, expression profiles, and physiological changes responsible for ecologically important variation in drought resistance. Similar to most crop plants, variation in drought escape and avoidance is complex, underlain by many QTL of small effect, and pervasive gene by environment interactions. Recently identified major-effect alleles point to a significant role for genetic constraints in limiting the concurrent evolution of both drought escape and avoidance strategies, although these constraints are not universally found. This progress suggests that understanding the mechanistic basic and fitness consequences of gene by environment interactions will be critical for crop improvement and forecasting population persistence in unpredictable environments.
Collapse
Affiliation(s)
- Nicholas J Kooyers
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
27
|
Kooyers NJ, Greenlee AB, Colicchio JM, Oh M, Blackman BK. Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual Mimulus guttatus. THE NEW PHYTOLOGIST 2015; 206:152-165. [PMID: 25407964 DOI: 10.1111/nph.13153] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 09/26/2014] [Indexed: 05/04/2023]
Abstract
Examining how morphology, life history and physiology vary along environmental clines can reveal functional insight into adaptations to climate and thus inform predictions about evolutionary responses to global change. Widespread species occurring over latitudinal and altitudinal gradients in seasonal water availability are excellent systems for investigating multivariate adaptation to drought stress. Under common garden conditions, we characterized variation in 27 traits for 52 annual populations of Mimulus guttatus sampled from 10 altitudinal transects. We also assessed variation in the critical photoperiod for flowering and surveyed neutral genetic markers to control for demography when analyzing clinal patterns. Many drought escape (e.g. flowering time) and drought avoidance (e.g. specific leaf area, succulence) traits exhibited geographic or climatic clines, which often remained significant after accounting for population structure. Critical photoperiod and flowering time in glasshouse conditions followed distinct clinal patterns, indicating different aspects of seasonal phenology confer adaptation to unique agents of selection. Although escape and avoidance traits were negatively correlated range-wide, populations from sites with short growing seasons produced both early flowering and dehydration avoidance phenotypes. Our results highlight how abundant genetic variation in the component traits that build multivariate adaptations to drought stress provides flexibility for intraspecific adaptation to diverse climates.
Collapse
Affiliation(s)
- Nicholas J Kooyers
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Anna B Greenlee
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jack M Colicchio
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KA, 66045, USA
| | - Morgan Oh
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Benjamin K Blackman
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
28
|
Gehan MA, Greenham K, Mockler TC, McClung CR. Transcriptional networks-crops, clocks, and abiotic stress. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:39-46. [PMID: 25646668 DOI: 10.1016/j.pbi.2015.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 05/20/2023]
Abstract
Several factors affect the yield potential and geographical range of crops including the circadian clock, water availability, and seasonal temperature changes. In order to sustain and increase plant productivity on marginal land in the face of both biotic and abiotic stresses, we need to more efficiently generate stress-resistant crops through marker-assisted breeding, genetic modification, and new genome-editing technologies. To leverage these strategies for producing the next generation of crops, future transcriptomic data acquisition should be pursued with an appropriate temporal design and analyzed with a network-centric approach. The following review focuses on recent developments in abiotic stress transcriptional networks in economically important crops and will highlight the utility of correlation-based network analysis and applications.
Collapse
Affiliation(s)
- Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, MO 63132, United States
| | - Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO 63132, United States
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
29
|
Fletcher RS, Mullen JL, Heiliger A, McKay JK. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:245-56. [PMID: 25371500 PMCID: PMC4265167 DOI: 10.1093/jxb/eru423] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/16/2014] [Accepted: 09/15/2014] [Indexed: 05/18/2023]
Abstract
Drought escape and dehydration avoidance represent alternative strategies for drought adaptation in annual crops. The mechanisms underlying these two strategies are reported to have a negative correlation, suggesting a trade-off. We conducted a quantitative trait locus (QTL) analysis of flowering time and root mass, traits representing each strategy, in Brassica napus to understand if a trade-off exists and what the genetic basis might be. Our field experiment used a genotyped population of doubled haploid lines and included both irrigated and rainfed treatments, allowing analysis of plasticity in each trait. We found strong genetic correlations among all traits, suggesting a trade-off among traits may exist. Summing across traits and treatments we found 20 QTLs, but many of these co-localized to two major QTLs, providing evidence that the trade-off is genetically constrained. To understand the mechanistic relationship between root mass, flowering time, and QTLs, we analysed the data by conditioning upon correlated traits. Our results suggest a causal model where such QTLs affect root mass directly as well as through their impacts on flowering time. Additionally, we used draft Brassica genomes to identify orthologues of well characterized Arabidopsis thaliana flowering time genes as candidate genes. This research provides valuable clues to breeding for drought adaptation as it is the first to analyse the inheritance of the root system in B. napus in relation to drought.
Collapse
Affiliation(s)
- Richard S Fletcher
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA Cargill Specialty Seeds and Oils, Fort Collins, CO 80525, USA
| | - Jack L Mullen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Annie Heiliger
- Cargill Specialty Seeds and Oils, Fort Collins, CO 80525, USA Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - John K McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA Plant Genomics LLC, Fort Collins, CO 80524, USA
| |
Collapse
|
30
|
Vasseur F, Bontpart T, Dauzat M, Granier C, Vile D. Multivariate genetic analysis of plant responses to water deficit and high temperature revealed contrasting adaptive strategies. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6457-69. [PMID: 25246443 PMCID: PMC4246181 DOI: 10.1093/jxb/eru364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
How genetic factors control plant performance under stressful environmental conditions is a central question in ecology and for crop breeding. A multivariate framework was developed to examine the genetic architecture of performance-related traits in response to interacting environmental stresses. Ecophysiological and life history traits were quantified in the Arabidopsis thaliana Ler × Cvi mapping population exposed to constant soil water deficit and high air temperature. The plasticity of the genetic variance-covariance matrix (G-matrix) was examined using mixed-effects models after regression into principal components. Quantitative trait locus (QTL) analysis was performed on the predictors of genotype effects and genotype by environment interactions (G × E). Three QTLs previously identified for flowering time had antagonistic G × E effects on carbon acquisition and the other traits (phenology, growth, leaf morphology, and transpiration). This resulted in a size-dependent response of water use efficiency (WUE) to high temperature but not soil water deficit, indicating that most of the plasticity of carbon acquisition and WUE to temperature is controlled by the loci that control variation of development, size, growth, and transpiration. A fourth QTL, MSAT2.22, controlled the response of carbon acquisition to specific combinations of watering and temperature irrespective of plant size and development, growth, and transpiration rate, which resulted in size-independent plasticity of WUE. These findings highlight how the strategies to optimize plant performance may differ in response to water deficit and high temperature (or their combination), and how different G × E effects could be targeted to improve plant tolerance to these stresses.
Collapse
Affiliation(s)
- François Vasseur
- INRA, Montpellier SupAgro, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), F-34060 Montpellier, France
| | - Thibaut Bontpart
- INRA, Montpellier SupAgro, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), F-34060 Montpellier, France
| | - Myriam Dauzat
- INRA, Montpellier SupAgro, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), F-34060 Montpellier, France
| | - Christine Granier
- INRA, Montpellier SupAgro, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), F-34060 Montpellier, France
| | - Denis Vile
- INRA, Montpellier SupAgro, UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), F-34060 Montpellier, France
| |
Collapse
|
31
|
Müller LM, von Korff M, Davis SJ. Connections between circadian clocks and carbon metabolism reveal species-specific effects on growth control. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2915-23. [PMID: 24706717 DOI: 10.1093/jxb/eru117] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The plant circadian system exists in a framework of rhythmic metabolism. Much has been learned about the transcriptional machinery that generates the clock rhythm. Interestingly, these components are largely conserved between monocots and dicots, but key differences in physiological and developmental output processes have been found. How the clock coordinates carbon metabolism to drive plant growth performance is described with a focus on starch breakdown in Arabidopsis. It is proposed that clock effects on plant growth and fitness are more complex than just matching internal with external rhythms. Interesting recent findings support that the products of photosynthesis, probably sucrose, in turn feeds back to the clock to set its rhythm. In this way, the clock both controls and is controlled by carbon fluxes. This has an interesting connection to stress signalling and water-use efficiency, and it is now known that the clock and abscisic acid pathways are reciprocally coordinated. These processes converge to drive growth in a species-specific context such that predictions from the Arabidopsis model to other species can be restricted. This has been seen from phenotypic growth studies that revealed that dicot shoot growth is rhythmic whereas monocot shoot growth is continuous. Taken together, emerging evidence suggests reciprocal interactions between metabolism, the circadian clock, and stress signalling to control growth and fitness in Arabidopsis, but transferability to other species is not always possible due to species-specific effects.
Collapse
Affiliation(s)
- Lukas M Müller
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany
| | - Maria von Korff
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany Institute of Plant Genetics, Heinrich-Heine-University, Düsseldorf 40225, Germany Cluster of Excellence on Plant Sciences, Düsseldorf 40225, Germany
| | - Seth J Davis
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne 50829, Germany Department of Biology, University of York, York, YO10 5DD, UK
| |
Collapse
|
32
|
El-Soda M, Boer MP, Bagheri H, Hanhart CJ, Koornneef M, Aarts MGM. Genotype-environment interactions affecting preflowering physiological and morphological traits of Brassica rapa grown in two watering regimes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:697-708. [PMID: 24474811 PMCID: PMC3904722 DOI: 10.1093/jxb/ert434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant growth and productivity are greatly affected by drought, which is likely to become more threatening with the predicted global temperature increase. Understanding the genetic architecture of complex quantitative traits and their interaction with water availability may lead to improved crop adaptation to a wide range of environments. Here, the genetic basis of 20 physiological and morphological traits is explored by describing plant performance and growth in a Brassica rapa recombinant inbred line (RIL) population grown on a sandy substrate supplemented with nutrient solution, under control and drought conditions. Altogether, 54 quantitative trait loci (QTL) were identified, of which many colocated in 11 QTL clusters. Seventeen QTL showed significant QTL-environment interaction (Q×E), indicating genetic variation for phenotypic plasticity. Of the measured traits, only hypocotyl length did not show significant genotype-environment interaction (G×E) in both environments in all experiments. Correlation analysis showed that, in the control environment, stomatal conductance was positively correlated with total leaf dry weight (DW) and aboveground DW, whereas in the drought environment, stomatal conductance showed a significant negative correlation with total leaf DW and aboveground DW. This correlation was explained by antagonistic fitness effects in the drought environment, controlled by a QTL cluster on chromosome A7. These results demonstrate that Q×E is an important component of the genetic variance and can play a great role in improving drought tolerance in future breeding programmes.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Genetics, Faculty of Agriculture, Cairo University, Egypt
| | - Martin P. Boer
- Biometris–Applied Statistics, Department of Plant Science, Wageningen University, Wageningen, The Netherlands
| | - Hedayat Bagheri
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bu-Ali Sina University, Shahid Fahmideh, Hamedan, Iran
| | - Corrie J. Hanhart
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
33
|
Kimball S, Gremer JR, Huxman TE, Lawrence Venable D, Angert AL. Phenotypic Selection Favors Missing Trait Combinations in Coexisting Annual Plants. Am Nat 2013; 182:191-207. [DOI: 10.1086/671058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Guo YM, Chen S, Nelson MN, Cowling W, Turner NC. Delayed water loss and temperature rise in floral buds compared with leaves of Brassica rapa subjected to a transient water stress during reproductive development. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:690-699. [PMID: 32481141 DOI: 10.1071/fp12335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/22/2013] [Indexed: 05/09/2023]
Abstract
Leaf canopy temperature has been proposed as a rapid selection tool for drought tolerance among crop genotypes. However, floral bud temperature may be a better indicator of drought tolerance than leaf temperature in grain crops. In this study, we examined whether the floral bud and leaves of Brassica rapa L. had similar stomatal characteristics and showed similar water loss during a drying cycle. We also compared the leaf and bud temperatures when the plants were exposed to a 10-day transient water stress during reproductive development that affected flower development, increased flower abortion, increased pod abortion and reduced yield by an average of 85%. The water loss of detached leaves and floral buds showed that the stomata on the leaves closed before those of the floral buds as the leaf water potential decreased. Consistent with the water loss studies, the temperature of the intact bud showed a delayed increase during the drying process compared with the leaves. This suggested that floral bud temperature could be a useful indicator of the water status of the reproductive organs of B. rapa.
Collapse
Affiliation(s)
- Yi Ming Guo
- School of Plant Biology, M084, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Sheng Chen
- School of Plant Biology, M084, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Matthew N Nelson
- School of Plant Biology, M084, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Wallace Cowling
- The UWA Institute of Agriculture, M082, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Neil C Turner
- The UWA Institute of Agriculture, M082, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
35
|
Juenger TE. Natural variation and genetic constraints on drought tolerance. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:274-81. [PMID: 23462639 DOI: 10.1016/j.pbi.2013.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 05/20/2023]
Abstract
Drought is a central abiotic stress for both natural plant populations and agricultural crops. Substantial natural genetic variation in drought resistance traits has been identified in plant populations, crop species, and laboratory model systems. In particular, studies in Arabidopsis thaliana have discovered variation in a number of key physiological traits involved in plant-water relations that may underlie evolved drought stress responses among accessions. Despite this abundant variation, we still know little about the complex genetic architecture of drought tolerance or its role in constraining evolution. Unfortunately, few natural allelic variants have been cloned for drought related traits--progress cloning QTL, the use of RNA-sequencing methods for evaluating gene expression responses to soil drying, and improved methodology for exploring complex multivariate data all hold promise for moving the field forward. In particular, a better understanding of the molecular nature of pleiotropic gene action and the genetics of phenotypic plasticity will give insight into local adaptation in plants and provide new avenues for improving crops.
Collapse
Affiliation(s)
- Thomas E Juenger
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, University of Texas at Austin, 2401 Speedway Boulevard, Austin, TX 78712, USA.
| |
Collapse
|
36
|
McClung CR. Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 2013; 24:430-6. [PMID: 23466287 DOI: 10.1016/j.semcdb.2013.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, Hanover, NH 03755, USA.
| |
Collapse
|
37
|
Anderson JT, Panetta AM, Mitchell-Olds T. Evolutionary and ecological responses to anthropogenic climate change: update on anthropogenic climate change. PLANT PHYSIOLOGY 2012; 160:1728-40. [PMID: 23043078 PMCID: PMC3510106 DOI: 10.1104/pp.112.206219] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Jill T Anderson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA.
| | | | | |
Collapse
|
38
|
Briggs WR, Lin CT. Photomorphogenesis--from one photoreceptor to 14: 40 years of progress. MOLECULAR PLANT 2012; 5:531-2. [PMID: 22610604 DOI: 10.1093/mp/sss059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
|