1
|
Cvetković VJ, Milovanović I, Matić SL, Vitorović J, Joković N, Bijelić AB, Radulović NS, Jovanović N, Mitrović T. Hericium erinaceus ethanol extract exhibits potent DNA-protective and antioxidant action: Evidence from in vitro and Drosophila melanogaster studies. Food Res Int 2025; 212:116374. [PMID: 40382030 DOI: 10.1016/j.foodres.2025.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/29/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
Lion's mane (Hericium erinaceus (Bull.: Fr.) Pers.) is a highly valued edible fungus recognized for its diverse health benefits. This study investigated the in vitro DNA-protective effects and in vivo genotoxicity and antioxidant activity of an ethanol extract from the fruiting bodies of cultivated H. erinaceus (HEEE) using a Drosophila model. HEEE exhibited remarkable, concentration-dependent protection against DNA damage induced by hydroxyl and peroxyl radicals in vitro reaching optimal protection at 400 μg mL-1, without showing genotoxic effects in third instar Drosophila melanogaster larvae, at tested concentrations below 20 mg mL-1. HEEE displayed significant in vivo antioxidant activity under oxidative stress conditions at concentrations up to 2.5 mg mL-1. In the range of 1.25-10 mg mL-1, HEEE reduced malondialdehyde levels, while a concentration of 40 mg mL-1 exhibited a significant pro-oxidant effect. At 1.25 mg mL-1, superoxide dismutase and catalase activities increased by 23.1% and 10.6%, respectively. The concentrations of 10, 20, and 40 mg mL-1 significantly reduced superoxide dismutase activity, by 44.1%, 52.0%, and 66.4%, respectively. The concentrations of 10, 20, and 40 mg mL-1 induced an increase in glutathione (GSH) levels of 131.5%, 145.8%, and 228.7%, respectively. Quantitative Nuclear Magnetic Resonance (qNMR) spectroscopy revealed the presence of hericenes and hericenones and allowed to quantify, for the first time directly without prior separation steps, these active ingredients at 0.43% (w/w), expressed as the relative content of hericenone C. Phenolics hericenes and hericenones C-H likely contribute to the observed antioxidant and DNA-protective activities. These findings suggest that HEEE could be a valuable dietary supplement providing protection against oxidative DNA damage and supporting antioxidant defenses.
Collapse
Affiliation(s)
- Vladimir J Cvetković
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000 Niš, Serbia.
| | - Ivan Milovanović
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Sanja Lj Matić
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijića bb, 34000 Kragujevac, Serbia
| | - Jelena Vitorović
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000 Niš, Serbia
| | - Nataša Joković
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000 Niš, Serbia
| | - Ana B Bijelić
- University of Niš, Faculty of Occupational Safety, Čarnojevića 10a, 18000 Niš, Serbia
| | - Niko S Radulović
- University of Niš, Faculty of Sciences and Mathematics, Department of Chemistry, Višegradska 33, 18000 Niš, Serbia
| | - Nikola Jovanović
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000 Niš, Serbia
| | - Tatjana Mitrović
- University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000 Niš, Serbia
| |
Collapse
|
2
|
Del Carmen García-Rodríguez M, Kacew S. Green tea catechins: protectors or threats to DNA? A review of their antigenotoxic and genotoxic effects. Arch Toxicol 2025:10.1007/s00204-025-04063-7. [PMID: 40358678 DOI: 10.1007/s00204-025-04063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
This review examines the dual behavior of green tea catechins (GTCs), demonstrating the compound's ability to protect against oxidative stress and DNA damage while also potentially inducing genotoxicity under certain conditions. This duality may be attributed to their capacity both to scavenge free radicals and to generate these species via autooxidation. GTCs' antigenotoxic activities are mediated by multiple mechanisms, including reactive oxygen species (ROS) scavenging, regulation of endogenous antioxidant system (EAS), DNA repair, selective apoptosis of genetically compromised cells, epigenetic modulation, and metal ion (Cu, Fe, Zn) chelation-all of which collectively maintain cellular homeostasis and help reduce inflammation. However, at specific concentrations and in certain cellular conditions, GTCs' prooxidant effects-i.e., high ROS levels-might damage DNA and promote pro-apoptotic processes, potentially benefiting elimination of malignant cells. In contrast, lower ROS levels might stimulate antioxidant defenses via Nrf2 activation. Although evidence from both in vitro and in vivo studies indicates that GTCs consumption offers significant protection against diseases linked to oxidative DNA injury, the prooxidant properties of GTCs warrant careful consideration. Future research might focus on (1) optimizing GTC formulations for improved bioavailability, (2) assessing long-term outcomes, (3) evaluating toxicity at higher doses, and (4) investigating gut microbiome interactions. The dual antigenotoxic and genotoxic actions of GTCs indicate the potential role in preventive and complementary medicine, aligning with sustainable beneficial health strategies utilizing natural compounds.
Collapse
Affiliation(s)
- María Del Carmen García-Rodríguez
- Laboratorio de Antimutagénesis, Anticarcinogénesis y Antiteratogénesis Ambiental, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
3
|
Escobar PA, Sobol Z, Miller RR, Ferry-Martin S, Stermer A, Jacob B, Muniappa N, Sanchez RI, Blanchard KT, Galijatovic-Idrizbegovic A, Amin RP, Troth SP. Response to reader comment on: "Comprehensive genotoxicity and carcinogenicity assessment of molnupiravir". Toxicol Sci 2025; 204:118-119. [PMID: 39693107 DOI: 10.1093/toxsci/kfae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Affiliation(s)
- Patricia A Escobar
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Zhanna Sobol
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Randy R Miller
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Sandrine Ferry-Martin
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Angela Stermer
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Binod Jacob
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Nagaraja Muniappa
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Rosa I Sanchez
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Kerry T Blanchard
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Alema Galijatovic-Idrizbegovic
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Rupesh P Amin
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Sean P Troth
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| |
Collapse
|
4
|
Escobar PA, Sobol Z, Miller RR, Ferry-Martin S, Stermer A, Jacob B, Muniappa N, Sanchez RI, Blanchard KT, Galijatovic-Idrizbegovic A, Amin RP, Troth SP. Comprehensive genotoxicity and carcinogenicity assessment of molnupiravir. Toxicol Sci 2024; 202:278-290. [PMID: 39302733 PMCID: PMC11589102 DOI: 10.1093/toxsci/kfae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Molnupiravir is registered or authorized in several countries as a 5-d oral coronavirus disease 2019 treatment for adults. Molnupiravir is a prodrug of the antiviral ribonucleoside β-D-N4-hydroxycytidine (NHC) that distributes into cells, where it is phosphorylated to its pharmacologically active ribonucleoside triphosphate (NHC-TP) form. NHC-TP incorporates into severe acute respiratory syndrome coronavirus 2 RNA by the viral RNA-dependent RNA polymerase, resulting in an accumulation of errors in the viral genome, leading to inhibition of viral replication and loss of infectivity. The potential of molnupiravir to induce genomic mutations and DNA damage was comprehensively assessed in several in vitro and in vivo genotoxicity assays and a carcinogenicity study, in accordance with international guideline recommendations and expert opinion. Molnupiravir and NHC induced mutations in vitro in bacteria and mammalian cells but did not induce chromosome damage in in vitro or in vivo assays. The in vivo mutagenic and carcinogenic potential of molnupiravir was tested in a series of in vivo mutagenicity studies in somatic and germ cells (Pig-a Assay and Big Blue® TGR Mutation Assay) and in a carcinogenicity study (transgenic rasH2-Tg mouse), using durations of exposure and doses exceeding those used in clinical therapy. In vitro genotoxicity results are superseded by robustly conducted in vivo studies. Molnupiravir did not increase mutations in somatic or germ cells in the in vivo animal studies and was negative in the carcinogenicity study. The interpretation criteria for each study followed established regulatory guidelines. Taken together, these data indicate that molnupiravir use does not present a genotoxicity or carcinogenicity risk for patients.
Collapse
Affiliation(s)
- Patricia A Escobar
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Zhanna Sobol
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Randy R Miller
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Sandrine Ferry-Martin
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Angela Stermer
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Binod Jacob
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Nagaraja Muniappa
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Rosa I Sanchez
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Kerry T Blanchard
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Alema Galijatovic-Idrizbegovic
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Rupesh P Amin
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| | - Sean P Troth
- Nonclinical Drug Safety and Pharmacokinetics Dynamics Metabolism and Bioanalysis, Preclinical Development, Merck & Co. Inc., Rahway, NJ 07065, United States
| |
Collapse
|
5
|
Hashizume T, Munakata S, Takahashi T, Watanabe T. Exploring the role of oxidative stress and mitochondrial dysfunction in β-damascone-induced aneuploidy. Genes Environ 2024; 46:25. [PMID: 39587702 PMCID: PMC11590541 DOI: 10.1186/s41021-024-00319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The rose ketone β-damascone (β-Dam) elicits positive results in the in vitro micronucleus (MN) assay using human lymphocytes, but shows negative outcomes in the Ames test and combined in vivo MN and comet assays. This has led to the interpretation that the in vitro MN result is a misleading positive result. Oxidative stress has been suggested as an indirect mode of action (MoA) for in vitro MN formation, with the α, β-unsaturated carbonyl moiety of the β-Dam chemical structure expected to cause misleading positive results through this MoA. In this study, we investigated the role of oxidative stress in β-Dam-induced in vitro MN formation by co-treatment with the antioxidant N-acetyl-L-cysteine (NAC), thereby highlighting a possible link between mitochondrial dysfunction and aneugenicity. RESULTS β-Dam induced MN formation in both CHL/IU and BEAS-2B cells, with the response completely inhibited by co-treatment with NAC. Moreover, β-Dam induced oxidative stress-related reporter activity in the ToxTracker assay and increased reactive oxygen species levels, while decreasing glutathione levels, in BEAS-2B cells in the high-content analysis. All of these effects were suppressed by NAC co-treatment. These findings indicate that β-Dam elicits oxidative stress, which causes DNA damage and ultimately leads to MN induction. However, no significant DNA damage-related reporter activities were observed in the ToxTracker assay, nor was there an increased number of γH2AX foci in the high-content analysis. These data suggest that MN formation is not a DNA-reactive MoA. Considering recent reports of aneuploidy resulting from chromosome segregation defects caused by mitochondrial dysfunction, we investigated if β-Dam could cause such dysfunction. We observed that the mitochondrial membrane potential was dose-dependently impaired in BEAS-2B cells exposed to β-Dam. CONCLUSIONS These findings suggest that the oxidative stress induced by β-Dam exposure may be explained through an aneugenic MoA via mitochondrial dysfunction, thereby contributing to MN formation in mammalian cells.
Collapse
Affiliation(s)
- Tsuneo Hashizume
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Satoru Munakata
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Tomohiro Takahashi
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Taku Watanabe
- Scientific Product Assessment Center, Japan Tobacco Inc., 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| |
Collapse
|
6
|
Doepker C, Rabert C, Heard P, Dubnicka T, Choksi N, Eapen A. An investigation of the genotoxic potential of a well-characterized yerba mate extract. Toxicol Rep 2024; 12:477-484. [PMID: 38708314 PMCID: PMC11066526 DOI: 10.1016/j.toxrep.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Yerba Mate (Ilex paraguariensis) is historically used as a beverage and its extracts are considered traditional medicine in South America. Extract use has been expanding to North American and European markets and the currently available genetic toxicology literature indicate discrepancies in genotoxicity findings for yerba mate. As botanical extract use expands, assumption in safety should be made with caution assuring a good understanding of the test material characterization. Authoritative agencies suggest a two-step paradigm to investigate genotoxicity, and this was implemented to evaluate the safety of yerba mate hydroxycinnamic acid extract. Four OECD compliant assays were employed: bacterial reverse mutation, in vitro micronucleus and a parallel in vivo micronucleus, and comet assay. No evidence of mutagenicity was observed in the in vitro Ames assay, but the results of an in vitro micronucleus study were inconclusive. However, oral gavage treatment of rats for the in vivo micronucleus and comet assays demonstrated negative findings. The results from this battery of tests, supports that this yerba mate hydroxycinnamic acid extract is not anticipated to pose genotoxicity concerns. A high-level comparison of results to other available genotoxicity literature on yerba mate is presented with emphasis on the importance of identity when drawing conclusions on botanicals.
Collapse
Affiliation(s)
| | | | - P. Heard
- Charles River Laboratories, Skokie, IL, USA
| | - T. Dubnicka
- Charles River Laboratories, Mattawan, MI, USA
| | - N. Choksi
- ToxStrategies – Research Triangle Park, NC, USA
| | - A. Eapen
- Cargill Research and Development – North America, Plymouth, MN, USA
| |
Collapse
|
7
|
Smith-Roe SL, Hobbs CA, Hull V, Todd Auman J, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine Iii CC, Salk JJ, Witt KL. Adopting duplex sequencing technology for genetic toxicity testing: A proof-of-concept mutagenesis experiment with N-ethyl-N-nitrosourea (ENU)-exposed rats. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503669. [PMID: 37770135 PMCID: PMC10539650 DOI: 10.1016/j.mrgentox.2023.503669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays.
Collapse
Affiliation(s)
| | - Cheryl A Hobbs
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - J Todd Auman
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Michael A Streicker
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Miriam V Rivas
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | | | | | | | | | - Kristine L Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC, USA
| |
Collapse
|
8
|
Kayode OT, Bello JA, Oguntola JA, Kayode AAA, Olukoya DK. The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon 2023; 9:e19675. [PMID: 37809920 PMCID: PMC10558944 DOI: 10.1016/j.heliyon.2023.e19675] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/12/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Monosodium glutamate (MSG) is one of the most popular food additives in the world and is often ingested with commercially processed foods. It can be described as a sodium salt of glutamic acid with the IUPAC name - Sodium 2-aminopentanedioate and is ionized by water to produce free sodium ions and glutamic acid. MSG use has significantly increased over the past 30 years, its global demand stands huge at over three million metric tons which is worth over $4.5 billion. Asia was responsible for more than three quarter of world MSG consumption with the country China also leading in global consumption as well as production and export to other countries. Prior to year 2020, global demand for MSG increased by almost four percent each year with the highest significant increase in demand for MSG predicted to rise in Thailand, Indonesia, Vietnam and China, followed by Brazil and Nigeria. However, several researches featured in this review has identified MSG consumption as a major contributor to the development and progression of some metabolic disorders such as obesity, which is a risk factor for other metabolic syndromes like hypertension, diabetes mellitus and cancer initiation. The mechanism by which MSG induce obesity involves induction of hypothalamic lesion, hyperlipidemia, oxidative stress, leptin resistance and increased expression of peroxisome proliferator-activated receptors (PPARs) Gamma and Alpha. Similarly for induction of diabetes mellitus, MSG consumption resulted in decreased pancreatic beta cell mass, increased oxidative stress and metabolic rates, reduced glucose and insulin transport to adipose tissue and skeletal muscles, insulin insensitivity, reduced insulin receptors and induced severe hyperinsulinemia. Dietary salt, an active component of MSG is also found to be a major risk factor for high blood pressure (which may lead to hypertension). MSG is used to enhance the taste of tobacco, causing smokers to consume the product in excess and thereby increasing the risk of cancer development. Depending on the amount consumed, MSG has both positive and negative effects. Despite the controversy surrounding MSG's safety and its probable contribution to risk of development and progression of metabolic disorders, its global consumption is still very high. Therefore, this article will sensitize the public on the need for cautious use of MSG in foods and also aid regulatory agencies to further review the daily MSG consumption limit based on metabolic toxicities observed at the varied dosages reported in this review.
Collapse
Affiliation(s)
- Omowumi T Kayode
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
| | - Jemilat A Bello
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, Lagos State University, Lagos, Nigeria
| | - Jamiu A Oguntola
- Department of Biochemistry, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
- Department of Anatomy, College of Medicine, Lagos State University, Lagos, Nigeria
| | - Abolanle A A Kayode
- Department of Biochemistry, School of Basic Medical Sciences, Babcock University, Ilishan-Remo, Nigeria
| | - Daniel K Olukoya
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City, Nigeria
| |
Collapse
|
9
|
Alias C, Zerbini I, Feretti D. A scoping review of recent advances in the application of comet assay to Allium cepa roots. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:264-281. [PMID: 37235708 DOI: 10.1002/em.22553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The comet assay is a sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Allium cepa is a well-established plant model for toxicological studies. The aim of this scoping review was to investigate the recent application of the comet assay in Allium cepa root cells to assess the genotoxicity. To explore the literature a search was performed selecting articles published between January 2015 and February 2023 from Web of Science, PubMed, and Scopus databases using the combined search terms "Comet assay" and "Allium cepa". All the original articles that applied the comet assay to Allium cepa root cells were included. Of the 334 records initially found, 79 articles were identified as meeting the inclusion criteria. Some studies reported results for two or more toxicants. In these cases, the data for each toxicant were treated separately. Thus, the number of analyzed toxicants (such as chemicals, new materials, and environmental matrices) was higher than the number of selected papers and reached 90. The current use of the Allium-comet assay seems to be directed towards two types of approach: the direct study of the genotoxicity of compounds, mainly biocides (20% of analyzed compounds) and nano- and microparticles (17%), and assessing a treatment's ability to reduce or eliminate genotoxicity of known genotoxicants (19%). Although the genotoxicity identified by the Allium-comet assay is only one piece of a larger puzzle, this method could be considered a useful tool for screening the genotoxic potential of compounds released into the environment.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
10
|
Smith-Roe SL, Hobbs CA, Hull V, Auman JT, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine CC, Salk JJ, Witt KL. Adopting Duplex Sequencing™ Technology for Genetic Toxicity Testing: A Proof-of-Concept Mutagenesis Experiment with N-Ethyl-N-Nitrosourea (ENU)-Exposed Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539833. [PMID: 37214853 PMCID: PMC10197591 DOI: 10.1101/2023.05.08.539833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Duplex sequencing (DuplexSeq) is an error-corrected next-generation sequencing (ecNGS) method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors by comparing grouped strand sequencing reads. The resulting background of less than one artifactual mutation per 10 7 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DuplexSeq-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays. HIGHLIGHTS DuplexSeq is an ultra-accurate NGS technology that directly quantifies mutationsENU-dependent mutagenesis was detected 24 h post-exposure in proliferative tissuesMultiple tissues exhibited the canonical ENU mutation spectrum 7 d after exposureResults obtained with DuplexSeq were highly concordant between laboratoriesThe Rat-50 Mutagenesis Assay is promising for applications in genetic toxicology.
Collapse
Affiliation(s)
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - J. Todd Auman
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Michael A. Streicker
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Miriam V. Rivas
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | | | | | | | | | | | | | | | | | - Kristine L. Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC
| |
Collapse
|
11
|
Dirven Y, Eide DM, Henriksson EW, Hjorth R, Sharma AK, Graupner A, Brunborg G, Ballangby J, Boisen AMZ, Swedmark S, Gützkow KB, Olsen AK. Assessing testicular germ cell DNA damage in the comet assay; introduction of a proof-of-concept. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:88-104. [PMID: 36629742 DOI: 10.1002/em.22527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The in vivo comet assay is widely used to measure genotoxicity; however, the current OECD test guideline (TG 489) does not recommend using the assay to assess testicular germ cells, due to the presence of testicular somatic cells. An adapted approach to specifically assess testicular germ cells within the comet assay is certainly warranted, considering regulatory needs for germ cell-specific genotoxicity data in relation to the increasing global production of and exposure to potentially hazardous chemicals. Here, we provide a proof-of-concept to selectively analyze round spermatids and primary spermatocytes, distinguishing them from other cells of the testicle. Utilizing the comet assay recordings of DNA content (total fluorescence intensity) and DNA damage (% tail intensity) of individual comets, we developed a framework to distinguish testicular cell populations based on differences in DNA content/ploidy and appearance. Haploid round spermatid comets are identified through (1) visual inspection of DNA content distributions, (2) setting DNA content thresholds, and (3) modeling DNA content distributions using a normal mixture distribution function. We also describe an approach to distinguish primary spermatocytes during comet scoring, based on their high DNA content and large physical size. Our concept allows both somatic and germ cells to be analyzed in the same animal, adding a versatile, sensitive, rapid, and resource-efficient assay to the limited genotoxicity assessment toolbox for germ cells. An adaptation of TG 489 facilitates accumulation of valuable information regarding distribution of substances to germ cells and their potential for inducing germ cell gene mutations and structural chromosomal aberrations.
Collapse
Affiliation(s)
- Yvette Dirven
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Dag Markus Eide
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Erika Witasp Henriksson
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Proposals for Classification and Restriction, Sundbyberg, Sweden
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Evaluation of Substances, Sundbyberg, Sweden
| | - Rune Hjorth
- The Danish Environmental Protection Agency, Odense, Denmark
| | - Anoop Kumar Sharma
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Anne Graupner
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Jarle Ballangby
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | | | - Stellan Swedmark
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Evaluation of Substances, Sundbyberg, Sweden
| | - Kristine Bjerve Gützkow
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Ann-Karin Olsen
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| |
Collapse
|
12
|
Han M, Zhang Z, Liu S, Sheng Y, Waigi MG, Hu X, Qin C, Ling W. Genotoxicity of organic contaminants in the soil: A review based on bibliometric analysis and methodological progress. CHEMOSPHERE 2023; 313:137318. [PMID: 36410525 DOI: 10.1016/j.chemosphere.2022.137318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Organic contaminants (OCs) are ubiquitous in the environment, posing severe threats to human health and ecological balance. In particular, OCs and their metabolites could interact with genetic materials to induce genotoxicity, which has attracted considerable attention. In this review, bibliometric analysis was executed to analyze the publications on the genotoxicity of OCs in soil from 1992 to 2021. The result indicated that significant contributions were made by China and the United States in this field and the research hotspots were biological risks, damage mechanisms, and testing methods. Based on this, in this review, we summarized the manifestations and influencing factors of genotoxicity of OCs to soil organisms, the main damage mechanisms, and the most commonly utilized testing methods. OCs can induce genotoxicity and the hierarchical response of soil organisms, which could be influenced by the physicochemical properties of OCs and the properties of soil. Specific mechanisms of genotoxicity can be classified into DNA damage, epigenetic toxicity, and chromosomal aberrations. OCs with different molecular weights lead to genetic material damage by inducing the generation of ROS or forming adducts with DNA, respectively. The micronucleus test and the comet test are the most commonly used testing methods. Moreover, this review also pointed out that future studies should focus on the relationships between bioaccessibilities and genotoxicities, transcriptional regulatory factors, and potential metabolites of OCs to elaborate on the biological risks and mechanisms of genotoxicity from an overall perspective.
Collapse
Affiliation(s)
- Miao Han
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zaifeng Zhang
- Jiangsu Province Nantong Environmental Monitoring Center, Nantong 226006, PR China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Youying Sheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
13
|
Wang P, Wan D, Peng T, Yang Y, Wen X, Yan X, Xia J, Zhu Q, Yu P, Gong D, Zeng Z. Acute Oral Toxicity and Genotoxicity Test and Evaluation of Cinnamomum camphora Seed Kernel Oil. Foods 2023; 12:293. [PMID: 36673385 PMCID: PMC9857420 DOI: 10.3390/foods12020293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Cinnamomum camphora seed kernel oil (CCSKO) is one of the important natural medium chain triglycerides (MCT) resources, with more than 95.00% of medium chain fatty acids found in the world, and has various physiological effects. However, CCSKO has not been generally recognized as a safe oil or new food resource yet. The acute oral toxicity test and a standard battery of genotoxicity tests (mammalian erythrocyte micronucleus test, Ames test, and in vitro mammalian cell TK gene mutation test) of CCSKO as a new edible plant oil were used in the study. The results of the acute oral toxicity test showed that CCSKO was preliminary non-toxic, with an LD50 value higher than 21.5 g/kg body weight. In the mammalian erythrocyte micronucleus test, there was no concentration-response relationship between the dose of CCSKO and micronucleus value in polychromatic erythrocytes compared to the negative control group. No genotoxicity was observed in the Ames test in the presence or absence of S9 at 5000 μg/mL. In vitro mammalian cell TK gene mutation test showed that CCSKO did not induce in vitro mammalian cell TK gene mutation in the presence or absence of S9 at 5000 μg/mL. These results indicated that CCSKO is a non-toxic natural medium-chain oil.
Collapse
Affiliation(s)
- Pengbo Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Dongman Wan
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Ting Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Yujing Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xuefang Wen
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Xianghui Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qingwen Zhu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ping Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- New Zealand Institute of Natural Medicine Research, 8 Ha Crescent, Auckland 2104, New Zealand
| | - Zheling Zeng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang 330031, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
14
|
Toman R, Psenkova M, Tancin V, Miskeje M. Mutagens in raw ewe milk in Orava region, northern Slovakia: metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62259-62271. [PMID: 35604602 DOI: 10.1007/s11356-022-20871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The aim of this work was to determine the concentrations of selected mutagenic elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Se) in raw ewe milk from undisturbed environment in Orava region, northern Slovakia. There are possible sources of some of the analyzed metals which may be distributed from the metallurgical plants located in the Ostrava region, Czech Republic, and Katowice, Poland. In total, forty milk samples were analyzed in June and August using an inductively coupled plasma optical emission spectrometry. The differences in elements concentrations between the seasonal periods were not significant except of iron (p < 0.0001). The concentrations of most of the metals in ewe milk were low and under the permissible or recommended limits. However, arsenic and selenium concentrations were elevated and could pose a risk of the mutagenic effect, particularly in children. The frequency of element occurrence in June was as follows: Se > Fe > As > Cu > Mn > Ni > Co > Pb > Cr > Cd, and in August: Se > Fe = As > Cu > Mn > Pb > Co > Ni > Cr > Cd. The correlation analysis revealed very strong positive correlation between Cu:Pb (p < 0.05), very strong negative correlation between Fe:Se (p < 0.05). The strong correlations were also found between other elements. The present study showed that milk produced in the relatively undisturbed environment might contain various mutagenic elements. The relationships between the elements might result in the additive or synergistic effects of elements and increase the risk of their mutagenic effects even in low concentrations. Therefore, attention must be paid to the monitoring of metals in the areas where food sources destined especially for child nutrition are produced.
Collapse
Affiliation(s)
- Robert Toman
- Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic.
| | - Martina Psenkova
- Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Vladimir Tancin
- Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| | - Michal Miskeje
- Slovak University of Agriculture, Tr. A. Hlinku 2, 94976, Nitra, Slovak Republic
| |
Collapse
|
15
|
A State-of-the-Art Review on the Alternatives to Animal Testing for the Safety Assessment of Cosmetics. COSMETICS 2022. [DOI: 10.3390/cosmetics9050090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Almost a decade after the stipulated deadline in the 7th amendment to the EU Cosmetics Directive, which bans the marketing of animal-tested cosmetics in the EU from 2013, animal experimentation for cosmetic-related purposes remains a topic of animated debate. Cosmetic industry continues to be scrutinised for the practice, despite its leading role in funding and adopting innovation in this field. This paper aims to provide a state-of-the-art review of the field on alternative testing methods, also known as New Approach Methodologies (NAMs), with the focus on assessing the safety of cosmetic ingredients and products. It starts with innovation drivers and global regulatory responses, followed by an extensive, endpoint-specific overview of accepted/prospective NAMs. The overview covers main developments in acute toxicity, skin corrosion/irritation, serious eye damage/irritation, skin sensitisation, repeated dose toxicity, reproductive toxicity/endocrine disruption, mutagenicity/genotoxicity, carcinogenicity, photo-induced toxicity, and toxicokinetics. Specific attention was paid to the emerging in silico methodology. This paper also provides a brief overview of the studies on public perception of animal testing in cosmetics. It concludes with a view that educating consumers and inviting them to take part in advocacy could be an effective tool to achieve policy changes, regulatory acceptance, and investment in innovation.
Collapse
|
16
|
Saxena S, Gautam S. Molecular events confirming antimutagenicity to abscisic acid derived from a floral honey establishing its functional relevance. Heliyon 2022; 8:e09945. [PMID: 35874072 PMCID: PMC9305366 DOI: 10.1016/j.heliyon.2022.e09945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Natural dietary products of health promoting and disease preventive functional relevance are gaining significant prominence. Current investigation was aimed to decipher the underlying molecular mechanism responsible for the antimutagenic action contributing to functional relevance of floral honey (‘Pongammia pinnata’, Karanj honey) derived abscisic acid (ABA) against ethyl methanesulfonate (EMS) induced mutagenesis. Differential expression of proteins under different treatment conditions was ascertained by 2D gel electrophoresis. Selectively up-regulated characterized using MALDI-TOF MS/MS were identified as polyribonucleotide nucleotidyl transferse (PNPase), LPS-assembly lipoprotein (LptE), Outer membrane Usher protein (HtrE), ATP-dependent DNA helicase (RecG), and Phosphomethyl pyrimidine synthase (ThiC). Antimutagenicity exerted by ABA against EMS was ∼78% in wild type E. coli MG1655 strain however, in E. coli MG1655 ΔthiC, ΔpnpA, ΔrecG, and ΔhtrE this activity was found to be ∼60, 10, 9 and 10%, respectively. Proteomic analysis and antimutagenicity studies using E. coli single gene knockout strains thus indicated about the possible role of thiC, htrE, lptE, recG and pnp in observed antimutagenicity. Cyclic voltametry as well as competition kinetics through pulse radiolysis confirmed lack of antioxidant capacity in abscisic acid apparently ruling out the possibility of scavenging of electrophilic intermediates generated by ethyl methanesulfonate. It is proposed that ABA is exerting antimutagenicity through its involvement at the cellular level leading to physiological adaptation, strengthening of cell wall proteins and up-regulation of the repair proteins. This study provides a novel dimension to the functional role of abscisic acid from its nutraceutical perspective. Molecular mechanism of purified abscisic acid from Pongammia pinnata honey studied. Differential protein expression observed against induced mutagenesis. Gene knock-out strains validated functionality of up-regulated proteins. Pulse radiolysis and cyclic voltametry confirmed no role of antioxidant activity. Abscisic acid is acting at cellular level in conferring protection against mutagen.
Collapse
Affiliation(s)
- Sudhanshu Saxena
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
17
|
Grover A, Sinha R, Jyoti D, Faggio C. Imperative role of electron microscopy in toxicity assessment: A review. Microsc Res Tech 2022; 85:1976-1989. [PMID: 34904321 DOI: 10.1002/jemt.24029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Electron microscope (EM) was developed in 1931 and since then microscopical examination of both the biological and non-biological samples has been revolutionized. Modifications in electron microscopy techniques, such as scanning EM and transmission EM, have widened their applicability in the various sectors such as understanding of drug toxicity, development of mechanism, criminal site investigation, and characterization of the nano-molecule. The present review summarizes its role in important aspects such as toxicity assessment and disease diagnosis in special reference to SARS-COV2. In the biological system, EM studies have elucidated the impact of toxicants at the ultra-structural level in various tissue in conformity to physiological alterations. Thus, EM can be concluded as an important tool in toxicity assessment and disease prognosis.
Collapse
Affiliation(s)
- Aseem Grover
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Reshma Sinha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, India
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
18
|
Li H, Lin X, Yu L, Li J, Miao Z, Wei Y, Zeng J, Zhang Q, Sun Y, Huang R. Comprehensive characterization of the bacterial community structure and metabolite composition of food waste fermentation products via microbiome and metabolome analyses. PLoS One 2022; 17:e0264234. [PMID: 35290990 PMCID: PMC9048815 DOI: 10.1371/journal.pone.0264234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/06/2022] [Indexed: 11/25/2022] Open
Abstract
Few studies have characterized the microbial community and metabolite profile of solid food waste fermented products from centralized treatment facilities, which could potentially be processed into safe animal feeds. In this study, 16S rRNA gene sequencing and liquid/gas chromatography-mass spectrometry were conducted to investigate the bacterial community structure and metabolite profile of food waste samples inoculated with or without 0.18% of a commercial bacterial agent consisting of multiple unknown strains and 2% of a laboratory-made bacterial agent consisting of Enterococcus faecalis, Bacillus subtilis and Candida utilis. Our findings indicated that microbial inoculation increased the crude protein content of food waste while reducing the pH value, increasing lactic acid production, and enhancing aerobic stability. Microbial inoculation affected the community richness, community diversity, and the microbiota structure (the genera with abundances above 1.5% in the fermentation products included Lactobacillus (82.28%) and Leuconostoc (1.88%) in the uninoculated group, Lactobacillus (91.85%) and Acetobacter (2.01%) in the group inoculated with commercial bacterial agents, and Lactobacillus (37.11%) and Enterococcus (53.81%) in the group inoculated with homemade laboratory agents). Microbial inoculation reduced the abundance of potentially pathogenic bacteria. In the metabolome, a total of 929 substances were detected, 853 by LC-MS and 76 by GC-MS. Our results indicated that inoculation increased the abundance of many beneficial metabolites and aroma-conferring substances but also increased the abundance of undesirable odors and some harmful compounds such as phenol. Correlation analyses suggested that Leuconostoc, Lactococcus, and Weissella would be promising candidates to improve the quality of fermentation products. Taken together, these results indicated that inoculation could improve food waste quality to some extent; however, additional studies are required to optimize the selection of inoculation agents.
Collapse
Affiliation(s)
- Hongmei Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University,
Guangzhou, China
| | - Xiaoyang Lin
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Lujun Yu
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Zongyu Miao
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yuanzheng Wei
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jin Zeng
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Qi Zhang
- Shenzhen Teng Lang Renewable Resource Development Co., Ltd, Shenzhen,
China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University,
Guangzhou, China
| | - Ren Huang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong
Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
19
|
Shuliakevich A, Muz M, Oehlmann J, Nagengast L, Schröder K, Wolf Y, Brückner I, Massei R, Brack W, Hollert H, Schiwy S. Assessing the genotoxic potential of freshwater sediments after extensive rain events - Lessons learned from a case study in an effluent-dominated river in Germany. WATER RESEARCH 2022; 209:117921. [PMID: 34923444 DOI: 10.1016/j.watres.2021.117921] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Wastewater treatment plant effluents and releases from rainwater overflow basins can contribute to the input of genotoxic micropollutants in aquatic ecosystems. Predominantly lipophilic genotoxic compounds tend to sorb to particulate matter, making sediment a source and a sink of pollution. Therefore, the present study aims to investigate the genotoxic potential of freshwater sediments (i) during the dry period and (ii) after extensive rain events by collecting sediment samples in one small anthropogenically impacted river in Germany up- and downstream of the local wastewater treatment plant. The Micronucleus and Ames fluctuation assays with Salmonella typhimurium strains TA98, TA100, YG1041, and YG1042 were used to assess the genotoxic potential of organic sediment extracts. For evaluation of possible genotoxicity drivers, target analysis for 168 chemical compounds was performed. No clastogenic effects were observed, while the genotoxic potential was observed at all sampling sites primarily driven by polycyclic aromatic hydrocarbons, nitroarenes, aromatic amines, and polycyclic heteroarenes. Freshwater sediments' genotoxic potential increased after extensive rain events due to sediment perturbation and the rainwater overflow basin release. In the present study, the rainwater overflow basin was a significant source for particle-bound pollutants from untreated wastewater, suggesting its role as a possible source of genotoxic potential. The present study showed high sensitivity and applicability of the bacterial Salmonella typhimurium strains YG1041 and YG1042 to organic sediment extracts to assess the different classes of genotoxic compounds. A combination of effect-based methods and a chemical analysis was shown as a suitable tool for a genotoxic assessment of freshwater sediments.
Collapse
Affiliation(s)
- Aliaksandra Shuliakevich
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Melis Muz
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| | - Laura Nagengast
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Katja Schröder
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Yvonne Wolf
- RWTH Aachen University, Institute of Biology V, Worringerweg 1, 52074 Aachen, Germany
| | - Ira Brückner
- Eifel-Rur Waterboard (WVER), Eisenbahnstr. 5, 52354 Düren, Germany
| | - Riccardo Massei
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany; Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany.
| | - Sabrina Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt/Main, Max-von-Laue-Strasse 13, 60438 Frankfurt/Main, Germany
| |
Collapse
|
20
|
Patlewicz G, Dean JL, Gibbons CF, Judson RS, Keshava N, Vegosen L, Martin TM, Pradeep P, Simha A, Warren SH, Gwinn MR, DeMarini DM. Integrating publicly available information to screen potential candidates for chemical prioritization under the Toxic Substances Control Act: A proof of concept case study using genotoxicity and carcinogenicity. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20:1-100185. [PMID: 35128218 PMCID: PMC8809402 DOI: 10.1016/j.comtox.2021.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Toxic Substances Control Act (TSCA) became law in the U.S. in 1976 and was amended in 2016. The amended law requires the U.S. EPA to perform risk-based evaluations of existing chemicals. Here, we developed a tiered approach to screen potential candidates based on their genotoxicity and carcinogenicity information to inform the selection of candidate chemicals for prioritization under TSCA. The approach was underpinned by a large database of carcinogenicity and genotoxicity information that had been compiled from various public sources. Carcinogenicity data included weight-of-evidence human carcinogenicity evaluations and animal cancer data. Genotoxicity data included bacterial gene mutation data from the Salmonella (Ames) and Escherichia coli WP2 assays and chromosomal mutation (clastogenicity) data. Additionally, Ames and clastogenicity outcomes were predicted using the alert schemes within the OECD QSAR Toolbox and the Toxicity Estimation Software Tool (TEST). The evaluation workflows for carcinogenicity and genotoxicity were developed along with associated scoring schemes to make an overall outcome determination. For this case study, two sets of chemicals, the TSCA Active Inventory non-confidential portion list available on the EPA CompTox Chemicals Dashboard (33,364 chemicals, 'TSCA Active List') and a representative proof-of-concept (POC) set of 238 chemicals were profiled through the two workflows to make determinations of carcinogenicity and genotoxicity potential. Of the 33,364 substances on the 'TSCA Active List', overall calls could be made for 20,371 substances. Here 46.67%% (9507) of substances were non-genotoxic, 0.5% (103) were scored as inconclusive, 43.93% (8949) were predicted genotoxic and 8.9% (1812) were genotoxic. Overall calls for genotoxicity could be made for 225 of the 238 POC chemicals. Of these, 40.44% (91) were non-genotoxic, 2.67% (6) were inconclusive, 6.22% (14) were predicted genotoxic, and 50.67% (114) genotoxic. The approach shows promise as a means to identify potential candidates for prioritization from a genotoxicity and carcinogenicity perspective.
Collapse
Affiliation(s)
- Grace Patlewicz
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Jeffry L. Dean
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Catherine F. Gibbons
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nagalakshmi Keshava
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Leora Vegosen
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Todd M. Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Prachi Pradeep
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Anita Simha
- ORAU, contractor to U.S. Environmental Protection Agency through the National Student Services Contract, Research Triangle Park, North Carolina, USA
| | - Sarah H. Warren
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Maureen R. Gwinn
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David M. DeMarini
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
21
|
Ramesh P, Veerappapillai S. Prediction of Micronucleus Assay Outcome Using In Vivo Activity Data and Molecular Structure Features. Appl Biochem Biotechnol 2021; 193:4018-4034. [PMID: 34669110 DOI: 10.1007/s12010-021-03720-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
In vivo micronucleus assay is the widely used genotoxic test to determine the extent of chromosomal aberrations caused by the chemicals in human beings, which plays a significant role in the drug discovery paradigm. To reduce the uncertainties of the in vivo experiments and the expenses, we intended to develop novel machine learning-based tools to predict the toxicity of the compounds with high precision. A total of 372 compounds with known toxicity information were retrieved from the PubChem Bioassay database and literature. The fingerprints and descriptors of the compounds were generated using PaDEL and ChemSAR, respectively, for the analysis. The performance of the models was assessed using the three tires of evaluation strategies such as fivefold, tenfold, and validation by external dataset. Further, structural alerts causing genotoxicity of the compounds were identified using SARpy method. Of note, fingerprint-based random forest model built in our analysis is able to demonstrate the highest accuracy of about 0.97 during tenfold cross-validation. In essence, our study highlights that structural alerts such as chlorocyclohexane and trimethylamine are likely to be the leading cause of toxicity in humans. Indeed, we believe that random forest model generated in this study is appropriate for reduction of test animals and should be considered in the future for the good practice of animal welfare.
Collapse
Affiliation(s)
- Priyanka Ramesh
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
22
|
Kocaman AY, Asfuroğlu K. The genotoxic effects of perchloroethylene in human peripheral blood lymphocytes and the possible ameliorative role of α-tocopherol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39576-39586. [PMID: 33763835 DOI: 10.1007/s11356-021-13523-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Perchloroethylene (PCE), also known as tetrachloroethylene, is a commercially important chlorinated solvent commonly used in dry cleaning, textile processing, and metal degreasing industries. According to the available studies, the potential genotoxic impacts of this chlorinated solvent on human beings are still controversial. The present work was carried out to determine the genotoxic effects of PCE on human peripheral blood lymphocytes (PBLs) using chromosome aberrations (CAs) and cytokinesis-block micronucleus (CBMN) tests. Additionally, the antigenotoxic potential of α-tocopherol (α-Toc), a well-known antioxidant agent, on human lymphocytes treated with PCE in vitro was assessed. The cells were exposed for 48 h to PCE (25, 50, 100, and 150 μg/mL) alone as well as in combination with α-Toc (100 μg/mL). The findings of the study suggested that, relative to solvent control, PCE significantly increased the structural CA and MN formation for all concentrations. However, simultaneous treatment of PCE and α-Toc caused a significant reduction of CAs and MNi as compared to cultures treated with PCE alone. Besides, the results showed that PCE has cytotoxic effects on human PBLs as indicated by the significant decrease in mitotic index (MI) and nuclear division index (NDI). Nevertheless, the co-treatment of α-Toc with PCE did not reduce the cytotoxicity of PCE at a significant level. In conclusion, it can be suggested that PCE is genotoxic and cytotoxic in human PBLs, and α-Toc has an antigenotoxic effect on PCE-induced genotoxicity but has no significant effect on the cytotoxicity triggered by PCE.
Collapse
Affiliation(s)
- Ayşe Yavuz Kocaman
- Department of Biology, Faculty of Sciences and Letters, Hatay Mustafa Kemal University, 31000, Antakya, Hatay, Turkey.
| | - Kübra Asfuroğlu
- Basic and Applied Sciences Institute, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| |
Collapse
|
23
|
EFSA Scientific Committee, More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano (deceased) V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J, Schoonjans R. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J 2021; 19:e06768. [PMID: 34377190 PMCID: PMC8331059 DOI: 10.2903/j.efsa.2021.6768] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.
Collapse
|
24
|
Masumura K, Ando T, Ukai A, Fujiwara S, Yokose S, You X, Suzuki T, Hayashi H, Nohmi T, Takagi H, Honma M. New homozygous gpt delta transgenic rat strain improves an efficiency of the in vivo mutagenicity assay. Genes Environ 2021; 43:25. [PMID: 34158118 PMCID: PMC8220708 DOI: 10.1186/s41021-021-00195-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/27/2021] [Indexed: 02/22/2023] Open
Abstract
Background Gene mutation assays in transgenic rodents are useful tools to investigate in vivo mutagenicity in a target tissue. Using a lambda EG10 transgene containing reporter genes, gpt delta transgenic mice and rats have been developed to detect point mutations and deletions. The transgene is integrated in the genome and can be rescued through an in vitro packaging reaction. However, the packaging efficiency is lower in gpt delta rats than in mice, because of the transgene in gpt delta rats being heterozygous and in low copy number. To improve the packaging efficiency, we herein describe a newly developed homozygous gpt delta rat strain. Results The new gpt delta rat has a Wistar Hannover background and has been successfully maintained as homozygous for the transgene. The packaging efficiency in the liver was 4 to 8 times higher than that of existing heterozygous F344 gpt delta rats. The frequency of gpt point mutations significantly increased in the liver and bone marrow of N-nitroso-N-ethylurea (ENU)- and benzo[a]pyrene (BaP)-treated rats. Spi− deletion frequencies significantly increased in the liver and bone marrow of BaP-treated rats but not in ENU-treated rats. Whole genome sequencing analysis identified ≥ 30 copies of lambda EG10 transgenes integrated in rat chromosome 1. Conclusions The new homozygous gpt delta rat strain showed a higher packaging efficiency, and could be useful for in vivo gene mutation assays in rats. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00195-1.
Collapse
Affiliation(s)
- Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Tomoko Ando
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Akiko Ukai
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Sho Fujiwara
- Biotechnical Center, Japan SLC, Inc., 3-5-1, Aoihigashi, Naka-ku, Hamamatsu-shi, Shizuoka, 433-8114, Japan
| | - Shigeo Yokose
- Biotechnical Center, Japan SLC, Inc., 3-5-1, Aoihigashi, Naka-ku, Hamamatsu-shi, Shizuoka, 433-8114, Japan
| | - Xinyue You
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, 210-9501, Kawasaki-shi, Kanagawa, Japan.,School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Takayoshi Suzuki
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Hiroyuki Hayashi
- Biologics Business Planning & Operation Dept, Meiji Seika Pharma Co., Ltd, 2-4-16 Kyobashi Chuo- ku, Tokyo, 104-8002, Japan
| | - Takehiko Nohmi
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Hisayoshi Takagi
- Biotechnical Center, Japan SLC, Inc., 3-5-1, Aoihigashi, Naka-ku, Hamamatsu-shi, Shizuoka, 433-8114, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
25
|
Silva BO, Orlando JB, Pires CL, Hiruma-Lima CA, de Mascarenhas Gaivão I, Perazzo FF, Maistro EL. Genotoxicity induced by nerol, an essential oil present in citric plants using human peripheral blood mononuclear cells (PBMC) and HepG2/C3A cells as a model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:518-528. [PMID: 33761836 DOI: 10.1080/15287394.2021.1902443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) is a monoterpene widely used in cosmetic products, household detergents and cleaners, as well as a flavoring in several food products. Despite the high level of human exposure to nerol, an absence of studies regarding potential genetic toxicity in human cells exists. The aim of this investigation was to examine the cytotoxic and genotoxic potential of this monoterpene on human peripheral blood mononuclear cells as well as hepatic metabolizing HepG2/C3A human cell line. Cytotoxicity was assessed using trypan blue staining and MTT assay while genotoxicity was determined utilizing the comet and micronucleus test. Cytotoxicity tests showed cell viability greater than 70% for concentrations between 2.5 and 500 µg/ml. Both cell types exhibited significant DNA damage and chromosomal mutations after medium and high concentration incubation with nerol indicating that the safety of use of this monoterpene in various formulations to which humans are exposed needs to be monitored and requires more comprehensive investigations.
Collapse
Affiliation(s)
- Brian Ogushi Silva
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
| | - Juliana Botinhon Orlando
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
| | - Camila Lehnhardt Pires
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| | - Clélia Akiko Hiruma-Lima
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| | - Isabel de Mascarenhas Gaivão
- Department of Genetics and Biotechnology and Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Fábio Ferreira Perazzo
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Diadema, Brazil
| | - Edson Luis Maistro
- Speech and Hearing Therapy Department, São Paulo State University - UNESP - Faculty of Philosophy and Sciences, Marília, Brazil
- Programa De Pós-Graduação Em Biologia Geral E Aplicada - São Paulo State University (UNESP), Instituto De Biociências, Botucatu, Brazil
| |
Collapse
|
26
|
Proctor DM, Bhat V, Suh M, Reichert H, Jiang X, Thompson CM. Inhalation cancer risk assessment for environmental exposure to hexavalent chromium: Comparison of margin-of-exposure and linear extrapolation approaches. Regul Toxicol Pharmacol 2021; 124:104969. [PMID: 34089813 DOI: 10.1016/j.yrtph.2021.104969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Hexavalent chromium [Cr(VI)] exists in the ambient air at low concentrations (average upperbound ~0.1 ng/m3) yet airborne concentrations typically exceed EPA's Regional Screening Level for residential exposure (0.012 ng/m3) and other similar benchmarks, which assume a mutagenic mode of action (MOA) and use low-dose linear risk assessment models. We reviewed Cr(VI) inhalation unit risk estimates developed by researchers and regulatory agencies for environmental and occupational exposures and the underlying epidemiologic data, updated a previously published MOA analysis, and conducted dose-response modeling of rodent carcinogenicity data to evaluate the need for alternative exposure-response data and risk assessment approaches. Current research supports the role of non-mutagenic key events in the MOA, with growing evidence for epigenetic modifiers. Animal data show a weak carcinogenic response, even at cytotoxic exposures, and highlight the uncertainties associated with the current epidemiological data used in risk assessment. Points of departure from occupational and animal studies were used to determine margins of exposure (MOEs). MOEs range from 1.5 E+3 to 3.3 E+6 with a median of 5 E+5, indicating that current environmental exposures to Cr(VI) in ambient air should be considered of low concern. In this comprehensive review, the divergent results from default linear and MOE assessments support the need for more relevant and robust epidemiologic data, additional mechanistic studies, and refined risk assessment strategies.
Collapse
Affiliation(s)
- Deborah M Proctor
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA.
| | | | - Mina Suh
- ToxStrategies, Inc, 27001 La Paz Rd, Suite 260, Mission Viejo, CA, 92691, USA
| | | | | | | |
Collapse
|
27
|
Zani C, Donato F, Ceretti E, Pedrazzani R, Zerbini I, Gelatti U, Feretti D. Genotoxic Activity of Particulate Matter and In Vivo Tests in Children Exposed to Air Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105345. [PMID: 34067860 PMCID: PMC8156021 DOI: 10.3390/ijerph18105345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022]
Abstract
The aim of this paper was to investigate the relationship between micronuclei and DNA damage in children's buccal mucosa cells and the genotoxicity and mutagenicity of the different sized fractions of particulate matter as well as the concentration of PAHs (polycyclic aromatic hydrocarbons) and metals in particulate matter. Air particulate matter was collected by high volume samplers located near the schools attended by the children on the same days of biological samplings. The mutagenic activity was assessed in different cells in in vitro tests (Ames test on bacteria and comet test on leukocytes). Our study showed weak positive correlations between (a) the mutagenicity of the PM0.5 fraction and PAHs and (b) the micronuclei test of children's buccal cells and PAHs detected in PM0.5 and PM0.5-3 fractions. A positive correlation was also found between in vitro comet test on leukocytes and PAHs in the PM3-10 fraction. No correlation was observed for metal concentrations in each PM fraction.
Collapse
Affiliation(s)
- Claudia Zani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| | - Francesco Donato
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
- Correspondence: ; Tel.: +39-030-3717689
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| | - Roberta Pedrazzani
- Department of Mechanical and Industrial Engineering, University of Brescia, 38 via Branze, 25123 Brescia, Italy;
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| | - Umberto Gelatti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| |
Collapse
|
28
|
Pradeep P, Judson R, DeMarini DM, Keshava N, Martin TM, Dean J, Gibbons CF, Simha A, Warren SH, Gwinn MR, Patlewicz G. Evaluation of Existing QSAR Models and Structural Alerts and Development of New Ensemble Models for Genotoxicity Using a Newly Compiled Experimental Dataset. ACTA ACUST UNITED AC 2021; 18. [PMID: 34504984 DOI: 10.1016/j.comtox.2021.100167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Regulatory agencies world-wide face the challenge of performing risk-based prioritization of thousands of substances in commerce. In this study, a major effort was undertaken to compile a large genotoxicity dataset (54,805 records for 9299 substances) from several public sources (e.g., TOXNET, COSMOS, eChemPortal). The names and outcomes of the different assays were harmonized, and assays were annotated by type: gene mutation in Salmonella bacteria (Ames assay) and chromosome mutation (clastogenicity) in vitro or in vivo (chromosome aberration, micronucleus, and mouse lymphoma Tk +/- assays). This dataset was then evaluated to assess genotoxic potential using a categorization scheme, whereby a substance was considered genotoxic if it was positive in at least one Ames or clastogen study. The categorization dataset comprised 8442 chemicals, of which 2728 chemicals were genotoxic, 5585 were not and 129 were inconclusive. QSAR models (TEST and VEGA) and the OECD Toolbox structural alerts/profilers (e.g., OASIS DNA alerts for Ames and chromosomal aberrations) were used to make in silico predictions of genotoxicity potential. The performance of the individual QSAR tools and structural alerts resulted in balanced accuracies of 57-73%. A Naïve Bayes consensus model was developed using combinations of QSAR models and structural alert predictions. The 'best' consensus model selected had a balanced accuracy of 81.2%, a sensitivity of 87.24% and a specificity of 75.20%. This in silico scheme offers promise as a first step in ranking thousands of substances as part of a prioritization approach for genotoxicity.
Collapse
Affiliation(s)
- Prachi Pradeep
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Richard Judson
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David M DeMarini
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nagalakshmi Keshava
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Todd M Martin
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jeffry Dean
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Catherine F Gibbons
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Anita Simha
- ORAU, contractor to U.S. Environmental Protection Agency through the National Student Services Contract, Research Triangle Park, North Carolina, USA
| | - Sarah H Warren
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Maureen R Gwinn
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
29
|
Gao L, Schäfer C, O'Reardon K, Gorgus E, Schulte-Hubbert R, Schrenk D. The mutagenic potency of onion juice vs. its contents of quercetin and rutin. Food Chem Toxicol 2020; 148:111923. [PMID: 33316355 DOI: 10.1016/j.fct.2020.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
In spite of its considerable value as a predictor of in vivo genotoxicity and even for carcinogenicity, false positive cases were reported for the Ames test, e.g., with a number of natural food constituents. Here we analyzed the effects of juice of Allium cepa, the common onion, a staple food and traditional remedy used in many civilizations, in the Ames fluctuation assay. We could find mild mutagenicity with an onion juice extract in Salmonella typhimurium strains TA98 and TA100, the latter being less sensitive towards the extract. Mutagenicity was not influenced markedly by the presence of rat liver S9 mix. Onion juice also exerted some toxicity to the bacteria in the same concentration range. Comparative studies with quercetin and rutin, major flavonoid glycosides in onions, revealed a mutagenic potency of quercetin with an EC50-value of 4 μM in TA98. The contents of quercetin and rutin in onion juice were determined as 0.71 ± 0.20, and 0.71 ± 0.21 mg/kg. Calculations of quercetin and rutin concentrations in mutagenic dilutions revealed that both compounds are highly unlikely to cause the mutagenic effects of onion juice and that other yet undefined constituents must be responsible for these effects.
Collapse
Affiliation(s)
- Lan Gao
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Christine Schäfer
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Katja O'Reardon
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Eva Gorgus
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ruth Schulte-Hubbert
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
| |
Collapse
|
30
|
Lent EM, Sussan TE, Leach GJ, Johnson MS. Using Evidence Integration Techniques in the Development of Health-Based Occupational Exposure Levels. Int J Toxicol 2020; 40:178-195. [PMID: 33297815 DOI: 10.1177/1091581820970494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of toxicology-based criteria such as occupational exposure levels (OELs) are rarely straightforward. This process requires a rigorous review of the literature, searching for patterns in toxicity, biological plausibility, coherence, and dose-response relationships. Despite the direct applicability, human data are rarely used primarily because of imprecise exposure estimates, unknown influence of assumptions, and confounding factors. As a result, high reliance is often placed on laboratory animal data. Often, data from a single study is typically used to represent an entire database to extrapolate an OEL, even for data-rich compounds. Here we present a holistic framework for evaluating epidemiological, controlled in vivo, mechanistic/in vitro, and computational evidence that can be useful in deriving OELs. It begins with describing a documented review process of the literature, followed by sorting of data into either controlled laboratory in vivo, in silico/read-across, mechanistic/in vitro, or epidemiological/field data categories. Studies are then evaluated and qualified based on rigor, risk of bias, and applicability for point of departure development. Other data (eg, in vitro, in silico estimates, read-across data and mechanistic information, and data that failed to meet the former criteria) are used alongside qualified epidemiological exposure estimates to help inform points of departure or human-equivalent concentrations that are based on toxic end points. Bayesian benchmark dose methods are used to estimate points of departure and for estimating uncertainty factors (UFs) to develop preliminary OELs. These are then compared with epidemiological data to support the OEL and the use and magnitude of UFs, when appropriate.
Collapse
Affiliation(s)
- Emily May Lent
- US Army Public Health Center, Toxicology Directorate, Aberdeen Proving Ground, MD, USA
| | - Thomas E Sussan
- US Army Public Health Center, Toxicology Directorate, Aberdeen Proving Ground, MD, USA
| | | | - Mark S Johnson
- US Army Public Health Center, Toxicology Directorate, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
31
|
Goodman JE, Prueitt RL, Harbison RD, Johnson GT. Systematically evaluating and integrating evidence in National Ambient Air Quality Standards reviews. GLOBAL EPIDEMIOLOGY 2020. [DOI: 10.1016/j.gloepi.2020.100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
32
|
Twilley D, Rademan S, Lall N. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113101. [PMID: 32562876 DOI: 10.1016/j.jep.2020.113101] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Approximately 70% of anticancer drugs were developed or derived from natural products or plants. Southern Africa boasts an enormous floral diversity with approximately 22,755 plant species with an estimated 3000 used as traditional medicines. In South Africa more than 27 million individuals rely on traditional medicine for healthcare. The use of South African plants for the treatment of cancer is poorly documented, however there is potential to develop anticancer agents from these plants. Limited ethnobotanical studies report the use of plants for cancer treatment in traditional medicine. Plants growing in tropical or subtropical regions, such as in South Africa, produce important secondary metabolites as a protective mechanism, which could be used to target various factors that play a key role in carcinogenesis. AIMS The aim was to collate information from primary ethnobotanical studies on South African plants traditionally used for the treatment of cancer. Evaluation of literature focused on traditionally used plants that have been tested for their in vitro activity against cancer cells. Secondary metabolites, previously identified within these plant species, were also included for discussion regarding their activity against cancer. The toxicity was evaluated to ascertain the therapeutic potential in further studies. Additionally, the aim was to highlight where a lack of reports were found regarding plant species with potential activity and to substantiate the need for further testing. MATERIALS AND METHODS A review of ethnobotanical surveys conducted in South Africa for plants used in the treatment of cancer was performed. Databases such as Science Direct, PubMed and Google Scholar, university repositories of master's dissertations and PhD theses, patents and books were used. Plant species showing significant to moderate activity were discussed regarding their toxicity. Compounds identified within these species were discussed for their activity against cancer cells and toxicity. Traditionally used plants which have not been scientifically validated for their activity against cancer were excluded. RESULTS Twenty plants were documented in ethnobotanical surveys as cancer treatments. Numerous scientific reports on the potential in vitro activity against cancer of these plants and the identification of secondary metabolites were found. Many of the secondary metabolites have not been tested for their activity against cancer cells or mode of action and should be considered for future studies. Lead candidates, such as the sutherlandiosides, sutherlandins, hypoxoside and pittoviridoside, were identified and should be further assessed. Toxicity studies should be included when testing plant extracts and/or secondary metabolites for their potential against cancer cells to give an indication of whether further analysis should be conducted. CONCLUSION There is a need to document plants used traditionally in South Africa for the treatment of cancer and to assess their safety and efficacy. Traditionally used plants have shown promising activity highlighting the importance of ethnobotanical studies and traditional knowledge. There are many opportunities to further assess these plants and secondary metabolites for their activity against cancer and their toxic effects. Pharmacokinetic studies are also not well documented within these plant extracts and should be included in studies when a lead candidate is identified.
Collapse
Affiliation(s)
- Danielle Twilley
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa.
| | - Sunelle Rademan
- Department of Pharmacology, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, 0002, South Africa; School of Natural Resources, University of Missouri, Columbia, MO, 65211, United States; College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
33
|
Prueitt RL, Li W, Chang YC, Boffetta P, Goodman JE. Systematic review of the potential respiratory carcinogenicity of metallic nickel in humans. Crit Rev Toxicol 2020; 50:605-639. [DOI: 10.1080/10408444.2020.1803792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - Paolo Boffetta
- Stony Brook Cancer Center and Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
34
|
Molecular mechanism of antimutagenicity by an ethoxy-substituted phylloquinone (vitamin K1 derivative) from spinach (Spinacea oleracea L.). Chem Biol Interact 2020; 330:109216. [PMID: 32810488 DOI: 10.1016/j.cbi.2020.109216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022]
Abstract
In our previous study, an antimutagenic compound from spinach (Spinacea oleracea L.), ethoxy-substituted phylloquinone (ESP) was isolated and characterized. The current study deals with elucidation of the possible mechanism of antimutagenicity of ESP against ethyl methanesulfonate (EMS) deploying model systems such as human lymphoblast (TK+/- or TK6) cell line (thymidine kinase gene mutation assay) and Escherichia coli MG1655 (rifampicin resistance assay). Findings of the study ruled out the possibility of direct inactivation of EMS by ESP. DAPI competitive binding assay indicated the DNA minor groove binding activity of ESP. Interestingly, ESP did not display major groove binding or intercalating abilities. Further, proteomics study using 2-D gel electrophoresis in E. coli and subsequent studies involving single gene knockout strains revealed the possible role of tnaA (tryptophanase) and dgcP (diguanylate cyclase) genes in observed antimutagenicity. These genes have been reported to be involved in indole and cyclic-di-GMP biosynthesis, respectively, which eventually lead to cell division inhibition. In case of TK+/- cell line system, ADCY genes (adenylate cyclase), a functional analogue of dgcP gene, were found to be transcriptionally up-regulated. The generation/doubling time were significantly higher in E. coli or TK+/- cells treated with ESP than control cells. The findings indicated inhibition of cell proliferation by ESP through gene regulation as a possible mechanism of antimutagenicity across the biological system. Cell division inhibition actually provides additional time for the repair of damaged DNA leading to antimutagenicity.
Collapse
|
35
|
Nunes HL, Tuttis K, Serpeloni JM, Nascimento JRD, da Rocha CQ, Silva VAO, Lengert AVH, Reis RM, de Syllos Cólus IM. Characterization of the invitro cytotoxic effects of brachydins isolated from Fridericia platyphylla in a prostate cancer cell line. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:547-558. [PMID: 32590922 DOI: 10.1080/15287394.2020.1784339] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
UNLABELLED Brachydins (Br) A, B, and C are flavonoids extracted from Fridericia platyphylla (Cham.) L.G. Lohmann roots (synonym Arrabidaea brachypoda), whose extract previously exhibited cytotoxic and antitumor activity. In vitro cell culture of human prostate tumor cell line (PC-3) was used to determine cell viability as evidenced by MTT, neutral red, and LDH release using nine concentrations (0.24 to 30.72 µM) of each brachydin. A triple-fluorescent staining assay assessed the mechanism resulting in cell death. Genomic instability and protein expression were evaluated using comet assay and western blot analysis, respectively. The pro-oxidant status was analyzed using the5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) probe. The IC50 values for brachydins BrA, BrB, and BrC were 23.41, 4.28, and 4.44 µM, respectively, and all compounds induced apoptosis and necrosis. BrB and BrC increased p21 levels indicating a possible G1 cell cycle arrest. BrA (6 µM) and BrB (3.84 µM) decreased phospho-AKT (AKT serine/threonine kinase) expression, which also influenced cell cycle and proliferation. BrA, BrB, and BrC elevated cleaved PARP (poly (ADP-ribose) polymerase), a protein related to DNA repair and induction of apoptotic processes. Therefore, this study determined the IC50 values of brachydins in the PC-3 cell line as well as the influence on cell proliferation and cell death processes, such as apoptosis and necrosis, indicating the proteins involved in these processes. ABBREVIATIONS ANOVA: Analysis of Variance; BrA: Brachydin A; BrB: Brachydin B; BrC: Brachydin C; CGEN: Genetic Heritage Management Council; CID: Compound identification number; CM-H2DCFDA, 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester; CO2: Carbon dioxide; DMSO: Dimethyl sulfoxide; DNA: Deoxyribonucleic acid; DTT: Dithiothreitol; DXR: Doxorubicin; ECL: Chemiluminescence; EDTA: Ethylenediaminetetraacetic acid; FBS: Fetal bovine serum; H2O2: Hydrogen peroxide; HRMS: High-Resolution Mass Spectrometry; IC50: Half maximal inhibitory concentration; LDH: Lactate dehydrogenase; MTT, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide; Na3VO4: Sodium Orthovanadate; NaOH: Sodium hydroxide; NCBI: National Center for Biotechnology Information; NMR: Nuclear Magnetic Resonance; PBS: Phosphate buffer saline; PCR: Polymerase chain reaction; PSMF: Phenylmethylsulfonyl fluoride; RPMI: Roswell Park Memorial Institute Medium; SDS-PAGE: Sodium Dodecyl Sulfate-Polyacrylamide gel electrophoresis; STR: Short tandem repeat; TBS-T: Tris-buffered saline and Polysorbate 20; UPHLC: Ultra-Performance Liquid Chromatography.
Collapse
Affiliation(s)
- Higor Lopes Nunes
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | - Katiuska Tuttis
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | - Juliana Mara Serpeloni
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| | | | - Claudia Quintino da Rocha
- Departamento De Química, Centro de Ciências Exatas e Tecnologia, Universidade Federal do Maranhão , São Luís, Maranhão, Brasil
| | | | | | - Rui Manuel Reis
- Centro de Pesquisa em Oncologia Molecular, Hospital de Câncer de Barretos , Barretos, São Paulo, Brasil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho , Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães, Portugal
| | - Ilce Mara de Syllos Cólus
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina , Londrina, Paraná, Brasil
| |
Collapse
|
36
|
Api AM, Belsito D, Biserta S, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, Lapczynski A, Lavelle M, Liebler DC, Na M, O'Brien D, Patel A, Penning TM, Ritacco G, Rodriguez-Ropero F, Romine J, Sadekar N, Salvito D, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y, Tsang S. RIFM fragrance ingredient safety assessment, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, CAS Registry Number 3658-77-3. Food Chem Toxicol 2020; 144 Suppl 1:111620. [PMID: 32777341 DOI: 10.1016/j.fct.2020.111620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/11/2020] [Accepted: 07/11/2020] [Indexed: 11/16/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Biserta
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - S Gadhia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D O'Brien
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Patel
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Rodriguez-Ropero
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - S Tsang
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
37
|
Safety evaluation of collagenase from Streptomyces violaceoruber. Regul Toxicol Pharmacol 2020; 113:104645. [DOI: 10.1016/j.yrtph.2020.104645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/28/2020] [Accepted: 03/15/2020] [Indexed: 11/18/2022]
|
38
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
39
|
Van Bossuyt M, Raitano G, Honma M, Van Hoeck E, Vanhaecke T, Rogiers V, Mertens B, Benfenati E. New QSAR models to predict chromosome damaging potential based on the in vivo micronucleus test. Toxicol Lett 2020; 329:80-84. [PMID: 32360788 DOI: 10.1016/j.toxlet.2020.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
A large number of computer-based prediction methods to determine the potential of chemicals to induce mutations at the gene level has been developed over the last decades. Conversely, only few such methods are currently available to predict potential structural and numerical chromosome aberrations. Even fewer of these are based on the preferred testing method for this endpoint, i.e. the micronucleus test. For the present work, in vivo micronucleus test results of 718 structurally diverse compounds were collected and applied for the construction of new models by means of the freely available SARpy in silico model building software. Multiple QSAR models were created using parameter variation and manual verification of (non-) alerting structures. To this extent, the original set of 718 compounds was split into a training (80 %) and a test (20 %) set. SARpy was applied on the training set to automatically extract sets of rules by generating and selecting substructures based on their prediction performance whereas the test set was used to evaluate model performance. Five different splits were made randomly, each of which had a similar balance between positive and negative substances compared to the full dataset. All generated models were characterised by an overall better performance than existing free and commercial models for the same endpoint, while demonstrating high coverage.
Collapse
Affiliation(s)
- Melissa Van Bossuyt
- Scientific Direction Chemical and Physical Health Risks, Sciensano, Brussels, Belgium; Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Giuseppa Raitano
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Japan
| | - Els Van Hoeck
- Scientific Direction Chemical and Physical Health Risks, Sciensano, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Birgit Mertens
- Scientific Direction Chemical and Physical Health Risks, Sciensano, Brussels, Belgium.
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
40
|
Chen R, Zhou C, Cao Y, Xi J, Ohira T, He L, Huang P, You X, Liu W, Zhang X, Ma S, Xie T, Chang Y, Luan Y. Assessment of Pig-a, Micronucleus, and Comet Assay Endpoints in Tg.RasH2 Mice Carcinogenicity Study of Aristolochic Acid I. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:266-275. [PMID: 31443125 DOI: 10.1002/em.22325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
A newly developed in vivo Pig-a gene mutation assay displays great potential for integration into genotoxicity tests. To obtain more evidence for application of the Pig-a assay, we integrated this assay, micronucleus test in peripheral blood (MN-pb test) and bone marrow (MN-bm test), as well as a Comet assay into a transgenic RasH2 mice carcinogenicity study. Fourteen male RasH2 mice and five wild-type (WT) mice were treated with a strong mutagen aristolochic acid I at a dose of 5 mg/kg/day for 4 consecutive weeks. Mice recovered in 5 weeks. Peripheral bloods were collected for Pig-a assay, MN-pb test, and Comet assay at several time points, while bone marrow and target organs were harvested for the MN-bm test and pathological diagnosis after mice were euthanized. Finally, 13 of the 14 RasH2 mice developed squamous cell carcinomas in the forestomach, while there were no carcinomas in the WT mice. Pig-a mutant frequencies (MFs) consecutively increased throughout the study to a maximum value of approximately 63-fold more than background. These frequencies were relative to the incidence, size, and malignant degree of tumors. Micronucleated reticulocytes increased from Day 1 to Day 49, before returning to background levels. No positive responses were observed in either the MN-bm test or the Comet assay. Results suggested that, when compared with the other two tests, the Pig-a assay persistently contributed to sustaining MFs, enhanced detection sensitivity due to the accumulation of Pig-a mutations, and demonstrated better predictability for tumorigenicity. Environ. Mol. Mutagen. 61:266-275, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ruixue Chen
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Changhui Zhou
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Toko Ohira
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Liang He
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Pengcheng Huang
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shuangcheng Ma
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- National Institutes for Food and Drug Control, Beijing, China
| | - Tianpei Xie
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Shanghai Standard Technology Co., Ltd., Shanghai, People's Republic of China
| | - Yan Chang
- Shanghai InnoStar Bio-Tech Co., Ltd., National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai, People's Republic of China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Joint Laboratory on Herbal Safety, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Smart DJ, Helbling FR, Verardo M, Huber A, McHugh D, Vanscheeuwijck P. Development of an integrated assay in human TK6 cells to permit comprehensive genotoxicity analysis in vitro. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 849:503129. [DOI: 10.1016/j.mrgentox.2019.503129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 01/24/2023]
|
42
|
Luijten M, Ball NS, Dearfield KL, Gollapudi BB, Johnson GE, Madia F, Peel L, Pfuhler S, Settivari RS, ter Burg W, White PA, van Benthem J. Utility of a next generation framework for assessment of genomic damage: A case study using the industrial chemical benzene. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:94-113. [PMID: 31709603 PMCID: PMC6972600 DOI: 10.1002/em.22346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 05/22/2023]
Abstract
We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well-studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94-113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.
Collapse
Affiliation(s)
- Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | | | | | | | - George E. Johnson
- Swansea University Medical School, Swansea UniversitySwanseaUnited Kingdom
| | - Federica Madia
- European Commission, Joint Research Centre (JRC)IspraItaly
| | - Lauren Peel
- Health and Environmental Sciences InstituteWashingtonDistrict of Columbia
| | | | | | - Wouter ter Burg
- Centre for Safety of Substances and ProductsNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Paul A. White
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| | - Jan van Benthem
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| |
Collapse
|
43
|
Sasaki JC, Allemang A, Bryce SM, Custer L, Dearfield KL, Dietz Y, Elhajouji A, Escobar PA, Fornace AJ, Froetschl R, Galloway S, Hemmann U, Hendriks G, Li HH, Luijten M, Ouedraogo G, Peel L, Pfuhler S, Roberts DJ, Thybaud V, van Benthem J, Yauk CL, Schuler M. Application of the adverse outcome pathway framework to genotoxic modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:114-134. [PMID: 31603995 DOI: 10.1002/em.22339] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Laura Custer
- Bristol-Myers Squibb Company, Drug Safety Evaluation, New Brunswick, New Jersey
| | | | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | | | | | | | | | | | | | - Heng-Hong Li
- Georgetown University, Washington, District of Columbia
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, District of Columbia
| | | | | | - Véronique Thybaud
- Sanofi, Research and Development, Preclinical Safety, Vitry-sur-Seine, France
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maik Schuler
- Pfizer Inc, World Wide Research and Development, Groton, Connecticut
| |
Collapse
|
44
|
Börçek Kasurka C, Elbistan M, Atmaca A, Atlı Şekeroğlu Z. In vitro cytogenetic assessment and comparison of vildagliptin and sitagliptin. Cytotechnology 2019; 71:1063-1077. [PMID: 31555935 PMCID: PMC6874628 DOI: 10.1007/s10616-019-00345-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/14/2019] [Indexed: 10/25/2022] Open
Abstract
Vildagliptin and sitagliptin are commonly used antidiabetic drugs. Chromosomal aberration (CA), sister chromatid exchange (SCE) and cytokinesis-block micronucleus (CBMN) assays were employed to assess and compare cytotoxic and genotoxic effects of these drugs. Peripheral lymphocytes were exposed to 125 μg/ml, 250 μg/ml and 500 μg/ml of vildagliptin and 250 μg/ml, 500 μg/ml and 1000 μg/ml of sitagliptin for 24 h and 48 h with and without exogenous metabolic activation. At the end of the study, it was determined that these drugs and their metabolites had no genotoxic effects on CA, SCE and CBMN. On the other hand, parallel to the increase in dose, vildagliptin showed weak cytotoxicity on the mitotic index, and depending on its increase in dose; sitagliptin caused potential cytotoxicity and cytostatic effect on the mitotic index, nuclear division index and proliferation index. Due to their cytotoxic and cytostatic potential, these drugs inhibit cell proliferation.
Collapse
Affiliation(s)
- Ceren Börçek Kasurka
- Faculty of Art &Science, Department of Molecular Biology and Genetics, Ordu University, 52200, Ordu, Turkey.
| | - Mehmet Elbistan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayıs University, Kurupelit, 55139, Samsun, Turkey
| | - Ayşegül Atmaca
- Faculty of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Ondokuz Mayıs University, Kurupelit, 55139, Samsun, Turkey
| | - Zülal Atlı Şekeroğlu
- Faculty of Art &Science, Department of Molecular Biology and Genetics, Ordu University, 52200, Ordu, Turkey
| |
Collapse
|
45
|
Leite ADS, Islam MT, Paz MFCJ, Júnior ALG, Oliveira GLDS, Cito AMDGL, Melo-Cavalcante AADC, Lopes JAD. Cytogenotoxic and mutagenic profiling of cashew nut shell liquids and cardanol. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0129-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractBackgroundCashew and its compounds have many important biological effects. This study is aimed at evaluating genotoxic and mutagenic effects of natural cashew nut shell liquid (nCNSL) and industrial cashew nut shell liquid (iCNSL) and a major component of iCNSL called Cardanol.MethodsTest samples were undergone for comet assay and micronucleus tests inSwissalbino mice. Animals were orally treated with 17.37, 34.75 and 69.5 mg/kg of the test substances taking distilled water (10 mL/kg; DW) and cyclophosphamide (50 mg/kg) as negative (NC) and positive (PC) controls, respectively.ResultsThe results suggest that nCNSL at 34.7 and 69.5 mg/kg and Cardanol at all tested doses induced significant genotoxic effects to the female mouse bone marrow cells, while iCNSL did not. Both nCNSL and iCNSL as well as Cardanol did not show mutagenic and cytotoxic effects. All the test samples also showed DNA repair capacity at low dose.ConclusionCashew nut shell liquids and Cardanol showed genotoxic effects at high dose, but DNA repair, non-mutagenic and non-cytotoxic effects at low dose.
Collapse
|
46
|
Meier MJ, Beal MA, Schoenrock A, Yauk CL, Marchetti F. Whole Genome Sequencing of the Mutamouse Model Reveals Strain- and Colony-Level Variation, and Genomic Features of the Transgene Integration Site. Sci Rep 2019; 9:13775. [PMID: 31551502 PMCID: PMC6760142 DOI: 10.1038/s41598-019-50302-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
The MutaMouse transgenic rodent model is widely used for assessing in vivo mutagenicity. Here, we report the characterization of MutaMouse's whole genome sequence and its genetic variants compared to the C57BL/6 reference genome. High coverage (>50X) next-generation sequencing (NGS) of whole genomes from multiple MutaMouse animals from the Health Canada (HC) colony showed ~5 million SNVs per genome, ~20% of which are putatively novel. Sequencing of two animals from a geographically separated colony at Covance indicated that, over the course of 23 years, each colony accumulated 47,847 (HC) and 17,677 (Covance) non-parental homozygous single nucleotide variants. We found no novel nonsense or missense mutations that impair the MutaMouse response to genotoxic agents. Pairing sequencing data with array comparative genomic hybridization (aCGH) improved the accuracy and resolution of copy number variants (CNVs) calls and identified 300 genomic regions with CNVs. We also used long-read sequence technology (PacBio) to show that the transgene integration site involved a large deletion event with multiple inversions and rearrangements near a retrotransposon. The MutaMouse genome gives important genetic context to studies using this model, offers insight on the mechanisms of structural variant formation, and contributes a framework to analyze aCGH results alongside NGS data.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Marc A Beal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
47
|
Multicolor Laser Scanning Confocal Immunofluorescence Microscopy of DNA Damage Response Biomarkers. Methods Mol Biol 2019. [PMID: 31473966 DOI: 10.1007/978-1-4939-9646-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA damage through endogenous and environmental toxicants is a constant threat to both a human's ability to pass on intact genetic information to its offspring as well as in somatic cells for its own survival. To counter these threats posed by DNA damage, cells have evolved a series of highly choreographed mechanisms-collectively defined as the DNA-damage response (DDR)-to sense DNA lesions, signal their presence, and mediate their repair. Thus, regular DDR signaling cascades are vital to prevent the initiation and progression of many human diseases including cancer. Consequently, quantitative assessment of DNA damage and response became an important biomarker for assessment of human health and disease risk in biomonitoring studies. However, most quantitative DNA damage biomarker techniques require dissolution of the nuclear architecture and hence loss of spatial information. Laser scanning confocal immunofluorescence microscopy (LSCIM) of three-dimensionally preserved nuclei can be, quantitative and maintain the spatial information. Here we describe the experimental protocols to quantify individual key events of the DDR cascade in three-dimensionally preserved nuclei by LSCIM with high resolution, using the simultaneous detection of Rad50 as well as phosphorylated H2AX and ATM and in somatic and germ cells as an example.
Collapse
|
48
|
Matsui T, Yamada N, Kuno H, Kanaly RA. Formation of Bulky DNA Adducts by Non-Enzymatic Production of 1,2-Naphthoquinone-Epoxide from 1,2-Naphthoquinone under Physiological Conditions. Chem Res Toxicol 2019; 32:1760-1771. [PMID: 31430133 DOI: 10.1021/acs.chemrestox.9b00088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Quinones may be formed metabolically or abiotically from environmental pollutants and polycyclic aromatic hydrocarbons (PAHs); many are recognized as toxicological intermediates that cause a variety of deleterious cellular effects including mutagenicity. The PAH-o-quinone, 1,2-naphthoquinone (1,2-NQ), may exert its genotoxic effects through interactions with cellular nucleophiles such as DNA, however, the mechanisms of 1,2-NQ adduct formation are still under investigation. With the aim to further understand these mechanisms, the chemical structures of adducts formed from the reaction of 2'-deoxyguanosine (dG) with 1,2-NQ under physiological conditions were investigated by liquid chromatography electrospray ionization tandem mass spectrometry and 1H NMR analyses. Results showed that 1,2-NQ underwent non-enzymatic oxidation to form a 1,2-NQ-epoxide which in turn formed at least four bulky adducts with dG, and these adducts were more likely to be formed under physiological conditions. A mechanism was proposed whereby hydration of 1,2-NQ to form unstable naphthohydroquinones and 2-hydroxy-1,4-naphthoquinone resulted in formation of hydrogen peroxide that oxidized 1,2-NQ. These results suggest that the genotoxicity of 1,2-NQ may not only be caused through oxidative DNA damage and adduct formation through Michael addition but also through non-enzymatic oxidative transformation of 1,2-NQ itself to form an intermediate PAH-epoxide which covalently binds to DNA.
Collapse
Affiliation(s)
- Takuya Matsui
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences , Yokohama City University , 22-2 Seto, Kanazawa , Yokohama , Kanagawa 236-0027 , Japan.,Toxicology Research Laboratories , Central Pharmaceutical Research Institute Japan Tobacco, Inc. , 1-13-2 Fukuura, Kanazawa-ku , Yokohama-city , Kanagawa 236-0004 , Japan
| | - Naohito Yamada
- Toxicology Research Laboratories , Central Pharmaceutical Research Institute Japan Tobacco, Inc. , 1-13-2 Fukuura, Kanazawa-ku , Yokohama-city , Kanagawa 236-0004 , Japan
| | - Hideyuki Kuno
- Toxicology Research Laboratories , Central Pharmaceutical Research Institute Japan Tobacco, Inc. , 1-13-2 Fukuura, Kanazawa-ku , Yokohama-city , Kanagawa 236-0004 , Japan
| | - Robert A Kanaly
- Department of Life and Environmental System Science, Graduate School of Nanobiosciences , Yokohama City University , 22-2 Seto, Kanazawa , Yokohama , Kanagawa 236-0027 , Japan
| |
Collapse
|
49
|
Buchner EM, Happel O, Schmidt CK, Scheurer M, Schmutz B, Kramer M, Knauer M, Gartiser S, Hollert H. Approach for analytical characterization and toxicological assessment of ozonation products in drinking water on the example of acesulfame. WATER RESEARCH 2019; 153:357-368. [PMID: 30763901 DOI: 10.1016/j.watres.2019.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 12/28/2018] [Accepted: 01/06/2019] [Indexed: 06/09/2023]
Abstract
The monitoring and control of drinking water quality is generally important as it significantly contributes to the health of the population. In this context, particular attention has to be paid to the use of treatment techniques during drinking water treatment. It is known that the formation of reaction products (transformation products) has to be taken into account when oxidizing agents such as ozone are used. Different transformation products are classified as critical to health and require analytical examination. The risk assessment for previously unknown transformation products can be difficult as far as not all transformation products are present as single substances or the individual substances are not present in a sufficient high concentration or cannot be isolated from the original solution. The aim of this work is to show exemplarily the identification and quantification of ozonation products (OPs) after ozonation and their toxicological characterization, using the artificial sweetener acesulfame. It was shown that OPs can be fully characterized using ion chromatography in combination with different detection systems. A major OP could be recovered as a pure substance by crystallization and direct genotoxicological testing was possible without previous enrichment processes. Acesulfame samples of different concentrations in ultrapure and in drinking water after ozonation were tested in several genotoxicity tests. These tests revealed genotoxic effects of acesulfame after ozonation in ultrapure water in several genotoxicological test systems (micronucleus test, umu test, Ames-fluctuation-test and comet assay). In contrast, the crystallized ozonation product OP168 did not show any positive effects. Therefore, it seems likely that the observed effect was caused by the second major product OP170. However, a sufficiently large amount of analytically pure substance OP170 could not be obtained. It was also shown that the rate of the OP170 formation in drinking water is significantly lower than in ultrapure water and that ozonation in drinking water did not induce genotoxic effects.
Collapse
Affiliation(s)
- Eva-Maria Buchner
- Water Laboratory, RheinEnergie AG, Parkgürtel 24, 50823, Köln, Germany; Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Oliver Happel
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - Carsten K Schmidt
- Water Laboratory, RheinEnergie AG, Parkgürtel 24, 50823, Köln, Germany
| | - Marco Scheurer
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - Beat Schmutz
- DVGW-Technologiezentrum Wasser (TZW), Karlsruher Straße 84, 76139, Karlsruhe, Germany
| | - Meike Kramer
- Water Laboratory, RheinEnergie AG, Parkgürtel 24, 50823, Köln, Germany
| | - Martina Knauer
- Hydrotox GmbH, Bötzinger Straße 29, 79111, Freiburg i.Br, Germany
| | - Stefan Gartiser
- Hydrotox GmbH, Bötzinger Straße 29, 79111, Freiburg i.Br, Germany
| | - Henner Hollert
- Department of Ecosystem Analysis, Institute for Environmental Research, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
50
|
Pacchierotti F, Masumura K, Eastmond DA, Elhajouji A, Froetschl R, Kirsch-Volders M, Lynch A, Schuler M, Tweats D, Marchetti F. Chemically induced aneuploidy in germ cells. Part II of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:403023. [PMID: 31708072 DOI: 10.1016/j.mrgentox.2019.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 12/18/2022]
Abstract
As part of the 7th International Workshops on Genotoxicity Testing held in Tokyo, Japan in November 2017, a workgroup of experts reviewed and assessed the risk of aneugens for human health. The present manuscript is one of three manuscripts from the workgroup and reports on the unanimous consensus reached on the evidence for aneugens affecting germ cells, their mechanisms of action and role in hereditary diseases. There are 24 chemicals with strong or sufficient evidence for germ cell aneugenicity providing robust support for the ability of chemicals to induce germ cell aneuploidy. Interference with microtubule dynamics or inhibition of topoisomerase II function are clear characteristics of germ cell aneugens. Although there are mechanisms of chromosome segregation that are unique to germ cells, there is currently no evidence for germ cell-specific aneugens. However, the available data are heavily skewed toward chemicals that are aneugenic in somatic cells. Development of high-throughput screening assays in suitable animal models for exploring additional targets for aneuploidy induction, such as meiosis-specific proteins, and to prioritize chemicals for the potential to be germ cell aneugens is encouraged. Evidence in animal models support that: oocytes are more sensitive than spermatocytes and somatic cells to aneugens; exposure to aneugens leads to aneuploid conceptuses; and, the frequencies of aneuploidy are similar in germ cells and zygotes. Although aneuploidy in germ cells is a significant cause of infertility and pregnancy loss in humans, there is currently limited evidence that aneugens induce hereditary diseases in human populations because the great majority of aneuploid conceptuses die in utero. Overall, the present work underscores the importance of protecting the human population from exposure to chemicals that can induce aneuploidy in germ cells that, in contrast to carcinogenicity, is directly linked to an adverse outcome.
Collapse
Affiliation(s)
- Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - David A Eastmond
- Department of Molecular, Cell and System Biology, University of California, Riverside, CA, USA
| | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | - Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Faculty of Sciences and Bio-Engineering, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|