1
|
Márquez-Mendoza JM, Baranda-Ávila N, Lizano M, Langley E. Micro-RNAs targeting the estrogen receptor alpha involved in endocrine therapy resistance in breast cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167783. [PMID: 40057206 DOI: 10.1016/j.bbadis.2025.167783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Endocrine therapy resistance (ETR) in breast cancer (BC) is a multicausal phenomenon with diverse alterations in the tumor cell interactome. Within these alterations, non-coding RNAs (ncRNAs) such as micro-RNAs (miRNAs) modulate the expression of tumor suppressor genes and proto-oncogenes, such as the ESR1 gene encoding estrogen receptor alpha (ERα). This work aims to review the effects of miRNAs targeting ERα mRNA and their mechanisms related to ETR in BC. A thorough review of the literature and an in silico study were carried out to elucidate the involvement of each miRNA, thus contributing to the understanding of ETR in BC.
Collapse
Affiliation(s)
- J M Márquez-Mendoza
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - N Baranda-Ávila
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - M Lizano
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - E Langley
- Unidad de Investigación Biomédica en Cáncer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| |
Collapse
|
2
|
Adlanmerini M, Fontaine C, Gourdy P, Arnal JF, Lenfant F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol Cell Endocrinol 2022; 539:111467. [PMID: 34626731 DOI: 10.1016/j.mce.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
Abstract
Estrogen receptor alpha (ERα) and beta (ERβ) are members of the nuclear receptor superfamily, playing widespread functions in reproductive and non-reproductive tissues. Beside the canonical function of ERs as nuclear receptors, in this review, we summarize our current understanding of extra-nuclear, membrane-initiated functions of ERs with a specific focus on ERα. Over the last decade, in vivo evidence has accumulated to demonstrate the physiological relevance of this ERα membrane-initiated-signaling from mouse models to selective pharmacological tools. Finally, we discuss the perspectives and future challenges opened by the integration of extra-nuclear ERα signaling in physiology and pathology of estrogens.
Collapse
Affiliation(s)
- Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Jean-François Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U1297, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France.
| |
Collapse
|
3
|
Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver. Metabolites 2021; 11:metabo11080502. [PMID: 34436443 PMCID: PMC8398935 DOI: 10.3390/metabo11080502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is a vital organ that sustains multiple functions beneficial for the whole organism. It is sexually dimorphic, presenting sex-biased gene expression with implications for the phenotypic differences between males and females. Estrogens are involved in this sex dimorphism and their actions in the liver of several reptiles, fishes, amphibians, and birds are discussed. The liver participates in reproduction by producing vitellogenins (yolk proteins) and eggshell proteins under the control of estrogens that act via two types of receptors active either mainly in the cell nucleus (ESR) or the cell membrane (GPER1). Estrogens also control hepatic lipid and lipoprotein metabolisms, with a triglyceride carrier role for VLDL from the liver to the ovaries during oogenesis. Moreover, the activation of the vitellogenin genes is used as a robust biomarker for exposure to xenoestrogens. In the context of liver diseases, high plasma estrogen levels are observed in fatty liver hemorrhagic syndrome (FLHS) in chicken implicating estrogens in the disease progression. Fishes are also used to investigate liver diseases, including models generated by mutation and transgenesis. In conclusion, studies on the roles of estrogens in the non-mammalian oviparous vertebrate liver have contributed enormously to unveil hormone-dependent physiological and physiopathological processes.
Collapse
|
4
|
Hevener AL, Ribas V, Moore TM, Zhou Z. ERα in the Control of Mitochondrial Function and Metabolic Health. Trends Mol Med 2021; 27:31-46. [PMID: 33020031 DOI: 10.1016/j.molmed.2020.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Decrements in metabolic health elevate disease risk, including type 2 diabetes, heart disease, and certain cancers. Thus, treatment strategies to combat metabolic dysfunction are needed. Reduced ESR1 (estrogen receptor, ERα) expression is observed in muscle from women, men, and animals presenting clinical features of the metabolic syndrome. Human studies of natural expression of ESR1 in metabolic tissues show that muscle expression of ESR1 is positively correlated with markers of metabolic health, including insulin sensitivity. Herein, we highlight the important impact of ERα on mitochondrial form and function and present how these actions of the receptor govern metabolic homeostasis. Studies identifying ERα-regulated pathways for disease prevention will lay the foundation for the design of novel therapeutics to improve the health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA; Iris Cantor-UCLA Women's Health Research Center, University of California, Los Angeles, CA 90095, USA.
| | - Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| | - Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Hevener AL, Ribas V, Moore TM, Zhou Z. The Impact of Skeletal Muscle ERα on Mitochondrial Function and Metabolic Health. Endocrinology 2020; 161:5735479. [PMID: 32053721 PMCID: PMC7017798 DOI: 10.1210/endocr/bqz017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The incidence of chronic disease is elevated in women after menopause. Increased expression of ESR1 (the gene that encodes the estrogen receptor alpha, ERα) in muscle is highly associated with metabolic health and insulin sensitivity. Moreover, reduced muscle expression levels of ESR1 are observed in women, men, and animals presenting clinical features of the metabolic syndrome (MetSyn). Considering that metabolic dysfunction elevates chronic disease risk, including type 2 diabetes, heart disease, and certain cancers, treatment strategies to combat metabolic dysfunction and associated pathologies are desperately needed. This review will provide published work supporting a critical and protective role for skeletal muscle ERα in the regulation of mitochondrial function, metabolic homeostasis, and insulin action. We will provide evidence that muscle-selective targeting of ERα may be effective for the preservation of mitochondrial and metabolic health. Collectively published findings support a compelling role for ERα in the control of muscle metabolism via its regulation of mitochondrial function and quality control. Studies identifying ERα-regulated pathways essential for disease prevention will lay the important foundation for the design of novel therapeutics to improve metabolic health of women while limiting secondary complications that have historically plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
- Iris Cantor-UCLA Women’s Health Research Center, University of California, Los Angeles, California
- Correspondence: Andrea L. Hevener, PhD, University of California, Los Angeles, David Geffen School of Medicine, Division of Endocrinology, Diabetes, and Hypertension, 650 Charles E. Young Drive, CHS Suite 34-115B, Los Angeles, California 90095–7073. E-mail:
| | - Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
- Current Affiliation: Vicent Ribas, Department of cell death and proliferation Instituto de Investigaciones Biomédicas de Barcelona, (IIBB-CSIC) Spanish National Research Council C/Rosselló 179, 6th floor 08036, Barcelona Spain
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
| | - Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
| |
Collapse
|
6
|
Hevener AL, Zhou Z, Moore TM, Drew BG, Ribas V. The impact of ERα action on muscle metabolism and insulin sensitivity - Strong enough for a man, made for a woman. Mol Metab 2018; 15:20-34. [PMID: 30005878 PMCID: PMC6066787 DOI: 10.1016/j.molmet.2018.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Background The incidence of chronic disease is elevated in women after menopause. Natural variation in muscle expression of the estrogen receptor (ER)α is inversely associated with plasma insulin and adiposity. Moreover, reduced muscle ERα expression levels are observed in women and animals presenting clinical features of the metabolic syndrome (MetSyn). Considering that metabolic dysfunction impacts nearly a quarter of the U.S. adult population and elevates chronic disease risk including type 2 diabetes, heart disease, and certain cancers, treatment strategies to combat metabolic dysfunction and associated pathologies are desperately needed. Scope of the review This review will provide evidence supporting a critical and protective role for skeletal muscle ERα in the regulation of metabolic homeostasis and insulin sensitivity, and propose novel ERα targets involved in the maintenance of metabolic health. Major conclusions Studies identifying ERα-regulated pathways essential for disease prevention will lay the important foundation for the rational design of novel therapeutics to improve the metabolic health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Zhenqi Zhou
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Timothy M Moore
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Brian G Drew
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vicent Ribas
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
7
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
8
|
A distal estrogen responsive element upstream the cap site of human transthyretin gene is an enhancer-like element upon ERα and/or ERβ transactivation. Gene 2013; 527:469-76. [DOI: 10.1016/j.gene.2013.06.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/10/2013] [Accepted: 06/18/2013] [Indexed: 11/24/2022]
|
9
|
Williams TM, Carroll SB. Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat Rev Genet 2009; 10:797-804. [PMID: 19834484 DOI: 10.1038/nrg2687] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sexual dimorphism is common throughout the animal kingdom. However, a molecular understanding of how sex-specific traits develop and evolve has been elusive. Recently, substantial progress has been made in elucidating how diverse sex-determination systems are integrated into developmental gene networks. One common theme from these studies is that sex-limited traits and gene expression are produced by the combined action of transcriptional effectors of sex-determination pathways and other transcription factors on target gene cis-regulatory elements. Sex-specific traits evolve by the gain, loss or modification of linkages in the genetic networks regulated by sex-determination transcription factors.
Collapse
Affiliation(s)
- Thomas M Williams
- Department of Biology, University of Dayton, 300 College Park, Dayton, Ohio 45469, USA
| | | |
Collapse
|
10
|
Adams B, Western AK, Winship PR. Identification and functional characterization of a polymorphic oestrogen response element in the human coagulation factor IX gene promoter. Br J Haematol 2007; 140:241-9. [DOI: 10.1111/j.1365-2141.2007.06912.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Liu J, Sidell N. Anti-estrogenic effects of conjugated linoleic acid through modulation of estrogen receptor phosphorylation. Breast Cancer Res Treat 2007; 94:161-9. [PMID: 16261415 DOI: 10.1007/s10549-005-6942-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously showed that conjugated linoleic acids (CLA) can inhibit transcriptional activation mediated by estrogen response elements (EREs) and that this activity can, at least in part, account for the reported anti-tumor effects of these compounds on breast cancer cells. Using estrogen receptor positive (ER+) MCF-7 cells, we now demonstrate that CLA inhibited both the transactivation of artificial reporter constructs driven by canonical EREs, and the expression of endogenous progesterone receptors, a gene which is transcriptionally regulated by estrogen through novel ER-binding sites. This inhibition was accompanied by downregulation of ER alpha expression and decreased ER alpha-ERE binding activity. These effects on ER alpha were not causally linked since transfection of an ER alpha expression plasmid in MCF-7 cells failed to antagonize CLA downregulation of ER alpha-ERE binding. Immunoprecipitation/Western blot studies revealed that CLA dose-dependently suppressed the degree of phosphorylation of ER alpha, a modification known to inhibit receptor-ERE interactions. As a mechanism that may account for this induced dephosphorylation of ER alpha in MCF-7, we found that CLA specifically stimulated protein phosphatase 2A (PP2A) activity. Experiments using the PP2A inhibitor okadaic acid (OA) showed that OA antagonized both the dephosphorylation effects of CLA on ER alpha and its inhibition of ER alpha-ERE binding. These results provide evidence that the anti-estrogenic activity of CLA is caused by inducing the dephosphorylation of ER alpha through stimulation of PP2A activity.
Collapse
Affiliation(s)
- Jingbo Liu
- Department of Gynecology and Obstetrics, Division of Research, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
12
|
Sidell N, Tanmahasamut P, Ewing DE, Hendry LB. Transcriptional inhibition of the estrogen response element by antiestrogenic piperidinediones correlates with intercalation into DNA measured by energy calculations. J Steroid Biochem Mol Biol 2005; 96:335-45. [PMID: 16054810 DOI: 10.1016/j.jsbmb.2005.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
The energy of interaction of antiestrogenic ligands bound to DNA derived from molecular modeling was compared to the capacity of the ligands to directly inhibit the transcriptional activity of an estrogen responsive gene. 3-Phenylacetylamino-2,6-piperidinedione (A10) and related compounds were intercalated into a partially unwound DNA site in a canonical estrogen response element (ERE). The piperidinedione/ERE complexes were subjected to energy minimization and the strength of interaction of the ligands with the DNA was measured. The ability of the ligands to inhibit transactivation was assessed using a reporter gene constructed with the ERE of the vitellogenin gene promoter (ERE(v)-tk-Luc) transiently transfected into the human estrogen receptor-positive MCF-7 breast cancer cell line. The results demonstrate a direct correlation between the calculated energetic fit of the compounds in the ERE and inhibition of ERE(v) transactivation. The order of potency of the compounds to suppress estrogen-dependent reporter gene activity was identical to that previously shown for inhibiting the growth of MCF-7 cells. To our knowledge, these results provide the first direct experimental evidence that the predicted fit of a class of compounds into a defined DNA binding site correlates with the ability of the compounds to modulate specific gene functions regulated at that site.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Gynceology and Obstetrics, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
13
|
Tanmahasamut P, Liu J, Hendry LB, Sidell N. Conjugated linoleic acid blocks estrogen signaling in human breast cancer cells. J Nutr 2004; 134:674-80. [PMID: 14988466 DOI: 10.1093/jn/134.3.674] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugated linoleic acid (CLA), a mixture of positional and geometric isomers of linoleic acid found in dairy products and meat from ruminants, has been widely shown to possess anticarcinogenic activity against breast cancer both in vitro and in animal models. However, little information is available concerning the mechanisms of the antitumor effects of these compounds. In this study, we investigated whether CLA has direct antiestrogenic activity in estrogen receptor positive (ER+) breast cancer cells. Treatment of the ER+ cell line, MCF-7, with 5 purified CLA isomers as well as "mixed" CLA showed a dose-dependent growth inhibition with the 9cis,11cis and 9cis,11trans being the most and least potent isomers, respectively. In assessing effects on a number of variables that play obligatory roles in the estrogen signaling pathway, we determined that CLA treatment downregulated ERalpha expression at both mRNA and protein levels and decreased binding activity of nuclear protein to a canonical estrogen response element (ERE(v)). Using a reporter gene construct (ERE(v)-tk-Luc) that was transiently transfected into MCF-7 cells, we also demonstrated inhibition of promoter activity by CLA that was directly mediated by blockage of activity through the ERE. The results indicated that the order of potency of the CLA isomers for inhibiting activation of ERE(v) was similar to that demonstrated for their antiproliferative activity on MCF-7 cells. Taken together, these findings demonstrate that CLA compounds possess potent antiestrogenic properties that may at least partly account for their antitumor activity on breast cancer cells.
Collapse
Affiliation(s)
- Prasong Tanmahasamut
- Division of Research, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
14
|
Tang PC, Huang HC, Wang SC, Jeng JC, Liao YD. Regulation of ribonuclease expression by estradiol in Rana catesbeiana (Bullfrog). Nucleic Acids Res 2002; 30:3286-93. [PMID: 12136111 PMCID: PMC135762 DOI: 10.1093/nar/gkf442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multiple ribonucleases are widely found in living organisms, but the function and regulation of individual ribonucleases are still not clear. In the present study, we found that one oocytic ribonuclease, RC-RNase, is developmentally expressed in the liver and stored in the oocyte of the bullfrog, while another ribonuclease, RC-RNase L1, is constitutively expressed and retained in the liver at all stages. In females, the expression of RC-RNase increased with the degree of maturity and the concentration of plasma estradiol during oogenesis. In males, the RC-RNase gene was activated in the liver and the newly synthesized protein was secreted into plasma if estradiol was administered. To investigate the mechanism of estrogen-mediated activation of ribonuclease expression, we cloned the RC-RNase promoter and analyzed the putative transcription factor binding sites, e.g. TATA box, ERE, AP1 and CAAT box. Using luciferase as a reporter gene, we found that an estrogen response element in the promoter of RC-RNase was essential for both basic transcription and estradiol-mediated gene activation in estrogen receptor-positive MCF7 cells. These results support the hypothesis that RC-RNase is synthesized in the liver upon stimulation by estradiol during oogenesis, then secreted into the bloodstream and stored in oocytes for embryonic development.
Collapse
Affiliation(s)
- Pin-Chi Tang
- Institute of Biomedical Sciences, Academia Sinica, 128, Yen-Chiu-Yuan Road, Sec. 2, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Yi P, Driscoll MD, Huang J, Bhagat S, Hilf R, Bambara RA, Muyan M. The effects of estrogen-responsive element- and ligand-induced structural changes on the recruitment of cofactors and transcriptional responses by ER alpha and ER beta. Mol Endocrinol 2002; 16:674-93. [PMID: 11923465 DOI: 10.1210/mend.16.4.0810] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen signaling is mediated by ER alpha and -beta. ERs are converted from an inactive form to a transcriptionally active state through conformational changes induced by ligand and estrogen-responsive element (ERE) sequences. We show here that ER alpha and ER beta bind to an ERE independently from ER ligands. We found that although the binding affinity of ER beta for an ERE is 2-fold lower than that of ER alpha, both ERs use the same nucleotides for DNA contacts. We show that both EREs and ligands are independent modulators of ER conformation. Specifically, the ERE primarily determines the receptor-DNA affinity, whereas the structure of the ER ligand dictates the affinity of ER for particular cofactors. We found that the ligand-dependent cofactor transcriptional intermediary factor-2, through a distinct surface, also interacts with ER alpha preferentially and independently of ligand. The extent of interaction, however, is dependent upon the ER-ERE affinity. In transfected cells, ER alpha is more transcriptionally active than ER beta. The ERE sequence, however, determines the potency of gene induction when either ER subtype binds to an agonist. Antagonists prevent ERs from inducing transcription independently from ERE sequences. Thus, ERE- and ligand-induced structural changes are independent determinants for the recruitment of cofactors and transcriptional responses. The ability of ER alpha to differentially recruit a cofactor could contribute to ER subtype-specific gene responses.
Collapse
Affiliation(s)
- Ping Yi
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sawatsri S, Samid D, Malkapuram S, Sidell N. Inhibition of estrogen-dependent breast cell responses with phenylacetate. Int J Cancer 2001; 93:687-92. [PMID: 11477579 DOI: 10.1002/ijc.1399] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aromatic fatty acid phenylacetate (PA) and its analogs have come under intense investigation due to their ability to cause the growth arrest of a variety of neoplasia, including human breast cancer. We have determined that PA and its halide derivative 4-chlorophenylacetate (4-CPA) showed marked antiproliferative activity on 3 of 6 human breast cancer cell lines tested. Interestingly, the 3 cell lines that were growth inhibited by PA and 4-CPA were estrogen receptor (ER) positive (T47-D, MCF-7 and ZR-75-1) whereas those that were little affected by these compounds were ER-negative (MDA-MB-157, MDA-MB-231 and SK-Br-3). Dose response studies indicated that 4-CPA inhibited the growth of the sensitive (ER+) cell lines with a potency 3-4 times that of PA. These findings suggest that there is "cross-talk" between the PA and estrogen signaling pathways such that PA can directly inhibit estrogen-dependent events. This hypothesis was directly tested in vitro using ER+ MCF-7 cells that were stably transfected with a luciferase reporter construct driven by the full length (1745 bp) cyclin D1 promoter (MCF-7-D1). Our experiments with MCF-7-D1 cells indicated that PA and 4-CPA inhibited basal and estrogen-induced reporter gene activity by up to 90%, resulting in almost complete elimination of estrogen-dependent cyclin D1 gene activation. Using a reporter gene construct (ERE(V)-tk-Luc) containing a canonical estrogen response element that was transiently transfected into MCF-7 and MDA-MB-231 cells, we have also demonstrated inhibition of promoter activity by PA and 4-CPA that was directly mediated by blockage of activity through the ERE. Taken together, these findings indicate that PA analogs possess potent antiestrogen properties that may, at least partly, account for their antiproliferative effects on ER+ breast cancer cells. The data suggests a novel mechanism of action that might bypass some of the limitations of conventional antiestrogen therapy.
Collapse
Affiliation(s)
- S Sawatsri
- Division of Research, Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
17
|
Abstract
The estrogen receptor (ER) is a ligand-activated enhancer protein that is a member of the steroid/nuclear receptor superfamily. Two genes encode mammalian ER: ERalpha and ERbeta. ER binds to specific DNA sequences called estrogen response elements (EREs) with high affinity and transactivates gene expression in response to estradiol (E(2)). The purpose of this review is to summarize how natural and synthetic variations in the ERE sequence impact the affinity of ER-ERE binding and E(2)-induced transcriptional activity. Surprisingly, although the consensus ERE sequence was delineated in 1989, there are only seven natural EREs for which both ERalpha binding affinity and transcriptional activation have been examined. Even less information is available regarding how variations in ERE sequence impact ERbeta binding and transcriptional activity. Review of data from our own laboratory and those in the literature indicate that ERalpha binding affinity does not relate linearly with E(2)-induced transcriptional activation. We suggest that the reasons for this discord include cellular amounts of coactivators and adaptor proteins that play roles both in ER binding and transcriptional activation; phosphorylation of ER and other proteins involved in transcriptional activation; and sequence-specific and protein-induced alterations in chromatin architecture.
Collapse
Affiliation(s)
- C M Klinge
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
18
|
Martín D, Wang SF, Raikhel AS. The vitellogenin gene of the mosquito Aedes aegypti is a direct target of ecdysteroid receptor. Mol Cell Endocrinol 2001; 173:75-86. [PMID: 11223179 DOI: 10.1016/s0303-7207(00)00413-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the female mosquito Aedes aegypti, vitellogenin (Vg), the major YPP, is activated by 20-hydroxyecdysone (20E) at the transcriptional level. We used cell transfection assays in the Drosophila S2 cells to investigate whether 20E acts directly on the Vg gene via its functional receptor, the heterodimer composed of the ecdysteroid receptor (EcR) and the ultraspiracle (USP) proteins. We demonstrated that the Vg 5'-regulatory region contains a functional ecdysteroid-responsive element (VgEcRE1) that is necessary to confer responsiveness to 20E. VgEcRE binds directly to EcR-USP produced in vitro and extracted from the vitellogenic fat body nuclei. The binding intensity of the EcR-USP-EcRE1 complex from nuclear extracts corresponds to the levels of ecdysteroids and of the Vg transcript during the vitellogenic cycle. Given the modest level of 20E-dependent activation, it is likely that the EcR-USP receptor acts synergistically with other transcription factors to bring about the high level of Vg gene expression.
Collapse
Affiliation(s)
- D Martín
- Department of Entomology and Programs in Genetics and Cell and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
19
|
Robyr D, Gegonne A, Wolffe AP, Wahli W. Determinants of vitellogenin B1 promoter architecture. HNF3 and estrogen responsive transcription within chromatin. J Biol Chem 2000; 275:28291-300. [PMID: 10854430 DOI: 10.1074/jbc.m002726200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The liver-specific vitellogenin B1 promoter is efficiently activated by estrogen within a nucleosomal environment after microinjection into Xenopus laevis oocytes, consistent with the hypothesis that significant nucleosome remodeling over this promoter is not a prerequisite for the activation by the estrogen receptor (ERalpha). This observation lead us to investigate determinants other than ERalpha of chromatin structure and transcriptional activation of the vitellogenin B1 promoter in this system and in vitro. We find that the liver-enriched transcription factor HNF3 has an important organizational role for chromatin structure as demonstrated by DNase I-hypersensitive site mapping. Both HNF3 and the estrogen receptor activate transcription synergistically and are able to interact with chromatin reconstituted in vitro with three positioned nucleosomes. We propose that HNF3 is the cellular determinant which establishes a promoter environment favorable to a rapid transcriptional activation by the estrogen receptor.
Collapse
Affiliation(s)
- D Robyr
- Institut de Biologie animale, Université de Lausanne, Bâtiment de Biologie, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
20
|
Tolnay M, Baranyi L, Tsokos GC. Heterogeneous nuclear ribonucleoprotein D0 contains transactivator and DNA-binding domains. Biochem J 2000; 348 Pt 1:151-8. [PMID: 10794726 PMCID: PMC1221048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Heterogeneous nuclear ribonucleoprotein D0 (hnRNP D0) is an abundant, ubiquitous protein that binds RNA and DNA sequences specifically, and has been implicated in the transcriptional regulation of the human complement receptor 2 gene. We found that in vivo expression of hnRNP D0-GAL4 fusion proteins increased the transcriptional activity of a GAL4-driven reporter gene, providing direct proof that hnRNP D0 possesses a transactivator domain. We found, using truncated hnRNP D0 proteins fused to GAL4, that 29 amino acids in the N-terminal region are critical for transactivation. We established, using a series of recombinant truncated hnRNP D0 proteins, that the tandem RNA-binding domains alone were not able to bind double-stranded DNA. Nevertheless, 24 additional amino acids of the C-terminus imparted sequence-specific DNA binding. Experiments using peptide-specific antisera supported the importance of the 24-amino-acid region in DNA binding, and suggested the involvement of the 19-amino-acid alternative insert which is present in isoforms B and D. The N-terminus had an inhibitory effect on binding of hnRNP D0 to single-stranded, but not to double-stranded, DNA. Although both recombinant hnRNP D0B and D0D bound DNA, only the B isoform recognized DNA in vivo. We propose that the B isoform of hnRNP D0 functions in the nucleus as a DNA-binding transactivator and has distinct transactivator and DNA-binding domains.
Collapse
Affiliation(s)
- M Tolnay
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
21
|
Duval DL, Farris AR, Quirk CC, Nett TM, Hamernik DL, Clay CM. Responsiveness of the ovine gonadotropin-releasing hormone receptor gene to estradiol and gonadotropin-releasing hormone is not detectable in vitro but is revealed in transgenic mice. Endocrinology 2000; 141:1001-10. [PMID: 10698176 DOI: 10.1210/endo.141.3.7391] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the ability of estradiol to enhance pituitary sensitivity to GnRH is established, the underlying mechanism(s) remain undefined. Herein, we find that approximately 9,100 bp of 5' flanking region from the ovine GnRH receptor (oGnRHR) gene is devoid of transcriptional activity in gonadotrope-derived cell lines and is not responsive to either estradiol or GnRH. In stark contrast, this same 9,100 bp promoter fragment directed tissue-specific expression of luciferase in multiple lines of transgenic mice. To test for hormonal regulation of the 9,100-bp promoter, ovariectomized transgenic females were treated with a GnRH antiserum alone or in combination with estradiol. Treatment with antiserum alone reduced pituitary expression of luciferase by 80%. Pituitary expression of luciferase in animals receiving both antiserum and estradiol was approximately 50-fold higher than animals receiving antiserum alone. The estradiol response of the -9,100-bp promoter was equally demonstrable in males. In addition, a GnRH analog (D-Ala-6-GnRH) that does not cross-react with the GnRH antiserum restored pituitary expression of luciferase in males passively immunized against GnRH to levels not different from castrate controls. Finally, treatment with both estradiol and D-Ala-6-GnRH increased pituitary expression of luciferase to a level greater than the sum of the individual treatments suggesting synergistic activation of the transgene by these two hormones. Thus, despite the complete absence of transcriptional activity and hormonal responsiveness in vitro, 9,100 bp of proximal promoter from the oGnRHR gene is capable of directing tissue-specific expression and is robustly responsive to both GnRH and estradiol in transgenic mice. To begin to refine the functional boundaries of the critical cis-acting elements, we next constructed transgenic mice harboring a transgene consisting of 2,700 bp of 5' flanking region from the oGnRHR gene fused to luciferase. As with the -9,100 bp promoter, expression of luciferase in the -2,700 lines was primarily confined to the pituitary gland, brain and testes. Furthermore, the passive immunization-hormonal replacement paradigms described above revealed both GnRH and estradiol responsiveness of the -2,700-bp promoter. Thus, 2,700 bp of proximal promoter from the oGnRHR gene is sufficient for tissue-specific expression as well as GnRH and estradiol responsiveness. Given the inability to recapitulate estradiol regulation of GnRHR gene expression in vitro, transgenic mice may represent one of the few viable avenues for ultimately defining the molecular mechanisms underlying estradiol regulation of GnRHR gene expression.
Collapse
Affiliation(s)
- D L Duval
- Department of Physiology, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | | | |
Collapse
|
22
|
Di Croce L, Vicent GP, Pecci A, Bruscalupi G, Trentalance A, Beato M. The promoter of the rat 3-hydroxy-3-methylglutaryl coenzyme A reductase gene contains a tissue-specific estrogen-responsive region. Mol Endocrinol 1999; 13:1225-36. [PMID: 10446899 DOI: 10.1210/mend.13.8.0333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The isoprenoid metabolic pathway is mainly regulated at the level of conversion of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) to mevalonate, catalyzed by HMG CoA reductase. As estrogens are known to influence cholesterol metabolism, we have explored the potential regulation of the HMG CoA reductase gene promoter by estrogens. The promoter contains an estrogen-responsive element-like sequence at position -93 (termed Red-ERE), which differs from the ERE consensus by one mismatch in each half of the palindrome. A Red-ERE oligonucleotide specifically bound estrogen receptor in vitro and conferred receptor-dependent estrogen responsiveness to a heterologous promoter in all cell lines tested. However, expression of a reporter driven by the rat HMG CoA reductase promoter was induced by estrogen treatment after transient transfection into the breast cancer cell line MCF-7 cells but not in hepatic cell lines expressing estrogen receptor. Estrogen induction in MCF-7 cells was dependent on the Red-ERE and was strongly inhibited by the antiestrogen ICI 164,384. A functional cAMP-responsive element is located immediately upstream of the Red-ERE, but cAMP and estrogens inhibit each other in terms of transactivation of the promoter. Similarly, induction by estrogens was inhibited by micromolar concentrations of cholesterol, likely acting via changes in occupancy of the sterol-responsive element located 70 bp upstream of the Red-ERE. Thus, within its natural context, Red-ERE is able to mediate hormonal regulation of the HMG CoA reductase gene in tissues that respond to estrogens with enhanced cell proliferation, while it is not operative in liver cells. We postulate that this tissue-specific regulation of HMG CoA reductase by estrogens could partially explain the protective effect of estrogens against heart disease.
Collapse
Affiliation(s)
- L Di Croce
- Institute for Molecular Biology and Tumor Research (IMT), Marburg, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Htun H, Holth LT, Walker D, Davie JR, Hager GL. Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor. Mol Biol Cell 1999; 10:471-86. [PMID: 9950689 PMCID: PMC25181 DOI: 10.1091/mbc.10.2.471] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The human estrogen receptor alpha (ER alpha) has been tagged at its amino terminus with the S65T variant of the green fluorescent protein (GFP), allowing subcellular trafficking and localization to be observed in living cells by fluorescence microscopy. The tagged receptor, GFP-ER, is functional as a ligand-dependent transcription factor, responds to both agonist and antagonist ligands, and can associate with the nuclear matrix. Its cellular localization was analyzed in four human breast cancer epithelial cell lines, two ER+ (MCF7 and T47D) and two ER- (MDA-MB-231 and MDA-MB-435A), under a variety of ligand conditions. In all cell lines, GFP-ER is observed only in the nucleus in the absence of ligand. Upon the addition of agonist or antagonist ligand, a dramatic redistribution of GFP-ER from a reticular to punctate pattern occurs within the nucleus. In addition, the full antagonist ICI 182780 alters the nucleocytoplasmic compartmentalization of the receptor and causes partial accumulation in the cytoplasm in a process requiring continued protein synthesis. GFP-ER localization varies between cells, despite being cultured and treated in a similar manner. Analysis of the nuclear fluorescence intensity for variation in its frequency distribution helped establish localization patterns characteristic of cell line and ligand. During the course of this study, localization of GFP-ER to the nucleolar region is observed for ER- but not ER+ human breast cancer epithelial cell lines. Finally, our work provides a visual description of the "unoccupied" and ligand-bound receptor and is discussed in the context of the role of ligand in modulating receptor activity.
Collapse
Affiliation(s)
- H Htun
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
24
|
Teo BY, Tan NS, Lim EH, Lam TJ, Ding JL. A novel piscine vitellogenin gene: structural and functional analyses of estrogen-inducible promoter. Mol Cell Endocrinol 1998; 146:103-20. [PMID: 10022768 DOI: 10.1016/s0303-7207(98)00191-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Oreochromis aureus vitellogenin, OaVtg, gene spans 9 kb and contains 34 exons. Its transcription start site is located 15 bp upstream of the translational start codon. Although the OaVtg promoter has a nonconsensus TATA, transient transfection assay showed that this promoter is capable of driving basal transcription. Two imperfect estrogen response elements: EREp (proximal) and EREd (distal) are located in the promoter at - 532 and - 1352, respectively. In competition gel mobility-shift assays, only EREp exhibited specific binding of the recombinant estrogen receptor protein, GST-C/D OaER. Another imperfect ERE (EREexon2) was detected within exon 2 of the OaVtg gene. This is a novel finding for a vitellogenin (Vtg) gene. EREexon2 similarly showed specific recognition of GST-C/D OaER. Both EREp and EREexon2 showed comparable binding affinities as consensus ERE. In transient transfections, the OaVtg promoter, EREp and EREd elicited significant increase in estrogen-dependent synthesis of CAT protein. Hence, we propose that the non-consensus OaVtg EREs contribute to the estrogen-dependent regulation of the OaVtg gene in vivo.
Collapse
Affiliation(s)
- B Y Teo
- National University of Singapore, Department of Biological Sciences, Singapore
| | | | | | | | | |
Collapse
|
25
|
Driscoll MD, Sathya G, Muyan M, Klinge CM, Hilf R, Bambara RA. Sequence requirements for estrogen receptor binding to estrogen response elements. J Biol Chem 1998; 273:29321-30. [PMID: 9792632 DOI: 10.1074/jbc.273.45.29321] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The estrogen receptor (ER) is a transcription factor that binds to a specific DNA sequence found in the regulatory regions of estrogen-responsive genes, called the estrogen response element (ERE). Many genes that contain EREs have been identified, and most of these EREs contain one or more changes from the core consensus sequence, a 13-nucleotide segment with 10 nucleotides forming an inverted repeat. A number of genes have multiple copies of these imperfect EREs. In order to understand why natural EREs have developed in this manner, we have attempted to define the basic sequence requirements for ER binding. To this end, we measured the binding of homodimeric ER to a variety of nonconsensus EREs. We discovered that an ERE containing even a single change from the consensus may be unable to bind ER. However, an ERE with two changes from the consensus may be capable of binding avidly to ER in the context of certain flanking sequences. We found that changes in the sequences flanking a nonconsensus ERE can greatly alter ER-ERE affinity, either positively or negatively. Careful study of sequences flanking a series of EREs made it possible to develop rules that predict whether ER binds to a given natural ERE and also to predict the relative amounts of binding when comparing two EREs.
Collapse
Affiliation(s)
- M D Driscoll
- Department of Biochemistry and Biophysics and the University of Rochester Cancer Center, The University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
26
|
Tsai-Pflugfelder M, Gasser SM, Wahli W. Functional interaction between the estrogen receptor and CTF1: analysis of the vitellogenin gene B1 promoter in yeast. Mol Endocrinol 1998; 12:1525-41. [PMID: 9773976 DOI: 10.1210/mend.12.10.0182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic gene expression depends on a complex interplay between the transcriptional apparatus and chromatin structure. We report here a yeast model system for investigating the functional interaction between the human estrogen receptor (hER) and CTF1, a member of the CTF/NFI transcription factor family. We show that a CTF1-fusion protein and the hER transactivate a synthetic promoter in yeast in a synergistic manner. This interaction requires the proline-rich transactivation domain of CTF1. When the natural estrogen-dependent vitellogenin B1 promoter is tested in yeast, CTF1 and CTF1-fusion proteins are unable to activate transcription, and no synergy is observed between hER, which activates the B1 promoter, and these factors. Chromatin structure analysis on this promoter reveals positioned nucleosomes at -430 to -270 (+/-20 bp) and at -270 to - 100 (+/-20 bp) relative to the start site of transcription. The positions of the nucleosomes remain unchanged upon hormone-dependent transcriptional activation of the promoter, and the more proximal nucleosome appears to mask the CTF/NFI site located at - 101 to -114. We conclude that a functional interaction of hER with the estrogen response element located upstream of a basal promoter occurs in yeast despite the nucleosomal organization of this promoter, whereas the interaction of CTF1 with its target site is apparently precluded by a nucleosome.
Collapse
|
27
|
Marilley D, Robyr D, Schild-Poulter C, Wahli W. Regulation of the vitellogenin gene B1 promoter after transfer into hepatocytes in primary cultures. Mol Cell Endocrinol 1998; 141:79-93. [PMID: 9723889 DOI: 10.1016/s0303-7207(98)00090-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The estrogen-dependent and tissue-specific regulation of the Xenopus laevis vitellogenin gene B1 promoter has been studied by lipid-mediated DNA transfer into Xenopus hepatocytes in primary culture. Hepatocytes achieve an efficient hormonal control of this promoter through a functional interaction between the estrogen responsive elements and a promoter proximal region upstream of the TATA box, which is characterized by a high density of binding sites for the transcription factors CTF/NF-1, C/EBP and HNF3. DNA accessibility to restriction enzymes within the chromosomal copy of the vitellogenin gene B1 promoter shows that the estrogen responsive unit and the promoter proximal region are sensitive to digestion in uninduced and estrogen-induced hepatocytes but not in erythrocyte nuclei. Together, these findings support the notion that chromatin configuration as well as the interplay of promoter elements mediate proper hormone-dependent and tissue-specific expression of the B1 vitellogenin gene.
Collapse
Affiliation(s)
- D Marilley
- Institut de Biologie animale, Université de Lausanne, Bâtiment de Biologie, Switzerland
| | | | | | | |
Collapse
|
28
|
Klinge CM, Bodenner DL, Desai D, Niles RM, Traish AM. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro. Nucleic Acids Res 1997; 25:1903-12. [PMID: 9115356 PMCID: PMC146682 DOI: 10.1093/nar/25.10.1903] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo .
Collapse
Affiliation(s)
- C M Klinge
- Department of Biochemistry, the University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | |
Collapse
|
29
|
Lin BC, Wong CW, Chen HW, Privalsky ML. Plasticity of tetramer formation by retinoid X receptors. An alternative paradigm for DNA recognition. J Biol Chem 1997; 272:9860-7. [PMID: 9092522 DOI: 10.1074/jbc.272.15.9860] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Retinoid X receptors (RXRs) are transcription factors that traditionally have been thought to bind DNA as protein dimers. Recently, however, it has been recognized that RXRs can also bind to DNA as protein tetramers. Receptor tetramers form cooperatively on response elements containing suitably reiterated half-sites, and play an important role in determining the specificity of DNA recognition by different nuclear receptors. We report here that RXR tetramers exhibit significant functional plasticity, and form on response elements possessing diverse half-site orientations and spacings. This ability of RXRs to form tetramers and related oligomers appears to contribute to the synergistic transcriptional activation observed when multiple, spatially separated response elements are introduced into a single promoter. Oligomerization may therefore be a common paradigm for DNA recognition and combinatorial regulation by several different classes of transcription factors.
Collapse
Affiliation(s)
- B C Lin
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
30
|
Nuñez SB, Medin JA, Braissant O, Kemp L, Wahli W, Ozato K, Segars JH. Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor. Mol Cell Endocrinol 1997; 127:27-40. [PMID: 9099898 DOI: 10.1016/s0303-7207(96)03980-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Estrogen receptors regulate transcription of genes essential for sexual development and reproductive function. Since the retinoid X receptor (RXR) is able to modulate estrogen responsive genes and both 9-cis RA and fatty acids influenced development of estrogen responsive tumors, we hypothesized that estrogen responsive genes might be modulated by RXR and the fatty acid receptor (peroxisome proliferator-activated receptor, PPAR). To test this hypothesis, transfection assays in CV-1 cells were performed with an estrogen response element (ERE) coupled to a luciferase reporter construct. Addition of expression vectors for RXR and PPAR resulted in an 11-fold increase in luciferase activity in the presence of 9-cis RA. Furthermore, mobility shift assays demonstrated binding of RXR and PPAR to the vitellogenin A2-ERE and an ERE in the oxytocin promoter. Methylation interference assays demonstrated that specific guanine residues required for RXR/PPAR binding to the ERE were similar to residues required for ER binding. Moreover, RXR domain-deleted constructs in transfection assays showed that activation required RXR since an RXR delta AF-2 mutant completely abrogated reporter activity. Oligoprecipitation binding studies with biotinylated ERE and (35)S-labeled in vitro translated RXR constructs confirmed binding of delta AF-2 RXR mutant to the ERE in the presence of baculovirus-expressed PPAR. Finally, in situ hybridization confirmed RXR and PPAR mRNA expression in estrogen responsive tissues. Collectively, these data suggest that RXR and PPAR are present in reproductive tissues, are capable of activating estrogen responsive genes and suggest that the mechanism of activation may involve direct binding of the receptors to estrogen response elements.
Collapse
Affiliation(s)
- S B Nuñez
- Unit on the Molecular Mechanisms of Reproduction, Developmental Endocrinology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Tan NS, Lam TJ, Ding JL. Transcription regulatory signals in the 5' and 3' regions of Oreochromis aureus ER gene. Mol Cell Endocrinol 1996; 123:149-61. [PMID: 8961252 DOI: 10.1016/s0303-7207(96)03911-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Oreochromis aureus estrogen receptor (OaER) 5' region is 62.2% AT-rich and does not display well-positioned consensus TATA and CAAT boxes. A functional imperfect 13 bp ERE, TGTTAtggTGACC, deviating at 2 bases is located in the leader exon. Transient transfection assays indicate that this ERE confers a 5-fold increase in SEAP reporter gene activity at 20 h post E2-induction. The continued elevation of transcription after the initial peak could be responsible for the "memory' effect of E2-induced vitellogenesis. The 4.4 kb OaER 3' region is AT-rich and has a high representation of 1/2 EREs and GREs. There are 10 copies of the destabilizing pentamer ATTTA which, in transient transfection experiments strongly suppressed SEAP activity. The 3' EREs are functional, and on their own, induce a bimodal increase in SEAP activity of 9-fold at 6 h and 11-fold at 18 h post-E2 induction. A recombinant construct of SEAP gene flanked by the 5' upstream and 3' flanking regions of the OaER gene allowed these regulatory signals to "cross-talk' to achieve a 5- and 25-fold increase for the first and second peaks, respectively. This bimodal response to E2-induction is attributed to both transcriptional and translational controls over the SEAP gene. This work represents a novel illustration of a synergistic interaction between the 5' and 3' regulatory elements of a steroid receptor in autoregulation.
Collapse
Affiliation(s)
- N S Tan
- School of Biological Sciences, National University of Singapore, Singapore
| | | | | |
Collapse
|
32
|
Lauber AH, Sandhu NP, Schuchard M, Subramaniam M, Spelsberg TC. Nuclear matrix acceptor binding sites for steroid hormone receptors: a candidate nuclear matrix acceptor protein. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162B:337-76. [PMID: 8557491 DOI: 10.1016/s0074-7696(08)62621-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Steroid/nuclear-hormone receptors are ligand-activated transcription factors that have been localized to the nuclear matrix. The classic model of hormone action suggests that, following activation, these receptors bind to specific "steroid response elements" on the DNA, then interact with other factors in the transcription initiation complex. However, evidence demonstrates the existence of specific chromatin proteins that act as accessory factors by facilitating the binding of the steroid receptors to the DNA. One such protein, the "receptor binding factor (RBF)-1", has been purified and shown to confer specific, high-affinity binding of the progesterone receptor to the DNA. Interestingly, the RBF-1 is localized to the nuclear matrix. Further, the RBF-1 binds specifically to a sequence of the c-myc proto-oncogene that has the appearance of a nuclear matrix attached region (MAR). These results, and other findings reviewed here, suggest that the nuclear matrix is involved intimately in steroid hormone-regulated gene expression.
Collapse
Affiliation(s)
- A H Lauber
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55904, USA
| | | | | | | | | |
Collapse
|
33
|
Alevizopoulos A, Dusserre Y, Tsai-Pflugfelder M, von der Weid T, Wahli W, Mermod N. A proline-rich TGF-beta-responsive transcriptional activator interacts with histone H3. Genes Dev 1995; 9:3051-66. [PMID: 8543151 DOI: 10.1101/gad.9.24.3051] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The molecular mechanisms involved in the regulation of gene expression by transforming growth factor-beta (TGF-beta) have been analyzed. We show that TGF-beta specifically induces the activity of the proline-rich trans-activation domain of CTF-1, a member of the CTF/NF-I family of transcription factors. A TGF-beta-responsive domain (TRD) in the proline-rich transcriptional activation sequence of CTF-1 was shown to mediate TGF-beta induction in NIH-3T3 cells. Mutagenesis studies indicated that this domain is not the primary target of regulatory phosphorylations, suggesting that the growth factor may regulate a CTF-1-interacting protein. A two-hybrid screening assay identified a nucleosome component, histone H3, as a specific CTF-1-interacting protein in yeast. Furthermore, the CTF-1 trans-activation domain was shown to interact with histone H3 in both transiently and stably transfected mammalian cells. This interaction requires the TRD, and it appears to be upregulated by TGF-beta in vivo. Moreover, point mutations in the TRD that inhibit TGF-beta induction also reduce interaction with histone H3. In vitro, the trans-activation domain of CTF-1 specifically contacts histone H3 and oligomers of histones H3 and H4, and full-length CTF-1 was shown to alter the interaction of reconstituted nucleosomal cores with DNA. Thus, the growth factor-regulated trans-activation domain of CTF-1 can interact with chromatin components through histone H3. These findings suggest that such interactions may regulate chromatin dynamics in response to growth factor signaling.
Collapse
Affiliation(s)
- A Alevizopoulos
- Institute of Animal Biology, University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Aliau S, Groblewski T, Borgna JL. The effect of free DNA on the interactions of the estrogen receptor bound to hormone, partial antagonist or pure antagonist with target DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:204-13. [PMID: 7628472 DOI: 10.1111/j.1432-1033.1995.0204f.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interactions between the lamb uterine estrogen receptor occupied by estradiol, 4-hydroxytamoxifen (a non-steroidal partial estrogen antagonist) or ICI 164,384 (a steroidal pure estrogen antagonist), and the vitellogenin A2 estrogen-response element (vit ERE) were compared using a biotinylated 25-base all-palindromic double-stranded oligonucleotide, containing vit ERE (b-ERE), which allowed isolation of the b-ERE.receptor.[3H]ligand assembly on streptavidin-Sepharose. The results of saturation analyses of the three receptor.[3H]ligand complexes by increasing amounts of b-ERE were quite similar for the proportion of complexes able to interact with b-ERE (which varied from 30% to 65% according to experiments) and for the equilibrium dissociation constant [Kd (0 degree C) approximately 1.2 nM, assuming that the receptor interacted as a dimer with b-ERE]. With each ligand, receptor binding to ERE did not change the rate of ligand dissociation from the receptor at 20 degrees C. The rate of estrogen receptor dissociation from b-ERE, measured at 20 degrees C in the presence of a given concentration of ERE, did not vary according to the ligand bound to the receptor; however, this dissociation rate increased linearly over the ERE concentration range (0.5-10 microM). The experimental rate constant (k-) of estrogen receptor dissociation from b-ERE appeared to be the sum of the basal dissociation-rate constant (k degrees - approximately 0.011 min-1), corresponding to spontaneous dissociation which would occur in the absence of ERE, and of the ERE-induced dissociation-rate constant, proportional to the used concentration of ERE (ki- approximately 4500 CERE M-1 min-1, where CERE is the molar concentration of ERE). Non-target DNA also induced receptor dissociation from b-ERE, but its efficiency was 6-10-fold lower than that of ERE. We conclude that, the two antiestrogens are as efficient as estradiol in promoting estrogen receptor binding to a single vit ERE; the low or nil ability of antiestrogens to induce estrogenic responses is probably not linked with the receptor DNA-binding step; DNA binding does not seem to affect the conformation of the filled hormone-binding site of the receptor at 20 degrees C; interactions of receptor dimers with DNA seems to proceed by direct transfer of receptor dimers between DNA strands.
Collapse
Affiliation(s)
- S Aliau
- Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | | | | |
Collapse
|
35
|
Le Dréan Y, Kern L, Pakdel F, Valotaire Y. Rainbow trout estrogen receptor presents an equal specificity but a differential sensitivity for estrogens than human estrogen receptor. Mol Cell Endocrinol 1995; 109:27-35. [PMID: 7789614 DOI: 10.1016/0303-7207(95)03482-m] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The estrogen receptor is a transcription factor that mediates the actions of estrogens which plays a major role in salmonid vitellogenesis. Previously, we cloned and described the estradiol receptor in rainbow trout. To study the transactivation characteristics, the full length cDNA was inserted in an expression vector and tested by transfection on an estrogen-dependent promoter (pERE-TK-CAT). For the first time, direct comparison between the trout receptor (rtER) and human receptor (hER) in an analogous system has been possible. We demonstrate that rtER can, like hER, transactivate transcription in a strictly hormone-dependent manner. The specificity and sensitivity of the rtER response to different steroids have been studied. With rtER, the E2 concentration needed for half maximal activation is 10 times higher than with hER. In addition, we show that rtER has a weak affinity for androgens and transactivation could be induced using high testosterone concentration. Experiments show that both rtER and hER have an equal specificity for estrogens but that the rtER binds its ligand with a lower sensitivity than hER. Several hypotheses concerning the role of main amino acids within the receptor protein are proposed based on the different properties of the receptors and comparison of sequences.
Collapse
Affiliation(s)
- Y Le Dréan
- Laboratoire de Biologie Moléculaire, URA CNRS 256, Rennes, France
| | | | | | | |
Collapse
|
36
|
Nunez SB, Medin JA, Keller H, Wang K, Ozato K, Wahli W, Segars J. Retinoid X receptor beta and peroxisome proliferator-activated receptor activate an estrogen response element. RECENT PROGRESS IN HORMONE RESEARCH 1995; 50:409-16. [PMID: 7740175 DOI: 10.1016/b978-0-12-571150-0.50029-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S B Nunez
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Suzuki M, Yagi N. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. Proc Natl Acad Sci U S A 1994; 91:12357-61. [PMID: 7809040 PMCID: PMC45436 DOI: 10.1073/pnas.91.26.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously reported that in four transcription factor families the DNA-recognition rules can be described as (i) chemical rules, which list possible pairings between the 20 amino acid residues and the four DNA bases, and (ii) stereochemical rules, which describe the base and amino acid positions in contact. We have incorporated these rules into a computer program and examined the nature of the rules. Here we conclude that the DNA recognition rules are simple, logical, and consistent. The rules are specific enough to predict DNA-binding characteristics from a protein sequence.
Collapse
Affiliation(s)
- M Suzuki
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
38
|
Becker KG, Jedlicka P, Templeton NS, Liotta L, Ozato K. Characterization of hUCRBP (YY1, NF-E1, delta): a transcription factor that binds the regulatory regions of many viral and cellular genes. Gene 1994; 150:259-66. [PMID: 7821790 DOI: 10.1016/0378-1119(94)90435-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The UCRBP (YY1, delta, NF-E1) protein has been isolated for its ability to bind to the UCR (upstream conserved region) site present in the conserved murine leukemia virus long terminal repeat. UCRBP carries a highly charged N-terminal domain and four C2-H2-type zinc fingers at its C-terminal end. The present study reveals the following results: (i) The UCR site is present in the upstream and/or regulatory regions of numerous mammalian cellular and viral genes to which both recombinant and cellular UCRBP bind. UCR sites are also found in the regulatory regions of repetitive sequences including human LINE-1 elements and mouse intracisternal-A particle sequences. (ii) By immunological and UV cross-linking experiments, we found that two proteins, of approx. 68 kDa and an antigenically related protein of approx. 40 kDa, account for much of the UCR-binding activity in T-lymphocytes. (iii) There is evidence that UCRBP acts as a phosphoprotein. Eight consensus phosphorylation sites are found in the deduced amino-acid sequence of human UCRBP. The cellular UCR-binding activity was abolished by phosphatase treatment, and there is an incremental increase in apparent molecular mass between the cytoplasmic and nuclear forms of the protein, suggesting phosphorylation. (iv) Although UCRBP has been previously shown to act as a transcriptional repressor, we show here that UCRBP can also act as a positive transactivator of a reporter driven by UCR elements when used in co-transfection assays. This transactivation occurred in a dose-restricted manner and was absent at high concentrations of a UCRBP expression plasmid, indicating a complex mode of function.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K G Becker
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
39
|
Cardinaux JR, Chapel S, Wahli W. Complex organization of CTF/NF-I, C/EBP, and HNF3 binding sites within the promoter of the liver-specific vitellogenin gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30083-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Chalbos D, Galtier F. Differential effect of forms A and B of human progesterone receptor on estradiol-dependent transcription. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31611-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Marilley D, Mahfoudi A, Wahli W. Gene transfer into Xenopus hepatocytes: transcriptional regulation by members of the nuclear receptor superfamily. Mol Cell Endocrinol 1994; 101:227-36. [PMID: 9397957 DOI: 10.1016/0303-7207(94)90239-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A procedure to culture Xenopus laevis hepatocytes that allows the cells in primary culture to be subjected to gene transfer experiments has been developed. The cultured cells continue to present tissue-specific markers such as expression of the albumin gene or estrogen-controlled vitellogenin gene expression, which are both restricted to liver. Two efficient and reproducible gene transfer procedures have been adapted to the Xenopus hepatocytes, namely lipofection and calcium phosphate-mediated precipitation. The transcription of transfected reporter genes controlled by estrogen-, glucocorticoid- or peroxisome proliferator-response elements was stimulated by endogenous or co-transfected receptor in a ligand-dependent manner. Furthermore, the expression of a reporter gene under the control of the entire promoter of the vitellogenin B1 gene mimicked the expression of the chromosomal vitellogenin gene with respect to basal and estrogen-induced activity. Thus, this culture-transfection system will prove very useful to study the regulation of genes expressed in the liver under the control of various hormones or xenobiotics.
Collapse
Affiliation(s)
- D Marilley
- Institut de Biologie Animale, Université de Lausanne, Switzerland
| | | | | |
Collapse
|
42
|
Schippers IJ, Kloppenburg M, van Waardenburg R, Ab G. Cis-acting elements reinforcing the activity of the estrogen-response element in the very-low-density apolipoprotein II gene promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:43-51. [PMID: 8168531 DOI: 10.1111/j.1432-1033.1994.tb18713.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The gene coding for chicken very low density apolipoprotein II (apoVLDLII) is expressed exclusively in liver in response to estrogen. Previous work in our laboratory identified several protein binding sites, identified by the letters A to F, and their cognate factors within the first 300 bp flanking the gene. Here we present an extensive functional analysis of the apoVLDLII promoter by gene transfer experiments using a chicken hepatoma cell line and cultured non-hepatic cells. Deletion analysis revealed that the -301 to -163-bp promoter region, comprising elements E1, E2 and F, is sufficient for strong estrogen-dependent expression. Mutation analysis demonstrated that efficient transcription requires the interplay of the major estrogen response element E1 with several other cis-acting elements. Analysis of individual protein binding sites showed that element E1 is sufficient by itself to confer weak estrogen-induced transcription from the apoVLDLII promoter, and that additional promoter elements are required for full estrogen-responsiveness. Elements F and B1 were capable of strongly potentiating the activity of element E1. In general, the activity of certain cis-acting elements appeared to be strongly promoter-context dependent. Cultured non-liver cells expressed transfected VLDL-CAT reporter plasmids in the presence of cotransfected estrogen receptor expression vector in a hormone-dependent way, indicating that for the control of tissue specificity the 5'-proximal promoter region is not sufficient.
Collapse
Affiliation(s)
- I J Schippers
- Department of Biochemistry, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
43
|
Dominant negative retinoid X receptor beta inhibits retinoic acid-responsive gene regulation in embryonal carcinoma cells. Mol Cell Biol 1994. [PMID: 8264603 DOI: 10.1128/mcb.14.1.360] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoid X receptors (RXRs) heterodimerize with multiple nuclear hormone receptors and are thought to exert pleiotropic functions. To address the role of RXRs in retinoic acid- (RA) mediated gene regulation, we designed a dominant negative RXR beta. This mutated receptor, termed DBD-, lacked the DNA binding domain but retained the ability to dimerize with partner receptors, resulting in formation of nonfunctional dimers. DBD- was transfected into P19 murine embryonal carcinoma (EC) cells, in which reporters containing the RA-responsive elements (RAREs) were activated by RA through the activity of endogenous RXR-RA receptor (RAR) heterodimers. We found that DBD- had a dominant negative activity on the RARE reporter activity in these cells. P19 clones stably expressing DBD- were established; these clones also failed to activate RARE-driven reporters in response to RA. Further, these cells were defective in RA-induced mRNA expression of Hox-1.3 and RAR beta, as well as in RA-induced down-regulation of Oct3 mRNA. Gel mobility shift assays demonstrated that RA treatment of control P19 cells induces RARE-binding activity, of which RXR beta is a major component. However, the RA-induced binding activity was greatly reduced in cells expressing DBD-. By genomic footprinting, we show that RA treatment induces in vivo occupancy of the RARE in the endogenous RAR beta gene in control P19 cells but that this occupancy is not observed with the DBD- cells. These data provide evidence that the dominant negative activity of DBD- is caused by the lack of receptor binding to target DNA. Finally, we show that in F9 EC cells expression of DBD- leads to inhibition of the growth arrest that accompanies RA-induced differentiation. Taken together, these results demonstrate that RXR beta and partner receptors play a central role in RA-mediated gene regulation and in the control of growth and differentiation in EC cells.
Collapse
|
44
|
11 Structure and Regulation of Genes for Estrogen Receptors. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s1546-5098(08)60072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Minucci S, Zand DJ, Dey A, Marks MS, Nagata T, Grippo JF, Ozato K. Dominant negative retinoid X receptor beta inhibits retinoic acid-responsive gene regulation in embryonal carcinoma cells. Mol Cell Biol 1994; 14:360-72. [PMID: 8264603 PMCID: PMC358385 DOI: 10.1128/mcb.14.1.360-372.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Retinoid X receptors (RXRs) heterodimerize with multiple nuclear hormone receptors and are thought to exert pleiotropic functions. To address the role of RXRs in retinoic acid- (RA) mediated gene regulation, we designed a dominant negative RXR beta. This mutated receptor, termed DBD-, lacked the DNA binding domain but retained the ability to dimerize with partner receptors, resulting in formation of nonfunctional dimers. DBD- was transfected into P19 murine embryonal carcinoma (EC) cells, in which reporters containing the RA-responsive elements (RAREs) were activated by RA through the activity of endogenous RXR-RA receptor (RAR) heterodimers. We found that DBD- had a dominant negative activity on the RARE reporter activity in these cells. P19 clones stably expressing DBD- were established; these clones also failed to activate RARE-driven reporters in response to RA. Further, these cells were defective in RA-induced mRNA expression of Hox-1.3 and RAR beta, as well as in RA-induced down-regulation of Oct3 mRNA. Gel mobility shift assays demonstrated that RA treatment of control P19 cells induces RARE-binding activity, of which RXR beta is a major component. However, the RA-induced binding activity was greatly reduced in cells expressing DBD-. By genomic footprinting, we show that RA treatment induces in vivo occupancy of the RARE in the endogenous RAR beta gene in control P19 cells but that this occupancy is not observed with the DBD- cells. These data provide evidence that the dominant negative activity of DBD- is caused by the lack of receptor binding to target DNA. Finally, we show that in F9 EC cells expression of DBD- leads to inhibition of the growth arrest that accompanies RA-induced differentiation. Taken together, these results demonstrate that RXR beta and partner receptors play a central role in RA-mediated gene regulation and in the control of growth and differentiation in EC cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinoma, Embryonal/genetics
- Carcinoma, Embryonal/metabolism
- Carcinoma, Embryonal/pathology
- Cell Differentiation/genetics
- Cell Division/genetics
- DNA Primers/genetics
- DNA, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Reporter
- Mice
- Molecular Sequence Data
- Mutation
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors
- Transcription Factors
- Transcription, Genetic
- Transfection
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
Collapse
Affiliation(s)
- S Minucci
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | |
Collapse
|
46
|
May FE, Smith DJ, Westley BR. The human cathepsin D-encoding gene is transcribed from an estrogen-regulated and a constitutive start point. Gene X 1993; 134:277-82. [PMID: 8262386 DOI: 10.1016/0378-1119(93)90107-e] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The 5' flanking sequences, exon 1 and part of intron 1 of the human cathepsin D (CTD)-encoding gene (CTD) have been cloned and sequenced. RNase protection experiments identified two major transcription start points (tsp) located 14 and 63 nucleotides upstream of the start codon. The proximal -14, but not the distal -63 tsp has upstream near-concensus TATAAA and CCAAT sequences. Estrogens increase transcription from the -14 tsp, but not the -63 tsp and CTD is therefore unique among estrogen-regulated genes in having estrogen-regulated and constitutive transcription. Sequencing approximately 800 bp upstream and 600 bp downstream of the tsp failed to identify a consensus 13-bp palindromic estrogen-response element (ERE); however, four half-palindrome GGTCA motifs were located within 340 bp upstream of the -14 bp tsp. Thus, estrogen regulation of CTD may not be mediated by a consensus ERE.
Collapse
Affiliation(s)
- F E May
- University Department of Pathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | | | | |
Collapse
|
47
|
Chander SK, Sahota SS, Evans TR, Luqmani YA. The biological evaluation of novel antioestrogens for the treatment of breast cancer. Crit Rev Oncol Hematol 1993; 15:243-69. [PMID: 8142059 DOI: 10.1016/1040-8428(93)90044-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- S K Chander
- Department of Oncology, Celltech Limited, Slough, Berkshire, UK
| | | | | | | |
Collapse
|
48
|
An estrogen receptor mutant exhibiting hormone-independent transactivation and enhanced affinity for the estrogen response element. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)49453-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
49
|
The genomic structure of the murine ICSBP gene reveals the presence of the gamma interferon-responsive element, to which an ISGF3 alpha subunit (or similar) molecule binds. Mol Cell Biol 1993. [PMID: 8321202 DOI: 10.1128/mcb.13.7.3951] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ICSBP, a member of the interferon regulatory factor family, is expressed predominantly in lymphoid tissues and is induced by gamma interferon (IFN-gamma). We have studied the genomic organization of the murine ICSBP gene and its 5' upstream region. The murine ICSBP gene (Icsbp) is present as a single copy on chromosome 8 and consists of nine exons. Transcription initiates at two juxtaposed sites downstream from the TATA and CAAT boxes and produces two species of ICSBP mRNA (3.0 and 1.7 kb), presumably by differential usage of poly(A)+ signals. A sequence from -175 to -155 was identified to be an IFN response region that conferred IFN-gamma induction upon a heterologous promoter in lymphoid cell line EL4. This region includes a motif, TTCNNGGAA, designated the palindromic IFN response element (pIRE), to which an IFN-gamma-inducible, cycloheximide-sensitive factor(s) binds. A similar palindromic motif was found in the upstream region of the murine IRF-1 gene, the IFN-gamma activation site of the guanylate-binding protein gene and the IFN-gamma-responsive region of the Fc receptor type I gene, all of which competed with the pIRE for factor binding in gel mobility shift assays. We show that the pIRE binding factor reacts with the antibody against the 91-kDa subunit of ISGF3 alpha recently shown to bind to the IFN-gamma activation site. These results suggest that this factor is related to the IFN-gamma activation factor and contains the 91-kDa subunit of ISGF3 alpha. Taken together, pIRE represents an IRE that is distinct from the classical IFN-stimulated response element and that is capable of conferring IFN-gamma induction through the binding of the 91-kDa ISGF3 alpha subunit (or an antigenically similar molecule).
Collapse
|
50
|
Kanno Y, Kozak CA, Schindler C, Driggers PH, Ennist DL, Gleason SL, Darnell JE, Ozato K. The genomic structure of the murine ICSBP gene reveals the presence of the gamma interferon-responsive element, to which an ISGF3 alpha subunit (or similar) molecule binds. Mol Cell Biol 1993; 13:3951-63. [PMID: 8321202 PMCID: PMC359937 DOI: 10.1128/mcb.13.7.3951-3963.1993] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
ICSBP, a member of the interferon regulatory factor family, is expressed predominantly in lymphoid tissues and is induced by gamma interferon (IFN-gamma). We have studied the genomic organization of the murine ICSBP gene and its 5' upstream region. The murine ICSBP gene (Icsbp) is present as a single copy on chromosome 8 and consists of nine exons. Transcription initiates at two juxtaposed sites downstream from the TATA and CAAT boxes and produces two species of ICSBP mRNA (3.0 and 1.7 kb), presumably by differential usage of poly(A)+ signals. A sequence from -175 to -155 was identified to be an IFN response region that conferred IFN-gamma induction upon a heterologous promoter in lymphoid cell line EL4. This region includes a motif, TTCNNGGAA, designated the palindromic IFN response element (pIRE), to which an IFN-gamma-inducible, cycloheximide-sensitive factor(s) binds. A similar palindromic motif was found in the upstream region of the murine IRF-1 gene, the IFN-gamma activation site of the guanylate-binding protein gene and the IFN-gamma-responsive region of the Fc receptor type I gene, all of which competed with the pIRE for factor binding in gel mobility shift assays. We show that the pIRE binding factor reacts with the antibody against the 91-kDa subunit of ISGF3 alpha recently shown to bind to the IFN-gamma activation site. These results suggest that this factor is related to the IFN-gamma activation factor and contains the 91-kDa subunit of ISGF3 alpha. Taken together, pIRE represents an IRE that is distinct from the classical IFN-stimulated response element and that is capable of conferring IFN-gamma induction through the binding of the 91-kDa ISGF3 alpha subunit (or an antigenically similar molecule).
Collapse
Affiliation(s)
- Y Kanno
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|