1
|
Wang Y, Wei Y, Wu H, Feng L, Huang L. Specific inhibition of the interaction between pseudorabies virus DNA polymerase subunits UL30 and UL42 by a synthetic peptide. Vet Microbiol 2022; 272:109517. [PMID: 35908441 DOI: 10.1016/j.vetmic.2022.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Pseudorabies virus (PRV) is a ubiquitous and economically important swine alphaherpesvirus that causes devastating swine diseases worldwide. PRV-encoded DNA-dependent DNA polymerase, comprised of the catalytic subunit UL30 and the accessory subunit UL42, is essential for viral replication. PRV UL30 and UL42 act as a heterodimer with UL30 harboring inherent DNA polymerase activity and UL42 conferring processivity on the DNA polymerase holoenzyme. The formation of PRV UL30/UL42 heterodimer holoenzyme through protein-protein interactions is indispensable for viral replication. In work described here, we defined the key domains that mediate PRV UL30/UL42 interaction, and found that the 41 carboxy-terminal amino acids region of PRV UL30 is critical for its interaction with UL42. Intriguingly, a synthetic peptide corresponding to these 41 carboxy-terminal amino acid residues efficiently disrupted PRV UL30/UL42 interaction through competitively binding to UL42. These findings suggest that the peptides from the PRV DNA polymerase UL30/UL42 subunit interface may represent potential targets for designing a novel intervention strategy against PRV infection. This work further strengthens the concept that the herpesvirus DNA polymerase catalytic subunits utilize their extreme carboxy-terminal domains as a conserved mechanism to associate with their cognate accessory subunits, providing us the opportunity of designing novel antiviral agents against herpesvirus infection through disruption of the herpesvirus DNA polymerase subunit interactions.
Collapse
Affiliation(s)
- Yiping Wang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yanwu Wei
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hongli Wu
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Feng
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Liping Huang
- Division of Swine Digestive System Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
2
|
Abstract
Herpesviruses comprise a family of DNA viruses that cause a variety of human and veterinary diseases. During productive infection, mammalian, avian, and reptilian herpesviruses replicate their genomes using a set of conserved viral proteins that include a two subunit DNA polymerase. This enzyme is both a model system for family B DNA polymerases and a target for inhibition by antiviral drugs. This chapter reviews the structure, function, and mechanisms of the polymerase of herpes simplex viruses 1 and 2 (HSV), with only occasional mention of polymerases of other herpesviruses such as human cytomegalovirus (HCMV). Antiviral polymerase inhibitors have had the most success against HSV and HCMV. Detailed structural information regarding HSV DNA polymerase is available, as is much functional information regarding the activities of the catalytic subunit (Pol), which include a DNA polymerization activity that can utilize both DNA and RNA primers, a 3'-5' exonuclease activity, and other activities in DNA synthesis and repair and in pathogenesis, including some remaining to be biochemically defined. Similarly, much is known regarding the accessory subunit, which both resembles and differs from sliding clamp processivity factors such as PCNA, and the interactions of this subunit with Pol and DNA. Both subunits contribute to replication fidelity (or lack thereof). The availability of both pharmacologic and genetic tools not only enabled the initial identification of Pol and the pol gene, but has also helped dissect their functions. Nevertheless, important questions remain for this long-studied enzyme, which is still an attractive target for new drug discovery.
Collapse
|
3
|
Characterization of monoclonal antibodies that recognize the amino- and carboxy-terminal epitopes of the pseudorabies virus UL42 protein. Appl Microbiol Biotechnol 2015; 100:181-92. [PMID: 26377421 DOI: 10.1007/s00253-015-6957-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/12/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
The pseudorabies virus (PRV) UL42 protein, known as the DNA polymerase processivity factor, is an essential protein required for viral replication. The in vitro function of UL42 has been characterized; however, there is little information concerning the linear B cell epitopes of UL42 that are recognized during humoral immune responses. We generated and characterized six UL42-reactive monoclonal antibodies (mAbs) from mice that had been immunized with a recombinant form of UL42. Through western blotting analysis, we identified two regions of UL42 (amino acids 39-148 and 302-384) that reacted with these mAbs. We then synthesized a panel of UL42-derived peptides spanning the two regions and screened the six mAbs. We were able to identify three linear epitopes ((116)SGGVLDALK(124), (354)KRPAAPR(360), and (360)RMYTPIAK(367)) by enzyme-linked immunosorbent assays. The (116)SGGVLDALK(124) epitope was located at the amino-terminus, while the other two epitopes were at the carboxy-terminus. Using these mAbs, we found that UL42 localized to the nucleus during viral replication and could be immunoprecipitated from PRV-infected PK-15 cells. We also established a UL42 mAb-based immunoperoxidase monolayer assay for the determination of PRV titers. Sequence analysis showed that the linear epitopes of UL42 were highly conserved among PRV strains. Taken together, our results indicate that the six generated mAbs could be useful tools for investigating the structure and function of UL42 during viral replication. In addition, these mAbs could be applied to diagnostic and therapeutic approaches for the effective control of PRV infections.
Collapse
|
4
|
Kukhanova MK, Korovina AN, Kochetkov SN. Human herpes simplex virus: Life cycle and development of inhibitors. BIOCHEMISTRY (MOSCOW) 2015; 79:1635-52. [DOI: 10.1134/s0006297914130124] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions. Antiviral Res 2013; 99:318-27. [DOI: 10.1016/j.antiviral.2013.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
|
6
|
He DX, Tam SC. Trichosanthin affects HSV-1 replication in Hep-2 cells. Biochem Biophys Res Commun 2010; 402:670-5. [PMID: 20971060 DOI: 10.1016/j.bbrc.2010.10.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Trichosanthin (TCS) is a type I ribosome-inactivating protein that inhibits the replication of both human immunodeficiency virus type 1 (HIV-1) and herpes simplex virus type 1 (HSV-1). The mechanism of inhibition is not clear. This investigation explored the effects of TCS on the stages of HSV-1 infection in Hep-2 cells, from attachment to release. We demonstrated that TCS reduced HSV-1 antigen and DNA content and interfered with viral replication as early as 3-15 h after infection. TCS had no effect on HSV-1 attachment, penetration or immediate-early gene expression. However, the expression of early and late genes and virion release were diminished. In summary, this study demonstrates that TCS primarily affects HSV-1 replication in Hep-2 cells during the early to late infection period.
Collapse
Affiliation(s)
- Dong-Xu He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
7
|
Komazin-Meredith G, Santos WL, Filman DJ, Hogle JM, Verdine GL, Coen DM. The positively charged surface of herpes simplex virus UL42 mediates DNA binding. J Biol Chem 2008; 283:6154-61. [PMID: 18178550 DOI: 10.1074/jbc.m708691200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus DNA polymerase is a heterodimer composed of UL30, a catalytic subunit, and UL42, a processivity subunit. Mutations that decrease DNA binding by UL42 decrease long chain DNA synthesis by the polymerase. The crystal structure of UL42 bound to the C terminus of UL30 revealed an extensive positively charged surface ("back face"). We tested two hypotheses, 1) the C terminus of UL30 affects DNA binding and 2) the positively charged back face mediates DNA binding. Addressing the first hypothesis, we found that the presence of a peptide corresponding to the UL30 C terminus did not result in altered binding of UL42 to DNA. Addressing the second hypothesis, previous work showed that substitution of four conserved arginine residues on the basic face with alanines resulted in decreased DNA affinity. We tested the affinities for DNA and the stimulation of long chain DNA synthesis of mutants in which the four conserved arginine residues were substituted individually or together with lysines and also a mutant in which a conserved glutamine residue was substituted with an arginine to increase positive charge on the back face. We also engineered cysteines onto this surface to permit disulfide cross-linking studies. Last, we assayed the effects of ionic strength on DNA binding by UL42 to estimate the number of ions released upon binding. Our results taken together strongly suggest that the basic back face of UL42 contacts DNA and that positive charge on this surface is important for this interaction.
Collapse
Affiliation(s)
- Gloria Komazin-Meredith
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
8
|
Loregian A, Case A, Cancellotti E, Valente C, Marsden HS, Palù G. Cloning, expression, and functional characterization of the equine herpesvirus 1 DNA polymerase and its accessory subunit. J Virol 2006; 80:6247-58. [PMID: 16775312 PMCID: PMC1488933 DOI: 10.1128/jvi.02551-05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the expression and characterization of the putative catalytic subunit (pORF30) and accessory protein (pORF18) of equine herpesvirus 1 DNA polymerase, which are encoded by open reading frames 30 and 18 and are homologous to herpes simplex virus type 1 UL30 and UL42, respectively. In vitro transcription-translation of open reading frames 30 and 18 generated proteins of 136 and 45 kDa, respectively. In vitro-expressed pORF30 possessed basal DNA polymerase activity that was stimulated by pORF18, as measured by DNA polymerase assays in vitro. Purified baculovirus-expressed pORF30 exhibited DNA polymerase activity similar to that of the in vitro-expressed protein, and baculovirus-expressed pORF18 could stimulate both nucleotide incorporation and long-chain DNA synthesis by pORF30 in a dose- and time-dependent manner. The salt optima for activity of both pORF30 and the holoenzyme were substantially different from those for other herpesvirus DNA polymerases. As demonstrated by yeast two-hybrid assays, pORF30 and pORF18 could physically interact, most likely with a 1:1 stoichiometry. Finally, by mutational analysis of the 1,220-residue pORF30, we demonstrated that the extreme C terminus of pORF30 is important for physical and functional interaction with the accessory protein, as reported for UL30 and other herpesvirus DNA polymerases. In addition, a C-proximal region of pORF30, corresponding to residues 1114 to 1172, is involved in binding to, and stimulation by, pORF18. Taken together, the results indicate that pORF30 and pORF18 are the equine herpesvirus 1 counterparts of herpes simplex virus type 1 UL30 and UL42 and share many, but not all, of their characteristics.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, via Gabelli 63, 35121 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Loregian A, Palù G. Disruption of the interactions between the subunits of herpesvirus DNA polymerases as a novel antiviral strategy. Clin Microbiol Infect 2005; 11:437-46. [PMID: 15882193 DOI: 10.1111/j.1469-0691.2005.01149.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Most biological processes depend on the co-ordinated formation of protein-protein interactions. Besides their importance for virus replication, several interactions between virus proteins have been proposed as attractive targets for antiviral drug discovery, as the exquisite specificity of such cognate interactions affords the possibility of interfering with them in a highly specific and effective manner. There is a considerable need for new drugs active against herpesviruses, since available agents, most of which target the polymerisation activity of the virus DNA polymerase, are limited by pharmacokinetic issues, toxicity and antiviral resistance. A potential novel target for anti-herpesvirus drugs is the interaction between the two subunits of the virus DNA polymerase. This review focuses on recent developments using peptides and small molecules to inhibit protein-protein interactions between herpesvirus DNA polymerase subunits.
Collapse
Affiliation(s)
- A Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, Italy.
| | | |
Collapse
|
10
|
Loregian A, Palù G. Disruption of protein-protein interactions: towards new targets for chemotherapy. J Cell Physiol 2005; 204:750-62. [PMID: 15880642 DOI: 10.1002/jcp.20356] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein-protein interactions play a key role in various mechanisms of cellular growth and differentiation, and in the replication of pathogen organisms in host cells. Thus, inhibition of these interactions is a promising novel approach for rational drug design against a wide number of cellular and microbial targets. In the past few years, attempts to inhibit protein-protein interactions using antibodies, peptides, and synthetic or natural small molecules have met with varying degrees of success, and these will be the focus of this review.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Italy.
| | | |
Collapse
|
11
|
Randell JCW, Komazin G, Jiang C, Hwang CBC, Coen DM. Effects of substitutions of arginine residues on the basic surface of herpes simplex virus UL42 support a role for DNA binding in processive DNA synthesis. J Virol 2005; 79:12025-34. [PMID: 16140778 PMCID: PMC1212618 DOI: 10.1128/jvi.79.18.12025-12034.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The way that UL42, the processivity subunit of the herpes simplex virus DNA polymerase, interacts with DNA and promotes processivity remains unclear. A positively charged face of UL42 has been proposed to participate in electrostatic interactions with DNA that would tether the polymerase to a template without preventing its translocation via DNA sliding. An alternative model proposes that DNA binding by UL42 is not important for processivity. To investigate these issues, we substituted alanine for each of four conserved arginine residues on the positively charged surface. Each single substitution decreased the DNA binding affinity of UL42, with 14- to 30-fold increases in apparent dissociation constants. The mutant proteins exhibited no meaningful change in affinity for binding to the C terminus of the catalytic subunit of the polymerase, indicating that the substitutions exert a specific effect on DNA binding. The substitutions decreased UL42-mediated long-chain DNA synthesis by the polymerase in the same rank order in which they affected DNA binding, consistent with a role for DNA binding in polymerase processivity. Combining these substitutions decreased DNA binding further and impaired the complementation of a UL42 null virus in transfected cells. Additionally, using a revised mathematical model to analyze rates of dissociation of UL42 from DNAs of various lengths, we found that dissociation from internal sites, which would be the most important for tethering the polymerase, was relatively slow, even at ionic strengths that permit processive DNA synthesis by the holoenzyme. These data provide evidence that the basic surface of UL42 interacts with DNA and support a model in which DNA binding by UL42 is important for processive DNA synthesis.
Collapse
Affiliation(s)
- John C W Randell
- Committee on Virology, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave., SGMB-304, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
12
|
Pilger BD, Cui C, Coen DM. Identification of a small molecule that inhibits herpes simplex virus DNA Polymerase subunit interactions and viral replication. ACTA ACUST UNITED AC 2005; 11:647-54. [PMID: 15157875 DOI: 10.1016/j.chembiol.2004.01.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 01/26/2004] [Accepted: 01/30/2004] [Indexed: 11/25/2022]
Abstract
The interaction between the catalytic subunit Pol and the processivity subunit UL42 of herpes simplex virus DNA polymerase has been characterized structurally and mutationally and is a potential target for novel antiviral drugs. We developed and validated an assay for small molecules that could disrupt the interaction of UL42 and a Pol-derived peptide and used it to screen approximately 16,000 compounds. Of 37 "hits" identified, four inhibited UL42-stimulated long-chain DNA synthesis by Pol in vitro, of which two exhibited little inhibition of polymerase activity by Pol alone. One of these specifically inhibited the physical interaction of Pol and UL42 and also inhibited viral replication at concentrations below those that caused cytotoxic effects. Thus, a small molecule can inhibit this protein-protein interaction, which provides a starting point for the discovery of new antiviral drugs.
Collapse
Affiliation(s)
- Beatrice D Pilger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Loregian A, Appleton BA, Hogle JM, Coen DM. Specific residues in the connector loop of the human cytomegalovirus DNA polymerase accessory protein UL44 are crucial for interaction with the UL54 catalytic subunit. J Virol 2004; 78:9084-92. [PMID: 15308704 PMCID: PMC506919 DOI: 10.1128/jvi.78.17.9084-9092.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus DNA polymerase includes an accessory protein, UL44, which has been proposed to act as a processivity factor for the catalytic subunit, UL54. How UL44 interacts with UL54 has not yet been elucidated. The crystal structure of UL44 revealed the presence of a connector loop analogous to that of the processivity subunit of herpes simplex virus DNA polymerase, UL42, which is crucial for interaction with its cognate catalytic subunit, UL30. To investigate the role of the UL44 connector loop, we replaced each of its amino acids (amino acids 129 to 140) with alanine. We then tested the effect of each substitution on the UL44-UL54 interaction by glutathione S-transferase pulldown and isothermal titration calorimetry assays, on the stimulation of UL54-mediated long-chain DNA synthesis by UL44, and on the binding of UL44 to DNA-cellulose columns. Substitutions that affected residues 133 to 136 of the connector loop measurably impaired the UL44-UL54 interaction without altering the ability of UL44 to bind DNA. One substitution, I135A, completely disrupted the binding of UL44 to UL54 and inhibited the ability of UL44 to stimulate long-chain DNA synthesis by UL54. Thus, similar to the herpes simplex virus UL30-UL42 interaction, a residue of the connector loop of the accessory subunit is crucial for UL54-UL44 interaction. However, while alteration of a polar residue of the UL42 connector loop only partially reduced binding to UL30, substitution of a hydrophobic residue of UL44 completely disrupted the UL54-UL44 interaction. This information may aid the discovery of small-molecule inhibitors of the UL44-UL54 interaction.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
14
|
Loregian A, Appleton BA, Hogle JM, Coen DM. Residues of human cytomegalovirus DNA polymerase catalytic subunit UL54 that are necessary and sufficient for interaction with the accessory protein UL44. J Virol 2004; 78:158-67. [PMID: 14671097 PMCID: PMC303418 DOI: 10.1128/jvi.78.1.158-167.2004] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 09/18/2003] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus DNA polymerase contains a catalytic subunit, UL54, and an accessory protein, UL44. Recent studies suggested that UL54 might interact via its extreme C terminus with UL44 (A. Loregian, R. Rigatti, M. Murphy, E. Schievano, G. Palu', and H. S. Marsden, J. Virol. 77:8336-8344, 2003). To address this hypothesis, we quantitatively measured the binding of peptides corresponding to the extreme C terminus of UL54 to UL44 by using isothermal titration calorimetry. A peptide corresponding to the last 22 residues of UL54 was sufficient to bind specifically to UL44 in a 1:1 complex with a dissociation constant of ca. 0.7 microM. To define individual residues in this segment that are crucial for interacting with UL44, we engineered a series of mutations in the C-terminal region of UL54. The UL54 mutants were tested for their ability to interact with UL44 by glutathione S-transferase pulldown assays, for basal DNA polymerase activity, and for long-chain DNA synthesis in the presence of UL44. We observed that deletion of the C-terminal segment or substitution of alanine for Leu1227 or Phe1231 in UL54 greatly impaired both the UL54-UL44 interaction in pulldown assays and long-chain DNA synthesis without affecting basal polymerase activity, identifying these residues as important for subunit interaction. Thus, like the herpes simplex virus UL30-UL42 interaction, a few specific side chains in the C terminus of UL54 are crucial for UL54-UL44 interaction. However, the UL54 residues important for interaction with UL44 are hydrophobic and not basic. This information might aid in the rational design of new drugs for the treatment of human cytomegalovirus infection.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Biological Chemistry and Molecular Pharmacology and Committee on Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
15
|
Loregian A, Rigatti R, Murphy M, Schievano E, Palu G, Marsden HS. Inhibition of human cytomegalovirus DNA polymerase by C-terminal peptides from the UL54 subunit. J Virol 2003; 77:8336-44. [PMID: 12857903 PMCID: PMC165265 DOI: 10.1128/jvi.77.15.8336-8344.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In common with other herpesviruses, the human cytomegalovirus (HCMV) DNA polymerase contains a catalytic subunit (Pol or UL54) and an accessory protein (UL44) that is thought to increase the processivity of the enzyme. The observation that antisense inhibition of UL44 synthesis in HCMV-infected cells strongly inhibits viral DNA replication, together with the structural similarity predicted for the herpesvirus processivity subunits, highlights the importance of the accessory protein for virus growth and raises the possibility that the UL54/UL44 interaction might be a valid target for antiviral drugs. To investigate this possibility, overlapping peptides spanning residues 1161 to 1242 of UL54 were synthesized and tested for inhibition of the interaction between purified UL54 and UL44 proteins. A peptide, LPRRLHLEPAFLPYSVKAHECC, corresponding to residues 1221 to 1242 at the very C terminus of UL54, disrupted both the physical interaction between the two proteins and specifically inhibited the stimulation of UL54 by UL44. A mutant peptide lacking the two carboxy-terminal cysteines was markedly less inhibitory, suggesting a role for these residues in the UL54/UL44 interaction. Circular dichroism spectroscopy indicated that the UL54 C-terminal peptide can adopt a partially alpha-helical structure. Taken together, these results indicate that the two subunits of HCMV DNA polymerase most likely interact in a way which is analogous to that of the two subunits of herpes simplex virus DNA polymerase, even though there is no sequence homology in the binding site, and suggest that the UL54 peptide, or derivatives thereof, could form the basis for developing a new class of anti-HCMV inhibitors that act by disrupting the UL54/UL44 interaction.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Loregian A, Marsden HS, Palù G. Protein-protein interactions as targets for antiviral chemotherapy. Rev Med Virol 2002; 12:239-62. [PMID: 12125015 DOI: 10.1002/rmv.356] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most cellular and viral processes depend on the coordinated formation of protein-protein interactions. With a better understanding of the molecular biology and biochemistry of human viruses it has become possible to screen for and detect inhibitors with activity against specific viral functions and to develop new approaches for the treatment of viral infections. A novel strategy to inhibit viral replication is based on the disruption of viral protein-protein complexes by peptides that mimic either face of the interaction between subunits. Peptides and peptide mimetics capable of dissociating protein-protein interactions have such exquisite specificity that they hold great promise as the next generation of therapeutic agents. This review is focused on recent developments using peptides and small molecules to inhibit protein-protein interactions between cellular and/or viral proteins with comments on the practicalities of transforming chemical leads into derivatives with the characteristics desired of medicinal compounds.
Collapse
Affiliation(s)
- Arianna Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | |
Collapse
|
17
|
Bridges KG, Chow CS, Coen DM. Identification of crucial hydrogen-bonding residues for the interaction of herpes simplex virus DNA polymerase subunits via peptide display, mutational, and calorimetric approaches. J Virol 2001; 75:4990-8. [PMID: 11333878 PMCID: PMC114902 DOI: 10.1128/jvi.75.11.4990-4998.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The catalytic subunit, Pol, of herpes simplex virus DNA polymerase interacts via its extreme C terminus with the processivity subunit, UL42. This interaction is critical for viral replication and thus a potential target for antiviral drug action. To investigate the Pol-binding region on UL42, we engineered UL42 mutations but also used random peptide display to identify artificial ligands of the Pol C terminus. The latter approach selected ligands with homology to residues 171 to 176 of UL42. Substitution of glutamine 171 with alanine greatly impaired binding to Pol and stimulation of long-chain DNA synthesis by Pol, identifying this residue as crucial for subunit interactions. To study these interactions quantitatively, we used isothermal titration calorimetry and wild-type and mutant forms of Pol-derived peptides and UL42. Each of three peptides corresponding to either the last 36, 27, or 18 residues of Pol bound specifically to UL42 in a 1:1 complex with a dissociation constant of 1 to 2 microM. Thus, the last 18 residues suffice for most of the binding energy, which was due mainly to a change in enthalpy. Substitutions at positions corresponding to Pol residue 1228 or 1229 or at UL42 residue 171 abolished or greatly reduced binding. These residues participate in hydrogen bonds observed in the crystal structure of the C terminus of Pol bound to UL42. Thus, interruption of these few bonds is sufficient to disrupt the interaction, suggesting that small molecules targeting the relevant side chains could interfere with Pol-UL42 binding.
Collapse
Affiliation(s)
- K G Bridges
- Department of Biological Chemistry and Molecular Pharmacology and Committee on Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Loregian A, Piaia E, Cancellotti E, Papini E, Marsden HS, Palù G. The catalytic subunit of herpes simplex virus type 1 DNA polymerase contains a nuclear localization signal in the UL42-binding region. Virology 2000; 273:139-48. [PMID: 10891416 DOI: 10.1006/viro.2000.0390] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The herpes simplex virus type 1 DNA polymerase consists of a catalytic subunit (POL or UL30) and a processivity factor (UL42). The POL/UL42 interaction, which occurs through the extreme C-terminus of POL, is essential for HSV-1 replication and thus represents a valid target for drug inhibition. We recently showed (A. Loregian et al. (1999) Proc. Natl. Acad. Sci. USA 96, 5221-5226) that an oligopeptide corresponding to the 27 C-terminal amino acids of POL, when delivered into herpes simplex virus type 1-infected cells by a protein carrier, was able to localize into the nucleus and to inhibit viral replication by disruption of the POL/UL42 interaction. In this report, to further characterize the 27 mer (Pol peptide), we investigated whether its nuclear localization was due to the presence of a nuclear localization signal. By testing the ability of the Pol peptide to localize the beta-galactosidase, a normally cytoplasmic protein, to the nucleus, we confirmed that the Pol peptide contained a functional nuclear localization signal, corresponding to the RRMLHR motif. This sequence proved not only necessary but also sufficient for nuclear localization, because its substitution with a six-alanine stretch prevented nuclear translocation of the beta-galactosidase-Pol peptide fusion. Site-directed mutagenesis experiments on this revealed that both the three basic arginines and the two hydrophobic residues Met and Leu were crucial for nuclear targeting. Finally, functionally equivalent sequences were also found in the C-terminus of the catalytic subunits of human cytomegalovirus (RRLHL) and of equine herpesvirus-1 DNA polymerase (RRILH).
Collapse
Affiliation(s)
- A Loregian
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Padova, 35121, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Falkenberg M, Lehman IR, Elias P. Leading and lagging strand DNA synthesis in vitro by a reconstituted herpes simplex virus type 1 replisome. Proc Natl Acad Sci U S A 2000; 97:3896-900. [PMID: 10760262 PMCID: PMC18113 DOI: 10.1073/pnas.97.8.3896] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The synthesis of double-stranded DNA by a rolling circle mechanism was reconstituted in vitro with a replisome consisting of the DNA polymerase-UL42 complex and the heterotrimeric helicase-primase encoded by herpes simplex virus type 1. Okazaki fragments 3 kilobases in length and leading strands that may exceed 10 kilobases are produced. Lagging strand synthesis is stimulated by ribonucleoside triphosphates. DNA replication appears to be processive because it resists competition with an excess of (dT)(150)/(dA)(20). The single-strand DNA binding protein ICP8 is not required, and high concentrations of ICP8 can, in fact, inhibit lagging strand synthesis. The inhibition can, however, be overcome by the addition of an excess of the UL8 component of the helicase-primase. Rolling circle replication by the herpesvirus and bacteriophage T7 replisomes appears to proceed by a similar mechanism.
Collapse
Affiliation(s)
- M Falkenberg
- Department of Medical Biochemistry, Göteborg University, Box 440, S-405 30 Göteborg, Sweden
| | | | | |
Collapse
|
20
|
Zuccola HJ, Filman DJ, Coen DM, Hogle JM. The crystal structure of an unusual processivity factor, herpes simplex virus UL42, bound to the C terminus of its cognate polymerase. Mol Cell 2000; 5:267-78. [PMID: 10882068 DOI: 10.1016/s1097-2765(00)80422-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Herpes simplex virus DNA polymerase is a heterodimer composed of a catalytic subunit, Pol, and an unusual processivity subunit, UL42, which, unlike processivity factors such as PCNA, directly binds DNA. The crystal structure of a complex of the C-terminal 36 residues of Pol bound to residues 1-319 of UL42 reveals remarkable similarities between UL42 and PCNA despite contrasting biochemical properties and lack of sequence homology. Moreover, the Pol-UL42 interaction resembles the interaction between the cell cycle regulator p21 and PCNA. The structure and previous data suggest that the UL42 monomer interacts with DNA quite differently than does multimeric toroidal PCNA. The details of the structure lead to a model for the mechanism of UL42, provide the basis for drug design, and allow modeling of other proteins that lack sequence homology with UL42 or PCNA.
Collapse
Affiliation(s)
- H J Zuccola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
21
|
Bridges KG, Hua Q, Brigham-Burke MR, Martin JD, Hensley P, Dahl CE, Digard P, Weiss MA, Coen DM. Secondary structure and structure-activity relationships of peptides corresponding to the subunit interface of herpes simplex virus DNA polymerase. J Biol Chem 2000; 275:472-8. [PMID: 10617641 DOI: 10.1074/jbc.275.1.472] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of the catalytic subunit of herpes simplex virus DNA polymerase with the processivity subunit, UL42, is essential for viral replication and is thus a potential target for antiviral drug discovery. We have previously reported that a peptide analogous to the C-terminal 36 residues of the catalytic subunit, which are necessary and sufficient for its interaction with UL42, forms a monomeric structure with partial alpha-helical character. This peptide and one analogous to the C-terminal 18 residues specifically inhibit UL42-dependent long chain DNA synthesis. Using multidimensional (1)H nuclear magnetic resonance spectroscopy, we have found that the 36-residue peptide contains partially ordered N- and C-terminal alpha-helices separated by a less ordered region. A series of "alanine scan" peptides derived from the C-terminal 18 residues of the catalytic subunit were tested for their ability to inhibit long-chain DNA synthesis and by circular dichroism for secondary structure. The results identify structural aspects and specific side chains that appear to be crucial for interacting with UL42. These findings may aid in the rational design of new drugs for the treatment of herpesvirus infections.
Collapse
Affiliation(s)
- K G Bridges
- Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Matković-Calogović D, Loregian A, D'Acunto MR, Battistutta R, Tossi A, Palù G, Zanotti G. Crystal Structure of the B Subunit of Escherichia coli Heat-labile Enterotoxin Carrying Peptides with Anti-herpes Simplex Virus Type 1 Activity. J Biol Chem 1999. [DOI: 10.1016/s0021-9258(19)87394-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Wong K, Geiduschek EP. Activator-sigma interaction: A hydrophobic segment mediates the interaction of a sigma family promoter recognition protein with a sliding clamp transcription activator. J Mol Biol 1998; 284:195-203. [PMID: 9813112 DOI: 10.1006/jmbi.1998.2166] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of transcription at bacteriophage T4 late promoters and coupling of late transcription to concurrent replication requires a peculiar transcriptional activator, the gp45 sliding clamp of the T4 DNA polymerase. In order to activate transcription, the topologically DNA-linked trimeric gp45 must interact with two T4-encoded RNA polymerase-binding proteins, the gp33 co-activator, and the gp55 late sigma factor. The carboxy termini of gp55 and gp33 share a similar sequence, which has been shown to be required for response of late transcription to activation by gp45. Alanine-scanning mutagenesis of the C terminus of gp55 shows that residues within the short hydrophobic sequence L(D/A)FLYE, are necessary for gp55 to bind to gp45, and to respond maximally to transcriptional activation by gp45. When fused to GST, the peptide SLDFLYE suffices for specific gp45 binding. Thus, it constitutes the main gp55 epitope for gp45 interaction.
Collapse
Affiliation(s)
- K Wong
- Department of Biology and Center for Molecular Genetics, University of California, 9500 Gilman Drive, San Diego, CA, 92093-0634, USA.
| | | |
Collapse
|
24
|
Marsden HS, McLean GW, Barnard EC, Francis GJ, MacEachran K, Murphy M, McVey G, Cross A, Abbotts AP, Stow ND. The catalytic subunit of the DNA polymerase of herpes simplex virus type 1 interacts specifically with the C terminus of the UL8 component of the viral helicase-primase complex. J Virol 1997; 71:6390-7. [PMID: 9261356 PMCID: PMC191912 DOI: 10.1128/jvi.71.9.6390-6397.1997] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL8 DNA replication protein is a component of a trimeric helicase-primase complex. Sixteen UL8-specific monoclonal antibodies (MAbs) were isolated and characterized. In initial immunoprecipitation experiments, one of these, MAb 804, was shown to coprecipitate POL, the catalytic subunit of the HSV-1 DNA polymerase, from extracts of insect cells infected with recombinant baculoviruses expressing the POL and UL8 proteins. Coprecipitation of POL was dependent on the presence of UL8 protein. Rapid enzyme-linked immunosorbent assays (ELISAs), in which one protein was bound to microtiter wells and binding of the other protein was detected with a UL8- or POL-specific MAb, were developed to investigate further the interaction between the two proteins. When tested in the ELISAs, five of the UL8-specific MAbs consistently inhibited the interaction, raising the possibility that these antibodies act by binding to epitopes at or near a site(s) on UL8 involved in its interaction with POL. The epitopes recognized by four of the inhibitory MAbs were approximately located by using a series of truncated UL8 proteins expressed in mammalian cells. Three of these MAbs recognized an epitope near the C terminus of UL8, which was subjected to fine mapping with a series of overlapping peptides. The C-terminal peptides were then tested in the ELISA for their ability to inhibit the POL-UL8 interaction: the most potent exhibited a 50% inhibitory concentration of approximately 5 microM. Our findings suggest that the UL8 protein may be involved in recruiting HSV-1 DNA polymerase into the viral DNA replication complex and also identify a potential new target for antiviral therapy.
Collapse
Affiliation(s)
- H S Marsden
- MRC Virology Unit, University of Glasgow, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Goodrich LD, Lin TC, Spicer EK, Jones C, Konigsberg WH. Residues at the carboxy terminus of T4 DNA polymerase are important determinants for interaction with the polymerase accessory proteins. Biochemistry 1997; 36:10474-81. [PMID: 9265627 DOI: 10.1021/bi9708949] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three T4 DNA polymerase accessory proteins (44P/62P and 45P) stimulate the polymerase (pol) activity and the 3'-5' exonuclease (exo) activity of T4 DNA polymerase (43P) on long, double-stranded DNA substrates. The 44P/62P "clamp loader" facilitates the binding of 45P, the "sliding clamp", to DNA that is primed for replication. Using a series of truncated 43P mutants, we identified a region at the extreme carboxy terminus of the DNA polymerase that is required for its interaction with accessory proteins. Truncation mutants of 43P lacking the carboxy-terminal 3, 6, or 11 residues retained full pol and exo activity on short synthetic primer-templates. However, the ability of the accessory proteins to enhance these activities on long double-stranded DNA templates was drastically reduced, and the extent of the reduction in activity was greater as more residues were deleted. One of the truncation mutants (N881), which had 17 residues removed from the carboxy terminus, showed reduced binding affinity and diminished pol activity but enhanced exo activity upon incubation with a small primer-template. The exo activity of the N881 mutant, on short, single-stranded DNA was unchanged, however, compared to the wild-type enzyme. These results are consistent with inferences drawn from the crystal structure of a DNA polymerase from a related T-even phage, RB69, where the carboxy-terminal 12 residues (equivalent to the 11 residues of 43P from phage T4) protrude from the thumb domain and are free to interact with complementary surfaces of the accessory proteins. The structural integrity of the thumb region in the N881 mutant is probably perturbed and could account for its reduced binding affinity and pol activity when incubated with short, double-stranded DNA substrates.
Collapse
Affiliation(s)
- L D Goodrich
- Protein Science Corporation, Meriden, Connecticut 06450, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
The Herpesviridae comprise a large class of animal viruses of considerable public health importance. Of the Herpesviridae, replication of herpes simplex virustype-1 (HSV-1) has been the most extensively studied. The linear 152-kbp HSV-1 genome contains three origins of DNA replication and approximately 75 open-reading frames. Of these frames, seven encode proteins that are required for originspecific DNA replication. These proteins include a processive heterodimeric DNA polymerase, a single-strand DNA-binding protein, a heterotrimeric primosome with 5'-3' DNA helicase and primase activities, and an origin-binding protein with 3'-5' DNA helicase activity. HSV-1 also encodes a set of enzymes involved in nucleotide metabolism that are not required for viral replication in cultured cells. These enzymes include a deoxyuridine triphosphatase, a ribonucleotide reductase, a thymidine kinase, an alkaline endo-exonuclease, and a uracil-DNA glycosylase. Host enzymes, notably DNA polymerase alpha-primase, DNA ligase I, and topoisomerase II, are probably also required. Following circularization of the linear viral genome, DNA replication very likely proceeds in two phases: an initial phase of theta replication, initiated at one or more of the origins, followed by a rolling-circle mode of replication. The latter generates concatemers that are cleaved and packaged into infectious viral particles. The rolling-circle phase of HSV-1 DNA replication has been reconstituted in vitro by a complex containing several of the HSV-1 encoded DNA replication enzymes. Reconstitution of the theta phase has thus far eluded workers in the field and remains a challenge for the future.
Collapse
Affiliation(s)
- P E Boehmer
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
27
|
Berdis AJ, Soumillion P, Benkovic SJ. The carboxyl terminus of the bacteriophage T4 DNA polymerase is required for holoenzyme complex formation. Proc Natl Acad Sci U S A 1996; 93:12822-7. [PMID: 8917503 PMCID: PMC24004 DOI: 10.1073/pnas.93.23.12822] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/1996] [Indexed: 02/03/2023] Open
Abstract
To further elucidate the mechanism and dynamics of bacteriophage T4 holoenzyme formation, a mutant polymerase in which the last six carboxyl-terminal amino acids are deleted, was constructed, overexpressed, and purified to homogeneity. The mutant polymerase, designated delta C6 exo-, is identical to wild-type exo- polymerase with respect to kcat, kpol, and dissociation constants for nucleotide and DNA substrate. However, unlike wild-type exo- polymerase, the delta C6 exo- polymerase is unable to interact with the 45 protein to form the stable holoenzyme. A synthetic polypeptide corresponding to the carboxyl terminus of the wild-type exo- polymerase was tested as an in vitro inhibitor of bacteriophage T4 DNA replication. Surprisingly, the peptide does not directly inhibit holoenzyme complex formation by disrupting the interaction of the polymerase with the 45 protein. On the contrary, the peptide appears to disrupt the interaction of the 44/62 protein with the 45 protein, suggesting that the 44/62 protein and the polymerase use the same site on the 45 protein for functional interactions. Data presented are discussed in terms of a model correlating the functionality of the carboxyl terminus of the polymerase for productive interactions with the 45 protein as well as in terms of the 45 protein concomitantly interacting with the 44/62 protein and polymerase.
Collapse
Affiliation(s)
- A J Berdis
- Pennsylvania State University, Department of Chemistry, University Park 16802-6300, USA
| | | | | |
Collapse
|
28
|
Chow CS, Coen DM. Mutations that specifically impair the DNA binding activity of the herpes simplex virus protein UL42. J Virol 1995; 69:6965-71. [PMID: 7474115 PMCID: PMC189615 DOI: 10.1128/jvi.69.11.6965-6971.1995] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The herpes simplex virus DNA polymerase is a heterodimer consisting of a catalytic subunit and the protein UL42, which functions as a processivity factor. It has been hypothesized that UL42 tethers the catalytic subunit to the DNA template by virtue of DNA binding activity (J. Gottlieb, A. I. Marcy, D. M. Coen, and M. D. Challberg, J. Virol. 64:5976-5987, 1990). Relevant to this hypothesis, we identified two linker insertion mutants of UL42 that were unable to bind to a double-stranded-DNA-cellulose column but retained their ability to bind the catalytic subunit. These mutants were severely impaired in the stimulation of long-chain-DNA synthesis by the catalytic subunit in vitro. In transfected cells, the expressed mutant proteins localized to the nucleus but were nonetheless deficient in complementing the growth of a UL42 null virus. Thus, unlike many other processivity factors, UL42 appears to require an intrinsic DNA binding activity for its function both in vitro and in infected cells. Possible mechanisms for the activity of UL42 and its potential as a drug target are discussed.
Collapse
Affiliation(s)
- C S Chow
- Committee on Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
29
|
Sheaffer AK, Hurlburt WW, Stevens JT, Bifano M, Hamatake RK, Colonno RJ, Tenney DJ. Characterization of monoclonal antibodies recognizing amino- and carboxy-terminal epitopes of the herpes simplex virus UL42 protein. Virus Res 1995; 38:305-14. [PMID: 8578868 DOI: 10.1016/0168-1702(95)00047-t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A panel of monoclonal antibodies (MAbs) directed against the herpes simplex virus type 1 (HSV-1) DNA polymerase (Pol) accessory protein, UL42, was developed and characterized. Thirteen different MAbs were isolated which exhibited varied affinities for the protein. All MAbs reacted with UL42 in ELISA, Western blot and immunoprecipitation analyses. Competitive ELISA was used to show that 6 different epitopes within UL42 were recognized by the MAbs. Immunoprecipitation of amino- and carboxy-terminal truncations of UL42 mapped the epitopes to regions containing amino acids 1-10, 10-108, 338-402, 402-460, and 460-477. All but one of these epitopes were outside the minimal active portion of the protein previously mapped to amino acids 20-315. None of these MAbs, alone or in combination, specifically neutralized the ability of UL42 to stimulate Pol activity in vitro. These results are consistent with structure-function studies that showed that N- and C-terminal regions of the UL42 protein, those recognized by the MAbs, are not involved in UL42 function in vitro.
Collapse
Affiliation(s)
- A K Sheaffer
- Department of Virology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Gustafsson CM, Falkenberg M, Simonsson S, Valadi H, Elias P. The DNA ligands influence the interactions between the herpes simplex virus 1 origin binding protein and the single strand DNA-binding protein, ICP-8. J Biol Chem 1995; 270:19028-34. [PMID: 7642564 DOI: 10.1074/jbc.270.32.19028] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) origin binding protein, OBP, is a DNA helicase specifically stimulated by the viral single strand DNA-binding protein, ICP-8. The stimulation is dependent on direct protein-protein interactions between the C-terminal domain of OBP, delta OBP, and ICP 8 (Boehmer, P.E., Craigie, M.C., Stow, N.D., and Lehman, I.R. (1994) J. Biol. Chem. 269, 29329-29334). We have now observed that this interaction is dramatically influenced by the nature of the DNA ligand. Stable complexes between delta OBP, ICP 8, and double-stranded DNA, presented either as a specific duplex oligonucleotide or a restriction fragment containing the HSV-1 origin of replication, oriS, can be detected by gel chromatography and gel electrophoresis. In contrast, a single-stranded oligonucleotide, oligo(dT)65, will completely disrupt the complex between delta OBP and ICP 8. We therefore suggest that the interaction between delta OBP and ICP 8 serves to position the single strand DNA-binding protein with high precision onto single-stranded DNA at a replication fork or at an origin of DNA replication.
Collapse
Affiliation(s)
- C M Gustafsson
- Department of Medical Biochemistry, University of Göteborg, Sweden
| | | | | | | | | |
Collapse
|
31
|
Berthomme H, Monahan SJ, Parris DS, Jacquemont B, Epstein AL. Cloning, sequencing, and functional characterization of the two subunits of the pseudorabies virus DNA polymerase holoenzyme: evidence for specificity of interaction. J Virol 1995; 69:2811-8. [PMID: 7707503 PMCID: PMC188975 DOI: 10.1128/jvi.69.5.2811-2818.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The pseudorabies virus (PRV) genes encoding the two subunits of the DNA polymerase were located on the genome by hybridization to their herpes simplex virus type 1 (HSV-1) homologs, pol and UL42, and subsequently were sequenced. Like the HSV-1 homologs, in vitro translation products of the PRV gene encoding the catalytic subunit (pol) possessed activity in the absence of the Pol accessory protein (PAP). However, the PRV PAP stimulated the activity of Pol fourfold in the presence of 150 mM KCl, using an activated calf thymus DNA template. The stimulation of Pol activity by PAP under high-salt conditions and the inhibition of Pol activity by PAP when assayed in low salt (0 mM KCl) together were used to determine the specificity with which PAP interacted with Pol. Despite functional similarity, HSV-1 UL42 and PRV PAP could neither stimulate the noncognate Pols at high salt nor inhibit them at low salt. Furthermore, a PRV Pol mutant lacking the 30 C-terminal amino acids retained basal Pol activity but could be neither stimulated nor inhibited by the PRV PAP. Sequence comparisons of the Pol proteins of the alphaherpesviruses reveal a conserved domain in the C terminus which terminates immediately before the last 41 residues of both PRV and HSV-1 proteins. These results indicate that the ability and specificity for interaction of the PRV Pol with PAP most likely resides predominantly in the extreme Pol C terminus.
Collapse
Affiliation(s)
- H Berthomme
- Centre de Génétique Moléculaire et Cellulaire UMR 106, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon I, Villeurbanne, France
| | | | | | | | | |
Collapse
|
32
|
Digard P, Williams KP, Hensley P, Brooks IS, Dahl CE, Coen DM. Specific inhibition of herpes simplex virus DNA polymerase by helical peptides corresponding to the subunit interface. Proc Natl Acad Sci U S A 1995; 92:1456-60. [PMID: 7878000 PMCID: PMC42538 DOI: 10.1073/pnas.92.5.1456] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The herpes simplex virus DNA polymerase consists of two subunits--a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial alpha-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of alpha-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase delta and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.
Collapse
Affiliation(s)
- P Digard
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | |
Collapse
|
33
|
Digard P, Bebrin WR, Coen DM. Mutational analysis of DNA polymerase substrate recognition and subunit interactions using herpes simplex virus as prototype. Methods Enzymol 1995; 262:303-22. [PMID: 8594357 DOI: 10.1016/0076-6879(95)62026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P Digard
- Department of Pathology, University of Cambridge, United Kingdom
| | | | | |
Collapse
|
34
|
Weiland KL, Oien NL, Homa F, Wathen MW. Functional analysis of human cytomegalovirus polymerase accessory protein. Virus Res 1994; 34:191-206. [PMID: 7856311 DOI: 10.1016/0168-1702(94)90124-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The human cytomegalovirus (HCMV) UL44 gene product, polymerase accessory protein, was cloned and expressed in Escherichia coli as a 53,000 MW protein. The activity of HCMV DNA polymerase (Pol) alone and Pol/UL44 complex was evaluated in Pol assays designed specifically to elucidate Pol/UL44 interactions. Addition of UL44 to HCMV Pol with primed, single-stranded DNA resulted in increased incorporation of nucleotides into DNA, which was correlated with enhanced enzyme processivity. Several deletion mutants which span the UL44 sequence were constructed and examined for the ability to stimulate Pol activity and to bind double-stranded DNA. The functional domains of UL44 protein were determined to reside within the N-terminal 309 amino acids of the wild type sequence, since deletions within this region resulted in loss of DNA binding and the ability to stimulate Pol. Deletion of C-terminal amino acids 310-433 had no effect on the ability of UL44 protein to increase the processivity of HCMV DNA Pol.
Collapse
Affiliation(s)
- K L Weiland
- Upjohn Laboratories, Upjohn Company, Kalamazoo, MI 49001
| | | | | | | |
Collapse
|
35
|
Weisshart K, Kuo A, Hwang C, Kumura K, Coen D. Structural and functional organization of herpes simplex virus DNA polymerase investigated by limited proteolysis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31714-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Gottlieb J, Challberg MD. Interaction of herpes simplex virus type 1 DNA polymerase and the UL42 accessory protein with a model primer template. J Virol 1994; 68:4937-45. [PMID: 8035492 PMCID: PMC236434 DOI: 10.1128/jvi.68.8.4937-4945.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Genetic and biochemical studies have shown that the products of the herpes simplex virus type 1 (HSV-1) DNA polymerase (UL30) and UL42 genes are both required for viral DNA replication. A number of studies have previously suggested that these two proteins specifically interact, and more recent studies have confirmed that the viral DNA polymerase from HSV-1-infected cells consists of a heterodimer of the UL30 (Pol; the catalytic subunit) and UL42 polypeptides. A comparison of the catalytic properties of the Pol-UL42 complex with those of the isolated subunits of the enzyme purified from recombinant baculovirus-infected insect cells indicated that the Pol-UL42 complex is more highly processive than Pol alone on singly primed M13 single-stranded substrates. The results of these studies are consistent with the idea that the UL42 polypeptide is an accessory subunit of the HSV-1 DNA polymerase that acts to increase the processivity of polymerization. Preliminary experiments suggested that the increase in processivity was accompanied by an increase in the affinity of the polymerase for the ends of linear duplex DNA. We have further characterized the effect of the UL42 polypeptide on a defined hairpin primer template substrate. Gel shift and filter binding studies show that the affinity of the Pol catalytic subunit for the 3' terminus of the primer template increases 10-fold in the presence of UL42. DNase I footprinting experiments indicate that the Pol catalytic subunit binds to the primer template at a position that protects 14 bp of the 3' duplex region and an adjacent 18 bases of the single-stranded template. The presence of the UL42 polypeptide results in the additional protection of a contiguous 5 to 14 bp in the duplex region but does not affect the 5' position of the Pol subunit. Free UL42 protects the entire duplex region of the substrate but does not bind to the single-stranded region. Taken together, these results suggest that the increase in processivity in the presence of UL42 is related to the double-stranded DNA-binding activity of free UL42 and that the role of UL42 in the DNA polymerase complex is to act as a clamp, decreasing the probability that the polymerase will dissociate from the template after each cycle of catalysis.
Collapse
Affiliation(s)
- J Gottlieb
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | | |
Collapse
|
37
|
Abstract
A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.
Collapse
|
38
|
Abstract
A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.
Collapse
Affiliation(s)
- P R Caron
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|