1
|
Saunders RA, Allen WE, Pan X, Sandhu J, Lu J, Lau TK, Smolyar K, Sullivan ZA, Dulac C, Weissman JS, Zhuang X. A platform for multimodal in vivo pooled genetic screens reveals regulators of liver function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.18.624217. [PMID: 39605605 PMCID: PMC11601512 DOI: 10.1101/2024.11.18.624217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Organ function requires coordinated activities of thousands of genes in distinct, spatially organized cell types. Understanding the basis of emergent tissue function requires approaches to dissect the genetic control of diverse cellular and tissue phenotypes in vivo. Here, we develop paired imaging and sequencing methods to construct large-scale, multi-modal genotype-phenotypes maps in tissue with pooled genetic perturbations. Using imaging, we identify genetic perturbations in individual cells while simultaneously measuring their gene expression and subcellular morphology. Using single-cell sequencing, we measure transcriptomic responses to the same genetic perturbations. We apply this approach to study hundreds of genetic perturbations in the mouse liver. Our study reveals regulators of hepatocyte zonation and liver unfolded protein response, as well as distinct pathways that cause hepatocyte steatosis. Our approach enables new ways of interrogating the genetic basis of complex cellular and organismal physiology and provides crucial training data for emerging machine-learning models of cellular function.
Collapse
Affiliation(s)
- Reuben A. Saunders
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- University of California, San Francisco, San Francisco, CA 94158, USA
- Present address: Society of Fellows, Harvard University, MA 02138, USA
- These authors contributed equally
| | - William E. Allen
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Present address: Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; Arc Institute, Palo Alto, CA 94304
- These authors contributed equally
- Lead contact
| | - Xingjie Pan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Lead AI Scientist
| | - Jaspreet Sandhu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jiaqi Lu
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas K. Lau
- Department of Statistics, Stanford University, Stanford, CA 94305
| | - Karina Smolyar
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Zuri A. Sullivan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Catherine Dulac
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jonathan S. Weissman
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Whitehead Institute, Cambridge, MA 02139, USA
- Department of Biology, MIT, Cambridge, MA 02139 USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
3
|
Nekrasova EV, Larionova EE, Danko K, Kuzmina DO, Shavva VS, Kudriavtsev IV, Orlov SV. Regulation of Apolipoprotein A-I Gene Expression in Human Macrophages by Oxidized Low-Density Lipoprotein. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1201-1213. [PMID: 34903152 DOI: 10.1134/s0006297921100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
Apolipoprotein A-I (ApoA-I) is a key component of reverse cholesterol transport in humans. In the previous studies, we demonstrated expression of the apoA-I gene in human monocytes and macrophages; however, little is known on the regulation of the apoA-I expression in macrophages during the uptake of modified low-density lipoprotein (LDL), which is one of the key processes in the early stages of atherogenesis leading to formation of foam cells. Here, we demonstrate a complex nature of the apoA-I regulation in human macrophages during the uptake of oxidized LDL (oxLDL). Incubation of macrophages with oxLDL induced expression of the apoA-I gene within the first 24 hours, but suppressed it after 48 h. Both effects depended on the interaction of oxLDL with the TLR4 receptor, rather than on the oxLDL uptake by the macrophages. The oxLDL-mediated downregulation of the apoA-I gene depended on the ERK1/2 and JNK cascades, as well as on the NF-κB cascade.
Collapse
Affiliation(s)
| | | | - Katerina Danko
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Darya O Kuzmina
- St. Petersburg State University, St. Petersburg, 199034, Russia
| | | | | | - Sergey V Orlov
- Institute of Experimental Medicine, St. Petersburg, 197376, Russia.
- St. Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
4
|
Jiang S, Tanaka T, Yagami R, Hasegawa G, Umezu H, Fujiyoshi Y, Kodama T, Naito M, Ajioka Y. Immunohistochemical detection of hepatocyte nuclear factor-4α in vertebrates. Microsc Res Tech 2021; 84:2906-2914. [PMID: 34196449 DOI: 10.1002/jemt.23848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 11/06/2022]
Abstract
Hepatocyte nuclear factor-4α (HNF4α) presents in multiple isoforms generated using alternative promoter (P1 and P2) and splicing. Neither conservation of tissue distribution of HNF4α isoforms, nor presence of alternative promoter usage is known. In this study, to detect the expression of HNF4α in some species of animals, we have applied monoclonal antibodies against P1 (K9218) and P2 (H6939) promoter-driven and P1/P2 promoter-driven H1415 HNF4α for immunohistochemistry and western blot analysis. Antibody K9218 was observed in the hepatocytes, proximal tubules of the kidney, and epithelial cells in the mucosa of the small intestine and colon of rats, chicken, and tortoise, whereas antibody H6939 signal were detected in the stomach, pancreas, bile duct, and pancreatic duct of human and rats. The signal for antibody K9218 was recognized in tissues of a wide range of mammals, bird, reptile, amphibian, and fish as well. Antibody H1415 displayed a positive reaction in hepatocytes and intestinal epithelial cells in chicken and tortoise, whereas the bile duct, mucosal epithelial cells in the stomach, or pancreas in these animals were negative. Western blotting showed the binding of the antibody with HNF4α protein from each animal. The sequence of human HNF4α was 100% identical to murine and rat HNF4α, 88.9% to chicken, 77.8% to Xenopus HNF4α, and 81.5% to medaka. However, the specific part of human and invertebrate Drosophila HNF4 shares only 14.8% sequence identity. This antibody is useful for detecting HNF4α isoforms in a wide range of vertebrates, and suggests many insights into animal evolution.
Collapse
Affiliation(s)
- Shuying Jiang
- Niigata College of Medical Technology, Niigata, Japan.,Division of Molecular and Diagnostic Pathology, Graduate Scholl of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toshiya Tanaka
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Ren Yagami
- Division of International Health (Public Health) Graduate Scholl of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Go Hasegawa
- Division of Pathology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Hajime Umezu
- Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yukio Fujiyoshi
- Department of Pathology and Molecular Diagnostics, Nagoya City Graduate School of Medical Sciences, Nagoya, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Makoto Naito
- Department of Pathology, Niigata Medical Center, Nishi-ku, Niigata, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology, Graduate Scholl of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
5
|
Rogers MA, Chen J, Nallamshetty S, Pham T, Goto S, Muehlschlegel JD, Libby P, Aikawa M, Aikawa E, Plutzky J. Retinoids Repress Human Cardiovascular Cell Calcification With Evidence for Distinct Selective Retinoid Modulator Effects. Arterioscler Thromb Vasc Biol 2020; 40:656-669. [PMID: 31852220 PMCID: PMC7047603 DOI: 10.1161/atvbaha.119.313366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Retinoic acid (RA) is a ligand for nuclear receptors that modulate gene transcription and cell differentiation. Whether RA controls ectopic calcification in humans is unknown. We tested the hypothesis that RA regulates osteogenic differentiation of human arterial smooth muscle cells and aortic valvular interstitial cells that participate in atherosclerosis and heart valve disease, respectively. Approach and Results: Human cardiovascular tissue contains immunoreactive RAR (RA receptor)-a retinoid-activated nuclear receptor directing multiple transcriptional programs. RA stimulation suppressed primary human cardiovascular cell calcification while treatment with the RAR inhibitor AGN 193109 or RARα siRNA increased calcification. RA attenuated calcification in a coordinated manner, increasing levels of the calcification inhibitor MGP (matrix Gla protein) while decreasing calcification-promoting TNAP (tissue nonspecific alkaline phosphatase) activity. Given that nuclear receptor action varies as a function of distinct ligand structures, we compared calcification responses to cyclic retinoids and the acyclic retinoid peretinoin. Peretinoin suppressed human cardiovascular cell calcification without inducing either secretion of APOC3 (apolipoprotein-CIII), which promotes atherogenesis, or reducing CYP7A1 (cytochrome P450 family 7 subfamily A member 1) expression, which occurred with cyclic retinoids all-trans RA, 9-cis RA, and 13-cis RA. Additionally, peretinoin did not suppress human femur osteoblast mineralization, whereas all-trans RA inhibited osteoblast mineralization. CONCLUSIONS These results establish retinoid regulation of human cardiovascular calcification, provide new insight into mechanisms involved in these responses, and suggest selective retinoid modulators, like acyclic retinoids may allow for treating cardiovascular calcification without the adverse effects associated with cyclic retinoids.
Collapse
MESH Headings
- Alkaline Phosphatase
- Aortic Valve/drug effects
- Aortic Valve/metabolism
- Aortic Valve/pathology
- Apolipoprotein C-III/genetics
- Apolipoprotein C-III/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Carotid Arteries/drug effects
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Cholesterol 7-alpha-Hydroxylase/genetics
- Cholesterol 7-alpha-Hydroxylase/metabolism
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Heart Valve Diseases/genetics
- Heart Valve Diseases/metabolism
- Heart Valve Diseases/pathology
- Heart Valve Diseases/prevention & control
- Humans
- Isotretinoin/pharmacology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis/drug effects
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoids/pharmacology
- Retinoids/toxicity
- Signal Transduction
- Tretinoin/pharmacology
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Matrix Gla Protein
Collapse
Affiliation(s)
- Maximillian A. Rogers
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Jiaohua Chen
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Shriram Nallamshetty
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Tan Pham
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Shinji Goto
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Jochen D. Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Peter Libby
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| | - Jorge Plutzky
- Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, U.S.A
| |
Collapse
|
6
|
Shavva VS, Bogomolova AM, Nikitin AA, Dizhe EB, Oleinikova GN, Lapikov IA, Tanyanskiy DA, Perevozchikov AP, Orlov SV. FOXO1 and LXRα downregulate the apolipoprotein A-I gene expression during hydrogen peroxide-induced oxidative stress in HepG2 cells. Cell Stress Chaperones 2017; 22:123-134. [PMID: 27896567 PMCID: PMC5225066 DOI: 10.1007/s12192-016-0749-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species damage various cell components including DNA, proteins, and lipids, and these impairments could be a reason for severe human diseases including atherosclerosis. Forkhead box O1 (FOXO1), an important metabolic transcription factor, upregulates antioxidant and proapoptotic genes during oxidative stress. Apolipoprotein A-I (ApoA-I) forms high density lipoprotein (HDL) particles that are responsible for cholesterol transfer from peripheral tissues to liver for removal in bile in vertebrates. The main sources for plasma ApoA-I in mammals are liver and jejunum. Hepatic apoA-I transcription depends on a multitude of metabolic transcription factors. We demonstrate that ApoA-I synthesis and secretion are decreased during H2O2-induced oxidative stress in human hepatoma cell line HepG2. Here, we first show that FOXO1 binds to site B of apoA-I hepatic enhancer and downregulates apoA-I gene activity in HepG2 cells. Moreover, FOXO1 and LXRα transcription factors participate in H2O2-triggered downregulation of apoA-I gene together with Src, JNK, p38, and AMPK kinase cascades. Mutations of sites B or C as well as the administration of siRNAs against FOXO1 or LXRα to HepG2 cells abolished the hydrogen peroxide-mediated suppression of apoA-I gene.
Collapse
Affiliation(s)
- Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
| | | | - Artemy A Nikitin
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Biochemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Ella B Dizhe
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
| | - Galina N Oleinikova
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
| | - Ivan A Lapikov
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Tanyanskiy
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Fundamental Medicine and Medical Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Andrej P Perevozchikov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Sergey V Orlov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
7
|
Zhao Y, Hou J, Mi P, Mao L, Xu L, Zhang Y, Xiao L, Cao H, Zhang W, Zhang B, Song G, Hu T, Zhan YY. Exo70 is transcriptionally up-regulated by hepatic nuclear factor 4α and contributes to cell cycle control in hepatoma cells. Oncotarget 2016; 7:9150-62. [PMID: 26848864 PMCID: PMC4891032 DOI: 10.18632/oncotarget.7133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/19/2016] [Indexed: 11/25/2022] Open
Abstract
Exo70, a member of the exocyst complex, is involved in cell exocytosis, migration, invasion and autophagy. However, the expression regulation and function of Exo70 in hepatocellular carcinoma are still poorly understood. In this study, we found Exo70 expression in human hepatoma cells was greatly reduced after knocking down hepatic nuclear factor 4α (HNF4α), the most important and abundant transcription factor in liver. This regulation occurred at the transcriptional level but not post-translational level. HNF4α transactivated Exo70 promoter through directly binding to the HNF4α-response element in this promoter. Cell cycle analysis further revealed that down-regulation of HNF4α and Exo70 was essential to berberine-stimulated G2/M cell cycle arrest in hepatoma cells. Moreover, knocking down either Exo70 or HNF4α induced G2/M phase arrest of hepatoma cells. Exo70 acted downstream of HNF4α to stimulate G2/M transition via increasing Cdc2 expression. Together, our results identify Exo70 as a novel transcriptional target of HNF4α to promote cell cycle progression in hepatoma, thus provide a basis for the development of therapeutic strategies for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yujie Zhao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Jihuan Hou
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Panying Mi
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Liyuan Mao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Liang Xu
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Youyu Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Li Xiao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China.,Department of Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, Fujian Province, PR China
| | - Hanwei Cao
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Wenqing Zhang
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Bing Zhang
- Department of Basic Medicine, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Gang Song
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Tianhui Hu
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| | - Yan-yan Zhan
- Cancer Research Center, Xiamen University Medical College, Xiamen 361102, Fujian Province, PR China
| |
Collapse
|
8
|
Shavva VS, Bogomolova AM, Nikitin AA, Dizhe EB, Tanyanskiy DA, Efremov AM, Oleinikova GN, Perevozchikov AP, Orlov SV. Insulin-Mediated Downregulation of Apolipoprotein A-I Gene in Human Hepatoma Cell Line HepG2: The Role of Interaction Between FOXO1 and LXRβ Transcription Factors. J Cell Biochem 2016; 118:382-396. [PMID: 27404023 DOI: 10.1002/jcb.25651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is a key component of high density lipoproteins which possess anti-atherosclerotic and anti-inflammatory properties. Insulin is a crucial mediator of the glucose and lipid metabolism that has been implicated in atherosclerotic and inflammatory processes. Important mediators of insulin signaling such as Liver X Receptors (LXRs) and Forkhead Box A2 (FOXA2) are known to regulate apoA-I expression in liver. Forkhead Box O1 (FOXO1) is a well-known target of insulin signaling and a key mediator of oxidative stress response. Low doses of insulin were shown to activate apoA-I expression in human hepatoma HepG2 cells. However, the detailed mechanisms for these processes are still unknown. We studied the possible involvement of FOXO1, FOXA2, LXRα, and LXRβ transcription factors in the insulin-mediated regulation of apoA-I expression. Treatment of HepG2 cells with high doses of insulin (48 h, 100 nM) suppresses apoA-I gene expression. siRNAs against FOXO1, FOXA2, LXRβ, or LXRα abrogated this effect. FOXO1 forms a complex with LXRβ and insulin treatment impairs FOXO1/LXRβ complex binding to hepatic enhancer and triggers its nuclear export. Insulin as well as LXR ligand TO901317 enhance the interaction between FOXA2, LXRα, and hepatic enhancer. These data suggest that high doses of insulin downregulate apoA-I gene expression in HepG2 cells through redistribution of FOXO1/LXRβ complex, FOXA2, and LXRα on hepatic enhancer of apoA-I gene. J. Cell. Biochem. 118: 382-396, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Artemy A Nikitin
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Biochemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Ella B Dizhe
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Dmitry A Tanyanskiy
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Fundamental Medicine and Medical Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Alexander M Efremov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Galina N Oleinikova
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Andrej P Perevozchikov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Sergey V Orlov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia.,Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
9
|
Sousa JF, Nam KT, Petersen CP, Lee HJ, Yang HK, Kim WH, Goldenring JR. miR-30-HNF4γ and miR-194-NR2F2 regulatory networks contribute to the upregulation of metaplasia markers in the stomach. Gut 2016; 65:914-24. [PMID: 25800782 PMCID: PMC4922252 DOI: 10.1136/gutjnl-2014-308759] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) are considered neoplastic precursors of gastric adenocarcinoma and are both marked by gene expression alterations in comparison to normal stomach. Since miRNAs are important regulators of gene expression, we sought to investigate the role of miRNAs on the development of stomach metaplasias. DESIGN We performed miRNA profiling using a quantitative reverse transcription-PCR approach on laser capture microdissected human intestinal metaplasia and SPEM. Data integration of the miRNA profile with a previous mRNA profile from the same samples was performed to detect potential miRNA-mRNA regulatory circuits. Transfection of gastric cancer cell lines with selected miRNA mimics and inhibitors was used to evaluate their effects on the expression of putative targets and additional metaplasia markers. RESULTS We identified several genes as potential targets of miRNAs altered during metaplasia progression. We showed evidence that HNF4γ (upregulated in intestinal metaplasia) is targeted by miR-30 and that miR-194 targets a known co-regulator of HNF4 activity, NR2F2 (downregulated in intestinal metaplasia). Intestinal metaplasia markers such as VIL1, TFF2 and TFF3 were downregulated after overexpression of miR-30a in a HNF4γ-dependent manner. In addition, overexpression of HNF4γ was sufficient to induce the expression of VIL1 and this effect was potentiated by downregulation of NR2F2. CONCLUSIONS The interplay of the two transcription factors HNF4γ and NR2F2 and their coordinate regulation by miR-30 and miR-194, respectively, represent a miRNA to transcription factor network responsible for the expression of intestinal transcripts in stomach cell lineages during the development of intestinal metaplasia.
Collapse
Affiliation(s)
- Josane F. Sousa
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Ki Taek Nam
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea 120-752,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea 120-752
| | - Christine P. Petersen
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| | - Hyuk-Joon Lee
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Departments of Surgery, Seoul National University College of Medicine, Seoul, Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - James R. Goldenring
- Nashville VA Medical Center and the Epithelial Biology Center and Section of Surgical Sciences, Vanderbilt University School of Medicine, Seoul, Korea 120-752
| |
Collapse
|
10
|
Liu J, Hernandez-Ono A, Graham MJ, Galton VA, Ginsberg HN. Type 1 Deiodinase Regulates ApoA-I Gene Expression and ApoA-I Synthesis Independent of Thyroid Hormone Signaling. Arterioscler Thromb Vasc Biol 2016; 36:1356-66. [PMID: 27150392 DOI: 10.1161/atvbaha.116.307330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Plasma levels of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (ApoA-I) are reduced in individuals with defective insulin signaling. Initial studies using liver-specific insulin receptor (InsR) knockout mice identified reduced expression of type 1 deiodinase (Dio1) as a potentially novel link between defective hepatic insulin signaling and reduced expression of the ApoA-I gene. Our objective was to examine the regulation of ApoA-I expression by Dio1. APPROACH AND RESULTS Acute inactivation of InsR by adenoviral delivery of Cre recombinase to InsR floxed mice reduced HDL-C and expression of both ApoA-I and Dio1. Overexpression of Dio1 in InsR knockout mice restored HDL-C and ApoA-I levels and increased the expression of ApoA-I. Dio1 knockout mice had low expression of ApoA-I and reduced serum levels of HDL-C and ApoA-I. Treatment of C57BL/6J mice with antisense to Dio1 reduced ApoA-I mRNA, HDL-C, and serum ApoA-I. Hepatic 3,5,3'-triiodothyronine content was normal or elevated in InsR knockout mice or Dio1 knockout mice. Knockdown of either InsR or Dio1 by siRNA in HepG2 cells decreased the expression of ApoA-I and ApoA-I synthesis and secretion. siRNA knockdown of InsR or Dio1 decreased activity of a region of the ApoA-I promoter lacking thyroid hormone response elements (region B). Electrophoretic mobility shift assay demonstrated that reduced Dio1 expression decreased the binding of nuclear proteins to region B. CONCLUSIONS Reductions in Dio1 expression reduce the expression of ApoA-I in a 3,5,3'-triiodothyronine-/thyroid hormone response element-independent manner.
Collapse
Affiliation(s)
- Jing Liu
- From the Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY (J.L., A.H.-O., H.N.G.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G.); and Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH (V.A.G.).
| | - Antonio Hernandez-Ono
- From the Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY (J.L., A.H.-O., H.N.G.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G.); and Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH (V.A.G.)
| | - Mark J Graham
- From the Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY (J.L., A.H.-O., H.N.G.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G.); and Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH (V.A.G.)
| | - Valerie Anne Galton
- From the Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY (J.L., A.H.-O., H.N.G.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G.); and Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH (V.A.G.)
| | - Henry N Ginsberg
- From the Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY (J.L., A.H.-O., H.N.G.); Ionis Pharmaceuticals, Inc, Carlsbad, CA (M.J.G.); and Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, NH (V.A.G.).
| |
Collapse
|
11
|
Zhang R, Wang Y, Li R, Chen G. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism. Int J Mol Sci 2015; 16:14210-14244. [PMID: 26110391 PMCID: PMC4490549 DOI: 10.3390/ijms160614210] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- State Food and Drug Administration Hubei Center for Medical Equipment Quality Supervision and Testing, 666 High-Tech Avenue, Wuhan 430000, China.
| | - Yueqiao Wang
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Rui Li
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, 1215 West Cumberland Avenue, Knoxville, TN 37996, USA.
| |
Collapse
|
12
|
Shavva VS, Mogilenko DA, Dizhe EB, Oleinikova GN, Perevozchikov AP, Orlov SV. Hepatic nuclear factor 4α positively regulates complement C3 expression and does not interfere with TNFα-mediated stimulation of C3 expression in HepG2 cells. Gene 2013; 524:187-92. [PMID: 23628799 DOI: 10.1016/j.gene.2013.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Complement C3 is involved in various protective and regulatory mechanisms of immune system. Recently it was established that C3 expression is regulated by nuclear receptors. Hepatic nuclear factor 4α (HNF4α) is a nuclear receptor critical for hepatic development and metabolism. We have shown that HNF4α is a positive regulator of C3 gene expression, realizing its effects through binding to two HNF4-response elements within the C3 promoter in HepG2 cells. TNFα is a well established positive regulator of C3 expression in hepatocytes during acute phase of inflammation. TNFα decreases the amount of HNF4α protein in HepG2 cells through NF-κB and MEK1/2 pathways thereby leading to a decrease in HNF4α bound to the C3 promoter. TNFα and HNF4α act in a synergetic way resulting in the potent activation of C3 transcription. These results suggest a novel mechanism of C3 regulation during acute phase response in HepG2 cells and display the mechanism of interaction of TNFα-induced pathways and HNF4α in transcriptional regulation of C3 gene.
Collapse
Affiliation(s)
- Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg 197376, Russia.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang Z, Liu J, Xi Y, Yang R, Chen H, Li Z, Liu D, Liang C. Two novel cis-elements involved in hepatocyte nuclear factor 4α regulation of acyl-coenzyme A:cholesterol acyltransferase 2 expression. Acta Biochim Biophys Sin (Shanghai) 2012; 44:162-71. [PMID: 22155889 DOI: 10.1093/abbs/gmr102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2) is important for cholesterol ester synthesis and secretion. A previous study revealed that ACAT2 gene promoter activity was upregulated by hepatocyte nuclear factor 4α (HNF4α) through two sites around -247 and -311 of ACAT2 gene promoter. Here, we identified two novel cis-elements, site I (-1006 to -898) and site II (-38 to -29), which are important for HNF4α effect. In HepG2 cells, mutation of site I decreased ACAT2 gene promoter activity to one-fifth of that of the wild type, while mutation of site II reduced promoter activity to less than one-tenth of that of the wild type. In 293T cells, mutation of these two cis-elements profoundly impaired the HNF4α induction effect. When either of these two elements was inserted into pGL3-promoter, HNF4α induced promoter activity through the inserted element, while mutation of the element impaired HNF4α induction effect. In electrophoretic mobility shift assay and chromatin immunoprecipitation experiment, HNF4α bound to these two elements. Thus, the two cis-elements are important for HNF4α effect on ACAT2 gene transcription. We also showed that HNF4α positively regulates ACAT2 gene expression at mRNA level. Overexpression of HNF4α increased ACAT2 expression, whereas knockdown of HNF4α decreased ACAT2 expression. Peroxisome proliferator-activated receptor gamma coactivator 1α (PCG1α), a coactivator of HNF4α, increased ACAT2 expression, while small heterodimer partner (SHP), a corepressor of HNF4α, decreased ACAT2 expression. These results provide more insights into transcriptional regulation of ACAT2 expression.
Collapse
Affiliation(s)
- Zhuqin Zhang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Science, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gardès C, Blum D, Bleicher K, Chaput E, Ebeling M, Hartman P, Handschin C, Richter H, Benson GM. Studies in mice, hamsters, and rats demonstrate that repression of hepatic apoA-I expression by taurocholic acid in mice is not mediated by the farnesoid-X-receptor. J Lipid Res 2011; 52:1188-1199. [PMID: 21464203 DOI: 10.1194/jlr.m012542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is claimed that apoA-I expression is repressed in mice by cholic acid (CA) and its taurine conjugate, taurocholic acid (TCA) via farnesoid X receptor (FXR) activation. We measured apoA-I expression in mice, hamsters, and rats treated with highly potent and selective synthetic FXR agonists or with TCA. All of the synthetic agonists bound to FXR with high affinity in a scintillation proximity assay. However, TCA did not compete with the radioligand up to the highest concentration used (100 μM). The C-site regulatory region of apoA-I, through which FXR has been reported to regulate its expression, is completely conserved across the species investigated. In both male and female human apoA-I-transgenic mice, we reproduced the previously reported strong inhibition of human apoA-I expression upon treatment with the typical supraphysiological dose of TCA used in such studies. However, in contrast to some previous reports, TCA did not repress murine apoA-I expression in the same mice. Also, more-potent and -selective FXR agonists did not affect human or murine apoA-I expression in this model. In LDL receptor-deficient mice and Golden Syrian hamsters, selective FXR agonists did not affect apoA-I expression, whereas in Wistar rats, some even increased apoA-I expression. In conclusion, selective FXR agonists do not repress apoA-I expression in rodents. Repression of human apoA-I expression by TCA in transgenic mice is probably mediated through FXR-independent mechanisms.
Collapse
Affiliation(s)
- Christophe Gardès
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland.
| | - Denise Blum
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | | | - Evelyne Chaput
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Martin Ebeling
- Bio-informatics, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Peter Hartman
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Corinne Handschin
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - Hans Richter
- Chemistry, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| | - G Martin Benson
- Departments of Metabolic Diseases, F. Hoffmann-La Roche AG, 4070 Basel, Switzerland
| |
Collapse
|
15
|
Orlov SV, Mogilenko DA, Shavva VS, Dizhe EB, Ignatovich IA, Perevozchikov AP. Effect of TNFα on activities of different promoters of human apolipoprotein A-I gene. Biochem Biophys Res Commun 2010; 398:224-30. [DOI: 10.1016/j.bbrc.2010.06.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 06/15/2010] [Indexed: 11/26/2022]
|
16
|
Mogilenko DA, Dizhe EB, Shavva VS, Lapikov IA, Orlov SV, Perevozchikov AP. Role of the nuclear receptors HNF4 alpha, PPAR alpha, and LXRs in the TNF alpha-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells. Biochemistry 2010; 48:11950-60. [PMID: 19883121 DOI: 10.1021/bi9015742] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The expression of the apolipoprotein A-I gene (apoA-I) in hepatocytes is repressed by pro-inflammatory cytokines such as IL-1beta and TNFalpha. In this work, we have demonstrated that treatment of HepG2 human hepatoma cells with chemical inhibitors for JNK, p38 protein kinases, and NFkappaB transcription factor abolishes the TNFalpha-mediated inhibition of human apoA-I gene expression in HepG2 cells. In addition, we have shown that TNFalpha decreases also the rate of secretion of apoA-I protein by HepG2 cells, and this effect depends on JNK and p38, but not on NFkappaB and MEK1/2 signaling pathways. The inhibitory effect of TNFalpha has been found to be mediated by the hepatic enhancer of the apoA-I gene. The decrease in the level of human apoA-I gene expression under the impact of TNFalpha appears to be partly mediated by the inhibition of HNF4alpha and PPARalpha gene expression. Treatment of HepG2 cells with PPARalpha antagonist (MK886) or LXR agonist (TO901317) abolishes the TNFalpha-mediated decrease in the level of apoA-I gene expression. PPARalpha agonist (WY-14643) abolishes the negative effect of TNFalpha on apoA-I gene expression in the case of simultaneous inhibition of MEK1/2, although neither inhibition of MEK1/2 nor addition of WY-14643 leads to the blocking of the TNFalpha-mediated decrease in the level of apoA-I gene expression individually. The ligand-dependent regulation of apoA-I gene expression by PPARalpha appears to be affected by the TNFalpha-mediated activation of MEK1/2 kinases, probably through PPARalpha phosphorylation. Treatment of HepG2 cells with PPARalpha and LXR synthetic agonists also blocks the inhibition of apoA-I protein secretion in HepG2 cells under the impact of TNFalpha. A chromatin immunoprecipitation assay demonstrates that TNFalpha leads to a 2-fold decrease in the level of PPARalpha binding with the apoA-I gene hepatic enhancer. At the same time, the level of LXRbeta binding with the apoA-I gene hepatic enhancer is increased 3-fold under the impact of TNFalpha. These results suggest that nuclear receptors HNF4alpha, PPARalpha, and LXRs are involved in the TNFalpha-mediated downregulation of human apoA-I gene expression and apoA-I protein secretion in HepG2 cells.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, 197376 St. Petersburg, Russia.
| | | | | | | | | | | |
Collapse
|
17
|
Dullens SPJ, Plat J, Mensink RP. Increasing apoA-I production as a target for CHD risk reduction. Nutr Metab Cardiovasc Dis 2007; 17:616-628. [PMID: 17703927 DOI: 10.1016/j.numecd.2007.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/08/2007] [Accepted: 05/30/2007] [Indexed: 12/28/2022]
Abstract
Dyslipidemia leading to coronary heart diseases (CHD) enables venues to prevent or treat CHD by other strategies than only lowering serum LDL cholesterol (LDL-C) concentrations, which is currently the most frequently targeted change. Unlike LDL-C, elevated high-density lipoprotein cholesterol (HDL-C) concentrations may protect against the development of CHD as demonstrated in numerous large-scale epidemiological studies. In this review we describe that besides elevating serum HDL-C concentrations by increasing alpha-HDL particles, approaches to elevate HDL-C concentrations by increasing pre-beta HDL particle concentrations seems more attractive. Besides infusion of apoA-I(Milano), using apoA-I mimetics, or delipidation of alpha-HDL particles, elevating de novo apoA-I production may be a suitable target to functionally increase pre-beta HDL particle concentrations. Therefore, a detailed description of the molecular pathways underlying apoA-I synthesis and secretion, completed with an overview of known effects of pharmacological and nutritional compounds on apoA-I synthesis will be presented. This knowledge may ultimately be applied in developing dietary intervention strategies to elevate apoA-I production and serum HDL-C concentrations and consequently lower CHD risk.
Collapse
Affiliation(s)
- Stefan P J Dullens
- Department of Human Biology, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands
| | | | | |
Collapse
|
18
|
Ng VY, Huang Y, Reddy LM, Falck JR, Lin ET, Kroetz DL. Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor alpha. Drug Metab Dispos 2007; 35:1126-34. [PMID: 17431031 DOI: 10.1124/dmd.106.013839] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (P450) eicosanoids regulate vascular tone, renal tubular transport, cellular proliferation, and inflammation. Both the CYP4A omega-hydroxylases, which catalyze 20-hydroxyeicosatetraenoic acid (20-HETE) formation, and soluble epoxide hydrolase (sEH), which catalyzes epoxyeicosatrienoic acid (EET) degradation to the dihydroxyeicosatrienoic acids (DHETs), are induced upon activation of peroxisome proliferator-activated receptor alpha (PPARalpha) by fatty acids and fibrates. In contrast, the CYP2C epoxygenases, which are responsible for EET formation, are repressed after fibrate treatment. We show here that P450 eicosanoids can bind to and activate PPARalpha and result in the modulation of PPARalpha target gene expression. In transactivation assays, 14,15-DHET, 11,2-EET, and 20-HETE were potent activators of PPARalpha. Gel shift assays showed that EETs, DHETs, and 20-HETE induced PPARalpha-specific binding to its cognate response element. Expression of apolipoprotein A-I was decreased 70% by 20-HETE, whereas apolipoprotein A-II expression was increased up to 3-fold by 11,12-EET, 14,15-DHET, and 20-HETE. In addition, P450 eicosanoids induced CYP4A1, sEH, and CYP2C11 expression, suggesting that they can regulate their own levels. Given that P450 eicosanoids have multiple cardiovascular effects, pharmacological modulation of their formation and/or degradation may yield therapeutic benefits.
Collapse
Affiliation(s)
- Valerie Y Ng
- Department of Biopharmaceutical Sciences, University of California San Francisco, San Francisco, CA 94143-2911, USA
| | | | | | | | | | | |
Collapse
|
19
|
Rufibach LE, Duncan SA, Battle M, Deeb SS. Transcriptional regulation of the human hepatic lipase (LIPC) gene promoter. J Lipid Res 2006; 47:1463-77. [PMID: 16603721 DOI: 10.1194/jlr.m600082-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatic lipase (HL) plays a key role in the metabolism of plasma lipoproteins, and its level of activity requires tight regulation, given the association of both low and high levels with atherosclerosis and coronary artery disease. However, little is known about the factors responsible for HL expression. Here, we report that the human hepatic lipase gene (LIPC) promoter is regulated by hepatocyte nuclear factor 4alpha (HNF4alpha), peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha), apolipoprotein A-I regulatory protein-1 (ARP-1), and hepatocyte nuclear factor 1alpha (HNF1alpha). Reporter analysis showed that HNF4alpha directly regulates the LIPC promoter via two newly identified direct repeat elements, DR1 and DR4. PGC-1alpha is capable of stimulating the HNF4alpha-dependent transactivation of the LIPC promoter. ARP-1 displaces HNF4alpha from the DR1 site and blocks its ability to activate the LIPC promoter. Induction by HNF1alpha requires the HNF1 binding site and upon cotransfection with HNF4alpha leads to an additive effect. In addition, the in vivo relevance of HNF4alpha in LIPC expression is shown by the ability of the HNF4alpha antagonist Medica 16 to repress endogenous LIPC mRNA expression. Furthermore, disruption of Hnf4alpha in mice prevents the expression of HL mRNA in liver. The overall effect these transcription factors have on HL expression will ultimately depend on the interplay between these various factors and their relative intracellular concentrations.
Collapse
Affiliation(s)
- Laura E Rufibach
- Department of Medical Genetics, University of Washington, Seattle, USA.
| | | | | | | |
Collapse
|
20
|
Furihata T, Hosokawa M, Masuda M, Satoh T, Chiba K. Hepatocyte nuclear factor-4alpha plays pivotal roles in the regulation of mouse carboxylesterase 2 gene transcription in mouse liver. Arch Biochem Biophys 2006; 447:107-17. [PMID: 16527247 DOI: 10.1016/j.abb.2006.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/25/2006] [Accepted: 01/25/2006] [Indexed: 10/25/2022]
Abstract
The mouse carboxylesterase 2 isozyme, mCES2, is thought to play important roles in lipid metabolism and is expressed in the liver, kidney, and small intestine at high levels. In this study, we examined the molecular mechanisms controlling this tissue-specific expression of mCES2, and demonstrated that hepatocyte nuclear factor-4alpha (HNF-4alpha) could enhance transcription of the mCES2 gene in vitro and in vivo. It was found that effects of HNF-4alpha on the level of mCES2 promoter activity were repressed by small heterodimer partner (SHP) and chenodeoxycholic acid (CDCA) in luciferase assays. Accordingly, mCES2 gene transcription was repressed by CDCA treatment in mouse immortalized hepatocytes. Our results suggested that this repression resulted from the combined effects of both inhibition of HNF-4alpha transactivation ability by SHP and reduction of HNF-4alpha expression level. These findings show that HNF-4alpha plays an important role in the regulation of mCES2 gene transcription.
Collapse
Affiliation(s)
- Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | |
Collapse
|
21
|
Prieur X, Schaap FG, Coste H, Rodríguez JC. Hepatocyte Nuclear Factor-4α Regulates the Human Apolipoprotein AV Gene: Identification of a Novel Response Element and Involvement in the Control by Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α, AMP-Activated Protein Kinase, and Mitogen-Activated Protein Kinase Pathway. Mol Endocrinol 2005; 19:3107-25. [PMID: 16051671 DOI: 10.1210/me.2005-0048] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4alpha (HNF-4alpha) as a novel regulator of human apoAV gene. Inhibition of HNF-4alpha expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4alpha directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4alpha consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha was capable of stimulating the HNF-4alpha-dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4alpha. Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4alpha gene revealed a species-distinct regulation of apoAV by HNF-4alpha, which resembles that of a subset of HNF-4alpha target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4alpha and underscore the role of HNF-4alpha in regulating triglyceride metabolism.
Collapse
Affiliation(s)
- Xavier Prieur
- GlaxoSmithKline, 25 avenue du Québec, 91951 Les Ulis cedex, France
| | | | | | | |
Collapse
|
22
|
Jiang S, Tanaka T, Iwanari H, Hotta H, Yamashita H, Kumakura J, Watanabe Y, Uchiyama Y, Aburatani H, Hamakubo T, Kodama T, Naito M. Expression and localization of P1 promoter-driven hepatocyte nuclear factor-4α (HNF4α) isoforms in human and rats. NUCLEAR RECEPTOR 2003; 1:5. [PMID: 12952540 PMCID: PMC194242 DOI: 10.1186/1478-1336-1-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Accepted: 08/08/2003] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocyte nuclear factor-4α (HNF4α; NR2A1) is an orphan member of the nuclear receptor superfamily involved in various processes that could influence endoderm development, glucose and lipid metabolism. A loss-of-function mutation in human HNF4α causes one form of diabetes mellitus called maturity-onset diabetes of the young type 1 (MODY1) which is characterized in part by a diminished insulin secretory response to glucose. The expression of HNF4α in a variety of tissues has been examined predominantly at the mRNA level, and there is little information regarding the cellular localization of the endogenous HNF4α protein, due, in part, to the limited availability of human HNF4α-specific antibodies. RESULTS Monoclonal antibodies have been produced using baculovirus particles displaying gp64-HNF4α fusion proteins as the immunizing agent. The mouse anti-human HNF4α monoclonal antibody (K9218) generated against human HNF4α1/α2/α3 amino acids 3-49 was shown to recognize not only the transfected and expressed P1 promoter-driven HNF4α proteins, but also endogenous proteins. Western blot analysis with whole cell extracts from Hep G2, Huh7 and Caco-2 showed the expression of HNF4α protein, but HEK293 showed no expression of HNF4α protein. Nuclear-specific localization of the HNF4α protein was observed in the hepatocytes of liver cells, proximal tubular epithelial cells of kidney, and mucosal epithelial cells of small intestine and colon, but no HNF4α protein was detected in the stomach, pancreas, glomerulus, and distal and collecting tubular epithelial cells of kidney. The same tissue distribution of HNF4α protein was observed in humans and rats. Electron microscopic immunohistochemistry showed a chromatin-like localization of HNF4α in the liver and kidney. As in the immunohistochemical investigation using K9218, HNF4α mRNA was found to be localized primarily to liver, kidney, small intestine and colon by RT-PCR and GeneChip analysis. CONCLUSION These results suggest that this method has the potential to produce valuable antibodies without the need for a protein purification step. Immunohistochemical studies indicate the tissue and subcellular specific localization of HNF4α and demonstrate the utility of K9218 for the detection of P1 promoter-driven HNF4α isoforms in humans and in several other mammalian species.
Collapse
Affiliation(s)
- Shuying Jiang
- Department of Cellular Function, Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiya Tanaka
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The Tokyo University, Tokyo, Japan
- Pharmacology II, Department of Research and Development, Grelan Pharmaceutical Co. Ltd., Tokyo, Japan
| | | | - Hiromitsu Hotta
- Department of Cellular Function, Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | - Yuichiro Watanabe
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The Tokyo University, Tokyo, Japan
- Biological Chemistry III, New Drug Research Department, Kowa Co. Ltd., Tokyo, Japan
| | - Yasutoshi Uchiyama
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The Tokyo University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The Tokyo University, Tokyo, Japan
| | - Takao Hamakubo
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The Tokyo University, Tokyo, Japan
| | - Tatsuhiko Kodama
- Department of Molecular Biology and Medicine, Research Center for Advanced Science and Technology, The Tokyo University, Tokyo, Japan
| | - Makoto Naito
- Department of Cellular Function, Division of Cellular and Molecular Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
23
|
Wisely GB, Miller AB, Davis RG, Thornquest AD, Johnson R, Spitzer T, Sefler A, Shearer B, Moore JT, Miller AB, Willson TM, Williams SP. Hepatocyte nuclear factor 4 is a transcription factor that constitutively binds fatty acids. Structure 2002; 10:1225-34. [PMID: 12220494 DOI: 10.1016/s0969-2126(02)00829-8] [Citation(s) in RCA: 244] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 2.7 A X-ray crystal structure of the HNF4gamma ligand binding domain (LBD) revealed the presence of a fatty acid within the pocket, with the AF2 helix in a conformation characteristic of a transcriptionally active nuclear receptor. GC/MS and NMR analysis of chloroform/methanol extracts from purified HNF4alpha and HNF4gamma LBDs identified mixtures of saturated and cis-monounsaturated C14-18 fatty acids. The purified HNF4 LBDs interacted with nuclear receptor coactivators, and both HNF4 subtypes show high constitutive activity in transient transfection assays, which was reduced by mutations designed to interfere with fatty acid binding. The endogenous fatty acids did not readily exchange with radiolabeled palmitic acid, and all attempts to displace them without denaturing the protein failed. Our results suggest that the HNF4s may be transcription factors that are constitutively bound to fatty acids.
Collapse
Affiliation(s)
- G Bruce Wisely
- GlaxoSmithKline Inc., 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nakabayashi H, Koyama Y, Sakai M, Li HM, Wong NC, Nishi S. Glucocorticoid stimulates primate but inhibits rodent alpha-fetoprotein gene promoter. Biochem Biophys Res Commun 2001; 287:160-72. [PMID: 11549270 DOI: 10.1006/bbrc.2001.5564] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids inhibit rodent alpha-fetoprotein (AFP) gene activity but stimulate expression of the human homologue. Like human, activity of the AFP promoter from other primates was stimulated by the synthetic glucocorticoid dexamethasone (Dex) in various cell lines. A glucocorticoid responsive element (GRE) is located within 180 bp upstream of the transcription initiation site of all AFP genes examined. Comparative analysis of the GRE in the two different groups of promoters revealed a common 3' hexamer, 5'-TGTCCT-3', but the 5' hexamers were different. This difference converts the rodent GRE to a DR-1 motif. DR-1 is a binding site for members of the nuclear receptor superfamily including the orphan receptor hepatocyte nuclear factor-4 (HNF-4). The presence of DR-1 in the rodent but not human may underlie the opposite actions of Dex on the AFP promoter. We tested this hypothesis using a transient transfection assay. In hepatoma cells that expressed GR and HNF-4, reporter-activity was inhibited by Dex. The same construct in nonhepatoma cells was strongly induced by over expression of HNF-4 and the induced activity was inhibited by Dex. The findings show that Dex induction of human AFP is mediated by a GRE. But Dex repression of the rodent promoter requires a DR-1 motif that interacts with GR and HNF-4.
Collapse
Affiliation(s)
- H Nakabayashi
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Qian A, Cai Y, Magee TR, Wan YJ. Identification of retinoic acid-responsive elements on the HNF1alpha and HNF4alpha genes. Biochem Biophys Res Commun 2000; 276:837-42. [PMID: 11027556 DOI: 10.1006/bbrc.2000.3549] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatocyte nuclear factor 1alpha (HNF1alpha) and HNF4alpha are liver-selective transcription factors and are essential for hepatocyte differentiation. This study demonstrates that HNF1alpha as well as HNF4alpha genes contain a direct repeat with a space of one nucleotide (DR1)-retinoic acid (RA) response element that can be bound and regulated by RA and retinoid x receptor alpha (RXRalpha) complex. Transient transfection experiments showed that RA increased the promoter activity of the HNF1alpha and HNF4alpha genes in Hep3B cells. Overexpression of RXRalpha further enhanced the activities of both genes. Two putative RXRalpha binding sites on the HNF1alpha (-295 to -276) and HNF4alpha (-418 to -399) genes have been characterized. By transient transfection, both sites positively responded to RA, and overexpression of RXRalpha in Hep3B cells increased the regulatory effect. Gel mobility shift assay demonstrated that these two DR-1 sites could be bound by RXRalpha specifically. These data suggest that the differentiation effect of RA on hepatocyte may be due to direct interaction of RXRalpha with the RA-responsive elements on the HNF1alpha and HNF4alpha genes.
Collapse
Affiliation(s)
- A Qian
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California, 90509, USA
| | | | | | | |
Collapse
|
26
|
Srivastava RA, Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem 2000; 209:131-44. [PMID: 10942211 DOI: 10.1023/a:1007111830472] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High density lipoproteins (HDL), one of the main lipoprotein particles circulating in plasma, is involved in the reverse cholesterol transport. Several lines of evidence suggest that elevated levels of HDL is protective against coronary heart disease. The role of HDL in the removal of body cholesterol and in the regression of atherosclerosis add to the importance of understanding the molecular-cellular processes that determine plasma levels of HDL. Factors modulating plasma levels of HDL may have influence on the predisposition of an individual to premature coronary artery disease. Apolipoprotein (apo) A-I is the main apolipoprotein component of HDL and, to a large extent, sets the plasma levels of HDL. Thus, understanding the regulation of apoA-I gene expression may provide clues to raise plasma levels of HDL. This review discusses the various pathways that alter plasma levels of HDL. Since apoA-I is the main protein component of HDL and determines the plasma levels of HDL, this review also covers the regulation of apoA-I gene expression.
Collapse
Affiliation(s)
- R A Srivastava
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| | | |
Collapse
|
27
|
Lausen J, Thomas H, Lemm I, Bulman M, Borgschulze M, Lingott A, Hattersley AT, Ryffel GU. Naturally occurring mutations in the human HNF4alpha gene impair the function of the transcription factor to a varying degree. Nucleic Acids Res 2000; 28:430-7. [PMID: 10606640 PMCID: PMC102517 DOI: 10.1093/nar/28.2.430] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hepatocyte nuclear factor (HNF)4alpha, a member of the nuclear receptor superfamily, regulates genes that play a critical role in embryogenesis and metabolism. Recent studies have shown that mutations in the human HNF4alpha gene cause a rare form of type 2 diabetes, maturity onset diabetes of the young (MODY1). To investigate the properties of these naturally occurring HNF4alpha mutations we analysed five MODY1 mutations (R154X, R127W, V255M, Q268X and E276Q) and one other mutation (D69A), which we found in HepG2 hepatoma cells. Activation of reporter genes in transfection assays and DNA binding studies showed that the MODY1-associated mutations result in a variable reduction in function, whereas the D69A mutation showed an increased activity on some promoters. None of the MODY mutants acted in a dominant negative manner, thus excluding inactivation of the wild-type factor as a critical event in MODY development. A MODY3-associated mutation in the HNF1alpha gene, a well-known target gene of HNF4alpha, results in a dramatic loss of the HNF4 binding site in the promoter, indicating that mutations in the HNF4alpha gene might cause MODY through impaired HNF1alpha gene function. Based on these data we propose a two-hit model for MODY development.
Collapse
Affiliation(s)
- J Lausen
- Institut für Zellbiologie, Universitätsklinikum Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Stroup D, Chiang JY. HNF4 and COUP-TFII interact to modulate transcription of the cholesterol 7α-hydroxylase gene (CYP7A1). J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32068-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Sladek R, Giguère V. Orphan nuclear receptors: an emerging family of metabolic regulators. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2000; 47:23-87. [PMID: 10582084 DOI: 10.1016/s1054-3589(08)60109-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- R Sladek
- Molecular Oncology Group, McGill University Health Centre, Montréal, Québec, Canada
| | | |
Collapse
|
30
|
Affiliation(s)
- V Giguère
- Molecular Oncology Group, McGill University Health Centre.
| |
Collapse
|
31
|
Nakamura T, Fox-Robichaud A, Kikkawa R, Kashiwagi A, Kojima H, Fujimiya M, Wong NC. Transcription factors and age-related decline in apolipoprotein A-I expression. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33418-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Hegardt FG. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem J 1999; 338 ( Pt 3):569-82. [PMID: 10051425 PMCID: PMC1220089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Cytosolic and mitochondrial 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthases were first recognized as different chemical entities in 1975, when they were purified and characterized by Lane's group. Since then, the two enzymes have been studied extensively, one as a control site of the cholesterol biosynthetic pathway and the other as an important control site of ketogenesis. This review describes some key developments over the last 25 years that have led to our current understanding of the physiology of mitochondrial HMG-CoA synthase in the HMG-CoA pathway and in ketogenesis in the liver and small intestine of suckling animals. The enzyme is regulated by two systems: succinylation and desuccinylation in the short term, and transcriptional regulation in the long term. Both control mechanisms are influenced by nutritional and hormonal factors, which explains the incidence of ketogenesis in diabetes and starvation, during intense lipolysis, and in the foetal-neonatal and suckling-weaning transitions. The DNA-binding properties of the peroxisome-proliferator-activated receptor and other transcription factors on the nuclear-receptor-responsive element of the mitochondrial HMG-CoA synthase promoter have revealed how ketogenesis can be regulated by fatty acids. Finally, the expression of mitochondrial HMG-CoA synthase in the gonads and the correction of auxotrophy for mevalonate in cells deficient in cytosolic HMG-CoA synthase suggest that the mitochondrial enzyme may play a role in cholesterogenesis in gonadal and other tissues.
Collapse
Affiliation(s)
- F G Hegardt
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Av/ Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
33
|
Vu-Dac N, Chopin-Delannoy S, Gervois P, Bonnelye E, Martin G, Fruchart JC, Laudet V, Staels B. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J Biol Chem 1998; 273:25713-20. [PMID: 9748239 DOI: 10.1074/jbc.273.40.25713] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibrates are widely used hypolipidemic drugs which activate the nuclear peroxisome proliferator-activated receptor (PPAR) alpha and thereby alter the transcription of genes controlling lipoprotein metabolism. Fibrates influence plasma high density lipoprotein and its major protein, apolipoprotein (apo) A-I, in an opposite manner in man (increase) versus rodents (decrease). In the present study we studied the molecular mechanisms of this species-specific regulation of apoA-I expression by fibrates. In primary rat and human hepatocytes fenofibric acid, respectively, decreased and increased apoA-I mRNA levels. The absence of induction of rat apoA-I gene expression by fibrates is due to 3 nucleotide differences between the rat and the human apoA-I promoter A site, rendering a positive PPAR-response element in the human apoA-I promoter nonfunctional in rats. In contrast, rat, but not human, apoA-I transcription is repressed by the nuclear receptor Rev-erbalpha, which binds to a negative response element adjacent to the TATA box of the rat apoA-I promoter. In rats fibrates increase liver Rev-erbalpha mRNA levels >10-fold. In conclusion, the opposite regulation of rat and human apoA-I gene expression by fibrates is linked to differences in cis-elements in their respective promoters leading to repression by Rev-erbalpha of rat apoA-I and activation by PPARalpha of human apoA-I. Finally, Rev-erbalpha is identified as a novel fibrate target gene, suggesting a role for this nuclear receptor in lipid and lipoprotein metabolism.
Collapse
Affiliation(s)
- N Vu-Dac
- U.325 INSERM, Département d'Athérosclérose, Institut Pasteur, and the Faculté de Pharmacie, Université de Lille II, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Harnish DC, Evans MJ, Scicchitano MS, Bhat RA, Karathanasis SK. Estrogen regulation of the apolipoprotein AI gene promoter through transcription cofactor sharing. J Biol Chem 1998; 273:9270-8. [PMID: 9535920 DOI: 10.1074/jbc.273.15.9270] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen replacement therapy increases plasma concentrations of high density lipoprotein and its major protein constituent, apolipoprotein AI (apoAI). Studies with animal model systems, however, suggest opposite effects. In HepG2 cells stably expressing estrogen receptor alpha (ERalpha), 17beta-estradiol (E2) potently inhibited apoAI mRNA steady state levels. ApoAI promoter deletion mapping experiments indicated that ERalpha plus E2 inhibited apoAI activity through the liver-specific enhancer. Although the ERalpha DNA binding domain was essential but not sufficient for apoAI enhancer inhibition, ERalpha binding to the apoAI enhancer could not be detected by electrophoretic mobility shift assays. Western blotting and cotransfection assays showed that ERalpha plus E2 did not influence the abundance or the activity of the hepatocyte-enriched factors HNF-3beta and HNF-4, two transcription factors essential for apoAI enhancer function. Expression of the ERalpha coactivator RIP140 dramatically repressed apoAI enhancer function in cotransfection experiments, suggesting that RIP140 may also function as a coactivator on the apoAI enhancer. Moreover, estrogen regulation of apoAI enhancer activity was dependent upon the balance between ERalpha and RIP140 levels. At low ratios of RIP140 to ERalpha, E2 repressed apoAI enhancer activity, whereas at high ratios this repression was reversed. Regulation of the apoAI gene by estrogen may thus vary in direction and magnitude depending not only on the presence of ERalpha and E2 but also upon the intracellular balance of ERalpha and coactivators utilized by ERalpha and the apoAI enhancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Apolipoprotein A-I/biosynthesis
- Apolipoprotein A-I/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Binding Sites
- Carcinoma, Hepatocellular
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic
- Estradiol/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Hepatocyte Nuclear Factor 3-beta
- Hepatocyte Nuclear Factor 4
- Humans
- Kinetics
- Liver Neoplasms
- Luciferases/biosynthesis
- Nuclear Proteins/metabolism
- Nuclear Receptor Interacting Protein 1
- Phosphoproteins/metabolism
- Promoter Regions, Genetic/drug effects
- RNA, Messenger/biosynthesis
- Receptors, Estrogen/biosynthesis
- Receptors, Estrogen/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- D C Harnish
- Department of Nuclear Receptors, Wyeth-Ayerst Research, Radnor, Pennsylvania 19087, USA
| | | | | | | | | |
Collapse
|
35
|
Mohan WS, Chen ZQ, Zhang X, Khalili K, Honjo T, Deeley RG, Tam SP. Human S mu binding protein-2 binds to the drug response element and transactivates the human apoA-I promoter: role of gemfibrozil. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33887-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Rodríguez JC, Ortiz JA, Hegardt FG, Haro D. The hepatocyte nuclear factor 4 (HNF-4) represses the mitochondrial HMG-CoA synthase gene. Biochem Biophys Res Commun 1998; 242:692-6. [PMID: 9464279 DOI: 10.1006/bbrc.1997.8032] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently shown that the gene for the mitochondrial HMG-CoA synthase is a target for PPAR and that this receptor mediates the induction of this gene by fatty acids. With the aim of gaining further insight into the function and regulation of this gene we examined the effect of other members of the nuclear hormone receptor superfamily on its expression. We previously identified a regulatory element in the mitochondrial HMG-CoA synthase gene promoter that confers transcriptional regulation by PPAR, RXR and the orphan nuclear receptor COUP-TF. In this study we demonstrate a trans-repressing regulatory function for HNF-4 at this same nuclear receptor response element (NRRE). HNF-4 binds to the mitochondrial HMG-CoA synthase NRRE, and, in cotransfection assays in HepG2 cells, it represses PPAR-dependent activation of reporter gene linked to the mitochondrial HMG-CoA synthase gene promoter. These results suggest that the mitochondrial HMG-CoA synthase gene is subject to differential regulation by the interplay of multiple members of the nuclear hormone receptor superfamily.
Collapse
Affiliation(s)
- J C Rodríguez
- Unit of Biochemistry, School of Pharmacy, University of Barcelona, Spain
| | | | | | | |
Collapse
|
37
|
Wu JY, Zhang JJ, Wang Y, Reaves SK, Wang YR, Lei PP, Lei KY. Regulation of apolipoprotein A-I gene expression in Hep G2 cells depleted of Cu by cupruretic tetramine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1362-70. [PMID: 9357782 DOI: 10.1152/ajpcell.1997.273.4.c1362] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies were designed to examine the regulation of apolipoprotein (apo) A-I gene expression in Cu-depleted Hep G2 cells. The cupruretic chelator N,N'-bis(2-aminoethyl)-1,3-propanediamine 4 HCl (2,3,2-tetramine or TETA) was used to maintain a 77% reduction in cellular Cu in Hep G2 cells. After two passages of TETA treatment, the relative abundance of apoA-I mRNA was elevated 52%. In TETA-treated cells, the rate of apoA-I mRNA decay measured by an actinomycin D chase study was accelerated 108%, and the synthesis of apoA-I mRNA determined by a nuclear runoff assay was enhanced 2.5-fold in TETA-treated cells. All of those changes could be reverted toward the control values with Cu supplementation for only 2 days. In transient transfection assays, a 26.7% increase in chloramphenicol O-acetyltransferase (CAT) activity for the reporter construct -256AI-CAT was observed in the treated cells. However, the ability of apoA-I regulatory protein 1 (ARP-1) to repress the CAT activity was not affected by the depressed Cu status. In addition, gel retardation experiments demonstrated that Cu depletion enhanced the binding of hepatocyte nuclear factor 4 (HNF-4) and other undefined nuclear factors to oligonucleotides containing site A, one of three regulatory sites of the apoA-I gene promoter. Moreover, the relative abundance of HNF-4 mRNA was increased 58% in the Cu-depleted cells. Thus the observed increase in apoA-I gene transcription may be mediated mostly by an elevated level of the regulatory factor, HNF-4. In summary, the present findings established the mechanism by which a depressed cellular Cu status can enhance apoA-I mRNA production and subsequently increase apoA-I synthesis.
Collapse
Affiliation(s)
- J Y Wu
- Department of Nutritional Sciences, University of Arizona, Tucson 85721, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Vu-Dac N, Gervois P, Grötzinger T, De Vos P, Schoonjans K, Fruchart JC, Auwerx J, Mariani J, Tedgui A, Staels B. Transcriptional regulation of apolipoprotein A-I gene expression by the nuclear receptor RORalpha. J Biol Chem 1997; 272:22401-4. [PMID: 9278389 DOI: 10.1074/jbc.272.36.22401] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Since elevated concentrations of plasma high density lipoprotein (HDL) and its major apolipoprotein (apo), apoA-I, confer protection against atherosclerosis, considerable research efforts have focussed on the identification of factors regulating apoA-I gene expression in an attempt to increase its production. Nuclear receptors are interesting candidates because they are transcription factors whose activity is ligand-dependent. In the present study we identified the orphan receptor RORalpha1 as an activator of apoA-I gene transcription. In apoA-I-expressing intestinal Caco-2 cells, overexpression of the RORalpha1, but not the RORalpha2 or RORalpha3 isoforms, increased rat apoA-I gene transcription. Deletion and site-directed mutagenesis experiments identified a functional ROR-responsive element (RORE) in the rat and mouse apoA-I gene promoters, which overlaps with the TATA box. Gel shift experiments indicated that this RORE binds the RORalpha1 isoform, but not the RORalpha2 or RORalpha3 isoforms. Furthermore, compared with wild type mice, apoA-I mRNA levels were significantly lower in small intestines of staggerer mice homozygous for a deletion in the RORalpha gene. In addition, reverse transcriptase-polymerase chain reaction analysis revealed the expression of RORalpha in small intestinal epithelium and in Caco-2 cells. These data indicate a novel, physiological role for RORalpha1 in the regulation of genes involved in lipid and lipoprotein metabolism and possibly in the development of metabolic diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- N Vu-Dac
- Département d'Athérosclérose, U.325 INSERM, Institut Pasteur de Lille and Université de Lille II, 1 Rue Calmette, 59019 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fraser JD, Keller D, Martinez V, Santiso-Mere D, Straney R, Briggs MR. Utilization of recombinant adenovirus and dominant negative mutants to characterize hepatocyte nuclear factor 4-regulated apolipoprotein AI and CIII expression. J Biol Chem 1997; 272:13892-8. [PMID: 9153249 DOI: 10.1074/jbc.272.21.13892] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Using recombinant adenoviral vectors and a dominant negative mutant of HNF-4, we have examined the contribution of hepatocyte nuclear factor 4 (HNF-4) to endogenous apolipoprotein AI and CIII mRNA expression. Overexpression of HNF-4 leads to a 7.4-fold increase in apolipoprotein CIII expression, while infection with the dominant negative mutant of HNF-4 reduces the level of apolipoprotein CIII mRNA by 80%, demonstrating that endogenous HNF-4 is necessary for apolipoprotein CIII expression. Experiments using the hepatoma cell lines, HepG2 and Hep3B, indicate that HNF-4 is also involved in the regulation of apolipoprotein AI expression in these lines. However, the effect of HNF-4 on apolipoprotein AI expression is much more dramatic in cell lines derived from intestinal epithelium. Infection of the intestinal-derived cell line IEC-6 with the HNF-4 adenovirus resulted in a greater than 20-fold increase in the level of apolipoprotein AI mRNA. These results indicate that HNF-4 does regulate apolipoprotein AI and CIII mRNA expression and suggest that HNF-4 is critical for intestinal apolipoprotein AI expression.
Collapse
MESH Headings
- Adenoviridae
- Apolipoprotein A-I/genetics
- Apolipoprotein A-I/metabolism
- Apolipoprotein C-III
- Apolipoproteins C/genetics
- Apolipoproteins C/metabolism
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- DNA, Complementary/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Genetic Vectors
- Hepatocyte Nuclear Factor 4
- Humans
- In Situ Hybridization
- Mutagenesis, Site-Directed
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J D Fraser
- Ligand Pharmaceuticals Inc., San Diego, California 92121, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Machleder D, Ivandic B, Welch C, Castellani L, Reue K, Lusis AJ. Complex genetic control of HDL levels in mice in response to an atherogenic diet. Coordinate regulation of HDL levels and bile acid metabolism. J Clin Invest 1997; 99:1406-19. [PMID: 9077551 PMCID: PMC507957 DOI: 10.1172/jci119300] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Inbred strains of mice differ in susceptibility to atherogenesis when challenged with a high fat, high cholesterol diet containing 0.5% cholic acid. Studies of recombinant inbred (RI) strains derived from the susceptible strain C57BL/6J (B6) and the resistant strains C3H/HeJ (C3H) and BALB/cJ have revealed an association between fatty streak lesion size and a decrease in high density lipoprotein (HDL) levels on the diet. To better understand the genetic factors contributing to HDL metabolism and atherogenesis in response to the diet, we studied mice derived from an intercross between B6 and C3H using a complete linkage map approach. A total of 185 female progeny were typed for 134 genetic markers spanning the mouse genome, resulting in an average interval of about 10 cM between markers. A locus on distal chromosome 1 containing the apolipoprotein AII gene was linked to HDL-cholesterol levels on both the chow and the atherogenic diets, but this locus did not contribute to the decrease in HDL-cholesterol in response to the diet. At least three distinct genetic loci, on chromosomes 3, 5, and 11, exhibited evidence of linkage to a decrease in HDL-cholesterol after a dietary challenge. Since a bile acid (cholic acid) is required for the diet induced changes in HDL levels and for atherogenesis in these strains, we examined cholesterol-7-alpha hydroxylase (C7AH) expression. Whereas B6 mice exhibited a large decrease in C7AH mRNA levels in response to the diet, C3H showed an increase. Among the intercross mice, multiple loci contributed to the regulation of C7AH mRNA levels in response to the diet, the most notable of which coincided with the loci on chromosomes 3, 5, and 11 controlling HDL levels in response to the diet. None of these loci were linked to the C7AH structural gene which we mapped to proximal chromosome 4. These studies reveal coordinate regulation of C7AH expression and HDL levels, and they indicate that the genetic factors controlling HDL levels are more complex than previously suggested by studies of RI strains. Furthermore, we observed that two of the loci for C7AH expression contributed to differences in gallstone formation between these strains.
Collapse
Affiliation(s)
- D Machleder
- Department of Medicine, University of California, Los Angeles 90095, USA
| | | | | | | | | | | |
Collapse
|
41
|
Taylor AH, Raymond J, Dionne JM, Romney J, Chan J, Lawless DE, Wanke IE, Wong NC. Glucocorticoid increases rat apolipoprotein A-I promoter activity. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37304-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Lacorte JM, Fourniat E, Pastier D, Chambaz J, Ribeiro A, Cardot P. The proximal element of the human apolipoprotein A-II promoter increases the enhancer activity of the distal region. Biochem J 1996; 318 ( Pt 2):681-8. [PMID: 8809063 PMCID: PMC1217673 DOI: 10.1042/bj3180681] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that human apolipoprotein A-II (apoA-II) transcription is controlled by a complex set of regulatory elements. In this study, we demonstrate that the distal region of the apoA-II promoter (-911/-614) acts as an enhancer and results in a 6-fold increase in activity when the proximal AB element is inserted between this enhancer and a TATA box. The AB element alone does not display any transcriptional activity. The combination of the proximal AB element and the enhancer is sufficient to activate transcription to the same level as that achieved with the full-length promoter. DNA binding and competition assays, and binding interference experiments allowed us to identify two adjacent binding sites within the AB element. These bind activities designated CIIIB1 and AIIAB3/4, respectively. Mutation on each of these sites showed that the binding site of CIIIB1 within the AB element played a major role in the interaction with the enhancer. Whereas transcriptional activation of other apolipoprotein genes involves the binding of the liver-enriched hepatocyte nuclear factor 4 (HNF4) on their proximal promoter, the present study demonstrates that neither HNF4 nor ApoA-I regulatory protein 1, its antagonistic orphan receptor, was able to bind the AB element. Instead, apoA-II transcription was driven by the interaction of apoA-II enhancer with proximal AB element, which involves an unidentified activity, CIIIB1.
Collapse
Affiliation(s)
- J M Lacorte
- CJF INSERM 9508, Université Pierre et Marie Curie, Institut des Cordeliers, Paris, France
| | | | | | | | | | | |
Collapse
|
43
|
Taylor DG, Haubenwallner S, Leff T. Characterization of a dominant negative mutant form of the HNF-4 orphan receptor. Nucleic Acids Res 1996; 24:2930-5. [PMID: 8760876 PMCID: PMC146029 DOI: 10.1093/nar/24.15.2930] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The HNF-4 orphan receptor is a member of the nuclear receptor family of transcription factors and a major regulator of genes involved in carbohydrate and lipid metabolism. As an initial step in characterizing the role of HNF-4 in the regulation of metabolism, we have generated a dominant negative form of HNF-4 (DN-HNF-4) that contains a defective DNA-binding domain. In gel mobility shift assays, DN-HNF-4 did not bind an oligonucleotide probe representing an essential HNF-4 binding site, C3P contained in the human apo CIII promoter, but did prevent the binding of two recombinant isoforms, HNF-4alpha1 and HNF-4alpha2, as well as naturally-occurring HNF-4. DN-HNF-4 had no effect on the binding of PPARgamma-RXRalpha heterodimers to a PPAR response element. In transfected HepG2 cells, DN-HNF-4 dramatically reduced constitutive transcriptional activity of the human apo CIII promoter and abolished the positive transcriptional activity caused by plasmids expressing either isoform of HNF-4. These results indicate that DN-HNF-4 is a selective dominant negative mutant which forms defective heterodimers with wild-type HNF-4, thereby preventing DNA binding and subsequent transcriptional activation by HNF-4.
Collapse
Affiliation(s)
- D G Taylor
- Department of Biotechnology, Parke-Davis Pharmaceutical Research, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|
44
|
Saladin R, Vu-Dac N, Fruchart JC, Auwerx J, Staels B. Transcriptional induction of rat liver apolipoprotein A-I gene expression by glucocorticoids requires the glucocorticoid receptor and a labile cell-specific protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:451-9. [PMID: 8706754 DOI: 10.1111/j.1432-1033.1996.0451u.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Treatment with glucocorticoids increases the concentration of plasma high-density lipoprotein (HDL), which is inversely correlated to the development of atherosclerosis. Previously, we demonstrated that repeated administration of glucocorticoids increases apolipoprotein (apo) A-I gene expression and decreases apoA-II gene expression in rat liver. In the present study, the mechanism of glucocorticoid action on hepatic apoA-I and apoA-II expression was studied. A single injection of rats with dexamethasone increased hepatic apoA-I mRNA levels within 6 h and further increases were observed after 12 h and 24 h. In contrast, liver apoA-II mRNA levels gradually decreased after dexamethasone treatment to less than 25% control levels after 24 h. In rat primary hepatocytes and McARH8994 hepatoma cells, addition of dexamethasone increased apoA-I mRNA levels in a time-dependent and dose-dependent manner, whereas apoA-II mRNA levels were unchanged. Simultaneous addition of the glucocorticoid antagonist RU486 prevented the increase in apoA-I mRNA levels after dexamethasone treatment, which suggests that the effects of dexamethasone are mediated through the glucocorticoid receptor. Inhibition of transcription by actinomycin D and nuclear-run-on experiments in McARH8994 cells and primary hepatocytes showed that dexamethasone induced apoA-I, but not apoA-II, gene transcription. Transient-transfection assays in McARH8994 cells with a chloramphenicol acetyl transferase vector driven by the rat-apoA-I-gene promoter demonstrated that the proximal apoA-I promoter could be induced by dexamethasone, and this effect could be abolished by simultaneous treatment with RU486. However, in COS-1 cells, apoA-I promoter transcription was not induced by dexamethasone or cotransfected glucocorticoid receptor. In addition, the induction of apoA-I gene transcription by dexamethasone was blocked by the protein-synthesis inhibitor cycloheximide, which suggests the presence of a labile protein involved in apoA-I gene activation by dexamethasone. In conclusion, our results demonstrate that dexamethasone regulates rat apoA-I, but not apoA-II, gene expression through direct action on the hepatocyte. The induction of apoA-I gene transcription by dexamethasone requires the glucocorticoid receptor and a labile cell-specific protein.
Collapse
Affiliation(s)
- R Saladin
- U325 INSERM, Département d'Athérosclérose, Institut Pasteur, Lille, France
| | | | | | | | | |
Collapse
|
45
|
Harnish DC, Malik S, Kilbourne E, Costa R, Karathanasis SK. Control of apolipoprotein AI gene expression through synergistic interactions between hepatocyte nuclear factors 3 and 4. J Biol Chem 1996; 271:13621-8. [PMID: 8662915 DOI: 10.1074/jbc.271.23.13621] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Apolipoprotein AI (apoAI) gene expression in liver depends on synergistic interactions between transcription factors bound to three distinct sites (A, B, and C) within a hepatocyte-specific enhancer in the 5'-flanking region of the gene. In this study, we showed that a segment spanning sites A and B retains substantial levels of enhancer activity in hepatoblastoma HepG2 cells and that sites A and B are occupied by the liver-enriched hepatocyte nuclear factors (HNFs) 4 and 3, respectively, in these cells. In non-hepatic CV-1 cells, HNF-4 and HNF-3beta activated this minimal enhancer synergistically. This synergy was dependent upon simultaneous binding of these factors to their cognate sites, but it was not due to cooperativity in DNA binding. Separation of these sites by varying helical turns of DNA did not affect simultaneous binding of HNF-3beta and HNF-4 nor did it influence their functional synergy. The synergy was, however, dependent upon the cell type used for functional analysis. In addition, this synergy was further potentiated by estrogen treatment of cells cotransfected with the estrogen receptor. These data indicate that a cell type-restricted intermediary factor jointly recruited by HNF-4 and HNF-3 participates in activation of the apoAI enhancer in liver cells and suggest that the activity of this factor is regulated by estrogen.
Collapse
Affiliation(s)
- D C Harnish
- Department of Cardiovascular Molecular Biology, Lederle Laboratories, Pearl River, New York 10965, USA
| | | | | | | | | |
Collapse
|
46
|
Berthou L, Duverger N, Emmanuel F, Langouët S, Auwerx J, Guillouzo A, Fruchart JC, Rubin E, Denèfle P, Staels B, Branellec D. Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice. J Clin Invest 1996; 97:2408-16. [PMID: 8647932 PMCID: PMC507325 DOI: 10.1172/jci118687] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The regulation of liver apolipoprotein (apo) A-I gene expression by fibrates was studied in human apo A-I transgenic mice containing a human genomic DNA fragment driving apo A-I expression in liver. Treatment with fenofibrate (0.5% wt/wt) for 7 d increased plasma human apo A-I levels up to 750% and HDL-cholesterol levels up to 200% with a shift to larger particles. The increase in human apo A-I plasma levels was time and dose dependent and was already evident after 3 d at the highest dose (0.5% wt/wt) of fenofibrate. In contrast, plasma mouse apo A-I concentration was decreased after fenofibrate in nontransgenic mice. The increase in plasma human apo A-I levels after fenofibrate treatment was associated with a 97% increase in hepatic human apo A-I mRNA, whereas mouse apo A-I mRNA levels decreased to 51%. In nontransgenic mice, a similar down-regulation of hepatic apo A-I mRNA levels was observed. Nuclear run-on experiments demonstrated that the increase in human apo A-I and the decrease in mouse apo A-I gene expression after fenofibrate occurred at the transcriptional level. Since part of the effects of fibrates are mediated through the nuclear receptor PPAR (peroxisome proliferator-activated receptor), the expression of the acyl CoA oxidase (ACO) gene was measured as a control of PPAR activation. Both in transgenic and nontransgenic mice, fenofibrate induced ACO mRNA levels up to sixfold. When transgenic mice were treated with gemfibrozil (0.5% wt/wt) plasma human apo A-I and HDL-cholesterol levels increased 32 and 73%, respectively, above control levels. The weaker effect of this compound on human apo A-I and HDL-cholesterol levels correlated with a less pronounced impact on ACO mRNA levels (a threefold increase) suggesting that the level of induction of human apo A-I gene is related to the PPAR activating potency of the fibrate used. Treatment of human primary hepatocytes with fenofibric acid (500 microM) provoked an 83 and 50% increase in apo A-I secretion and mRNA levels, respectively, supporting that a direct action of fibrates on liver human apo A-I production leads to the observed increase in plasma apo A4 and HDL-cholesterol.
Collapse
Affiliation(s)
- L Berthou
- Department of Biotechnology C.R.V.A. Rhône-Poulenc Rorer Gencell, Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Effect of experimental nephrosis on hepatic lipoprotein secretion and urinary lipoprotein excretion in rats expressing the human apolipoprotein A-I gene. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)42020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
48
|
Barrera-Hernandez G, Wanke IE, Wong NC. Effects of diabetes mellitus on hepatocyte nuclear factor 1 decrease albumin gene transcription. J Biol Chem 1996; 271:9969-75. [PMID: 8626635 DOI: 10.1074/jbc.271.17.9969] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously reported that albumin gene transcription is reduced in diabetes mellitus (DM). The present study explored the mechanism by which albumin gene transcription is down-regulated in DM. Deletional studies and displacement of factors binding to site B of the albumin promoter indicated that the repressive effects of DM are mediated by nuclear factors binding to this site. Since hepatocyte nuclear factor 1 (HNF1) activates albumin promoter activity and is the predominant factor binding to site B, we examined HNF1. The abundance and binding activity of HNF1 were reduced in hepatonuclear extracts from diabetic compared to control rats. However, HNF1 mRNA levels were unchanged, suggesting that the effect of DM on HNF1 is at the post-transcriptional level. Extracts from diabetic animals also contained another protein, distinct from HNF1 and vHNF1, which bound to site B in gel retardation studies. In summary, our studies demonstrate that the reduced abundance and binding activity of HNF1 correlates with decreased albumin gene transcription in DM.
Collapse
Affiliation(s)
- G Barrera-Hernandez
- Department of Medicine, University of Calgary, Calgary, Alberta T2N-4N1, Canada
| | | | | |
Collapse
|
49
|
Malik S, Karathanasis SK. TFIIB-directed transcriptional activation by the orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 1996; 16:1824-31. [PMID: 8657158 PMCID: PMC231169 DOI: 10.1128/mcb.16.4.1824] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The orphan nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is required for development and maintenance of the liver phenotype. HNF-4 activates several hepatocyte-specific genes, including the gene encoding apolipoprotein AI (apoAI), the major protein component of plasma high-density lipoprotein. The apoAI gene is activated by HNF-4 through a nuclear receptor binding element (site A) located in its liver-specific enhancer. To decipher the mechanism whereby HNF-4 enhances apoAI gene transcription, we have reconstituted its activity in a cell-free system. Functional HNF-4 was purified to homogeneity from a bacterial expression system. In in vitro transcription assays employing nuclear extract from HeLa cells, which do not contain HNF-4, recombinant HNF-4 stimulated transcription from basal promoters linked to site A. Activation by HNF-4 did not exhibit a ligand requirement, but phosphorylation of HNF-4 in the in vitro transcription system was observed. The activation function of HNF-4 was localized to a domain displaying strong homology to the conserved AF-2 region of nuclear receptors. Dissection of the transcription cycle revealed that HNF-4 activated transcription by facilitating assembly of a preinitiation complex intermediate consisting of TBP, the TATA box-binding protein component of TFIID and TFIID, via direct physical interactions with TFIIB. However, recruitment of TFIIB by HNF-4 was not sufficient for activation, since HNF-4 deletion derivatives lacking AF-2 bound TFIIB. On the basis of these results, HNF-4 appears to activate transcription at two distinct levels. The first step involves AF-2-independent recruitment of TFIIB to the promoter complex; the second step is AF-2 dependent and entails entry of preinitiation complex components acting downstream of TFIIB.
Collapse
Affiliation(s)
- S Malik
- Department of Cardiovascular Molecular Biology, Lederle Laboratories, Pearl River, New York 10965, USA
| | | |
Collapse
|
50
|
Haghpassand M, Moberly JB. 9-cis-retinoic acid increases apolipoprotein AI secretion and mRNA expression in HepG2 cells. Atherosclerosis 1995; 117:199-207. [PMID: 8801865 DOI: 10.1016/0021-9150(95)05572-e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HepG2 cells were studied as a model for regulation of hepatic apolipoprotein AI (apo AI) secretion and gene expression by 9-cis-retinoic acid. HepG2 cells cultured on plastic dishes were exposed to 9-cis-retinoic acid (9-cis-RA) for 48 h with a complete media change at 24 h. Apo AI mass in cultured media was determined by ELISA, by quantitative immunoblotting and by steady-state 35S-methionine labeling. Messenger RNA levels were determined by RNase protection using probes for apo AI and the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (G3PDH). 9-cis-RA increased secretion of apo AI by 52% at doses of 10 and 1 microM (6.3 +/- 0.6 vs. 4.2 +/- 0.3; P < 0.005; 6.1 +/- 0.3 vs. 4.0 +/- 0.7 ng of apo AI/mg cell protein, P < 0.05) and by 35% at 0.1 microM (5.5 +/- 0.6 vs. 4.1 +/- 0.4 ng apo AI/mg protein, P < 0.05, n = 4). Immunoblotting results were consistent with results from ELISA (70% increase at 10 microM 9-cis-RA, P < 0.001; 34% increase at 1 microM, P < 0.005, n = 3). Metabolically labeled apoAI in the medium was increased by 39% following steady-state labeling in the presence of 10 microM 9-cis-RA (597 +/- 7 vs. 430 +/- 13 DPM/microliters media; P < 0.001; n = 4). 9-cis-RA (10 microM) also increased HepG2 cell apo AI mRNA expression by 76% (68 700 +/- 400 vs. 38 900 +/- 2700 DPM, P < 0.01, n = 4), whereas expression of G3PDH mRNA was slightly decreased (14%, P < 0.05). Thus, 9-cis-RA stimulates apo AI expression in HepG2 cells, suggesting a role for retinoids in activating endogenous apo AI gene expression.
Collapse
Affiliation(s)
- M Haghpassand
- Department of Cardiovascular and Metabolic Diseases, Pfizer, Inc., Groton, CT 06340, USA
| | | |
Collapse
|