1
|
Chen PW, Lin CF. Characterization of a novel theta-type replicon of indigenous plasmid pTE15 from Lactobacillus reuteri N16. BMC Microbiol 2022; 22:298. [PMID: 36510154 PMCID: PMC9743546 DOI: 10.1186/s12866-022-02718-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND pTE15 is a ~ 15-kb narrow-host-range indigenous plasmid from Lactobacillus reuteri N16 that does not replicate in selected Bacillus spp., Staphylococcus spp., and other Lactobacillus spp. METHODS Combined deletion analysis the minireplicon essential of pTE15 with replicon-probe vector pUE80 (-) to confirmed sufficient for replication and from the ssDNA intermediate detection, plasmid amplification tested by chloramphenicol treatment, and replication origin sequence analysis to delineated the novel theta-type replication of pTE15. RESULTS Single-stranded intermediate of pTE15 DNA was not detected in L. reuteri, indicating that this plasmid does not replicate via a rolling circle mechanism. The replicon of pTE15 did not display the structural organization typical of rolling-circle plasmids, nor were they similar to known rolling-circle plasmids. We further provided evidence that this plasmid applied a new mode of theta-type replication mechanism: (1) the size of this plasmid was > 10-kb; (2) the minireplicon consisted of AT-rich (directed repeat, iteron) and DnaA sequences; (3) the minireplicon did not contain double-strand origin (DSO) and essential rep genes, and it also showed no single-strand origin (SSO) structure; (4) the intermediate single-stranded DNA products were not observed for pTE15 replication; (5) the minireplicon did not contain a typical essential replication protein, Rep, (6) its copy number was decreased by chloramphenicol treatment, and (7) genes in pTE15 replication region encoded truncated RepA (TRepA), RepB and RepC, which were replication-associated proteins, but they were not essential for pTE15 replication. CONCLUSIONS Collectively, our results strongly suggested that the indigenous plasmid pTE15 of L. reuteri N16 belongs to a new class of theta replicons.
Collapse
Affiliation(s)
- Po-Wen Chen
- grid.260542.70000 0004 0532 3749Department of Veterinary Medicine, National Chung Hsing University, Taichung, 40249 Taiwan
| | - Chuen-Fu Lin
- grid.412083.c0000 0000 9767 1257Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan ,grid.412083.c0000 0000 9767 1257Animal disease diagnostic center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| |
Collapse
|
2
|
Gurinovich AS, Titok MA. Molecular Genetic and Functional Analysis of the Conjugation System of the pBS72 Plasmid from Bacillus subtilis Environmental Isolates. Microbiology (Reading) 2022. [DOI: 10.1134/s002626172230018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Val-Calvo J, Miguel-Arribas A, Abia D, Wu LJ, Meijer WJJ. pLS20 is the archetype of a new family of conjugative plasmids harboured by Bacillus species. NAR Genom Bioinform 2021; 3:lqab096. [PMID: 34729475 PMCID: PMC8557374 DOI: 10.1093/nargab/lqab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Conjugation plays important roles in genome plasticity, adaptation and evolution but is also the major horizontal gene-transfer route responsible for spreading toxin, virulence and antibiotic resistance genes. A better understanding of the conjugation process is required for developing drugs and strategies to impede the conjugation-mediated spread of these genes. So far, only a limited number of conjugative elements have been studied. For most of them, it is not known whether they represent a group of conjugative elements, nor about their distribution patterns. Here we show that pLS20 from the Gram-positive bacterium Bacillus subtilis is the prototype conjugative plasmid of a family of at least 35 members that can be divided into four clades, and which are harboured by different Bacillus species found in different global locations and environmental niches. Analyses of their phylogenetic relationship and their conjugation operons have expanded our understanding of a family of conjugative plasmids of Gram-positive origin.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Wilfried J J Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C. Nicolás Cabrera 1, Universidad Autónoma de Madrid, Canto Blanco, 28049, Madrid, Spain
| |
Collapse
|
4
|
Establishment Genes Present on pLS20 Family of Conjugative Plasmids Are Regulated in Two Different Ways. Microorganisms 2021; 9:microorganisms9122465. [PMID: 34946067 PMCID: PMC8708921 DOI: 10.3390/microorganisms9122465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
During conjugation, a conjugative DNA element is transferred from a donor to a recipient cell via a connecting channel. Conjugation has clinical relevance because it is the major route for spreading antibiotic resistance and virulence genes. The conjugation process can be divided into different steps. The initial steps carried out in the donor cell culminate in the transfer of a single DNA strand (ssDNA) of the conjugative element into the recipient cell. However, stable settlement of the conjugative element in the new host requires at least two additional events: conversion of the transferred ssDNA into double-stranded DNA and inhibition of the hosts' defence mechanisms to prevent degradation of the transferred DNA. The genes involved in this late step are historically referred to as establishment genes. The defence mechanisms of the host must be inactivated rapidly and-importantly-transiently, because prolonged inactivation would make the cell vulnerable to the attack of other foreign DNA, such as those of phages. Therefore, expression of the establishment genes in the recipient cell has to be rapid but transient. Here, we studied regulation of the establishment genes present on the four clades of the pLS20 family of conjugative plasmids harboured by different Bacillus species. Evidence is presented that two fundamentally different mechanisms regulate the establishment genes present on these plasmids. Identification of the regulatory sequences were critical in revealing the establishment regulons. Remarkably, whereas the conjugation genes involved in the early steps of the conjugation process are conserved and are located in a single large operon, the establishment genes are highly variable and organised in multiple operons. We propose that the mosaical distribution of establishment genes in multiple operons is directly related to the variability of defence genes encoded by the host bacterial chromosomes.
Collapse
|
5
|
Ouyang X, Liu Y, Qu R, Tian M, Yang T, Zhu R, Gao H, Jin M, Huang J. Optimizing Protein-Glutaminase Expression in Bacillus subtilis. Curr Microbiol 2021; 78:1752-1762. [PMID: 33740115 DOI: 10.1007/s00284-021-02404-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
Protein-glutaminase (PG) is a promising protein deaminase. It only hydrolyzes the side chain amido groups of protein-bound to generate ammonia and protein-L-glutamic acid and does not catalyze any other undesirable changes in protein structures. Deamidation of proteins via PG can influence the solubility, emulsification, foaming, and gelation properties of proteins, which are important properties for some food proteins. Therefore, there is great potential for the application of PG in the food industry. PG is derived from Chryseobacterium proteolyticum (C. proteolyticum); however, wild strains are difficult to industrialize because of their low levels of enzyme production. In this article, we studied different strategies for PG expression in B. subtilis. Results showed that PG produced from C. proteolyticum could be successfully secreted in B. subtilis WB800N, and actively secreted in B. subtilis 168(BS168) or DB403 containing a pro-peptide (pro-PG). The secreted PG from B. subtilis WB800N was inactive unless digested by exogenous proteases, such as trypsin, alkaline protease, and neutral protease. However, active PG was secreted by the self-processing of BS168 and DB403. The specific activity of purified PG reached 20.9 U/mg. PG showed maximum activity at pH 5.5, 55 °C and more than 80% of PG activity was retained within a range of pH 3.5-6.5. When Cbz-Gln-Gly was used as the substrate, PG activity was 31.1 ± 0.9 μM min-1 mg-1. Mg2+, Ca2+, and Zn2+ stabilized and even activated PG activity. These strategies concerning PG expression in B. subtilis and the enzymatic properties of PG provide efficient alternatives for PG research and contribute to the industrial-scale production of PG.
Collapse
Affiliation(s)
- Xiaoying Ouyang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Yingjie Liu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Ruidan Qu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Min Tian
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Ting Yang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Rui Zhu
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Hongliang Gao
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| | - Mingfei Jin
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| | - Jing Huang
- School of Life Science, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
6
|
Meijer WJJ, Boer DR, Ares S, Alfonso C, Rojo F, Luque-Ortega JR, Wu LJ. Multiple Layered Control of the Conjugation Process of the Bacillus subtilis Plasmid pLS20. Front Mol Biosci 2021; 8:648468. [PMID: 33816561 PMCID: PMC8014075 DOI: 10.3389/fmolb.2021.648468] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
Bacterial conjugation is the main horizontal gene transfer route responsible for the spread of antibiotic resistance, virulence and toxin genes. During conjugation, DNA is transferred from a donor to a recipient cell via a sophisticated channel connecting the two cells. Conjugation not only affects many different aspects of the plasmid and the host, ranging from the properties of the membrane and the cell surface of the donor, to other developmental processes such as competence, it probably also poses a burden on the donor cell due to the expression of the large number of genes involved in the conjugation process. Therefore, expression of the conjugation genes must be strictly controlled. Over the past decade, the regulation of the conjugation genes present on the conjugative Bacillus subtilis plasmid pLS20 has been studied using a variety of methods including genetic, biochemical, biophysical and structural approaches. This review focuses on the interplay between RcopLS20, RappLS20 and Phr*pLS20, the proteins that control the activity of the main conjugation promoter Pc located upstream of the conjugation operon. Proper expression of the conjugation genes requires the following two fundamental elements. First, conjugation is repressed by default and an intercellular quorum-signaling system is used to sense conditions favorable for conjugation. Second, different layers of regulation act together to repress the Pc promoter in a strict manner but allowing rapid activation. During conjugation, ssDNA is exported from the cell by a membrane-embedded DNA translocation machine. Another membrane-embedded DNA translocation machine imports ssDNA in competent cells. Evidences are reviewed indicating that conjugation and competence are probably mutually exclusive processes. Some of the questions that remain unanswered are discussed.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Laboratory 402, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Saúl Ares
- Laboratory 35, C. Grupo Interdisciplinar de Sistemas Complejos and Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Carlos Alfonso
- Laboratory B08, Systems Biochemistry of Bacterial Division Lab, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Laboratory 216, Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Juan R Luque-Ortega
- Laboratory S07, Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain
| | - Ling Juan Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
7
|
Gurinovich AS, Titok MA. Molecular Genetic and Functional Analysis of the PBS72 Plasmid from Bacillus subtilis Environmental Isolates. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Lv P, Song Y, Liu C, Yu L, Shang Y, Tang H, Sun S, Wang F. Application of Bacillus subtilis as a live vaccine vector: A review. J Vet Med Sci 2020; 82:1693-1699. [PMID: 33071249 PMCID: PMC7719876 DOI: 10.1292/jvms.20-0363] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bacillus subtilis is widely used as a probiotic in various fields as it regulates intestinal flora, improves animal growth performance,
enhances body immunity, has short fermentation cycle, and is economic. With the rapid development of DNA recombination technology, B. subtilis
has been used as a potential vaccine expression vector for the treatment and prevention of various diseases caused by bacteria, viruses, and parasites as it can
effectively trigger an immune response in the body. In this review, we refer to previous literature and provide a comprehensive analysis and overview of the
feasibility of using B. subtilis as a vaccine expression vector, with an aim to provide a valuable reference for the establishment of efficient
vaccines.
Collapse
Affiliation(s)
- Penghao Lv
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yanying Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Cong Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Lanping Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
9
|
Val-Calvo J, Luque-Ortega JR, Crespo I, Miguel-Arribas A, Abia D, Sánchez-Hevia DL, Serrano E, Gago-Córdoba C, Ares S, Alfonso C, Rojo F, Wu LJ, Boer DR, Meijer WJJ. Novel regulatory mechanism of establishment genes of conjugative plasmids. Nucleic Acids Res 2019; 46:11910-11926. [PMID: 30380104 PMCID: PMC6294495 DOI: 10.1093/nar/gky996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/10/2018] [Indexed: 11/12/2022] Open
Abstract
The principal route for dissemination of antibiotic resistance genes is conjugation by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugative elements contain genes that are important for their establishment in the new host, for instance by counteracting the host defense mechanisms acting against incoming foreign DNA. Little is known about these establishment genes and how they are regulated. Here, we deciphered the regulation mechanism of possible establishment genes of plasmid p576 from the Gram-positive bacterium Bacillus pumilus. Unlike the ssDNA promoters described for some conjugative plasmids, the four promoters of these p576 genes are repressed by a repressor protein, which we named Reg576. Reg576 also regulates its own expression. After transfer of the DNA, these genes are de-repressed for a period of time until sufficient Reg576 is synthesized to repress the promoters again. Complementary in vivo and in vitro analyses showed that different operator configurations in the promoter regions of these genes lead to different responses to Reg576. Each operator is bound with extreme cooperativity by two Reg576-dimers. The X-ray structure revealed that Reg576 has a Ribbon-Helix-Helix core and provided important insights into the high cooperativity of DNA recognition.
Collapse
Affiliation(s)
- Jorge Val-Calvo
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Juan R Luque-Ortega
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Isidro Crespo
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Andrés Miguel-Arribas
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Facility, Centro de Biología Molecular "Severo Ochoa"
| | | | - Ester Serrano
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - César Gago-Córdoba
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Saúl Ares
- Centro Nacional de Biotecnología (CSIC), Darwin 3, 28049 Madrid, Spain.,Grupo Interdisciplinar de Sistemas Complejos (GISC) and Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganes, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Fernando Rojo
- Centro Nacional de Biotecnología (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle Upon Tyne, NE4AX, UK
| | - D Roeland Boer
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Wilfried J J Meijer
- Department of Virology and Microbiology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| |
Collapse
|
10
|
Miyano M, Tanaka K, Ishikawa S, Mori K, Miguel-Arribas A, Meijer WJJ, Yoshida KI. A novel method for transforming the thermophilic bacterium Geobacillus kaustophilus. Microb Cell Fact 2018; 17:127. [PMID: 30119674 PMCID: PMC6098629 DOI: 10.1186/s12934-018-0969-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial strains of the genus Geobacillus grow at high temperatures of 50-75 °C and could thus be useful for biotechnological applications. However, genetic manipulation of these species is difficult because the current techniques for transforming Geobacillus species are not efficient. In this study, we developed an easy and efficient method for transforming Geobacillus kaustophilus using the conjugative plasmid pLS20cat. RESULTS We constructed a transformation system comprising (i) a mobilizable Bacillus subtilis-G. kaustophilus shuttle plasmid named pGK1 that carries the elements for selection and replication in Geobacillus, and (ii) a pLS20cat-harboring B. subtilis donor strain expressing the dam methylase gene of Escherichia coli and the conjugation-stimulating rapLS20 gene of pLS20cat. This system can be used to efficiently introduce pGK1 into G. kaustophilus by mobilization in a pLS20cat-dependent way. Whereas the thermostable kanamycin marker and Geobacillus replication origin of pGK1 as well as expression of dam methylase in the donor were indispensable for mobilization, ectopic expression of rapLS20 increased its efficiency. In addition, the conditions of the recipient influenced mobilization efficiency: the highest mobilization efficiencies were obtained using recipient cells that were in the exponential growth phase. Furthermore, elimination of the origin of transfer from pLS20cat enhanced the mobilization. CONCLUSIONS We describe a novel method of plasmid mobilization into G. kaustophilus recipient from B. subtilis donor depending on the helper function of pLS20cat, which enables simple, rapid, and easy transformation of the thermophilic Gram-positive bacterium.
Collapse
Grants
- 17K19237 Ministry of Education, Culture, Sports, Science and Technology
- 18H02128 Ministry of Education, Culture, Sports, Science and Technology
- Bio2013-41489-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO2016-77883-C2-1-P Ministerio de Economía, Industria y Competitividad, Gobierno de España
Collapse
Affiliation(s)
- Megumi Miyano
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Kosei Tanaka
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Shu Ishikawa
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Kotaro Mori
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | - Ken-ichi Yoshida
- Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657 8501 Japan
| |
Collapse
|
11
|
Rapid conjugative mobilization of a 100 kb segment of Bacillus subtilis chromosomal DNA is mediated by a helper plasmid with no ability for self-transfer. Microb Cell Fact 2018; 17:13. [PMID: 29374463 PMCID: PMC5787278 DOI: 10.1186/s12934-017-0855-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/20/2017] [Indexed: 11/14/2022] Open
Abstract
Background The conjugative plasmid, pLS20, isolated from Bacillus subtilis natto, has an outstanding capacity for rapid self-transfer. In addition, it can function as a helper plasmid, mediating the mobilization of an independently replicating co-resident plasmid. Results In this study, the oriT sequence of pLS20cat (oriTLS20) was eliminated to obtain the plasmid, pLS20catΔoriT. This resulted in the complete loss of the conjugative transfer of the plasmid but still allowed it to mobilize a co-resident mobilizable plasmid. Moreover, pLS20catΔoriT was able to mobilize longer DNA segments, up to 113 kb of chromosomal DNA containing oriTLS20, after mixing the liquid cultures of the donor and recipient for only 15 min. Conclusions The chromosomal DNA mobilization mediated by pLS20catΔoriT will allow us to develop a novel genetic tool for the rapid, easy, and repetitive mobilization of longer DNA segments into a recipient chromosome.
Collapse
|
12
|
Characterization of Four Novel Plasmids from Lactobacillus plantarum BM4. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.12894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Ramachandran G, Miguel-Arribas A, Abia D, Singh PK, Crespo I, Gago-Córdoba C, Hao JA, Luque-Ortega JR, Alfonso C, Wu LJ, Boer DR, Meijer WJJ. Discovery of a new family of relaxases in Firmicutes bacteria. PLoS Genet 2017; 13:e1006586. [PMID: 28207825 PMCID: PMC5313138 DOI: 10.1371/journal.pgen.1006586] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/16/2017] [Indexed: 11/19/2022] Open
Abstract
Antibiotic resistance is a serious global problem. Antibiotic resistance genes (ARG), which are widespread in environmental bacteria, can be transferred to pathogenic bacteria via horizontal gene transfer (HGT). Gut microbiomes are especially apt for the emergence and dissemination of ARG. Conjugation is the HGT route that is predominantly responsible for the spread of ARG. Little is known about conjugative elements of Gram-positive bacteria, including those of the phylum Firmicutes, which are abundantly present in gut microbiomes. A critical step in the conjugation process is the relaxase-mediated site- and strand-specific nick in the oriT region of the conjugative element. This generates a single-stranded DNA molecule that is transferred from the donor to the recipient cell via a connecting channel. Here we identified and characterized the relaxosome components oriT and the relaxase of the conjugative plasmid pLS20 of the Firmicute Bacillus subtilis. We show that the relaxase gene, named relLS20, is essential for conjugation, that it can function in trans and provide evidence that Tyr26 constitutes the active site residue. In vivo and in vitro analyses revealed that the oriT is located far upstream of the relaxase gene and that the nick site within oriT is located on the template strand of the conjugation genes. Surprisingly, the RelLS20 shows very limited similarity to known relaxases. However, more than 800 genes to which no function had been attributed so far are predicted to encode proteins showing significant similarity to RelLS20. Interestingly, these putative relaxases are encoded almost exclusively in Firmicutes bacteria. Thus, RelLS20 constitutes the prototype of a new family of relaxases. The identification of this novel relaxase family will have an important impact in different aspects of future research in the field of HGT in Gram-positive bacteria in general, and specifically in the phylum of Firmicutes, and in gut microbiome research.
Collapse
Affiliation(s)
- Gayetri Ramachandran
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Andrés Miguel-Arribas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Praveen K. Singh
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Isidro Crespo
- XALOC beamline, ALBA synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - César Gago-Córdoba
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Jian An Hao
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - D. Roeland Boer
- XALOC beamline, ALBA synchrotron Light Source, Cerdanyola del Vallès, Barcelona, Spain
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| |
Collapse
|
14
|
Abstract
Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.
Collapse
|
15
|
Cui Y, Hu T, Qu X, Zhang L, Ding Z, Dong A. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments. Int J Mol Sci 2015; 16:13172-202. [PMID: 26068451 PMCID: PMC4490491 DOI: 10.3390/ijms160613172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 12/24/2022] Open
Abstract
Plasmids are widely distributed in different sources of lactic acid bacteria (LAB) as self-replicating extrachromosomal genetic materials, and have received considerable attention due to their close relationship with many important functions as well as some industrially relevant characteristics of the LAB species. They are interesting with regard to the development of food-grade cloning vectors. This review summarizes new developments in the area of lactic acid bacteria plasmids and aims to provide up to date information that can be used in related future research.
Collapse
Affiliation(s)
- Yanhua Cui
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Tong Hu
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China.
| | - Lanwei Zhang
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhongqing Ding
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Aijun Dong
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
FAN JING, XI XUEDONG, HUANG YAN, CUI ZHONGLI. Isolation of a minireplicon of the plasmid pG6303 of Lactobacillus plantarum G63 and characterization of the plasmid-encoded Rep replication protein. J Genet 2015; 94:177-86. [DOI: 10.1007/s12041-015-0500-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ramachandran G, Singh PK, Luque-Ortega JR, Yuste L, Alfonso C, Rojo F, Wu LJ, Meijer WJJ. A complex genetic switch involving overlapping divergent promoters and DNA looping regulates expression of conjugation genes of a gram-positive plasmid. PLoS Genet 2014; 10:e1004733. [PMID: 25340403 PMCID: PMC4207663 DOI: 10.1371/journal.pgen.1004733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/03/2014] [Indexed: 11/22/2022] Open
Abstract
Plasmid conjugation plays a significant role in the dissemination of antibiotic resistance and pathogenicity determinants. Understanding how conjugation is regulated is important to gain insights into these features. Little is known about regulation of conjugation systems present on plasmids from Gram-positive bacteria. pLS20 is a native conjugative plasmid from the Gram-positive bacterium Bacillus subtilis. Recently the key players that repress and activate pLS20 conjugation have been identified. Here we studied in detail the molecular mechanism regulating the pLS20 conjugation genes using both in vivo and in vitro approaches. Our results show that conjugation is subject to the control of a complex genetic switch where at least three levels of regulation are integrated. The first of the three layers involves overlapping divergent promoters of different strengths regulating expression of the conjugation genes and the key transcriptional regulator RcoLS20. The second layer involves a triple function of RcoLS20 being a repressor of the main conjugation promoter and an activator and repressor of its own promoter at low and high concentrations, respectively. The third level of regulation concerns formation of a DNA loop mediated by simultaneous binding of tetrameric RcoLS20 to two operators, one of which overlaps with the divergent promoters. The combination of these three layers of regulation in the same switch allows the main conjugation promoter to be tightly repressed during conditions unfavorable to conjugation while maintaining the sensitivity to accurately switch on the conjugation genes when appropriate conditions occur. The implications of the regulatory switch and comparison with other genetic switches involving DNA looping are discussed. Plasmids are extrachromosomal, autonomously replicating units that are harbored by many bacteria. Many plasmids encode transfer function allowing them to be transferred into plasmid-free bacteria by a process named conjugation. Since many of them also carry antibiotic resistance genes, plasmid-mediated conjugation is a major mechanism in the dissemination of antibiotic resistance. In depth knowledge on the regulation of conjugation genes is a prerequisite to design measures interfering with the spread of antibiotic resistance. pLS20 is a conjugative plasmid of the soil bacterium Bacillus subtilis, which is also a gut commensal in animals and humans. Here we describe in detail the molecular mechanism by which the key transcriptional regulator tightly represses the conjugation genes during conditions unfavorable to conjugation without compromising the ability to switch on accurately the conjugation genes when appropriate. We found that conjugation is subject to the control of a unique genetic switch where at least three levels of regulation are integrated. The first level involves overlapping divergent promoters of different strengths. The second layer involves a triple function of the transcriptional regulator. And the third level of regulation concerns formation of a DNA loop mediated by the transcriptional regulator.
Collapse
Affiliation(s)
- Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Praveen K. Singh
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Luis Yuste
- Centro Nacional de Biotecnología (CSIC), Canto Blanco, Madrid, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Fernando Rojo
- Centro Nacional de Biotecnología (CSIC), Canto Blanco, Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Singh PK, Meijer WJJ. Diverse regulatory circuits for transfer of conjugative elements. FEMS Microbiol Lett 2014; 358:119-28. [PMID: 24995588 DOI: 10.1111/1574-6968.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/23/2014] [Accepted: 06/30/2014] [Indexed: 11/28/2022] Open
Abstract
Conjugation systems are present on many plasmids as well as on chromosomally integrated elements. Conjugation, which is a major route by which bacteria exchange genetic material, is a complex and energy-consuming process. Hence, a shared feature of conjugation systems is that expression of the genes involved is strictly controlled in such a way that conjugation is kept in a default 'OFF' state and that the process is switched on only under conditions that favor the transfer of the conjugative element into a recipient cell. However, there is a remarkable diversity in the way by which conjugation genes present on different transferable elements are regulated. Here, we review these diverse regulatory circuits on the basis of several prototypes with a special focus on the recently discovered regulation of the conjugation genes present on the native Bacillus subtilis plasmid pLS20.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Instituto de Biología Molecular "Eladio Viñuela" (CSIC), C. Nicolás Cabrera 1, Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | |
Collapse
|
19
|
The presence of conjugative plasmid pLS20 affects global transcription of Its Bacillus subtilis host and confers beneficial stress resistance to cells. Appl Environ Microbiol 2013; 80:1349-58. [PMID: 24334659 DOI: 10.1128/aem.03154-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conjugation activity of plasmid pLS20 from Bacillus subtilis subsp. natto is induced when cells are diluted into fresh medium and diminishes as cells enter into stationary-phase growth. Transcriptional profiling shows that during mid-exponential growth, more than 5% of the host genes are affected in the presence of the plasmid, in contrast to the minor changes seen in freshly diluted and stationary-phase cells. Changes occurred in many metabolic pathways, although pLS20 does not confer any detectable burden on its host cell, as well as in membrane and cell wall-associated processes, in the large motility operon, and in several other cellular processes. In agreement with these changes, we found considerable alterations in motility and enzyme activity and increased resistance against several different forms of stress in cells containing the plasmid, revealing that the presence of pLS20 has a broad impact on the physiology of its host cell and increases its stress resistance in multiple aspects. Additionally, we found that the lack of chromosomal gene yueB, known to encode a phage receptor protein, which is upregulated in cells containing pLS20, strongly reduced conjugation efficiency, revealing that pLS20 not only increases fitness of its host but also employs host proteins for efficient transfer into a new cell.
Collapse
|
20
|
Singh PK, Ramachandran G, Ramos-Ruiz R, Peiró-Pastor R, Abia D, Wu LJ, Meijer WJJ. Mobility of the native Bacillus subtilis conjugative plasmid pLS20 is regulated by intercellular signaling. PLoS Genet 2013; 9:e1003892. [PMID: 24204305 PMCID: PMC3814332 DOI: 10.1371/journal.pgen.1003892] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/05/2013] [Indexed: 01/06/2023] Open
Abstract
Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default “OFF” state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed. Bacteria evolve rapidly due to their short generation time and their ability to exchange genetic material, which can occur via different processes, collectively named Horizontal Gene Transfer (HGT). Most bacteria contain, besides a single chromosome, autonomously replicating units called plasmids. Many plasmids carry genes enabling them to be transferred into plasmid-free bacteria. This process, called conjugation, contributes significantly to HGT. Many plasmids also contain antibiotic resistance genes. Therefore, plasmid conjugation plays a major role in the spread of antibiotic resistance. Understanding the regulation of conjugation genes is essential for designing strategies to combat the spread of antibiotic resistance. We have studied the regulation of the native plasmid pLS20 from Bacillus subtilis. Besides being a soil bacterium, B. subtilis is a gut commensal in animals and humans. Here we unraveled the mechanisms controlling conjugation and found that pLS20 conjugation genes become activated when plasmid-free recipient cells are present. We have identified the repressor protein that keeps conjugation in an ‘OFF’ state, and an anti-repressor that activates conjugation. The activity of the anti-repressor is inhibited by a pLS20-encoded peptide that is secreted from the cell and can be absorbed by cells, after a secondary processing step. Ultimately, it is the signaling-peptide that dictates when conjugation genes become activated.
Collapse
Affiliation(s)
- Praveen K. Singh
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Gayetri Ramachandran
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | | | - Ramón Peiró-Pastor
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - David Abia
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
| | - Ling J. Wu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Wilfried J. J. Meijer
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Instituto de Biología Molecular “Eladio Viñuela” (CSIC), Universidad Autónoma, Canto Blanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Feng J, Gu Y, Wang J, Song C, Yang C, Xie H, Zhang W, Wang S. Curing the plasmid pMC1 from the poly (γ-glutamic acid) producing Bacillus amyloliquefaciens LL3 strain using plasmid incompatibility. Appl Biochem Biotechnol 2013; 171:532-42. [PMID: 23873640 DOI: 10.1007/s12010-013-0382-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/01/2013] [Indexed: 11/26/2022]
Abstract
Bacillus amyloliquefaciens LL3 is a glutamate-independent poly-γ-glutamic acid (γ-PGA) producing strain which consists of a circular chromosome (3,995,227 bp) and an endogenous plasmid pMC1 (6,758 bp). The study of the function of native plasmid and the genome-size reduction of the B. amyloliquefaciens LL3 strain requires elimination of the endogenous plasmid. Traditional plasmid-curing procedures using sodium dodecyl sulfate (SDS) or acridine orange combined with heat treatment have been shown to be ineffective in this strain. Plasmid incompatibility is an effective method for curing which has been studied before. In our research, the hypothetical Rep protein gene and the origin of replication of the endogenous plasmid were cloned into the temperature-sensitive vector yielding the incompatible plasmid pKSV7-rep-ori. This plasmid was transformed into LL3 by electroporation. The analysis of the strain bearing incompatible plasmids after incubation at 30 °C for 30 generations showed the production of plasmid cured strains. High frequency of elimination was achieved with more than 93 % of detected strains showing to be plasmid-cured. This is the first report describing plasmid cured in a γ-PGA producing strain using this method. The plasmid-cured strains showed an increase of γ-PGA production by 6 % and led to a yield of 4.159 g/l, compared to 3.918 g/l in control and cell growth increased during the early stages of the exponential phase. Gel permeation chromatography (GPC) characterization revealed that the γ-PGA produced by plasmid-cured strains and the wild strains were identical in terms of molecular weight. What is more, the further study of plasmid function showed that curing of the endogenous plasmid did not affect its sporulation efficiency.
Collapse
Affiliation(s)
- Jun Feng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Singh PK, Ramachandran G, Durán-Alcalde L, Alonso C, Wu LJ, Meijer WJJ. Inhibition of Bacillus subtilis natural competence by a native, conjugative plasmid-encoded comK repressor protein. Environ Microbiol 2012; 14:2812-25. [PMID: 22779408 DOI: 10.1111/j.1462-2920.2012.02819.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Under certain growth conditions, Bacillus subtilis can develop natural competence, the state in which it is able to bind, adsorb and incorporate exogenous DNA. Development of competence is a bistable process and is subject to complex regulation. Rok is a repressor of the key transcriptional activator of competence genes, comK, and limits the size of the subpopulation that develops competence. Here we report the finding that the large conjugative B. subtilis plasmid pLS20 harbours a rok homologue rok(LS20). Although the deduced product of rok(LS20) is considerably shorter than the chromosomally encoded Rok protein, we show that ectopic expression of the plasmid-encoded Rok(LS20) leads to inhibition of competence by repressing comK, and that the effects of the plasmid and chromosomally encoded Rok proteins are additive. We also show that pLS20 inhibits competence in a rok(LS20) -dependent manner and that purified Rok(LS20) preferentially binds to the comK promoter. By analysing the available databases we identified several additional rok-like genes. These putative rok genes can be divided into two groups and we propose that rok(LS20) is the prototype of a newly identified subgroup of nine rok genes. Finally, we discuss the possible role of the plasmid-located rok and its relatedness with other rok genes.
Collapse
Affiliation(s)
- Praveen K Singh
- Centro de Biología Molecular Severo Ochoa, Instituto de Biología Molecular Eladio Viñuela, Universidad Autónoma, Canto Blanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Alp7R regulates expression of the actin-like protein Alp7A in Bacillus subtilis. J Bacteriol 2012; 194:2715-24. [PMID: 22427628 DOI: 10.1128/jb.06550-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alp7A is a bacterial actin from Bacillus subtilis plasmid pLS20 that functions in plasmid segregation. Alp7A's function requires that it assemble into filaments that treadmill and exhibit dynamic instability. These dynamic properties require the two other components of the alp7A operon, the downstream alp7R gene and the upstream alp7C sequence, as does the ability of Alp7A to form filaments at its physiological concentration in the cell. Here, we show that these two other components of the operon also determine the amount of Alp7A that is produced in the cell. The deletion of alp7R leads to overproduction of Alp7A, which assembles into large, amorphous, static filaments that disrupt chromosome segregation and cell division. The product of the alp7R gene is a DNA-binding protein that represses transcription of the alp7A operon. Purified Alp7R protein binds specifically to alp7C, which contains two σ(A) promoters embedded within a series of near-repeats of a 10-mer. Alp7R also shows the typical nonspecific binding activity of a DNA-binding protein: Alp7R-GFP (green fluorescent protein) associates with the chromosomes of cells that lack alp7C. When Alp7A-GFP is produced in B. subtilis along with untagged Alp7R, Alp7A-GFP also colocalizes with the chromosome, indicating that Alp7R associates with Alp7A. Hence Alp7R, determines both the activity and the cellular concentration of Alp7A, and it can associate with Alp7A even if it is not bound to alp7C.
Collapse
|
25
|
Abstract
Conjugation is an efficient way for transfer of genetic information between bacteria, even between highly diverged species, and a major cause for the spreading of resistance genes. We have investigated the subcellular localization of several conserved conjugation proteins carried on plasmid pLS20 found in Bacillus subtilis. We show that VirB1, VirB4, VirB11, VirD2, and VirD4 homologs assemble at a single cell pole, but also at other sites along the cell membrane, in cells during the lag phase of growth. Bimolecular fluorescence complementation analyses showed that VirB4 and VirD4 interact at the cell pole and, less frequently, at other sites along the membrane. VirB1 and VirB11 also colocalized at the cell pole. Total internal reflection fluorescence microscopy showed that pLS20 is largely membrane associated and is frequently found at the cell pole, indicating that transfer takes place at the pole, which is a preferred site for the assembly of the active conjugation apparatus, but not the sole site. VirD2, VirB4, and VirD4 started to localize to the pole or the membrane in stationary-phase cells, and VirB1 and VirB11 were observed as foci in cells resuspended in fresh medium but no longer in cells that had entered exponential growth, although at least VirB4 was still expressed. These data reveal an unusual assembly/disassembly timing for the pLS20 conjugation machinery and suggest that specific localization of conjugation proteins in lag-phase cells and delocalization during growth are the reasons why pLS20 conjugation occurs only during early exponential phase.
Collapse
|
26
|
Timmery S, Hu X, Mahillon J. Characterization of Bacilli isolated from the confined environments of the Antarctic Concordia station and the International Space Station. ASTROBIOLOGY 2011; 11:323-34. [PMID: 21563959 DOI: 10.1089/ast.2010.0573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacillus and related genera comprise opportunist and pathogen species that can threaten the health of a crew in confined stations required for long-term missions. In this study, 43 Bacilli from confined environments, that is, the Antarctic Concordia station and the International Space Station, were characterized in terms of virulence and plasmid exchange potentials. No specific virulence feature, such as the production of toxins or unusual antibiotic resistance, was detected. Most of the strains exhibited small or large plasmids, or both, some of which were related to the replicons of the Bacillus anthracis pXO1 and pXO2 virulence elements. One conjugative element, the capacity to mobilize and retromobilize small plasmids, was detected in a Bacillus cereus sensu lato isolate. Six out of 25 tested strains acquired foreign DNA by conjugation. Extremophilic bacteria were identified and exhibited the ability to grow at high pH and salt concentrations or at low temperatures. Finally, the clonal dispersion of an opportunist isolate was demonstrated in the Concordia station. Taken together, these results suggest that the virulence potential of the Bacillus isolates in confined environments tends to be low but genetic transfers could contribute to its capacity to spread.
Collapse
Affiliation(s)
- Sophie Timmery
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
27
|
Complete nucleotide sequence and determination of the replication region of the sporulation inhibiting plasmid p576 from Bacillus pumilus NRS576. Res Microbiol 2010; 161:772-82. [PMID: 20863889 DOI: 10.1016/j.resmic.2010.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 07/27/2010] [Indexed: 01/08/2023]
Abstract
Large plasmids, presumably replicating via the theta mechanism, have been identified in numerous gram-positive bacteria. However, their characterization is rather poor and predominantly limited to those harbored by some (opportunistic) pathogenic bacteria. Here we determined the DNA sequence of the 43.3 kb plasmid p576 from Bacillus pumilus strain NRS576, the first B. pumilus theta-replicating plasmid sequenced. Plasmid p576 has a modular structure, but surprisingly, it does not seem to encode a Rep protein found on most theta-replicating plasmids. However, a ∼1 kb region was identified showing homology with the Rep-independent replication region of Bacillus subtilis plasmid pLS20, and we demonstrated that this region is sufficient for autonomous replication. The plasmid contains various large direct repeat sequences. A likely function could be attributed to at least 15 putative p576 genes. Some of these are predicted to be involved in stable maintenance of the plasmid; others are likely to encode proteins involved in conjugation. p576 also carries a rap-phr cassette whose possible function is discussed.
Collapse
|
28
|
Derman AI, Becker EC, Truong BD, Fujioka A, Tucey TM, Erb ML, Patterson PC, Pogliano J. Phylogenetic analysis identifies many uncharacterized actin-like proteins (Alps) in bacteria: regulated polymerization, dynamic instability and treadmilling in Alp7A. Mol Microbiol 2009; 73:534-52. [PMID: 19602153 PMCID: PMC2814180 DOI: 10.1111/j.1365-2958.2009.06771.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Actin, one of the most abundant proteins in the eukaryotic cell, also has an abundance of relatives in the eukaryotic proteome. To date though, only five families of actins have been characterized in bacteria. We have conducted a phylogenetic search and uncovered more than 35 highly divergent families of actin-like proteins (Alps) in bacteria. Their genes are found primarily on phage genomes, on plasmids and on integrating conjugative elements, and are likely to be involved in a variety of functions. We characterize three Alps and find that all form filaments in the cell. The filaments of Alp7A, a plasmid partitioning protein and one of the most divergent of the Alps, display dynamic instability and also treadmill. Alp7A requires other elements from the plasmid to assemble into dynamic polymers in the cell. Our findings suggest that most if not all of the Alps are indeed actin relatives, and that actin is very well represented in bacteria.
Collapse
Affiliation(s)
- Alan I. Derman
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377
| | - Eric C. Becker
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377
| | - Bao D. Truong
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377
| | - Akina Fujioka
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377
| | - Timothy M. Tucey
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377
| | - Marcella L. Erb
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377
| | - Paula C. Patterson
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377
| |
Collapse
|
29
|
Claessen D, Emmins R, Hamoen LW, Daniel RA, Errington J, Edwards DH. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol Microbiol 2008; 68:1029-46. [PMID: 18363795 DOI: 10.1111/j.1365-2958.2008.06210.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characteristic shape of bacterial cells is mainly determined by the cell wall, the synthesis of which is orchestrated by penicillin-binding proteins (PBPs). Rod-shaped bacteria have two distinct modes of cell wall synthesis, involved in cell elongation and cell division, which are believed to employ different sets of PBPs. A long-held question has been how these different modes of growth are co-ordinated in space and time. We have now identified the cell division protein, EzrA, and a newly discovered protein, GpsB, as key players in the elongation-division cycle of Bacillus subtilis. Mutations in these genes have a synthetic phenotype with defects in both cell division and cell elongation. They also have an unusual bulging phenotype apparently due to a failure in properly completing cell pole maturation. We show that these phenotypes are tightly associated with disturbed localization of the major transglycosylase/transpeptidase of the cell, PBP1. EzrA and GpsB have partially differentiated roles in the localization cycle of PBP1, with EzrA mainly promoting the recruitment of PBP1 to division sites, and GpsB facilitating its removal from the cell pole, after the completion of pole maturation.
Collapse
Affiliation(s)
- Dennis Claessen
- Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK
| | | | | | | | | | | |
Collapse
|
30
|
Complete nucleotide sequence of pGS18, a 62.8-kb plasmid from Geobacillus stearothermophilus strain 18. Extremophiles 2008; 12:415-29. [DOI: 10.1007/s00792-008-0145-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/22/2008] [Indexed: 11/26/2022]
|
31
|
Guglielmetti S, Mora D, Parini C. Small rolling circle plasmids in Bacillus subtilis and related species: Organization, distribution, and their possible role in host physiology. Plasmid 2007; 57:245-64. [PMID: 17064773 DOI: 10.1016/j.plasmid.2006.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 07/28/2006] [Accepted: 09/05/2006] [Indexed: 11/25/2022]
Abstract
Bacillus subtilis and related species (Bacillus licheniformis, Bacillus pumilus, Bacillus amyloliquefaciens, and Bacillus mojavensis) represent a group of bacteria largely studied and widely employed by industry. Small rolling circle replicating plasmids of this group of bacteria have been intensively studied as they represent a convenient model for genetic research and for the construction of molecular tools for the genetic modification of their hosts. Through the computational analysis of the available plasmid sequences to date, the first part of this review focuses on the main stages that the present model for rolling circle replication involves, citing the research data which helped to elucidate the mechanism by which these molecules replicate. Analysis of the distribution and phylogeny of the small RC plasmids inside the Bacillus genus is then considered, emphasizing the low level of diversity observed among these plasmids through the in silico analysis of their organization and the sequence divergence of their replication module. Finally, the parasitic vs. mutualistic nature of small rolling circle plasmids is briefly discussed.
Collapse
Affiliation(s)
- S Guglielmetti
- Department of Food Science and Microbiology, Industrial Microbiology Section, University of Milan, Via Celoria 2, Milan, Italy.
| | | | | |
Collapse
|
32
|
Schumann W. Production of Recombinant Proteins in Bacillus subtilis. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:137-89. [PMID: 17869605 DOI: 10.1016/s0065-2164(07)62006-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wolfgang Schumann
- Institute of Genetics, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
33
|
Ruiz-Barba JL, Floriano B, Maldonado-Barragán A, Jiménez-Díaz R. Molecular analysis of the 21-kb bacteriocin-encoding plasmid pEF1 from Enterococcus faecium 6T1a. Plasmid 2006; 57:175-81. [PMID: 16893567 DOI: 10.1016/j.plasmid.2006.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 11/16/2022]
Abstract
The complete 21,344-bp DNA sequence of the bacteriocin-encoding plasmid pEF1 from Enterococcus faecium 6T1a was determined. Thirty-four putative open reading frames which could code for proteins longer than 42 amino acids were found. Those included the structural genes encoding for the previously described bacteriocins enterocin I and J (also named as enterocins L50A and L50B). After comparison to sequences in public databases, analysis of the gene organization of pEF1 suggests a modular structure with three different functional domains: the replication region, the bacteriocin region and the mobilization plus UV-resistance region. This genetic mosaic structure most probably evolved through recombination events promoted by transposable elements. The hypothesis that the bacteriocin cluster on pEF1 could act as a functional plasmid stabilization module in E. faecium 6T1a is discussed.
Collapse
Affiliation(s)
- José Luis Ruiz-Barba
- Departamento de Biotecnología de Alimentos, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Avda. Padre Garcia Tejero, 4; Aptdo.1078, 41012 Sevilla, Spain.
| | | | | | | |
Collapse
|
34
|
Sakaya N, Kaneko S, Matsunaga S, Itaya M. Experimental Basis for a Stable Plasmid, pLS30, to Shuttle between Bacillus subtilis Species by Conjugational Transfer. ACTA ACUST UNITED AC 2006; 139:557-61. [PMID: 16567421 DOI: 10.1093/jb/mvj058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of Bacillus subtilis 168 as the initial host for molecular cloning and subsequent delivery of the engineered DNA to other Bacillus hosts appears attractive, and would lead to an efficient DNA manipulation system. However, methods of delivery to other Bacillus species are limited due to their inability to develop natural competence. An alternative, unexplored conjugational transfer method drew our attention and a B. subtilis native plasmid, pLS30, isolated from B. subtilis (natto) strain IAM1168 was characterized for this aim. The nucleotide sequence (6,610 bp) contained the mob gene and its recognition sequence, oriT, that features pLS30 as a mobile plasmid between Bacillus species on conjugational transfer. Plasmid pLS3001, a chimera with a pBR322-based plasmid prepared in Escherichia coli to confer an antibiotic resistance marker, showed apparent mobilizing activity in the pLS20-mediated conjugational transfer system recently established. The rep gene and associated palT1-like sequence common to all other pLS plasmids previously sequenced indicated that pLS30 is a typical rolling circle replicating (RCR) type plasmid. Due to the significant stability of pLS30 in IAM1168, application of a mobile plasmid would allow quick propagation to Bacillus species.
Collapse
Affiliation(s)
- Nagayoshi Sakaya
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511
| | | | | | | |
Collapse
|
35
|
van Belkum MJ, Stiles ME. Characterization of the theta-type plasmid pCD3.4 from Carnobacterium divergens, and modulation of its host range by RepA mutation. Microbiology (Reading) 2006; 152:171-178. [PMID: 16385127 DOI: 10.1099/mic.0.28294-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete nucleotide sequence of the 3475 bp plasmid pCD3.4 from Carnobacterium divergens LV13, which encodes the bacteriocin divergicin A, was determined. Nucleotide sequence, deletion and complementation analyses revealed the presence of a trans-acting replication protein, RepA, and DNA sequences involved in plasmid replication and copy-number control. The DNA region preceding the repA gene probably contains the origin of replication. This sequence includes four and a half direct repeats (iterons) of 22 bp, to which RepA is thought to bind, and an AT-rich region containing a 12 bp repeat, at which initiation of DNA might occur. Further upstream of this sequence resides a fifth iteron required for optimal plasmid replication. The RepA protein shows homology to replication proteins of the pUCL287 subfamily of theta-type replicons. Two ORFs were found downstream of the repA gene that could be deleted without affecting replication and stability of the plasmid. pCD3.4 has a narrow host range, and could only be maintained in Carnobacterium spp.; however, a mutant of the plasmid was obtained that enabled the pCD3.4 replicon to replicate in Enterococcus faecium, but not in Carnobacterium spp. The mutation was located in the C-terminal region of the RepA protein, changing a proline into a serine. This is believed to be the first example of such plasmid-host-range modulation in Gram-positive bacteria.
Collapse
Affiliation(s)
- Marco J van Belkum
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Michael E Stiles
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| |
Collapse
|
36
|
Meijer WJJ, Castilla-Llorente V, Villar L, Murray H, Errington J, Salas M. Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage phi29. EMBO J 2005; 24:3647-57. [PMID: 16193065 PMCID: PMC1276709 DOI: 10.1038/sj.emboj.7600826] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 09/01/2005] [Indexed: 11/09/2022] Open
Abstract
Phage phi29 is a virulent phage of Bacillus subtilis with no known lysogenic cycle. Indeed, lysis occurs rapidly following infection of vegetative cells. Here, we show that phi29 possesses a powerful strategy that enables it to adapt its infection strategy to the physiological conditions of the infected host to optimize its survival and proliferation. Thus, the lytic cycle is suppressed when the infected cell has initiated the process of sporulation and the infecting phage genome is directed into the highly resistant spore to remain dormant until germination of the spore. We have also identified two host-encoded factors that are key players in this adaptive infection strategy. We present evidence that chromosome segregation protein Spo0J is involved in spore entrapment of the infected phi29 genome. In addition, we demonstrate that Spo0A, the master regulator for initiation of sporulation, suppresses phi29 development by repressing the main early phi29 promoters via different and novel mechanisms and also by preventing activation of the single late phi29 promoter.
Collapse
Affiliation(s)
- Wilfried J J Meijer
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Canto Blanco, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Tanaka T, Ishida H, Maehara T. Characterization of the replication region of plasmid pLS32 from the Natto strain of Bacillus subtilis. J Bacteriol 2005; 187:4315-26. [PMID: 15968040 PMCID: PMC1151765 DOI: 10.1128/jb.187.13.4315-4326.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid pL32 from the Natto strain of Bacillus subtilis belongs to a group of low-copy-number plasmids in gram-positive bacteria that replicate via a theta mechanism of replication. We studied the DNA region encoding the replication protein, RepN, of pLS32, and obtained the following results. Transcription of the repN gene starts 167 nucleotides upstream from the translational start site of repN. The copy number of repN-coding plasmid pHDCS2, in which the repN gene was placed downstream of the IPTG (isopropyl-1-thio-beta-D-galactopyranoside)-inducible Pspac promoter, was increased 100 fold by the addition of IPTG. Histidine-tagged RepN bound to a specific region in the repN gene containing five 22-bp tandem repeats (iterons) with partial mismatches, as shown by gel retardation and foot printing analyses. Sequence alterations in the first three iterons resulted in an increase in plasmid copy number, whereas those in either the forth or fifth iteron resulted in the failure of plasmid replication. The iterons expressed various degrees of incompatibility with an incoming repN-driven replicon pSEQ243, with the first three showing the strongest incompatibility. Finally, by using a plasmid, pHDMAEC21, carrying the sequence alterations in all the five iterons in repN and thus unable to replicate but encoding intact RepN, the region necessary for replication was confined to a 96-bp sequence spanning the 3'-terminal half of the fourth iteron to an A+T-rich region located downstream of the fifth iteron. From these results, we conclude that the iterons in repN are involved in both the control of plasmid copy number and incompatibility, and we suggest that the binding of RepN to the last two iterons triggers replication by melting the A+T-rich DNA sequence.
Collapse
Affiliation(s)
- Teruo Tanaka
- Department of Marine Science, School of Marine Science and Technology, Tokai University, 3-20-1 Shimizuorido, Shizuoka 424-8610, Japan.
| | | | | |
Collapse
|
38
|
Sørvig E, Skaugen M, Naterstad K, Eijsink VGH, Axelsson L. Plasmid p256 from Lactobacillus plantarum represents a new type of replicon in lactic acid bacteria, and contains a toxin-antitoxin-like plasmid maintenance system. MICROBIOLOGY-SGM 2005; 151:421-431. [PMID: 15699191 DOI: 10.1099/mic.0.27389-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lactobacillus plantarum NC7 harbours a single 7.2 kb plasmid called p256. This report describes the complete nucleotide sequence and annotation of p256, as well as the identification of the minimal replicon of the plasmid. Based on sequence features in the unusually small (0.7 kb) minimal replicon, and the absence of a gene for a replication-relevant protein, p256 seems to represent a hitherto unknown type of theta replicon in lactic acid bacteria (LAB), with a relatively low copy-number. In addition, a putative toxin-antitoxin (TA) locus was identified. Experiments with variants of p256 indicated that the TA system was involved in plasmid maintenance. Furthermore, controlled expression of the TA genes stabilized vectors derived from the p256 replicon. To the authors' knowledge, this is the first time a TA locus with a demonstrated plasmid maintenance function has been identified in LAB. Transformation of several LAB with plasmids derived from p256 indicated that it has a narrow host range. Several effective expression vectors based on the p256 replicon have been constructed.
Collapse
Affiliation(s)
- Elisabeth Sørvig
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, PO Box 5003, N-1432 Ås, Norway
| | - Morten Skaugen
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, PO Box 5003, N-1432 Ås, Norway
| | - Kristine Naterstad
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, PO Box 5003, N-1432 Ås, Norway
| | - Lars Axelsson
- Matforsk, Norwegian Food Research Institute, Osloveien 1, N-1430 Ås, Norway
| |
Collapse
|
39
|
|
40
|
Qiu D, Fujita K, Sakuma Y, Tanaka T, Ohashi Y, Ohshima H, Tomita M, Itaya M. Comparative analysis of physical maps of four Bacillus subtilis (natto) genomes. Appl Environ Microbiol 2004; 70:6247-56. [PMID: 15466572 PMCID: PMC522138 DOI: 10.1128/aem.70.10.6247-6256.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 06/10/2004] [Indexed: 11/20/2022] Open
Abstract
The complete SfiI and I-CeuI physical maps of four Bacillus subtilis (natto) strains, which were previously isolated as natto (fermented soybean) starters, were constructed to elucidate the genome structure. Not only the similarity in genome size and organization but also the microheterogeneity of the gene context was revealed. No large-scale genome rearrangements among the four strains were indicated by mapping of the genes, including 10 rRNA operons (rrn) and relevant genes required for natto production, to the loci corresponding to those of the B. subtilis strain Marburg 168. However, restriction fragment length polymorphism and the presence or absence of strain-specific DNA sequences, such as the prophages SP beta, skin element, and PBSX, as well as the insertion element IS4Bsu1, could be used to identify one of these strains as a Marburg type and the other three strains as natto types. The genome structure and gene heterogeneity were also consistent with the type of indigenous plasmids harbored by the strains.
Collapse
Affiliation(s)
- Dongru Qiu
- Institute for Advanced Biosciences and Bioinformatics Program, Keio University, 403-1 Nipponkoku, Daihoji, Tsuruoka, Yamagata 997-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Andretta CWS, Rosa RM, Tondo EC, Gaylarde CC, Henriques JAP. Identification and molecular characterization of a Bacillus subtilis IS13 strain involved in the biodegradation of 4,5,6-trichloroguaiacol. CHEMOSPHERE 2004; 55:631-639. [PMID: 15006516 DOI: 10.1016/j.chemosphere.2003.11.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2002] [Revised: 09/02/2003] [Accepted: 11/29/2003] [Indexed: 05/24/2023]
Abstract
4,5,6-Trichloroguaiacol (4,5,6-TCG) is a recalcitrant organochlorine compound produced during pulp bleaching and a potential environmental hazard in paper mill effluents. We report here the identification by biochemical tests and molecular biological analysis, using 16S ribotyping, of a 4,5,6-TCG-degrading bacterium, identified as a strain of Bacillus subtilis that is most closely related according to the phylogenetic analysis to B. subtilis strain Lactipan (alignment score 99%). Biodegradation of 4,5,6-TCG by this organism in a mineral salts medium was shown to occur only when the inoculum was composed of cells in the stationary phase of growth and to be accelerated by an additional carbon source, such as glucose, sucrose, glycerol or molasses. An additional nitrogen source (as ammonium sulfate) did not affect the rate of 4,5,6-TGC removal. No plasmids were detected in the bacterial cells. This is the first strain of B. subtilis which degrades chlorophenols and shows that 4,5,6-TCG is not degraded by cometabolism and that the gene encoding this characteristic is probably located on the chromosome. The lack of requirement for additional nitrogen source, the ability to enhance biodegradation by adding cheap carbon sources such as molasses, and the fact the trait is likely to be stable since it is encoded on the cell chromosome, are all characteristics that make the organism an attractive possibility for treatment of wastes and environments polluted with organochlorine compounds.
Collapse
Affiliation(s)
- C W S Andretta
- Centro de Biotecnologia/Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Cx. Postal 15005, Av. Bento Gonçalves 9500, Porto Alegre, RS, CEP 91501-970, Brazil
| | | | | | | | | |
Collapse
|
42
|
Alpert CA, Crutz-Le Coq AM, Malleret C, Zagorec M. Characterization of a theta-type plasmid from Lactobacillus sakei: a potential basis for low-copy-number vectors in lactobacilli. Appl Environ Microbiol 2003; 69:5574-84. [PMID: 12957947 PMCID: PMC194969 DOI: 10.1128/aem.69.9.5574-5584.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 06/16/2003] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence of the 13-kb plasmid pRV500, isolated from Lactobacillus sakei RV332, was determined. Sequence analysis enabled the identification of genes coding for a putative type I restriction-modification system, two genes coding for putative recombinases of the integrase family, and a region likely involved in replication. The structural features of this region, comprising a putative ori segment containing 11- and 22-bp repeats and a repA gene coding for a putative initiator protein, indicated that pRV500 belongs to the pUCL287 subfamily of theta-type replicons. A 3.7-kb fragment encompassing this region was fused to an Escherichia coli replicon to produce the shuttle vector pRV566 and was observed to be functional in L. sakei for plasmid replication. The L. sakei replicon alone could not support replication in E. coli. Plasmid pRV500 and its derivative pRV566 were determined to be at very low copy numbers in L. sakei. pRV566 was maintained at a reasonable rate over 20 generations in several lactobacilli, such as Lactobacillus curvatus, Lactobacillus casei, and Lactobacillus plantarum, in addition to L. sakei, making it an interesting basis for developing vectors. Sequence relationships with other plasmids are described and discussed.
Collapse
Affiliation(s)
- Carl-Alfred Alpert
- Flore Lactique et Environnement Carné, Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
43
|
Titok MA, Chapuis J, Selezneva YV, Lagodich AV, Prokulevich VA, Ehrlich SD, Jannière L. Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid 2003; 49:53-62. [PMID: 12584001 DOI: 10.1016/s0147-619x(02)00109-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have searched for plasmids in a collection of 55 Bacillus subtilis strains isolated from various natural sources of the territory of Belarus. Twenty percent of the strains contained one or two plasmids of either 6-8 or approximately 90 kb. Small plasmids were shown to carry a rolling circle replicon of the pC194 type. Four out of the eight large plasmids contained a related theta replicon that has no homolog in databases as shown by sequence determination. A B. subtilis/Escherichia coli shuttle vector based on this replicon was constructed. It has a low copy number (6 units per chromosome) and is stably inherited in B. subtilis. It might thus be a useful tool for DNA cloning. These data extend previous observations, indicating that most of the small plasmids of B. subtilis replicate as rolling circles and belong to the pC194 family. On the contrary, large plasmids appear to form a large pool of theta-replicating determinants, since three different replicons have already been isolated from them.
Collapse
Affiliation(s)
- M A Titok
- Department of Genetics and Biotechnology, Biological Faculty, Belarusian State University, Minsk 220050, 4 Scorina Avenue, Belarus
| | | | | | | | | | | | | |
Collapse
|
44
|
Kalyaeva E, Bass I, Kholodii G, Nikiforov V. A broad host range plasmid vector that does not encode replication proteins. FEMS Microbiol Lett 2002; 211:91-5. [PMID: 12052556 DOI: 10.1111/j.1574-6968.2002.tb11208.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The 640-bp minimal replication region derived from a plasmid DNA preparation from an Acidothiobacillus ferrooxidans strain capable of autonomous replication in a range of Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Acinetobacter calcoaceticus and Alcaligenes faecalis) was identified. This DNA fragment (named TFK replicon) does not encode Rep proteins and appears to be unrelated to other known replicons.
Collapse
Affiliation(s)
- Eza Kalyaeva
- Institute of Molecular Genetics, Russian Academy of Sciences, 123182, Moscow, Russia
| | | | | | | |
Collapse
|
45
|
Functional analysis of the Bacillus subtilis genome. METHODS IN MICROBIOLOGY 2002. [DOI: 10.1016/s0580-9517(02)33019-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
46
|
Reizer J, Reizer A, Perego M, Saier MH. Characterization of a family of bacterial response regulator aspartyl-phosphate (RAP) phosphatases. MICROBIAL & COMPARATIVE GENOMICS 2001; 2:103-11. [PMID: 9689219 DOI: 10.1089/omi.1.1997.2.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have characterized a novel family of response regulator aspartyl-phosphate (RAP) phosphatases found exclusively in gram-positive bacteria. The family consists of 15 members, 12 of which are from Bacillus subtilis. The N-terminal domains proved to be more highly conserved than the C-terminal domains, and a signature sequence for the family was derived from the former domains. Phylogenetic analyses revealed clustering patterns showing that all Bacillus proteins are closely related. Most of the Bacillus RAP phosphatase genes are followed by and are translationally coupled to small nonhomologous phosphatase regulator (phr) genes that encode exported peptides with regulatory functions. Most of the paralogous RAP phosphatases of B. subtilis may serve related functions in signal transduction systems. They appear to have arisen by relatively recent gene duplication events that occurred after the divergence of major groups within the gram-positive bacterial kingdom. We suggest that the N-terminal domains of the RAP phosphatases function in catalysis, whereas the C-terminal domains function in regulation.
Collapse
Affiliation(s)
- J Reizer
- Department of Biology, University of California at San Diego, La Jolla, USA
| | | | | | | |
Collapse
|
47
|
Kunnimalaiyaan M, Stevenson DM, Zhou Y, Vary PS. Analysis of the replicon region and identification of an rRNA operon on pBM400 of Bacillus megaterium QM B1551. Mol Microbiol 2001; 39:1010-21. [PMID: 11251820 DOI: 10.1046/j.1365-2958.2001.02292.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An 18 633 bp region containing the replicon from the approximately 53 kb pBM400 plasmid of Bacillus megaterium QM B1551 has been sequenced and characterized. This region contained a complete rRNA operon plus 10 other potential open reading frames (ORFs). The replicon consisted of an upstream promoter and three contiguous genes (repM400, orfB and orfC) that could encode putative proteins of 428, 251 and 289 amino acids respectively. A 1.6 kb minimal replicon was defined and contained most of repM400. OrfB was shown to be required for stability. Three 12 bp identical tandem repeats were located within the coding region of repM400, and their presence on another plasmid caused incompatibility with their own cognate replicon. Nonsense, frameshift and deletion mutations in repM400 prevented replication, but each mutation could be complemented in trans. RepM400 had no significant similarity to sequences in the GenBank database, whereas five other ORFs had some similarity to gene products from other plasmids and the Bacillus genome. An rRNA operon was located upstream of the replication region and is the first rRNA operon to be sequenced from B. megaterium. Its unusual location on non-essential plasmid DNA has implications for systematics and evolutionary biology.
Collapse
Affiliation(s)
- M Kunnimalaiyaan
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | | | | | | |
Collapse
|
48
|
Okinaka RT, Cloud K, Hampton O, Hoffmaster AR, Hill KK, Keim P, Koehler TM, Lamke G, Kumano S, Mahillon J, Manter D, Martinez Y, Ricke D, Svensson R, Jackson PJ. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J Bacteriol 1999; 181:6509-15. [PMID: 10515943 PMCID: PMC103788 DOI: 10.1128/jb.181.20.6509-6515.1999] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/1999] [Accepted: 07/30/1999] [Indexed: 11/20/2022] Open
Abstract
The Bacillus anthracis Sterne plasmid pXO1 was sequenced by random, "shotgun" cloning. A circular sequence of 181,654 bp was generated. One hundred forty-three open reading frames (ORFs) were predicted using GeneMark and GeneMark.hmm, comprising only 61% (110,817 bp) of the pXO1 DNA sequence. The overall guanine-plus-cytosine content of the plasmid is 32.5%. The most recognizable feature of the plasmid is a "pathogenicity island," defined by a 44.8-kb region that is bordered by inverted IS1627 elements at each end. This region contains the three toxin genes (cya, lef, and pagA), regulatory elements controlling the toxin genes, three germination response genes, and 19 additional ORFs. Nearly 70% of the ORFs on pXO1 do not have significant similarity to sequences available in open databases. Absent from the pXO1 sequence are homologs to genes that are typically required to drive theta replication and to maintain stability of large plasmids in Bacillus spp. Among the ORFs with a high degree of similarity to known sequences are a collection of putative transposases, resolvases, and integrases, suggesting an evolution involving lateral movement of DNA among species. Among the remaining ORFs, there are three sequences that may encode enzymes responsible for the synthesis of a polysaccharide capsule usually associated with serotype-specific virulent streptococci.
Collapse
Affiliation(s)
- R T Okinaka
- Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stevenson DM, Kunnimalaiyaan M, Müller K, Vary PS. Characterization of a theta plasmid replicon with homology to all four large plasmids of Bacillus megaterium QM B1551. Plasmid 1998; 40:175-89. [PMID: 9806855 DOI: 10.1006/plas.1998.1359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A replicon from one of an array of seven indigenous compatible plasmids of Bacillus megaterium QM B1551 has been cloned and sequenced. The replicon hybridized with all four of the large plasmids (165, 108, 71, and 47 kb) of strain QM B1551. The cloned 2374-bp HindIII fragment was sequenced and contained two upstream palindromes and a large (>419-amino-acid) open reading frame (ORF) truncated at the 3' end. Unlike most plasmid origins, a region of four tandem 12-bp direct repeats was located within the ORF. The direct repeats alone were incompatible with the replicon, suggesting that they are iterons and that the plasmid probably replicates by theta replication. The ORF product was shown to act in trans. A small region with similarity to the B. subtilis chromosomal origin membrane binding region was detected as were possible binding sites for DnaA and IHF proteins. Deletion analysis showed the minimal replicon to be a 1675-bp fragment containing the incomplete ORF plus 536 bp upstream. The predicted ORF protein of >48 kDa was basic and rich in glutamate + glutamine (16%). There was no significant amino acid similarity to any gene, nor were there any obvious motifs present in the ORF. The data suggest that this is a theta replicon with an expressed rep gene required for replication. The replicon contains its iterons within the gene and has no homology to reported replicons. It is the first characterization of a B. megaterium replicon.
Collapse
Affiliation(s)
- D M Stevenson
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, 60115, USA
| | | | | | | |
Collapse
|
50
|
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434-64. [PMID: 9618448 PMCID: PMC98921 DOI: 10.1128/mmbr.62.2.434-464.1998] [Citation(s) in RCA: 704] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An essential feature of bacterial plasmids is their ability to replicate as autonomous genetic elements in a controlled way within the host. Therefore, they can be used to explore the mechanisms involved in DNA replication and to analyze the different strategies that couple DNA replication to other critical events in the cell cycle. In this review, we focus on replication and its control in circular plasmids. Plasmid replication can be conveniently divided into three stages: initiation, elongation, and termination. The inability of DNA polymerases to initiate de novo replication makes necessary the independent generation of a primer. This is solved, in circular plasmids, by two main strategies: (i) opening of the strands followed by RNA priming (theta and strand displacement replication) or (ii) cleavage of one of the DNA strands to generate a 3'-OH end (rolling-circle replication). Initiation is catalyzed most frequently by one or a few plasmid-encoded initiation proteins that recognize plasmid-specific DNA sequences and determine the point from which replication starts (the origin of replication). In some cases, these proteins also participate directly in the generation of the primer. These initiators can also play the role of pilot proteins that guide the assembly of the host replisome at the plasmid origin. Elongation of plasmid replication is carried out basically by DNA polymerase III holoenzyme (and, in some cases, by DNA polymerase I at an early stage), with the participation of other host proteins that form the replisome. Termination of replication has specific requirements and implications for reinitiation, studies of which have started. The initiation stage plays an additional role: it is the stage at which mechanisms controlling replication operate. The objective of this control is to maintain a fixed concentration of plasmid molecules in a growing bacterial population (duplication of the plasmid pool paced with duplication of the bacterial population). The molecules involved directly in this control can be (i) RNA (antisense RNA), (ii) DNA sequences (iterons), or (iii) antisense RNA and proteins acting in concert. The control elements maintain an average frequency of one plasmid replication per plasmid copy per cell cycle and can "sense" and correct deviations from this average. Most of the current knowledge on plasmid replication and its control is based on the results of analyses performed with pure cultures under steady-state growth conditions. This knowledge sets important parameters needed to understand the maintenance of these genetic elements in mixed populations and under environmental conditions.
Collapse
Affiliation(s)
- G del Solar
- Centro de Investigaciones Biológicas, CSIC, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|