1
|
Smith A, Zhang I, Trang P, Liu F. Engineering of RNase P Ribozymes for Therapy against Human Cytomegalovirus Infection. Viruses 2024; 16:1196. [PMID: 39205170 PMCID: PMC11360822 DOI: 10.3390/v16081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleic acid-based gene interference and editing strategies, such as antisense oligonucleotides, ribozymes, RNA interference (RNAi), and CRISPR/Cas9 coupled with guide RNAs, are exciting research tools and show great promise for clinical applications in treating various illnesses. RNase P ribozymes have been engineered for therapeutic applications against human viruses such as human cytomegalovirus (HCMV). M1 ribozyme, the catalytic RNA subunit of RNase P from Escherichia coli, can be converted into a sequence-specific endonuclease, M1GS ribozyme, which is capable of hydrolyzing an mRNA target base-pairing with the guide sequence. M1GS RNAs have been shown to hydrolyze essential HCMV mRNAs and block viral progeny production in virus-infected cell cultures. Furthermore, RNase P ribozyme variants with enhanced hydrolyzing activity can be generated by employing in vitro selection procedures and exhibit better ability in suppressing HCMV gene expression and replication in cultured cells. Additional studies have also examined the antiviral activity of RNase P ribozymes in mice in vivo. Using cytomegalovirus infection as an example, this review summarizes the principles underlying RNase P ribozyme-mediated gene inactivation, presents recent progress in engineering RNase P ribozymes for applications in vitro and in mice, and discusses the prospects of using M1GS technology for therapeutic applications against HCMV as well as other pathogenic viruses.
Collapse
Affiliation(s)
- Adam Smith
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Huang T, Chamberlain A, Zhu J, Harris ME. A minimal RNA substrate with dual fluorescent probes enables rapid kinetics and provides insight into bacterial RNase P active site interactions. RSC Chem Biol 2024; 5:652-668. [PMID: 38966670 PMCID: PMC11221534 DOI: 10.1039/d4cb00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Bacterial ribonuclease P (RNase P) is a tRNA processing endonuclease that occurs primarily as a ribonucleoprotein with a catalytic RNA subunit (P RNA). As one of the first ribozymes discovered, P RNA is a well-studied model system for understanding RNA catalysis and substrate recognition. Extensive structural and biochemical studies have revealed the structure of RNase P bound to precursor tRNA (ptRNA) and product tRNA. These studies also helped to define active site residues and propose the molecular interactions that are involved in substrate binding and catalysis. However, a detailed quantitative model of the reaction cycle that includes the structures of intermediates and the process of positioning active site metal ions for catalysis is lacking. To further this goal, we used a chemically modified minimal RNA duplex substrate (MD1) to establish a kinetic framework for measuring the functional effects of P RNA active site mutations. Substitution of U69, a critical nucleotide involved in active site Mg2+ binding, was found to reduce catalysis >500-fold as expected, but had no measurable effect on ptRNA binding kinetics. In contrast, the same U69 mutations had little effect on catalysis in Ca2+ compared to reactions containing native Mg2+ ions. CryoEM structures and SHAPE mapping suggested increased flexibility of U69 and adjacent nucleotides in Ca2+ compared to Mg2+. These results support a model in which slow catalysis in Ca2+ is due to inability to engage U69. These studies establish a set of experimental tools to analyze RNase P kinetics and mechanism and can be expanded to gain new insights into the assembly of the active RNase P-ptRNA complex.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | | | - Jiaqiang Zhu
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| | - Michael E Harris
- Department of Chemistry, University of Florida Gainesville FL 32608 USA
| |
Collapse
|
3
|
Ariza-Mateos A, Briones C, Perales C, Sobrino F, Domingo E, Gómez J. Archaeological approaches to RNA virus evolution. J Physiol 2024; 602:2469-2478. [PMID: 37818797 DOI: 10.1113/jp284416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Studies with RNA enzymes (ribozymes) and protein enzymes have identified certain structural elements that are present in some cellular mRNAs and viral RNAs. These elements do not share a primary structure and, thus, are not phylogenetically related. However, they have common (secondary/tertiary) structural folds that, according to some lines of evidence, may have an ancient and common origin. The term 'mRNA archaeology' has been coined to refer to the search for such structural/functional relics that may be informative of early evolutionary developments in the cellular and viral worlds and have lasted to the present day. Such identified RNA elements may have developed as biological signals with structural and functional relevance (as if they were buried objects with archaeological value), and coexist with the standard linear information of nucleic acid molecules that is translated into proteins. However, there is a key difference between the methods that extract information from either the primary structure of mRNA or the signals provided by secondary and tertiary structures. The former (sequence comparison and phylogenetic analysis) requires strict continuity of the material vehicle of information during evolution, whereas the archaeological method does not require such continuity. The tools of RNA archaeology (including the use of ribozymes and enzymes to investigate the reactivity of the RNA elements) establish links between the concepts of communication and language theories that have not been incorporated into knowledge of virology, as well as experimental studies on the search for functionally relevant RNA structures.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Granada, Spain
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina 'López-Neyra' (CSIC), Granada, Spain
| |
Collapse
|
4
|
Jarrous N, Liu F. Human RNase P: overview of a ribonuclease of interrelated molecular networks and gene-targeting systems. RNA (NEW YORK, N.Y.) 2023; 29:300-307. [PMID: 36549864 PMCID: PMC9945436 DOI: 10.1261/rna.079475.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/09/2022] [Indexed: 05/14/2023]
Abstract
The seminal discovery of ribonuclease P (RNase P) and its catalytic RNA by Sidney Altman has not only revolutionized our understanding of life, but also opened new fields for scientific exploration and investigation. This review focuses on human RNase P and its use as a gene-targeting tool, two topics initiated in Altman's laboratory. We outline early works on human RNase P as a tRNA processing enzyme and comment on its expanding nonconventional functions in molecular networks of transcription, chromatin remodeling, homology-directed repair, and innate immunity. The important implications and insights from these discoveries on the potential use of RNase P as a gene-targeting tool are presented. This multifunctionality calls to a modified structure-function partitioning of domains in human RNase P, as well as its relative ribonucleoprotein, RNase MRP. The role of these two catalysts in innate immunity is of particular interest in molecular evolution, as this dynamic molecular network could have originated and evolved from primordial enzymes and sensors of RNA, including predecessors of these two ribonucleoproteins.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 9112010, Israel
| | - Fenyong Liu
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Wan F, Wang Q, Tan J, Tan M, Chen J, Shi S, Lan P, Wu J, Lei M. Cryo-electron microscopy structure of an archaeal ribonuclease P holoenzyme. Nat Commun 2019; 10:2617. [PMID: 31197137 PMCID: PMC6565675 DOI: 10.1038/s41467-019-10496-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential ribozyme responsible for tRNA 5′ maturation. Here we report the cryo-EM structures of Methanocaldococcus jannaschii (Mja) RNase P holoenzyme alone and in complex with a tRNA substrate at resolutions of 4.6 Å and 4.3 Å, respectively. The structures reveal that the subunits of MjaRNase P are strung together to organize the holoenzyme in a dimeric conformation required for efficient catalysis. The structures also show that archaeal RNase P is a functional chimera of bacterial and eukaryal RNase Ps that possesses bacterial-like two RNA-based anchors and a eukaryal-like protein-aided stabilization mechanism. The 3′-RCCA sequence of tRNA, which is a key recognition element for bacterial RNase P, is dispensable for tRNA recognition by MjaRNase P. The overall organization of MjaRNase P, particularly within the active site, is similar to those of bacterial and eukaryal RNase Ps, suggesting a universal catalytic mechanism for all RNase Ps. Ribonulease P is a conserved ribozyme present in all kingdoms of life that is involved in the 5′ maturation step of tRNAs. Here the authors determine the structure of an archaeal RNase P holoenzyme that reveals how archaeal RNase P recognizes its tRNA substrate and suggest a conserved catalytic mechanism amongst RNase Ps despite structural variability.
Collapse
Affiliation(s)
- Futang Wan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qianmin Wang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Jing Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Juan Chen
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Shaohua Shi
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.,Shanghai Institute of Precision Medicine, Shanghai, 200125, China
| | - Pengfei Lan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China.
| | - Jian Wu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose diseases, Shanghai, 200125, China.
| | - Ming Lei
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China. .,Shanghai Institute of Precision Medicine, Shanghai, 200125, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Ariza-Mateos A, Gómez J. Viral tRNA Mimicry from a Biocommunicative Perspective. Front Microbiol 2017; 8:2395. [PMID: 29259593 PMCID: PMC5723415 DOI: 10.3389/fmicb.2017.02395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
RNA viruses have very small genomes which limits the functions they can encode. One of the strategies employed by these viruses is to mimic key factors of the host cell so they can take advantage of the interactions and activities these factors typically participate in. The viral RNA genome itself was first observed to mimic cellular tRNA over 40 years ago. Since then researchers have confirmed that distinct families of RNA viruses are accessible to a battery of cellular factors involved in tRNA-related activities. Recently, potential tRNA-like structures have been detected within the sequences of a 100 mRNAs taken from human cells, one of these being the host defense interferon-alpha mRNA; these are then additional to the examples found in bacterial and yeast mRNAs. The mimetic relationship between tRNA, cellular mRNA, and viral RNA is the central focus of two considerations described below. These are subsequently used as a preface for a final hypothesis drawing on concepts relating to mimicry from the social sciences and humanities, such as power relations and creativity. Firstly, the presence of tRNA-like structures in mRNAs indicates that the viral tRNA-like signal could be mimicking tRNA-like elements that are contextualized by the specific carrier mRNAs, rather than, or in addition to, the tRNA itself, which would significantly increase the number of potential semiotic relations mediated by the viral signals. Secondly, and in particular, mimicking a host defense mRNA could be considered a potential new viral strategy for survival. Finally, we propose that mRNA's mimicry of tRNA could be indicative of an ancestral intracellular conflict in which species of mRNAs invaded the cell, but from within. As the meaning of the mimetic signal depends on the context, in this case, the conflict that arises when the viral signal enters the cell can change the meaning of the mRNAs' internal tRNA-like signals, from their current significance to that they had in the distant past.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina “López Neyra” (Consejo Superior de Investigaciones Científicas), Granada, Spain
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina “López Neyra” (Consejo Superior de Investigaciones Científicas), Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
7
|
Kimura M. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. Biosci Biotechnol Biochem 2017; 81:1670-1680. [PMID: 28715256 DOI: 10.1080/09168451.2017.1353404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.
Collapse
Affiliation(s)
- Makoto Kimura
- a Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School , Kyushu University , Fukuoka , Japan
| |
Collapse
|
8
|
Ariza-Mateos A, Díaz-Toledano R, Block TM, Prieto-Vega S, Birk A, Gómez J. Geneticin Stabilizes the Open Conformation of the 5' Region of Hepatitis C Virus RNA and Inhibits Viral Replication. Antimicrob Agents Chemother 2016; 60:925-35. [PMID: 26621620 PMCID: PMC4750704 DOI: 10.1128/aac.02511-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023] Open
Abstract
The aminoglycoside Geneticin (G418) is known to inhibit cell culture proliferation, via virus-specific mechanisms, of two different virus genera from the family Flaviviridae. Here, we tried to determine whether Geneticin can selectively alter the switching of the nucleotide 1 to 570 RNA region of hepatitis C virus (HCV) and, if so, whether this inhibits viral growth. Two structure-dependent RNases known to specifically cleave HCV RNA were tested in the presence or absence of the drug. One was the Synechocystis sp. RNase P ribozyme, which cleaves the tRNA-like domain around the AUG start codon under high-salt buffer conditions; the second was Escherichia coli RNase III, which recognizes a double-helical RNA switch element that changes the internal ribosome entry site (IRES) from a closed (C) conformation to an open (O) one. While the drug did not affect RNase P activity, it did inhibit RNase III in the micromolar range. Kinetic studies indicated that the drug favors the switch from the C to the O conformation of the IRES by stabilizing the distal double-stranded element and inhibiting further processing of the O form. We demonstrate that, because the RNA in this region is highly conserved and essential for virus survival, Geneticin inhibits HCV Jc1 NS3 expression, the release of the viral genomic RNA, and the propagation of HCV in Huh 7.5 cells. Our study highlights the crucial role of riboswitches in HCV replication and suggests the therapeutic potential of viral-RNA-targeted antivirals.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | - Rosa Díaz-Toledano
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| | | | - Samuel Prieto-Vega
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain
| | - Alex Birk
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | - Jordi Gómez
- Instituto de Parasitología y Biomedicina López-Neyra CSIC, Granada, Spain CIBERehd Centro de Investigación Biomédica en RED de Enfermedades Hepáticas y Digestivas (ISCIII), Madrid, Spain
| |
Collapse
|
9
|
RNase P Ribozymes Inhibit the Replication of Human Cytomegalovirus by Targeting Essential Viral Capsid Proteins. Viruses 2015; 7:3345-60. [PMID: 26114473 PMCID: PMC4517104 DOI: 10.3390/v7072775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/08/2015] [Accepted: 06/18/2015] [Indexed: 11/17/2022] Open
Abstract
An engineered RNase P-based ribozyme variant, which was generated using the in vitro selection procedure, was used to target the overlapping mRNA region of two proteins essential for human cytomegalovirus (HCMV) replication: capsid assembly protein (AP) and protease (PR). In vitro studies showed that the generated variant, V718-A, cleaved the target AP mRNA sequence efficiently and its activity was about 60-fold higher than that of wild type ribozyme M1-A. Furthermore, we observed a reduction of 98%–99% in AP/PR expression and an inhibition of 50,000 fold in viral growth in cells with V718-A, while a 75% reduction in AP/PR expression and a 500-fold inhibition in viral growth was found in cells with M1-A. Examination of the antiviral effects of the generated ribozyme on the HCMV replication cycle suggested that viral DNA encapsidation was inhibited and as a consequence, viral capsid assembly was blocked when the expression of AP and PR was inhibited by the ribozyme. Thus, our study indicates that the generated ribozyme variant is highly effective in inhibiting HCMV gene expression and blocking viral replication, and suggests that engineered RNase P ribozyme can be potentially developed as a promising gene-targeting agent for anti-HCMV therapy.
Collapse
|
10
|
Díaz-Toledano R, Gómez J. Messenger RNAs bearing tRNA-like features exemplified by interferon alfa 5 mRNA. Cell Mol Life Sci 2015; 72:3747-68. [PMID: 25900662 PMCID: PMC4565877 DOI: 10.1007/s00018-015-1908-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 12/24/2022]
Abstract
The purpose of this work was to ascertain whether liver mRNA species share common structural features with hepatitis C virus (HCV) mRNA that allow them to support the RNase-P (pre-tRNA/processing enzyme) cleavage reaction in vitro. The presence of RNase-P competitive elements in the liver mRNA population was determined by means of biochemical techniques, and a set of sensitive mRNA species were identified through microarray screening. Cleavage specificity and substrate length requirement of around 200 nts, were determined for three mRNA species. One of these cleavage sites was found in interferon-alpha 5 (IFNA5) mRNA between specific base positions and with the characteristic RNase-P chemistry of cleavage. It was mapped within a cloverleaf-like structure revealed by a comparative structural analysis based on several direct enzymes and chemical probing methods of three RNA fragments of increasing size, and subsequently contrasted against site-directed mutants. The core region was coincident with the reported signal for the cytoplasmic accumulation region (CAR) in IFNAs. Striking similarities with the tRNA-like element of the antagonist HCV mRNA were found. In general, this study provides a new way of looking at a variety of viral tRNA-like motifs as this type of structural mimicry might be related to specific host mRNA species rather than, or in addition to, tRNA itself.
Collapse
Affiliation(s)
- Rosa Díaz-Toledano
- Laboratorio de Arqueología del RNA, Departamento de Bioquímica y Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Armilla, Granada, Spain.,Centro de Investigación Biológica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (UAM-CSIC) Cantoblanco, Madrid, Spain
| | - Jordi Gómez
- Laboratorio de Arqueología del RNA, Departamento de Bioquímica y Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra (IPBLN-CSIC), Armilla, Granada, Spain. .,Centro de Investigación Biológica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| |
Collapse
|
11
|
Mao X, Li X, Mao X, Huang Z, Zhang C, Zhang W, Wu J, Li G. Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P. Virol J 2014; 11:86. [PMID: 24885776 PMCID: PMC4038377 DOI: 10.1186/1743-422x-11-86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) is a human pathogen causing chronic liver disease in about 200 million people worldwide. However, HCV resistance to interferon treatment is one of the important clinical implications, suggesting the necessity to seek new therapies. It has already been shown that some forms of the catalytic RNA moiety from E. coli RNase P, M1 RNA, can be introduced into the cytoplasm of mammalian cells for the purpose of carrying out targeted cleavage of mRNA molecules. Our study is to use an engineering M1 RNA (i.e. M1GS) for inhibiting HCV replication and demonstrates the utility of this ribozyme for antiviral applications. RESULTS By analyzing the sequence and structure of the 5' untranslated region of HCV RNA, a putative cleavage site (C67-G68) was selected for ribozyme designing. Based on the flanking sequence of this site, a targeting M1GS ribozyme (M1GS-HCV/C67) was constructed by linking a custom guide sequence (GS) to the 3' termini of catalytic RNA subunit (M1 RNA) of RNase P from Escherichia coli through an 88 nt-long bridge sequence. In vitro cleavage assays confirmed that the engineered M1GS ribozyme cleaved the targeted RNA specifically. Moreover, ~85% reduction in the expression levels of HCV proteins and >1000-fold reduction in viral growth were observed in supernatant of cultured cells that transfected the functional ribozyme. In contrast, the HCV core expression and viral growth were not significantly affected by a "disabled" ribozyme (i.e. M1GS-HCV/C67*). Moreover, cholesterol-conjugated M1GS ribozyme (i.e. Chol-M1GS-HCV/C67) showed almost the same bioactivities with M1GS-HCV/C67, demonstrating the potential to improve in vivo pharmacokinetic properties of M1GS-based RNA therapeutics. CONCLUSION Our results provide direct evidence that the M1GS ribozyme can function as an antiviral agent and effectively inhibit gene expression and multiplication of HCV.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenjun Zhang
- Vaccine Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | | | | |
Collapse
|
12
|
Abstract
The use of RNase P ribozyme (M1GS catalytic RNA) for inhibition of murine cytomegalovirus (MCMV) propagation in mice is described in this chapter. General information about RNase P based technology is included and followed by detailed protocols focused on (1) construction and in vitro cleavage assay of the customized M1GS ribozyme, (2) stable expression of the M1GS RNA and evaluation of its activity in inhibition of viral gene expression and growth in cultured cells, and (3) investigation of M1GS-mediated inhibition of viral infection and pathogenesis in animals. Using these methods, we have successfully constructed catalytic M1-1 RNA against the MCMV assembly protein (mAP) and M80 mRNA. Our recent study has demonstrated that an 80% reduction in the expression of mAP and M80 and a 2,000-fold reduction in viral growth were observed in cells expressing the ribozyme. Furthermore, after the functional ribozyme-expressing constructs were delivered into MCMV-infected SCID mice, a significant reduction of viral gene expression and infection was detected, and the survival of the infected animals was significantly improved. Collectively, our data demonstrate the feasibility of the use of RNase P ribozyme for inhibition of viral gene expression in animals and support the utility of RNase P ribozyme for gene-targeting applications in vivo.
Collapse
Affiliation(s)
- Yong Bai
- Program in Comparative Biochemistry, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
13
|
Zhang W, Li H, Li Y, Zeng Z, Li S, Zhang X, Zou Y, Zhou T. Effective inhibition of HCMV UL49 gene expression and viral replication by oligonucleotide external guide sequences and RNase P. Virol J 2010; 7:100. [PMID: 20482805 PMCID: PMC2885339 DOI: 10.1186/1743-422x-7-100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 05/18/2010] [Indexed: 12/03/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that typically causes asymptomatic infections in healthy individuals but may lead to serious complications in newborns and immunodeficient individuals. The emergence of drug-resistant strains of HCMV has posed a need for the development of new drugs and treatment strategies. Antisense molecules are promising gene-targeting agents for specific regulation of gene expression. External guide sequences (EGSs) are oligonucleotides that consist of a sequence complementary to a target mRNA and recruit intracellular RNase P for specific degradation of the target RNA. The UL49-deletion BAC of HCMV was significantly defective in growth in human foreskin fibroblasts. Therefore, UL49 gene may serve as a potential target for novel drug development to combat HCMV infection. In this study, DNA-based EGS molecules were synthesized to target the UL49 mRNA of human cytomegalovirus (HCMV). Results By cleavage activity assessing in vitro, the EGS aimed to the cleavage site 324 nt downstream from the translational initiation codon of UL49 mRNA (i.e. EGS324) was confirmed be efficient to direct human RNase P to cleave the target mRNA sequence. When EGS324 was exogenously administered into HCMV-infected human foreskin fibroblasts (HFFs), a significant reduction of ~76% in the mRNA and ~80% in the protein expression of UL49 gene, comparing with the cells transfected with control EGSs. Furthermore, a reduction of about 330-fold in HCMV growth were observed in HCMV-infected HFFs treated with the EGS. Conclusions These results indicated that UL49 gene was essential for replication of HCMV. Moreover, our study provides evidence that exogenous administration of a DNA-based EGS can be used as a potential therapeutic approach for inhibiting gene expression and replication of a human virus.
Collapse
Affiliation(s)
- WenJun Zhang
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The ability to interfere with gene expression is of crucial importance to unravel the function of genes and is also a promising therapeutic strategy. Here we discuss methodologies for inhibition of target RNAs based on the cleavage activity of the essential enzyme, Ribonuclease P (RNase P). RNase P-mediated cleavage of target RNAs can be directed by external guide sequences (EGSs) or by the use of the catalytic M1 RNA from E. coli linked to a guide sequence (M1GSs). These are not only basic tools for functional genetic studies in prokaryotic and eukaryotic cells but also promising antibacterial, anticancer and antiviral agents.
Collapse
Affiliation(s)
- Eirik Wasmuth Lundblad
- Reference Centre for Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway.
| | | |
Collapse
|
15
|
Skromne I, Prince VE. Current perspectives in zebrafish reverse genetics: moving forward. Dev Dyn 2008; 237:861-82. [PMID: 18330930 DOI: 10.1002/dvdy.21484] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Use of the zebrafish as a model of vertebrate development and disease has expanded dramatically over the past decade. While many articles have discussed the strengths of zebrafish forward genetics (the phenotype-driven approach), there has been less emphasis on equally important and frequently used reverse genetics (the candidate gene-driven approach). Here we review both current and prospective reverse genetic techniques that are applicable to the zebrafish model. We include discussion of pharmacological approaches, popular gain-of-function and knockdown approaches, and gene targeting strategies. We consider the need for temporal and spatial control over gain/loss of gene function, and discuss available and developing techniques to achieve this end. Our goal is both to reveal the current technical advantages of the zebrafish and to highlight those areas where work is still required to allow this system to be exploited to full advantage.
Collapse
Affiliation(s)
- Isaac Skromne
- Department of Biology, University of Miami, Coral Gables, Florida 33146, USA.
| | | |
Collapse
|
16
|
Effective inhibition in animals of viral pathogenesis by a ribozyme derived from RNase P catalytic RNA. Proc Natl Acad Sci U S A 2008; 105:10919-24. [PMID: 18663226 DOI: 10.1073/pnas.0804922105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A functional RNase P ribozyme (M1GS RNA) was constructed to target the overlapping mRNA region of two murine cytomegalovirus (MCMV) capsid proteins essential for viral replication: the assembly protein (mAP) and M80. The customized ribozyme efficiently cleaved the target mRNA sequence in vitro. Moreover, 80% reduction in the expression of mAP and M80 and a 2,000-fold reduction in viral growth were observed in cells expressing the ribozyme. In contrast, there was no significant reduction in viral gene expression and growth in cells that either did not express the ribozyme or produced a "disabled" ribozyme carrying mutations that abolished its catalytic activity. When the ribozyme-expressing constructs were delivered into MCMV-infected SCID mice via a modified "hydrodynamic transfection" procedure, expression of ribozymes was observed in the livers and spleens. Compared with the control animals that did not receive any M1GS constructs or received the disabled ribozyme construct, animals receiving the functional ribozyme construct exhibited a significant reduction of viral gene expression and infection. Viral titers in the spleens, livers, lungs, and salivary glands of the functional ribozyme-treated SCID mice at 21 days after infection were 200- to 2,000-fold lower than those in the control animals. Moreover, survival of the infected animals significantly improved upon receiving the functional ribozyme construct. Our study examines the use of M1GS ribozymes for inhibition of gene expression in animals and demonstrates the utility of RNase P ribozymes for gene targeting applications in vivo.
Collapse
|
17
|
Pei DS, Sun YH, Long Y, Zhu ZY. Inhibition of no tail (ntl) gene expression in zebrafish by external guide sequence (EGS) technique. Mol Biol Rep 2008; 35:139-43. [PMID: 17294249 DOI: 10.1007/s11033-007-9063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
External guide sequence (EGS) technique, a branch of ribozyme strategy, can be enticed to cleave the target mRNA by forming a tRNA-like structure. In the present study, no tail gene (ntl), a key gene participating in the formation of normal tail, was used as a target for ribonuclease (RNase) P-mediated gene disruption in zebrafish in vivo. Transient expression of pH1-m3/4 ntl-EGS or pH1-3/4 ntl-EGS produced the full no tail phenotype at long-pec stage in proportion as 24 or 35%, respectively. As is expected that the full-length ntl mRNA of embryos at 50% epiboly stage decreased relative to control when injected the embryos with 3/4 EGS or m3/4 EGS RNA. Interestingly, ntl RNA transcripts, including the cleaved by EGS and the untouched, increased. Taken together, these results indicate that EGS strategy can work in zebrafish in vivo and becomes a potential tool for degradation of targeted mRNAs.
Collapse
Affiliation(s)
- De-Sheng Pei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | |
Collapse
|
18
|
Trang P, Liu F. Mapping the regions of RNase P catalytic RNA that are potentially in close contact with its protein cofactor. Methods Mol Biol 2008; 488:267-277. [PMID: 18982298 DOI: 10.1007/978-1-60327-475-3_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Ribonuclease P (RNase P) from Escherichia coli is a transfer RNA (tRNA)-processing enzyme and consists of a catalytic RNA subunit (M1 RNA) and a protein component (C5 protein). M1GS, a gene-targeting ribozyme derived from M1 RNA, can cleave a target messenger RNA (mRNA) efficiently in vitro and inhibit its expression effectively in cultured cells. It has been shown that C5 protein can significantly increase the activities of M1 ribozyme and M1GS RNA in cleaving a natural tRNA substrate and a target mRNA, respectively. Understanding how C5 binds to M1GS RNA and affects the specific interactions between the ribozyme and its target mRNA substrates may facilitate the development of gene-targeting ribozymes that function effectively in vivo in the presence of cellular proteins. We describe the methods to determine the regions of a M1GS ribozyme that are potentially in close proximity to C5 protein. Specifically, methods are described in detail in using Fe(II)-ethylenediaminetetraacetic acid (EDTA) cleavage and nuclease footprint analyses to map the regions of the ribozyme in the absence and presence of C5 protein. These methods intend to provide experimental protocols for studying the regions of RNase P ribozyme that are in close contact with C5 protein.
Collapse
Affiliation(s)
- Phong Trang
- School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | | |
Collapse
|
19
|
Kim K, Liu F. Inhibition of gene expression in human cells using RNase P-derived ribozymes and external guide sequences. ACTA ACUST UNITED AC 2007; 1769:603-12. [PMID: 17976837 DOI: 10.1016/j.bbaexp.2007.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 09/13/2007] [Accepted: 09/14/2007] [Indexed: 11/19/2022]
Abstract
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a novel nucleic acid-based gene interference approach to modulate gene expression. This enzyme is a ribonucleoprotein complex for tRNA processing. In Escherichia coli, RNase P contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). EGSs, which are RNAs derived from natural tRNAs, bind to a target mRNA and render the mRNA susceptible to hydrolysis by RNase P and M1 ribozyme. When covalently linked with a guide sequence, M1 can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which cleaves any target RNAs that base pair with the guide sequence. Studies have demonstrated efficient cleavage of mRNAs by M1GS and RNase P complexed with EGSs in vitro. Moreover, highly active M1GS and EGSs were successfully engineered using in vitro selection procedures. EGSs and M1GS ribozymes are effective in blocking gene expression in both bacteria and human cells, and exhibit promising activity for antimicrobial, antiviral, and anticancer applications. In this review, we highlight some recent results using the RNase P-based technology, and offer new insights into the future of using EGS and M1GS RNA as tools for basic research and as gene-targeting agents for clinical applications.
Collapse
Affiliation(s)
- Kihoon Kim
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
20
|
Sheng J, Al-Anouti F, Ananvoranich S. Engineered delta ribozymes can simultaneously knock down the expression of the genes encoding uracil phosphoribosyltransferase and hypoxanthine-xanthine-guanine phosphoribosyltransferase in Toxoplasma gondii. Int J Parasitol 2004; 34:253-63. [PMID: 15003487 DOI: 10.1016/j.ijpara.2003.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 11/06/2003] [Accepted: 11/07/2003] [Indexed: 11/26/2022]
Abstract
Engineered delta ribozymes or HDV ribozymes were used as gene expression modulators in Toxoplasma gondii. The substrate recognition sequence of the trans-acting delta ribozyme, which was derived from the self-cleaving motif located on the antigenomic strand of the hepatitis delta virus genome, was modified to target T. gondii transcripts. The mRNA encoding two well-documented genes, namely uracil phosphoribosyltransferase (UPRT) and hypoxanthine-xanthine-guanine-phosphoribosyltransferase (HXGPRT) of T. gondii were chosen as the targets for the ribozymes. UPRT and HXGPRT are the operative enzymes of the pyrimidine and purine salvage pathway, respectively. The knockdown of UPRT or HXGPRT expression by the engineered ribozymes resulted in parasites with lower levels of the corresponding transcripts and diminished their abilities to assimilate radioactive pyrimidine or purine analogs. Five out of six engineered ribozymes could cleave their substrates and gave rise to the products, which were detected by primer extension assays. Upon electroporation of individual active ribozymes against the UPRT gene, the uracil incorporation was decreased. Similarly, the ribozymes against HXGPRT caused decreased incorporation of hypoxanthine. When the most active ribozyme against UPRT was used in a combination with the best HXGPRT specific ribozyme, the incorporation of both uracil and hypoxanthine were decreased. Northern blot analysis revealed that the target transcripts were lowered to an undetectable level when specific ribozymes were used, and that the transcripts of the housekeeping gene remained intact. The ribozyme system should thus prove to be effective for the study of gene expression in T. gondii.
Collapse
Affiliation(s)
- J Sheng
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ont, Canada N9B 3P4
| | | | | |
Collapse
|
21
|
Abstract
RNase P, a tRNA processing enzyme, contains both RNA and protein subunits. M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli, recognizes its target RNA substrate mainly on the basis of its structure and cleaves a double stranded RNA helix at the 5' end that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. Accordingly, a guide sequence (GS) can be covalently attached to the M1 RNA to generate a sequence specific ribozyme, M1GS RNA. M1GS ribozyme can target any mRNA sequence of choice that is complementary to its guide sequence. Recent studies have shown that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1 and human cytomegalovirus, and the BCR-ABL oncogenic mRNA in vitro and effectively reduce the expression of these mRNAs in cultured cells. Moreover, an in vitro selection scheme has been developed to select for M1 GS ribozyme variants with more efficient catalytic activity in cleaving mRNAs. When expressed in cultured cells, these selected ribozymes also show an enhance ability to inhibit viral gene expression and growth. These recent results demonstrate the feasibility of developing the M1GS ribozyme-based technology as a promising gene targeting approach for basic research and clinical therapeutic application.
Collapse
Affiliation(s)
- Phong Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
22
|
Jacob Y, Seif E, Paquet PO, Lang BF. Loss of the mRNA-like region in mitochondrial tmRNAs of jakobids. RNA (NEW YORK, N.Y.) 2004; 10:605-14. [PMID: 15037770 PMCID: PMC1370551 DOI: 10.1261/rna.5227904] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
It has been postulated that a highly reduced form of transfer messenger RNA (tmRNA), a bacterial molecule involved in the rescue of stalled ribosomes during translation, is expressed in the mitochondrion of the jakobid Reclinomonas americana. Here we show that genes encoding both one-piece and two-piece tmRNAs are present in six different jakobid mitochondrial DNAs. Mitochondrial tmRNAs have retained the highly conserved tRNA(Ala)-like domain, but they apparently lack the mRNA-like region present in all bacterial tmRNAs. Comparative analysis of jakobid mitochondrial genomes shows that a potential mRNA-like region in R. americana (orf64) is located at distant genomic positions in other jakobids. Our results strongly suggest that orf64 is a tatA homolog. Through Northern hybridization we confirm the postulated reduced size of both a one-piece tmRNA in Jakoba libera and a two-piece tmRNA in Seculamonas ecuadoriensis. The J. libera tmRNA is post-transcriptionally modified by addition of a 3' CCA tail, processed in vitro by RNase P RNA, and specifically charged with alanine in vitro by alanyl-tRNA synthetase. Our results strongly support the functionality of these reduced mitochondrial tmRNAs.
Collapse
Affiliation(s)
- Yannick Jacob
- Département de Biochimie, Université de Montréal, Montréal, Québec, Canada H3T 1J4
| | | | | | | |
Collapse
|
23
|
Kim K, Umamoto S, Trang P, Hai R, Liu F. Intracellular expression of engineered RNase P ribozymes effectively blocks gene expression and replication of human cytomegalovirus. RNA (NEW YORK, N.Y.) 2004; 10:438-47. [PMID: 14970389 PMCID: PMC1370939 DOI: 10.1261/rna.5178404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Accepted: 11/07/2003] [Indexed: 05/24/2023]
Abstract
A ribozyme (M1GS RNA) constructed from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the overlapping region of two human cytomegalovirus (HCMV) mRNAs, which encode for the viral essential protease (PR) and capsid assembly proteins (AP), respectively. The results show a reduction of >80% in the expression levels of PR and AP and an inhibition of approximately 2000-fold of viral growth in cells that stably expressed the ribozyme. In comparison, <10% reduction in the expression of the targets and viral growth was found in cells that either did not express the ribozyme or produced a "disabled" ribozyme carrying mutations that abolished its catalytic activity. Examination of replication of the virus in the ribozyme-expressing cells indicates that packaging of the viral genomic DNA into capsids is blocked, and suggests that the antiviral effects are because the ribozyme specifically inhibits the AP and PR expression and, consequently, abolishes viral capsid formation and growth. Our results show that RNase P ribozymes are highly effective in blocking HCMV growth by targeting the PR and AP mRNAs and demonstrate the feasibility to use these ribozymes in gene therapy for antiviral applications.
Collapse
Affiliation(s)
- Kihoon Kim
- Program in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
24
|
Mikulík K. Structure and functional properties of prokaryotic small noncoding RNAs. Folia Microbiol (Praha) 2003; 48:443-68. [PMID: 14533476 DOI: 10.1007/bf02931326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most biochemical, computational and genetic approaches to gene finding assume the Central Dogma and look for genes that make mRNA and have ORFs. These approaches essentially do not work for one class of genes--the noncoding RNA. In all living organisms RNA is involved in a number of essential cell processes. Functional analysis of genome sequences has largely ignored RNA genes and their structures. Different RNA species including rRNA, tRNA, mRNA and sRNA (small RNA) are important structural, transfer, informational, and regulatory molecules containing complex folded conformations that participate in recognition and catalytic processes. Noncoding RNAs play an number of important structural, catalytic and regulatory roles in the cell. The size of the sRNA genes ranges from 70 to 500 nucleotides. Several transcripts of these genes are processed by RNAases and their final products are smaller. The encoding genes are localized between two ORFs and do not overlap with ORFs on the complementary DNA strand. As aptamers, some sRNA bind small molecular components (metal ions, peptides and nucleotides). This review summarizes recent data on the functions of prokaryotic sRNAs and approaches to their identification.
Collapse
Affiliation(s)
- K Mikulík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia.
| |
Collapse
|
25
|
Khan AU, Lal SK. Ribozymes: a modern tool in medicine. J Biomed Sci 2003; 10:457-67. [PMID: 12928586 DOI: 10.1007/bf02256107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Accepted: 05/07/2003] [Indexed: 01/20/2023] Open
Abstract
Since the discovery of ribozymes and self-splicing introns, it has been estimated that this biological property of RNA combined with other recombinant DNA technologies would become a tool to combat viral diseases and control oncogenes. These goals seem like a distinct possibility now. However, there is still a lot to be learned about the mobility of RNA inside the cells and the cellular factors that can impede ribozyme action in order to capitalize fully on the targeted RNA inactivation property of ribozymes. The most effective approach to maximize ribozyme function in a complex intracellular environment is to understand as much as possible about the intracellular fate of the RNA that is being targeted. As new techniques in cell biology become available, such understanding will be less problematic. Fundamental studies of ribozyme structure and mechanism of catalysis are flourishing both at the academic and industrial level and it can be expected that many new developments will continue to take place in these areas in the near future. Here, we review the design, stability and therapeutic application of these technologies illustrating relevant gene targets and applications in molecular medicine. Relevant problems in implementation of the technology, group I and II introns and the differences in applications, ribozyme structure and the application of this technology to virus attack and oncogene downregulation are discussed. Also some of the latest RNA-based technologies such as siRNA, RNA/DNA duplexes and RNA decoys have been introduced.
Collapse
Affiliation(s)
- Asad U Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.
| | | |
Collapse
|
26
|
Abstract
Ribonuclease P (RNase P) is a ubiquitous ribonucleoprotein complex responsible for the biosynthesis of tRNA. This enzyme from Escherichia coli contains a catalytic RNA subunit (M1 ribozyme) and a protein subunit (C5 cofactor). M1 ribozyme cleaves an RNA helix that resembles the acceptor stem and T-stem structure of its natural tRNA substrate. When covalently linked with a guide sequence, M1 RNA can be engineered into a sequence-specific endonuclease, M1GS ribozyme, which can cleave any target RNA sequences that base pair with the guide sequence. Recent studies indicate that M1GS ribozymes efficiently cleave the mRNAs of herpes simplex virus 1, human cytomegalovirus, and cancer causing BCR-ABL proteins in vitro and effectively inhibit the expression of these mRNAs in cultured cells. Moreover, RNase P ribozyme variants that are more active than the wild type M1 RNA can be generated using in vitro selection procedures and the selected variants are also more effective in inhibiting gene expression in cultured cells. These results demonstrate that engineered RNase P ribozymes represent a novel class of promising gene-targeting agents for applications in both basic research and clinical therapy. This review discusses the principle underlying M1GS-mediated gene inactivation and methodologies involved in effective M1GS construction, expression in vivo and emerging prospects of this technology for gene therapy.
Collapse
Affiliation(s)
- Stephen M L Raj
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
27
|
Trang P, Kim K, Zhu J, Liu F. Expression of an RNase P ribozyme against the mRNA encoding human cytomegalovirus protease inhibits viral capsid protein processing and growth. J Mol Biol 2003; 328:1123-35. [PMID: 12729746 DOI: 10.1016/s0022-2836(03)00398-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sequence-specific ribozyme (M1GS RNA) derived from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the mRNA encoding human cytomegalovirus (HCMV) protease (PR), a viral protein that is responsible for the processing of the viral capsid assembly protein. We showed that the constructed ribozyme cleaved the PR mRNA sequence efficiently in vitro. Moreover, a reduction of about 80% in the expression level of the protease and a reduction of about 100-fold in HCMV growth were observed in cells that expressed the ribozyme stably. In contrast, a reduction of less than 10% in the expression of viral protease and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Further examination of the antiviral effects of the ribozyme-mediated cleavage of PR mRNA indicates that (1) the proteolytic cleavage of the capsid assembly protein is inhibited significantly, and (2) the packaging of the viral genomic DNA into the CMV capsids is blocked. These observations are consistent with the notion that the protease functions to process the capsid assembly protein and is essential for viral capsid assembly. Moreover, our results indicate that the RNase P ribozyme-mediated cleavage specifically reduces the expression of the protease, but not other viral genes examined. Thus, M1GS ribozyme is highly effective in inhibiting HCMV growth by targeting the PR mRNA and may represent a novel class of general gene-targeting agents for the studies and treatment of infections caused by human viruses, including HCMV.
Collapse
Affiliation(s)
- Phong Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, University of California, 140 Warren Hall, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
28
|
Lee JH, Kim H, Ko J, Lee Y. Interaction of C5 protein with RNA aptamers selected by SELEX. Nucleic Acids Res 2002; 30:5360-8. [PMID: 12490703 PMCID: PMC140078 DOI: 10.1093/nar/gkf694] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA aptamers binding to C5 protein, the protein component of Escherichia coli RNase P, were selected and characterized as an initial step in elucidating the mechanism of action of C5 protein as an RNA-binding protein. Sequence analyses of the RNA aptamers suggest that C5 protein binds various RNA molecules with dissociation constants comparable to that of M1 RNA, the RNA component of RNase P. The dominant sequence, W2, was chosen for further study. Interactions between W2 and C5 protein were independent of Mg2+, in contrast to the Mg2+ dependency of M1 RNA-C5 protein interactions. The affinity of W2 for C5 protein increased with increasing concentration of monovalent NH4+, suggesting interactions via hydrophobic attraction. W2 forms a fairly stable complex with C5 protein, although the stability of this complex is lower than that of the complex of M1 RNA with C5 protein. The core RNA motif essential for interaction with C5 protein was identified as a stem-loop structure, comprising a 5 bp stem and a 20 nt loop. Our results strongly imply that C5 protein is an interacting partner protein of some cellular RNA species apart from M1 RNA.
Collapse
Affiliation(s)
- June Hyung Lee
- Department of Chemistry, Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology, Daejeon 305-701, South Korea
| | | | | | | |
Collapse
|
29
|
Trang P, Kilani A, Lee J, Hsu A, Liou K, Kim J, Nassi A, Kim K, Liu F. RNase P ribozymes for the studies and treatment of human cytomegalovirus infections. J Clin Virol 2002; 25 Suppl 2:S63-74. [PMID: 12361758 DOI: 10.1016/s1386-6532(02)00097-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ribozymes are promising gene-targeting agents for regulation of gene expression. In our recent studies, RnaseP (M1GS) ribozymes were constructed to target the overlapping region (IE mRNA) of IE1 and IE2 mRNAs of human cytomegalovirus (HCMV) and the mRNA (TK mRNA) coding for thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). Our results indicate that RNase P ribozymes efficiently cleaved the IE mRNA and TK mRNA sequences in vitro. Significant inhibitions (approximately 75-85%) of HCMV IE1/IE2 and HSV-1 TK expression were observed in cells that expressed these ribozymes while a reduction of less than 10% was found in cells that did not express the ribozymes or expressed a disabled one that contained mutations abolishing catalytic activity. Ribozyme variants, which cleaved a TK mRNA sequence in vitro more efficiently than the ribozyme derived from the wildtype RNase P sequence, were selected by an in vitro selection system. When the selected ribozymes were expressed in cultured cells, they were more effective in inhibiting viral IE1/IE2 and TK expression and viral growth than the wildtype ribozyme sequence. Our results provide the first direct evidence that RNase P ribozymes are highly effective in inhibiting HCMV gene expression and growth. Moreover, a selection system was developed for generating novel ribozyme variants that cleave a mRNA substrate efficiently in vitro. These results suggest that M1GS ribozyme-mediated inhibition of expression of viral genes can be used as a new approach for the studies of HCMV gene function and the treatment of HCMV infection.
Collapse
Affiliation(s)
- Phong Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Trang P, Lee J, Kilani AF, Kim J, Liu F. Effective inhibition of herpes simplex virus 1 gene expression and growth by engineered RNase P ribozyme. Nucleic Acids Res 2001; 29:5071-8. [PMID: 11812839 PMCID: PMC97563 DOI: 10.1093/nar/29.24.5071] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using an in vitro selection procedure, we have previously isolated ribonuclease P (RNase P) ribozyme variants that efficiently cleave an mRNA sequence in vitro. In this study, an M1GS RNA variant was used to target the mRNA encoding human herpes simplex virus 1 (HSV-1) major transcription activator ICP4. The variant is about 15 times more efficient in cleaving the ICP4 mRNA sequence in vitro than the ribozyme derived from the wild type RNase P ribozyme. Moreover, the variant is also more effective in inhibiting viral ICP4 expression and growth in HSV-1-infected cells than the wild type ribozyme. A reduction of approximately 90% in the expression level of ICP4 and a reduction of 4000-fold in viral growth were observed in cells that expressed the variant. In contrast, a reduction of <10% in the ICP4 expression and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. These results provide direct evidence that RNase P ribozyme variants can be highly effective in inhibiting HSV-1 gene expression and growth and furthermore, demonstrate the feasibility of developing highly effective RNase P ribozyme variants for anti-HSV applications by using in vitro selection procedures.
Collapse
Affiliation(s)
- P Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
The M1 RNA subunit of Escherichia coli RNase P is a ribozyme responsible for the catalytic activity of the complex. It removes the 5' leader sequence from tRNA precursors to form mature tRNAs. M1 recognizes its target mainly on the basis of its structure and this allows the design of modified ribozymes engineered to destroy other molecules without the need for special sequences in the targeted mRNAs. M1 is thus an ideal tool to eliminate the tumourigenic chimeric messengers created after chromosomal translocations. These results have direct implications for cancer therapeutics and molecular biology in general.
Collapse
Affiliation(s)
- C Cobaleda
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC/Universidad de Salamanca, Campus Unamuno, 37007-Salamanca, Spain.
| | | |
Collapse
|
32
|
Hansen A, Pfeiffer T, Zuleeg T, Limmer S, Ciesiolka J, Feltens R, Hartmann RK. Exploring the minimal substrate requirements for trans-cleavage by RNase P holoenzymes from Escherichia coli and Bacillus subtilis. Mol Microbiol 2001; 41:131-43. [PMID: 11454206 DOI: 10.1046/j.1365-2958.2001.02467.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We analysed the processing of small bipartite model substrates by Escherichia coli and Bacillus subtilis RNase P and corresponding hybrid enzymes. We demonstrate specific trans-cleavage of a model substrate with a 4 bp stem and a 1 nucleotide (nt) 5' flank, representing to date the smallest mimic of a natural RNase P substrate that could be processed in trans at the canonical RNase P cleavage site. Processing efficiencies decreased up to 5000-fold when the 5' flank was shortened from 3 to 1 nt. Reduction of the 5' flank to 1 nt was more deleterious than reducing the stem from 7 to 4 bp, although the 4 bp duplex formed only transiently, in contrast to the stable 7 bp duplex. These results indicate that the crucial contribution of nt -2 in the single-stranded 5' flank to productive interaction is a general feature of A- and B-type bacterial RNase P enzymes. We also showed that an Rp-phosphorothioate modification at nt -2 interferes with processing. Bacterial RNase P holoenzymes are also capable of cleaving single-stranded RNA oligonucleotides as short as 5 nt, yielding RNase P-specific 5'-phosphate and 3'-OH termini, with measured turnover rates of up to 0.7 min-1. All cleavage sites were at least 2 nt away from the 5' and 3' ends of the oligonucleotides. Some cleavage site preferences were observed dependent on the identity of the RNase P RNA subunit.
Collapse
Affiliation(s)
- A Hansen
- Institut für Biochemie, Medizinische Universität zu Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
RNA enzymes--ribozymes--are being developed as treatments for a variety of diseases ranging from inborn metabolic disorders to viral infections and acquired diseases such as cancer. Ribozymes can be used both to downregulate and to repair pathogenic genes. In some instances, short-term exogenous delivery of stabilized RNA is desirable, but many treatments will require viral-mediated delivery to provide long-term expression of the therapeutic catalyst. Current gene therapy applications employ variations on naturally occurring ribozymes, but in vitro selection has provided new RNA and DNA catalysts, and research on trans-splicing and RNase P has suggested ways to harness the endogenous ribozymes of the cell for therapeutic purposes.
Collapse
Affiliation(s)
- A S Lewin
- Dept of Molecular Genetics and Microbiology and the Powell Gene Therapy Center, University of Florida, Gainesville 32610-0266, USA.
| | | |
Collapse
|
34
|
Cole KB, Dorit RL. Protein cofactor-dependent acquisition of novel catalytic activity by the RNase P ribonucleoprotein of E. coli. J Mol Biol 2001; 307:1181-212. [PMID: 11292334 DOI: 10.1006/jmbi.2001.4519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli RNase P derivatives were evolved in vitro for DNA cleavage activity. Ribonucleoproteins sampled after ten generations of selection show a >400-fold increase in the first-order rate constant (k(cat)) on a DNA substrate, reflecting a significant improvement in the chemical cleavage step. This increase is offset by a reduction in substrate binding, as measured by K(M). We trace the catalytic enhancement to two ubiquitous A-->U sequence changes at positions 136 and 333 in the M1 RNA component, positions that are phylogenetically conserved in the Eubacteria. Furthermore, although the mutations are located in different folding domains of the catalytic RNA, the first in the substrate binding domain, the second near the catalytic core, their effect on catalytic activity is significantly influenced by the presence of the C5 protein. The activity of the evolved ribonucleoproteins on both pre-4.5 S RNA and on an RNA oligo substrate remain at wild-type levels. In contrast, improved DNA cleavage activity is accompanied by a 500-fold decrease in pre-tRNA cleavage efficiency (k(cat)/K(M)). The presence of the C5 component does not buffer this tradeoff in catalytic activities, despite the in vivo role played by the C5 protein in enhancing the substrate versatility of RNase P. The change at position 136, located in the J11/12 single-stranded region, likely alters the geometry of the pre-tRNA-binding cleft and may provide a functional explanation for the observed tradeoff. These results thus shed light both on structure/function relations in E. coli RNase P and on the crucial role of proteins in enhancing the catalytic repertoire of RNA.
Collapse
Affiliation(s)
- K B Cole
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | | |
Collapse
|
35
|
Trang P, Kilani A, Kim J, Liu F. A ribozyme derived from the catalytic subunit of RNase P from Escherichia coli is highly effective in inhibiting replication of herpes simplex virus 1. J Mol Biol 2000; 301:817-26. [PMID: 10966788 DOI: 10.1006/jmbi.2000.4022] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A sequence-specific ribozyme (M1GS RNA) derived from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the mRNA encoding human herpes simplex virus 1 (HSV-1) major transcription activator, ICP4. A reduction of more than 80% in the expression level of ICP4 and a reduction of about 1000-fold in viral growth were observed in cells that stably expressed the ribozyme. In contrast, a reduction of less than 10 % in ICP4 expression and viral growth was observed in cells that either did not express the ribozyme or produced a catalytically inactive ribozyme mutant. Thus, M1GS ribozyme is highly effective in inhibiting HSV-1 growth and can be used as a general gene-targeting agent for anti-HSV applications.
Collapse
MESH Headings
- Animals
- Antiviral Agents/chemistry
- Antiviral Agents/metabolism
- Base Sequence
- Catalytic Domain
- Cell Line
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli Proteins
- Gene Expression Regulation, Viral
- Gene Silencing
- Genes, Viral/genetics
- Herpesvirus 1, Human/growth & development
- Herpesvirus 1, Human/physiology
- Humans
- Immediate-Early Proteins/antagonists & inhibitors
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease P
- Substrate Specificity
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Virus Replication
Collapse
Affiliation(s)
- P Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry School of Public Health, University of California, 140 Warren Hall, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
36
|
Hsu AW, Kilani AF, Liou K, Lee J, Liu F. Differential effects of the protein cofactor on the interactions between an RNase P ribozyme and its target mRNA substrate. Nucleic Acids Res 2000; 28:3105-16. [PMID: 10931926 PMCID: PMC108434 DOI: 10.1093/nar/28.16.3105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2000] [Revised: 06/23/2000] [Accepted: 06/23/2000] [Indexed: 11/14/2022] Open
Abstract
RNase P from Escherichia coli is a tRNA-processing enzyme and consists of a catalytic RNA subunit (M1 RNA) and a protein component (C5 protein). M1GS, a gene-targeting ribozyme derived from M1, can cleave a herpes simplex virus 1 mRNA efficiently in vitro and inhibit its expression effectively in viral-infected cells. In this study, the effects of C5 on the interactions between a M1GS ribozyme and a model mRNA substrate were investigated by site-specific UV crosslink mapping. In the presence of the protein cofactor, the ribozyme regions crosslinked to the substrate sequence 3' immediately to the cleavage site were similar to those found in the absence of C5. Meanwhile, some of the ribozyme regions (e.g. P12 and J11/12) that were crosslinked to the leader sequence 5' immediately to the cleavage site in the presence of C5 were different from those regions (e.g. P3 and P4) found in the absence of the protein cofactor and were not among those that are believed to interact with a tRNA. Understanding how C5 affects the specific interactions between the ribozyme and its target mRNA may facilitate the development of gene-targeting ribozymes that function effectively in vivo, in the presence of cellular proteins.
Collapse
Affiliation(s)
- A W Hsu
- Program in Infectious Diseases and Immunity and Program in Comparative Biochemistry, School of Public Health, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
37
|
Trang P, Lee M, Nepomuceno E, Kim J, Zhu H, Liu F. Effective inhibition of human cytomegalovirus gene expression and replication by a ribozyme derived from the catalytic RNA subunit of RNase P from Escherichia coli. Proc Natl Acad Sci U S A 2000; 97:5812-7. [PMID: 10811889 PMCID: PMC18516 DOI: 10.1073/pnas.100101797] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sequence-specific ribozyme (M1GS RNA) derived from the catalytic RNA subunit of RNase P from Escherichia coli was used to target the overlapping exon 3 region of the mRNAs encoding the major transcription regulatory proteins IE1 and IE2 of human cytomegalovirus. A reduction of more than 80% in the expression levels of IE1 and IE2 and a reduction of about 150-fold in viral growth were observed in human cells that stably expressed the ribozyme. In contrast, a reduction of less than 10% in the IE1/IE2 expression and viral growth was observed in cells that either did not express the ribozyme or produced a "disabled" ribozyme that carried mutations that abolished its catalytic activity. Examination of the expression of several other viral early and late genes in the cells that expressed the M1GS ribozyme further revealed an overall reduction of at least 80% in their expression. These results are consistent with the notion that the antiviral effects in these cells are due to the fact that the ribozyme specifically inhibits the expression of IE1 and IE2 and, consequently, abolishes the expression of viral early and late genes as well as viral growth. Our study is the first, to our knowledge, to use M1GS ribozyme for inhibiting human cytomegalovirus replication and demonstrates the utility of this ribozyme for antiviral applications.
Collapse
MESH Headings
- Antiviral Agents/chemistry
- Antiviral Agents/isolation & purification
- Antiviral Agents/pharmacology
- Bacterial Proteins/chemistry
- Catalytic Domain
- Cytomegalovirus/drug effects
- Cytomegalovirus/genetics
- Cytomegalovirus/physiology
- Endoribonucleases/chemistry
- Escherichia coli/enzymology
- Escherichia coli Proteins
- Fibroblasts/virology
- Gene Expression Regulation, Viral/drug effects
- Genes, Immediate-Early
- Genes, Viral
- Humans
- Immediate-Early Proteins/biosynthesis
- Immediate-Early Proteins/genetics
- Membrane Glycoproteins
- RNA, Bacterial/chemistry
- RNA, Catalytic/chemistry
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease P
- Substrate Specificity
- Trans-Activators
- Transfection
- Viral Envelope Proteins
- Viral Proteins
- Virus Replication/drug effects
Collapse
Affiliation(s)
- P Trang
- Program in Infectious Diseases and Immunity, Program in Comparative Biochemistry, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kilani AF, Trang P, Jo S, Hsu A, Kim J, Nepomuceno E, Liou K, Liu F. RNase P ribozymes selected in vitro to cleave a viral mRNA effectively inhibit its expression in cell culture. J Biol Chem 2000; 275:10611-22. [PMID: 10744757 DOI: 10.1074/jbc.275.14.10611] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An in vitro selection procedure was used to select RNase P ribozyme variants that efficiently cleaved the sequence of the mRNA encoding thymidine kinase of herpes simplex virus 1. Of the 45 selected variants sequenced, 25 ribozymes carried a common mutation at nucleotides 224 and 225 of RNase P catalytic RNA from Escherichia coli (G(224)G(225) --> AA). These selected ribozymes exhibited at least 10 times higher cleavage efficiency (k(cat)/K(m)) than that derived from the wild type ribozyme. Our results suggest that the mutated A(224)A(225) are in close proximity to the substrate and enhance substrate binding of the ribozyme. When these ribozyme variants were expressed in herpes simplex virus 1-infected cells, the levels of thymidine kinase mRNA and protein were reduced by 95-99%. Our study provides the first direct evidence that RNase P ribozyme variants isolated by the selection procedure can be used for the construction of gene-targeting ribozymes that are highly effective in tissue culture. These results demonstrate the potential for using RNase P ribozymes as gene-targeting agents against any mRNA sequences, and using the selection procedure as a general approach for the engineering of RNase P ribozymes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Clone Cells
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/metabolism
- Escherichia coli Proteins
- Genetic Engineering
- Genetic Variation
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/genetics
- Kinetics
- Molecular Sequence Data
- Mutagenesis
- Nucleic Acid Conformation
- Oligodeoxyribonucleotides
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Proteins/metabolism
- Ribonuclease P
- Sequence Alignment
- Thymidine Kinase/genetics
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- A F Kilani
- Program of Infectious Diseases and Immunity, Program of Comparative Biochemistry, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
In vivo inhibition by a site-specific catalytic RNA subunit of RNase P designed against the BCR-ABL oncogenic products: a novel approach for cancer treatment. Blood 2000. [DOI: 10.1182/blood.v95.3.731.003k28_731_737] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One major obstacle to the effective treatment of cancer is to distinguish between tumor cells and normal cells. The chimeric molecules created by cancer-associated chromosomal abnormalities are ideal therapeutic targets because they are unique to the disease. We describe the use of a novel approach based on the catalytic RNA subunit of RNase P to destroy specifically the tumor-specific fusion genes created as a result of chromosome abnormalities. Using as a target model the abnormal BCR-ABL p190 and p210 products, we constructed M1-RNA with guide sequences that recognized the oncogenic messengers at the fusion point (M1-p190-GS and M1-p210-GS). To test the effectiveness and the specificity of M1-p190-GS and M1-p210-GS, we studied in vitro and in vivo effects of these RNA enzymes againstBCR-ABLp190 andBCR-ABLp210, bearing in mind that both fusion genes share the ABL sequence but differ in the sequence coming from the BCR gene. We showed that M1-p190-GS and M1-p210-GS can act as sequence-specific endonucleases and can exclusively cleave target RNA that forms a base pair with the guide sequence (GS). We also demonstrated that when M1-p190-GS and M1-p210-GS were expressed in proper mammalian cell models, they abolished the effect of BCR-ABL by specifically decreasing the amount of the target BCR-ABL mRNA and preventing the function of theBCR-ABL oncogenes. These data clearly demonstrate the usefulness of the catalytic activity of M1-GS RNA to cleave specifically the chimeric molecules created by chromosomal abnormalities in human cancer and to represent a novel approach to cancer treatment.
Collapse
|
40
|
Cole KB, Dorit RL. Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation. J Mol Biol 1999; 292:931-44. [PMID: 10525416 DOI: 10.1006/jmbi.1999.3098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribonucleoprotein RNase P is a critical component of metabolism in all known organisms. In Escherichia coli, RNase P processes a vast array of substrates, including precursor-tRNAs and precursor 4. 5S RNA. In order to understand how such catalytic versatility is achieved and how novel catalytic activity can be acquired, we evolve the M1 RNA ribozyme (the catalytic component of E. coli RNase P) in vitro for cleavage of a DNA substrate. In so doing, we probe the consequences of enhancing catalytic activity on a novel substrate and investigate the cost this versatile enzyme pays for molecular adaptation. A total of 25 generations of in vitro evolution yield a population showing more than a 1000-fold increase in DNA substrate cleavage efficiency (kcat/KM) relative to wild-type M1 RNA. This enhancement is accompanied by a significant reduction in the ability of evolved ribozymes to process the ptRNA class of substrates but also a contrasting increase in activity on the p4.5S RNA class of substrates. This change in the catalytic versatility of the evolved ribozymes suggests that the acquired activity comes at the cost of substrate versatility, and indicates that E. coli RNase P catalytic flexibility is maintained in vivo by selection for the processing of multiple substrates. M1 RNA derivatives enhance cleavage of the DNA substrate by accelerating the catalytic step (kcat) of DNA cleavage, although overall processing efficiency is offset by reduced substrate binding. The enhanced ability to cleave a DNA substrate cannot be readily traced to any of the predominant mutations found in the evolved population, and must instead be due to multiple sequence changes dispersed throughout the molecule. This conclusion underscores the difficulty of correlating observed mutations with changes in catalytic behavior, even in simple biological catalysts for which three-dimensional models are available.
Collapse
Affiliation(s)
- K B Cole
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect St, New Haven, CT, 06511, USA
| | | |
Collapse
|
41
|
Shi PY, Weiner AM, Maizels N. A top-half tDNA minihelix is a good substrate for the eubacterial CCA-adding enzyme. RNA (NEW YORK, N.Y.) 1998; 4:276-284. [PMID: 9510330 PMCID: PMC1369617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The CCA-adding enzyme [ATP(CTP):tRNA nucleotidyltransferase] catalyzes the addition and regeneration of the 3'-terminal CCA sequence of tRNAs. We show that the CCA-adding enzyme will specifically add a CCA terminus to synthetic full-length tDNA and to DNA oligonucleotides corresponding to the "top half" of tRNA-the acceptor stem and TpsiC stem-loop of tRNA. CCA addition to the top half tDNA minihelices requires a 2' as well as a 3' OH at the 3' terminus of the tDNA. Addition also depends on the length of the base paired stem, and is facilitated by, but is not dependent upon, the presence of a TpsiC loop. These results provide further evidence for independent functions of the top and bottom halves of tRNA, and support the hypothesis that these two structurally distinct and functionally independent domains evolved independently.
Collapse
Affiliation(s)
- P Y Shi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-8024, USA
| | | | | |
Collapse
|