1
|
Issa A, Schlotter F, Flayac J, Chen J, Wacheul L, Philippe M, Sardini L, Mostefa L, Vandermoere F, Bertrand E, Verheggen C, Lafontaine DL, Massenet S. The nucleolar phase of signal recognition particle assembly. Life Sci Alliance 2024; 7:e202402614. [PMID: 38858088 PMCID: PMC11165425 DOI: 10.26508/lsa.202402614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The signal recognition particle is essential for targeting transmembrane and secreted proteins to the endoplasmic reticulum. Remarkably, because they work together in the cytoplasm, the SRP and ribosomes are assembled in the same biomolecular condensate: the nucleolus. How important is the nucleolus for SRP assembly is not known. Using quantitative proteomics, we have investigated the interactomes of SRP components. We reveal that SRP proteins are associated with scores of nucleolar proteins important for ribosome biogenesis and nucleolar structure. Having monitored the subcellular distribution of SRP proteins upon controlled nucleolar disruption, we conclude that an intact organelle is required for their proper localization. Lastly, we have detected two SRP proteins in Cajal bodies, which indicates that previously undocumented steps of SRP assembly may occur in these bodies. This work highlights the importance of a structurally and functionally intact nucleolus for efficient SRP production and suggests that the biogenesis of SRP and ribosomes may be coordinated in the nucleolus by common assembly factors.
Collapse
Affiliation(s)
- Amani Issa
- Université de Lorraine, CNRS, IMoPA, Nancy, France
| | | | | | - Jing Chen
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | - Ludivine Wacheul
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | | | | | | | | | | | | | - Denis Lj Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Charleroi-Gosselies, Belgium
| | | |
Collapse
|
2
|
Gussakovsky D, Black NA, Booy EP, McKenna SA. The role of SRP9/SRP14 in regulating Alu RNA. RNA Biol 2024; 21:1-12. [PMID: 39563162 PMCID: PMC11581171 DOI: 10.1080/15476286.2024.2430817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
SRP9/SRP14 is a protein heterodimer that plays a critical role in the signal recognition particle through its interaction with the scaffolding signal recognition particle RNA (7SL). SRP9/SRP14 binding to 7SL is mediated through a conserved structural motif that is shared with the primate-specific Alu RNA. Alu RNA are transcription products of Alu elements, a retroelement that comprises ~10% of the human genome. Alu RNA are involved in myriad biological processes and are dysregulated in several human disease states. This review focuses on the roles SRP9/SRP14 has in regulating Alu RNA diversification, maturation, and function. The diverse mechanisms through which SRP9/SRP14 regulates Alu RNA exemplify the breadth of protein-mediated regulation of non-coding RNA.
Collapse
Affiliation(s)
| | - Nicole A. Black
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Evan P. Booy
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A. McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Borovská I, Vořechovský I, Královičová J. Alu RNA fold links splicing with signal recognition particle proteins. Nucleic Acids Res 2023; 51:8199-8216. [PMID: 37309897 PMCID: PMC10450188 DOI: 10.1093/nar/gkad500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Transcriptomic diversity in primates was considerably expanded by exonizations of intronic Alu elements. To better understand their cellular mechanisms we have used structure-based mutagenesis coupled with functional and proteomic assays to study the impact of successive primate mutations and their combinations on inclusion of a sense-oriented AluJ exon in the human F8 gene. We show that the splicing outcome was better predicted by consecutive RNA conformation changes than by computationally derived splicing regulatory motifs. We also demonstrate an involvement of SRP9/14 (signal recognition particle) heterodimer in splicing regulation of Alu-derived exons. Nucleotide substitutions that accumulated during primate evolution relaxed the conserved left-arm AluJ structure including helix H1 and reduced the capacity of SRP9/14 to stabilize the closed Alu conformation. RNA secondary structure-constrained mutations that promoted open Y-shaped conformations of the Alu made the Alu exon inclusion reliant on DHX9. Finally, we identified additional SRP9/14 sensitive Alu exons and predicted their functional roles in the cell. Together, these results provide unique insights into architectural elements required for sense Alu exonization, identify conserved pre-mRNA structures involved in exon selection and point to a possible chaperone activity of SRP9/14 outside the mammalian signal recognition particle.
Collapse
Affiliation(s)
- Ivana Borovská
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
| | - Igor Vořechovský
- Faculty of Medicine, University of Southampton, HDH, MP808, Southampton SO16 6YD, United Kingdom
| | - Jana Královičová
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava 840 05, Slovak Republic
- Institute of Zoology, Slovak Academy of Sciences, Bratislava 845 06, Slovak Republic
| |
Collapse
|
4
|
Gussakovsky D, Booy EP, Brown MJF, McKenna SA. Nuclear SRP9/SRP14 heterodimer transcriptionally regulates 7SL and BC200 RNA expression. RNA (NEW YORK, N.Y.) 2023; 29:1185-1200. [PMID: 37156570 PMCID: PMC10351891 DOI: 10.1261/rna.079649.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023]
Abstract
The SRP9/SRP14 heterodimer is a central component of signal recognition particle (SRP) RNA (7SL) processing and Alu retrotransposition. In this study, we sought to establish the role of nuclear SRP9/SRP14 in the transcriptional regulation of 7SL and BC200 RNA. 7SL and BC200 RNA steady-state levels, rate of decay, and transcriptional activity were evaluated under SRP9/SRP14 knockdown conditions. Immunofluorescent imaging, and subcellular fractionation of MCF-7 cells, revealed a distinct nuclear localization for SRP9/SRP14. The relationship between this localization and transcriptional activity at 7SL and BC200 genes was also examined. These findings demonstrate a novel nuclear function of SRP9/SRP14 establishing that this heterodimer transcriptionally regulates 7SL and BC200 RNA expression. We describe a model in which SRP9/SRP14 cotranscriptionally regulate 7SL and BC200 RNA expression. Our model is also a plausible pathway for regulating Alu RNA transcription and is consistent with the hypothesized roles of SRP9/SRP14 transporting 7SL RNA into the nucleolus for posttranscriptional processing, and trafficking of Alu RNA for retrotransposition.
Collapse
Affiliation(s)
- Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Mira J F Brown
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
5
|
Song Z, Shah S, Lv B, Ji N, Liu X, Yan L, Khan M, Zhao Y, Wu P, Liu S, Zheng L, Su L, Wang X, Lv Z. Anti-aging and anti-oxidant activities of murine short interspersed nuclear element antisense RNA. Eur J Pharmacol 2021; 912:174577. [PMID: 34688636 DOI: 10.1016/j.ejphar.2021.174577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/09/2022]
Abstract
Short interspersed nuclear elements (SINEs) play a key role in regulating gene expression, and SINE RNAs are involved in age-related diseases. We investigated the anti-aging effects of a genetically engineered murine SINE B1 antisense RNA (B1as RNA) and explored its mechanism of action in naturally senescent BALB/c (≥14 months) and moderately senscent C57BL/6N (≥9 months) mice. After tail vein injection, B1as RNA was available in the blood of mice for approximately 30 min, persisted for approximately 2-4 h in most detected tissues and persisted approximately 48 h in lungs. We found that treatment with B1as RNA improved stamina and promoted hair re-growth in aged mice. Treatment with B1as RNA also partially rescued the increase in mitochondrial DNA copy number in liver and spleen tissues observed in aged and moderately senescent mice. Finally, treatment with B1as RNA increased the activities of superoxide dismutase and glutathione peroxidase in aged and moderately senescent mice, reduced these animals' malondialdehyde and reactive oxygen species levels, and modulated the expression of several aging-associated genes, including Sirtuin 1, p21, p16Ink4a, p15Ink4b and p19Arf, and anti-oxidant genes (Sesn1 and Sesn 2). These data suggest that B1as RNA inhibits the aging process by enhancing antioxidant activity, promoting the scavenging of free radicals, and modulating the expression of aging-associated genes. This is the first report describing the anti-aging activity of SINE antisense RNA, which may serve as an effective nucleic acid drug for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Zhixue Song
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Suleman Shah
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Baixue Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, PR China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, Hubei Province, PR China.
| | - Ning Ji
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Xin Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Lifang Yan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Murad Khan
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Yufang Zhao
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Peiyuan Wu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Shufeng Liu
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Long Zheng
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Libo Su
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| | - Zhanjun Lv
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang, 050017, Hebei Province, PR China.
| |
Collapse
|
6
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
7
|
Faoro C, Ataide SF. Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components. Front Mol Biosci 2021; 8:679584. [PMID: 34113652 PMCID: PMC8185352 DOI: 10.3389/fmolb.2021.679584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022] Open
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex fundamental for co-translational delivery of proteins to their proper membrane localization and secretory pathways. Literature of the past two decades has suggested new roles for individual SRP components, 7SL RNA and proteins SRP9, SRP14, SRP19, SRP54, SRP68 and SRP72, outside the SRP cycle. These noncanonical functions interconnect SRP with a multitude of cellular and molecular pathways, including virus-host interactions, stress response, transcriptional regulation and modulation of apoptosis in autoimmune diseases. Uncovered novel properties of the SRP components present a new perspective for the mammalian SRP as a biological modulator of multiple cellular processes. As a consequence of these findings, SRP components have been correlated with a growing list of diseases, such as cancer progression, myopathies and bone marrow genetic diseases, suggesting a potential for development of SRP-target therapies of each individual component. For the first time, here we present the current knowledge on the SRP noncanonical functions and raise the need of a deeper understanding of the molecular interactions between SRP and accessory cellular components. We examine diseases associated with SRP components and discuss the development and feasibility of therapeutics targeting individual SRP noncanonical functions.
Collapse
Affiliation(s)
- Camilla Faoro
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sandro F Ataide
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Zhang XO, Pratt H, Weng Z. Investigating the Potential Roles of SINEs in the Human Genome. Annu Rev Genomics Hum Genet 2021; 22:199-218. [PMID: 33792357 DOI: 10.1146/annurev-genom-111620-100736] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short interspersed nuclear elements (SINEs) are nonautonomous retrotransposons that occupy approximately 13% of the human genome. They are transcribed by RNA polymerase III and can be retrotranscribed and inserted back into the genome with the help of other autonomous retroelements. Because they are preferentially located close to or within gene-rich regions, they can regulate gene expression by various mechanisms that act at both the DNA and the RNA levels. In this review, we summarize recent findings on the involvement of SINEs in different types of gene regulation and discuss the potential regulatory functions of SINEs that are in close proximity to genes, Pol III-transcribed SINE RNAs, and embedded SINE sequences within Pol II-transcribed genes in the human genome. These discoveries illustrate how the human genome has exapted some SINEs into functional regulatory elements.
Collapse
Affiliation(s)
- Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; .,Current affiliation: School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Henry Pratt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| |
Collapse
|
9
|
Jang S, Shin H, Lee Y. Functional Analysis of RNA Motifs Essential for BC200 RNA-mediated Translational Regulation. BMB Rep 2020. [PMID: 31234958 PMCID: PMC7061212 DOI: 10.5483/bmbrep.2020.53.2.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain cytoplasmic 200 RNA (BC200 RNA) is proposed to act as a local translational modulator by inhibiting translation after being targeted to neuronal dendrites. However, the mechanism by which BC200 RNA inhibits translation is not fully understood. Although a detailed functional analysis of RNA motifs is essential for understanding the BC200 RNA-mediated translation-inhibition mechanism, there is little relevant research on the subject. Here, we performed a systematic domain-dissection analysis of BC200 RNA to identify functional RNA motifs responsible for its translational-inhibition activity. Various RNA variants were assayed for their ability to inhibit translation of luciferase mRNA in vitro. We found that the 111–200-nucleotide region consisting of part of the Alu domain as well as the A/C-rich domain (consisting of both the A-rich and C-rich domains) is most effective for translation inhibition. Surprisingly, we also found that individual A-rich, A/C-rich, and Alu domains can enhance translation but at different levels for each domain, and that these enhancing effects manifest as cap-dependent translation.
Collapse
Affiliation(s)
- Seonghui Jang
- Department of Chemistry, KAIST, Daejeon 34141, Korea
- Korea Food Research Institute, Wanju 55365, Korea
| | - Heegwon Shin
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
10
|
Booy EP, McRae EK, Ezzati P, Choi T, Gussakovsky D, McKenna SA. Comprehensive analysis of the BC200 ribonucleoprotein reveals a reciprocal regulatory function with CSDE1/UNR. Nucleic Acids Res 2019; 46:11575-11591. [PMID: 30247708 PMCID: PMC6265466 DOI: 10.1093/nar/gky860] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
BC200 is a long non-coding RNA primarily expressed in brain but aberrantly expressed in various cancers. To gain a further understanding of the function of BC200, we performed proteomic analyses of the BC200 ribonucleoprotein (RNP) by transfection of 3′ DIG-labelled BC200. Protein binding partners of the functionally related murine RNA BC1 as well as a scrambled BC200 RNA were also assessed in both human and mouse cell lines. Stringent validation of proteins identified by mass spectrometry confirmed 14 of 84 protein binding partners and excluded eight proteins that did not appreciably bind BC200 in reverse experiments. Gene ontology analyses revealed general roles in RNA metabolic processes, RNA processing and splicing. Protein/RNA interaction sites were mapped with a series of RNA truncations revealing three distinct modes of interaction involving either the 5′ Alu-domain, 3′ A-rich or 3′ C-rich regions. Due to their high enrichment values in reverse experiments, CSDE1 and STRAP were further analyzed demonstrating a direct interaction between CSDE1 and BC200 and indirect binding of STRAP to BC200 via heterodimerization with CSDE1. Knock-down studies identified a reciprocal regulatory relationship between CSDE1 and BC200 and immunofluorescence analysis of BC200 knock-down cells demonstrated a dramatic reorganization of CSDE1 into distinct nuclear foci.
Collapse
Affiliation(s)
- Evan P Booy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ewan Ks McRae
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peyman Ezzati
- Manitoba Centre for Proteomics and Systems Biology, Section of Biomedical Proteomics, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba and Health Sciences Centre, Winnipeg, Manitoba, Canada
| | - Taegi Choi
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Daniel Gussakovsky
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Samson J, Cronin S, Dean K. BC200 (BCYRN1) - The shortest, long, non-coding RNA associated with cancer. Noncoding RNA Res 2018; 3:131-143. [PMID: 30175286 PMCID: PMC6114260 DOI: 10.1016/j.ncrna.2018.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/22/2022] Open
Abstract
With the discovery that the level of RNA synthesis in human cells far exceeds what is required to express protein-coding genes, there has been a concerted scientific effort to identify, catalogue and uncover the biological functions of the non-coding transcriptome. Long, non-coding RNAs (lncRNAs) are a diverse group of RNAs with equally wide-ranging biological roles in the cell. An increasing number of studies have reported alterations in the expression of lncRNAs in various cancers, although unravelling how they contribute specifically to the disease is a bigger challenge. Originally described as a brain-specific, non-coding RNA, BC200 (BCYRN1) is a 200-nucleotide, predominantly cytoplasmic lncRNA that has been linked to neurodegenerative disease and several types of cancer. Here we summarise what is known about BC200, primarily from studies in neuronal systems, before turning to a review of recent work that aims to understand how this lncRNA contributes to cancer initiation, progression and metastasis, along with its possible clinical utility as a biomarker or therapeutic target.
Collapse
Affiliation(s)
| | | | - K. Dean
- School of Biochemistry and Cell Biology, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Kobayashi K, Jomaa A, Lee JH, Chandrasekar S, Boehringer D, Shan SO, Ban N. Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex. Science 2018; 360:323-327. [PMID: 29567807 PMCID: PMC6309883 DOI: 10.1126/science.aar7924] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 01/13/2023]
Abstract
Signal recognition particle (SRP) targets proteins to the endoplasmic reticulum (ER). SRP recognizes the ribosome synthesizing a signal sequence and delivers it to the SRP receptor (SR) on the ER membrane followed by the transfer of the signal sequence to the translocon. Here, we present the cryo-electron microscopy structure of the mammalian translating ribosome in complex with SRP and SR in a conformation preceding signal sequence handover. The structure visualizes all eukaryotic-specific SRP and SR proteins and reveals their roles in stabilizing this conformation by forming a large protein assembly at the distal site of SRP RNA. We provide biochemical evidence that the guanosine triphosphate hydrolysis of SRP·SR is delayed at this stage, possibly to provide a time window for signal sequence handover to the translocon.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland.
| |
Collapse
|
13
|
Daskalova E, Baev V, Rusinov V, Minkov I. 3'UTR-located ALU Elements: Donors of Potetial miRNA Target Sites and Mediators of Network miRNA-based Regulatory Interactions. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent research data reveal complex, network-based interactions between mobile elements and regulatory systems of eukaryotic cells. In this article, we focus on regulatory interactions between Alu elements and micro RNAs (miRNAs). Our results show that the majority of the Alu sequences inserted in 3'UTRs of analyzed human genes carry strong potential target sites for at least 53 different miRNAs. Thus, 3'UTR-located Alu elements may play the role of mobile regulatory modules that supply binding sites for miRNA regulation. Their abundance and ability to distribute a set of certain miRNA target sites may have an important role in establishment, extension, network organization, and, as we suppose – in the regulation and environment-dependent activation/inactivation of some elements of the miRNA regulatory system, as well as for a larger scale RNA-based regulatory interactions. The Alu-miRNA connection may be crucial especially for the primate/human evolution.
Collapse
Affiliation(s)
- Evelina Daskalova
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria
| | - Vesselin Baev
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria
| | - Ventsislav Rusinov
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria
| | - Ivan Minkov
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria
| |
Collapse
|
14
|
Gold MP, Fresco JR. A Role for the Mutagenic DNA Self-Catalyzed Depurination Mechanism in the Evolution of 7SL-Derived RNAs. J Mol Evol 2017; 85:84-98. [PMID: 29103173 DOI: 10.1007/s00239-017-9811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
The Alu element, the most prevalent SINE (short interspersed element) in the human genome, is one of the many RNA-encoding genes that evolved from the 7SL RNA gene. During analysis of the evolution of 7SL-derived RNAs, two distinct evolutionary intermediates capable of self-catalyzed DNA depurination (SDP) were identified. These SDP sequences spontaneously create apurinic sites that can result in increased mutagenesis due to their error-prone repair. This DNA self-depurination mechanism has been shown both in vitro and in vivo to lead to substitution and short frameshift mutations at a frequency that far exceeds their occurrence due to random errors in DNA replication. In both evolutionary intermediates, the same self-depurination sequence overlaps motifs necessary for successful transcription and SRP9/14 (signal recognition particle) binding; hence, mutations in this region could disrupt RNA activity. Yet, the 7SL-derived RNAs that arose from the elements capable of SDP show significant diversity in this region, and every new sequence retains the transcription and SRP9/14-binding motifs, even as it has lost the SDP sequence. While some (but not all) of the mutagenesis can be alternatively attributed to CpG decay, the very fact that the self-depurinating sequences are selectively discarded in all cases suggests that this was evolutionarily motivated to prevent further destructive mutagenesis by the SDP mechanism.
Collapse
Affiliation(s)
- Maxwell P Gold
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Jacques R Fresco
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
15
|
Chen LL, Yang L. ALU ternative Regulation for Gene Expression. Trends Cell Biol 2017; 27:480-490. [DOI: 10.1016/j.tcb.2017.01.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 12/23/2022]
|
16
|
Farré D, Engel P, Angulo A. Novel Role of 3'UTR-Embedded Alu Elements as Facilitators of Processed Pseudogene Genesis and Host Gene Capture by Viral Genomes. PLoS One 2016; 11:e0169196. [PMID: 28033411 PMCID: PMC5199112 DOI: 10.1371/journal.pone.0169196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- * E-mail:
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
17
|
Conserved 3' UTR stem-loop structure in L1 and Alu transposons in human genome: possible role in retrotransposition. BMC Genomics 2016; 17:992. [PMID: 27914481 PMCID: PMC5135761 DOI: 10.1186/s12864-016-3344-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/25/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the process of retrotransposition LINEs use their own machinery for copying and inserting themselves into new genomic locations, while SINEs are parasitic and require the machinery of LINEs. The exact mechanism of how a LINE-encoded reverse transcriptase (RT) recognizes its own and SINE RNA remains unclear. However it was shown for the stringent-type LINEs that recognition of a stem-loop at the 3'UTR by RT is essential for retrotransposition. For the relaxed-type LINEs it is believed that the poly-A tail is a common recognition element between LINE and SINE RNA. However polyadenylation is a property of any messenger RNA, and how the LINE RT recognizes transposon and non-transposon RNAs remains an open question. It is likely that RNA secondary structures play an important role in RNA recognition by LINE encoded proteins. RESULTS Here we selected a set of L1 and Alu elements from the human genome and investigated their sequences for the presence of position-specific stem-loop structures. We found highly conserved stem-loop positions at the 3'UTR. Comparative structural analyses of a human L1 3'UTR stem-loop showed a similarity to 3'UTR stem-loops of the stringent-type LINEs, which were experimentally shown to be recognized by LINE RT. The consensus stem-loop structure consists of 5-7 bp loop, 8-10 bp stem with a bulge at a distance of 4-6 bp from the loop. The results show that a stem loop with a bulge exists at the 3'-end of Alu. We also found conserved stem-loop positions at 5'UTR and at the end of ORF2 and discuss their possible role. CONCLUSIONS Here we presented an evidence for the presence of a highly conserved 3'UTR stem-loop structure in L1 and Alu retrotransposons in the human genome. Both stem-loops show structural similarity to the stem-loops of the stringent-type LINEs experimentally confirmed as essential for retrotransposition. Here we hypothesize that both L1 and Alu RNA are recognized by L1 RT via the 3'-end RNA stem-loop structure. Other conserved stem-loop positions in L1 suggest their possible functions in protein-RNA interactions but to date no experimental evidence has been reported.
Collapse
|
18
|
Ivanova E, Berger A, Scherrer A, Alkalaeva E, Strub K. Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits. Nucleic Acids Res 2015; 43:2874-87. [PMID: 25697503 PMCID: PMC4357698 DOI: 10.1093/nar/gkv048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The human genome contains about 1.5 million Alu elements, which are transcribed into Alu RNAs by RNA polymerase III. Their expression is upregulated following stress and viral infection, and they associate with the SRP9/14 protein dimer in the cytoplasm forming Alu RNPs. Using cell-free translation, we have previously shown that Alu RNPs inhibit polysome formation. Here, we describe the mechanism of Alu RNP-mediated inhibition of translation initiation and demonstrate its effect on translation of cellular and viral RNAs. Both cap-dependent and IRES-mediated initiation is inhibited. Inhibition involves direct binding of SRP9/14 to 40S ribosomal subunits and requires Alu RNA as an assembly factor but its continuous association with 40S subunits is not required for inhibition. Binding of SRP9/14 to 40S prevents 48S complex formation by interfering with the recruitment of mRNA to 40S subunits. In cells, overexpression of Alu RNA decreases translation of reporter mRNAs and this effect is alleviated with a mutation that reduces its affinity for SRP9/14. Alu RNPs also inhibit the translation of cellular mRNAs resuming translation after stress and of viral mRNAs suggesting a role of Alu RNPs in adapting the translational output in response to stress and viral infection.
Collapse
Affiliation(s)
- Elena Ivanova
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Genève, Switzerland
| | - Audrey Berger
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Genève, Switzerland
| | - Anne Scherrer
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Genève, Switzerland
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Katharina Strub
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Genève, Switzerland
| |
Collapse
|
19
|
Berger A, Ivanova E, Gareau C, Scherrer A, Mazroui R, Strub K. Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA. Nucleic Acids Res 2014; 42:11203-17. [PMID: 25200073 PMCID: PMC4176187 DOI: 10.1093/nar/gku822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stress granules (SGs) are formed in response to stress, contain mRNAs, 40S ribosomal subunits, initiation factors, RNA-binding and signaling proteins, and promote cell survival. Our study describes a novel function of the protein heterodimer SRP9/14 and Alu RNA in SG formation and disassembly. In human cells, SRP9/14 exists assembled into SRP, bound to Alu RNA and as a free protein. SRP9/14, but not SRP, localizes to SGs following arsenite or hippuristanol treatment. Depletion of the protein decreases SG size and the number of SG-positive cells. Localization and function of SRP9/14 in SGs depend primarily on its ability to bind directly to the 40S subunit. Binding of SRP9/14 to 40S and Alu RNA is mutually exclusive indicating that the protein alone is bound to 40S in SGs and that Alu RNA might competitively regulate 40S binding. Indeed, by changing the effective Alu RNA concentration in the cell or by expressing an Alu RNA binding-defective protein we were able to influence SG formation and disassembly. Our findings suggest a model in which SRP9/14 binding to 40S promotes SG formation whereas the increase in cytoplasmic Alu RNA following stress promotes disassembly of SGs by disengaging SRP9/14 from 40S.
Collapse
Affiliation(s)
- A Berger
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - E Ivanova
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - C Gareau
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - A Scherrer
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| | - R Mazroui
- Département de biologie moléculaire, biochimie médicale et pathologie Université Laval, 4 Québec G1V0A6, Canada
| | - K Strub
- Department of Cell Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
20
|
Spengler RM, Oakley CK, Davidson BL. Functional microRNAs and target sites are created by lineage-specific transposition. Hum Mol Genet 2013; 23:1783-93. [PMID: 24234653 DOI: 10.1093/hmg/ddt569] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transposable elements (TEs) account for nearly one-half of the sequence content in the human genome, and de novo germline transposition into regulatory or coding sequences of protein-coding genes can cause heritable disorders. TEs are prevalent in and around protein-coding genes, providing an opportunity to impart regulation. Computational studies reveal that microRNA (miRNA) genes and miRNA target sites reside within TE sequences, but there is little experimental evidence supporting a role for TEs in the birth of miRNAs, or as platform for gene regulation by miRNAs. In this work, we validate miRNAs and target sites derived from TE families prevalent in the human genome, including the ancient long interspersed nuclear element 2 (LINE2/L2), mammalian-wide interspersed repeat (MIR) retrotransposons and the primate-specific Alu family. We show that genes with 3' untranslated region (3' UTR) MIR elements are enriched for let-7 targets and that these sites are conserved and responsive to let-7 expression. We also demonstrate that 3' UTR-embedded Alus are a source of miR-24 and miR-122 target sites and that a subset of active genomic Alus provide for de novo target site creation. Finally, we report that although the creation of miRNA genes by Alu elements is relatively uncommon relative to their overall genomic abundance, Alu-derived miR-1285-1 is efficiently processed from its genomic locus and regulates genes with target sites contained within homologous elements. Taken together, our data provide additional evidence for TEs as a source for miRNAs and miRNA target sites, with instances of conservation through the course of mammalian evolution.
Collapse
|
21
|
Baryakin D, Semenov D, Savelyeva A, Koval O, Rabinov I, Kuligina E, Richter V. Alu- and 7SL RNA Analogues Suppress MCF-7 Cell Viability through Modulating the Transcription of Endoplasmic Reticulum Stress Response Genes. Acta Naturae 2013; 5:83-93. [PMID: 24455187 PMCID: PMC3890993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022] Open
Abstract
11% of the human genome is composed of Alu-retrotransposons, whose transcription by RNA polymerase III (Pol III) leads to the accumulation of several hundreds to thousands of Alu-RNA copies in the cytoplasm. Expression of Alu-RNA Pol III is significantly increased at various levels of stress, and the increase in the Alu-RNA level is accompanied by a suppression of proliferation, a decrease in viability, and induction of apoptotic processes in human cells. However, the question about the biological functions of Pol III Alu-transcripts, as well as their mechanism of action, remains open. In this work, analogues of Alu-RNA and its evolutionary ancestor, 7SL RNA, were synthesized. Transfection of human breast adenocarcinoma MCF-7 cells with the Alu-RNA and 7SL RNA analogues is accompanied by a decrease in viability and by induction of proapoptotic changes in these cells. The analysis of the combined action of these analogues and actinomycin D or tamoxifen revealed that the decreased viability of MCF-7 cells transfected with Alu-RNA and 7SL RNA was due to the modulation of transcription. A whole transcriptome analysis of gene expression revealed that increased gene expression of the transcription regulator NUPR1 (p8), as well as the transcription factor DDIT3 (CHOP), occurs under the action of both the Alu- and 7SL RNA analogues on MCF-7 cells. It has been concluded that induction of proapoptotic changes in human cells under the influence of the Alu-RNA and 7SL RNA analogues is related to the transcriptional activation of the genes of cellular stress factors, including the endoplasmic reticulum stress response factors.
Collapse
Affiliation(s)
- D.N. Baryakin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - D.V. Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - A.V. Savelyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
- Novosibirsk State University, Pirogova Str., 2, Novosibirsk, Russia, 630090
| | - O.A. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - I.V. Rabinov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - E.V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| | - V.A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave., 8, Novosibirsk, Russia, 630090
| |
Collapse
|
22
|
Xiao T, Wang Y, Luo H, Liu L, Wei G, Chen X, Sun Y, Chen X, Skogerbø G, Chen R. A differential sequencing-based analysis of the C. elegans noncoding transcriptome. RNA (NEW YORK, N.Y.) 2012; 18:626-639. [PMID: 22345127 PMCID: PMC3312551 DOI: 10.1261/rna.030965.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
Noncoding RNAs are increasingly being recognized as important players in eukaryote biology. However, despite major efforts in mapping the Caenorhabditis elegans transcriptome over the last couple of years, nonpolyadenylated and intermediate-size noncoding RNAs (is-ncRNAs) are still incompletely explored. We have combined an enzymatic approach with full-length RNA-Seq of is-ncRNAs in C. elegans. A total of 473 novel is-ncRNAs has been identified, of which a substantial fraction was associated with transcription factor binding sites and developmentally regulated expression patterns. Analysis of sequence and secondary structure permitted classification of more than 200 is-ncRNAs into several known RNA classes, while another 33 is-ncRNAs were identified as belonging to two previously uncharacterized groups of is-ncRNAs. Three of the unclassified is-ncRNAs contain the 5' Alu domain common to SRP RNAs and specifically bound with the SRP9/14 heterodimer in vitro. One of these (inc394) showed 65% sequence identity with the human, neuron-specific BC200 RNA. Structure-based clustering analysis and in vitro binding experiments supported the notion that the nematode stem-bulge RNAs (sbRNAs) are homologs (or functional analogs) of the Y RNAs. Moreover, analysis of the differential libraries showed that some mature snoRNAs undergo secondary 5' cap modification after processing of the primary transcript, thus suggesting the existence of a wider range of functional RNAs arising from processed and modified fragments of primary transcripts.
Collapse
Affiliation(s)
- Tengfei Xiao
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of the Chinese Academy of Science, Beijing 100080, China
| | - Yunfei Wang
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huaxia Luo
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of the Chinese Academy of Science, Beijing 100080, China
| | - Lihui Liu
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of the Chinese Academy of Science, Beijing 100080, China
| | - Guifeng Wei
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of the Chinese Academy of Science, Beijing 100080, China
| | - Xiaowei Chen
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of the Chinese Academy of Science, Beijing 100080, China
| | - Yu Sun
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of the Chinese Academy of Science, Beijing 100080, China
| | - Xiaomin Chen
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Geir Skogerbø
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- Laboratory of Bioinformatics and Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
23
|
Berger A, Strub K. Multiple Roles of Alu-Related Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:119-46. [PMID: 21287136 DOI: 10.1007/978-3-642-16502-3_6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Repetitive Alu and Alu-related elements are present in primates, tree shrews (Scandentia), and rodents and have expanded to 1.3 million copies in the human genome by nonautonomous retrotransposition. Pol III transcription from these elements occurs at low levels under normal conditions but increases transiently after stress, indicating a function of Alu RNAs in cellular stress response. Alu RNAs assemble with cellular proteins into ribonucleoprotein complexes and can be processed into the smaller scAlu RNAs. Alu and Alu-related RNAs play a role in regulating transcription and translation. They provide a source for the biogenesis of miRNAs and, embedded into mRNAs, can be targeted by miRNAs. When present as inverted repeats in mRNAs, they become substrates of the editing enzymes, and their modification causes the nuclear retention of these mRNAs. Certain Alu elements evolved into unique transcription units with specific expression profiles producing RNAs with highly specific cellular functions.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Cell Biology, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland
| | | |
Collapse
|
24
|
Mary C, Scherrer A, Huck L, Lakkaraju AKK, Thomas Y, Johnson AE, Strub K. Residues in SRP9/14 essential for elongation arrest activity of the signal recognition particle define a positively charged functional domain on one side of the protein. RNA (NEW YORK, N.Y.) 2010; 16:969-79. [PMID: 20348448 PMCID: PMC2856890 DOI: 10.1261/rna.2040410] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The signal recognition particle (SRP) is a ubiquitous cytoplasmic ribonucleoprotein complex required for the cotranslational targeting of proteins to the endoplasmic reticulum (ER). In eukaryotes, SRP has to arrest the elongation of the nascent chains during targeting to ensure efficient translocation of the preprotein, and this function of SRP is dependent on SRP9/14. Here we present the results of a mutational study on the human protein h9/14 that identified and characterized regions and single residues essential for elongation arrest activity. Effects of the mutations were assessed both in cell-free translation/translocation assays and in cultured mammalian cells. We identified two patches of basic amino acid residues that are essential for activity, whereas the internal loop of SRP14 was found to be dispensable. One patch of important basic residues comprises the previously identified basic pentapetide KRDKK, which can be substituted by four lysines without loss of function. The other patch includes three lysines in the solvent-accessible alpha2 of h9. All essential residues are located in proximity in SRP9/14 and their basic character suggests that they serve as a positively charged platform for interactions with ribosomal RNA. In addition, they can all be lysines consistent with the hypothesis that they recognize their target(s) via electrostatic contacts, most likely with the phosphate backbone, as opposed to contacts with specific bases.
Collapse
Affiliation(s)
- Camille Mary
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
25
|
Lakkaraju AK, Mary C, Scherrer A, Johnson AE, Strub K. SRP keeps polypeptides translocation-competent by slowing translation to match limiting ER-targeting sites. Cell 2008; 133:440-51. [PMID: 18455985 PMCID: PMC2430734 DOI: 10.1016/j.cell.2008.02.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 01/08/2008] [Accepted: 02/14/2008] [Indexed: 11/18/2022]
Abstract
SRP is essential for targeting nascent chains to the endoplasmic reticulum, and it delays nascent chain elongation in cell-free translation systems. However, the significance of this function has remained unclear. We show that efficient protein translocation into the ER is incompatible with normal cellular translation rates due to rate-limiting concentrations of SRP receptor (SR). We complemented mammalian cells depleted of SRP14 by expressing mutant versions of the protein lacking the elongation arrest function. The absence of a delay caused inefficient targeting of preproteins leading to defects in secretion, depletion of proteins in the endogenous membranes, and reduced cell growth. The detrimental effects were reversed by either reducing the cellular protein synthesis rate or increasing SR expression. SRP therefore ensures that nascent chains remain translocation competent during the targeting time window dictated by SR. Since SRP-signal sequence affinities vary, the delay may also regulate which proteins are preferentially targeted.
Collapse
Affiliation(s)
- Asvin K.K. Lakkaraju
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Geneva, Switzerland
| | - Camille Mary
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Geneva, Switzerland
| | - Anne Scherrer
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Geneva, Switzerland
| | - Arthur E. Johnson
- Department of Molecular and Cellular Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | - Katharina Strub
- Département de biologie cellulaire, Université de Genève, Sciences III, 1211 Geneva, Switzerland
| |
Collapse
|
26
|
Duning K, Buck F, Barnekow A, Kremerskothen J. SYNCRIP, a component of dendritically localized mRNPs, binds to the translation regulator BC200 RNA. J Neurochem 2008; 105:351-9. [DOI: 10.1111/j.1471-4159.2007.05138.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Daskalova E, Baev V, Rusinov V, Minkov I. 3'UTR-located ALU elements: donors of potential miRNA target sites and mediators of network miRNA-based regulatory interactions. Evol Bioinform Online 2007; 2:103-20. [PMID: 19455205 PMCID: PMC2674674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent research data reveal complex, network-based interactions between mobile elements and regulatory systems of eukaryotic cells. In this article, we focus on regulatory interactions between Alu elements and micro RNAs (miRNAs). Our results show that the majority of the Alu sequences inserted in 3'UTRs of analyzed human genes carry strong potential target sites for at least 53 different miRNAs. Thus, 3'UTR-located Alu elements may play the role of mobile regulatory modules that supply binding sites for miRNA regulation. Their abundance and ability to distribute a set of certain miRNA target sites may have an important role in establishment, extension, network organization, and, as we suppose - in the regulation and environment-dependent activation/inactivation of some elements of the miRNA regulatory system, as well as for a larger scale RNA-based regulatory interactions. The Alu-miRNA connection may be crucial especially for the primate/human evolution.
Collapse
Affiliation(s)
- Evelina Daskalova
- University of Plovdiv, Department of Plant Physiology and Molecular Biology, 24, Tsar Assen St., 4000 Plovdiv, Bulgaria.
| | | | | | | |
Collapse
|
28
|
Khanam T, Rozhdestvensky TS, Bundman M, Galiveti CR, Handel S, Sukonina V, Jordan U, Brosius J, Skryabin BV. Two primate-specific small non-protein-coding RNAs in transgenic mice: neuronal expression, subcellular localization and binding partners. Nucleic Acids Res 2006; 35:529-39. [PMID: 17175535 PMCID: PMC1802616 DOI: 10.1093/nar/gkl1082] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In a rare occasion a single chromosomal locus was targeted twice by independent Alu-related retroposon insertions, and in both cases supported neuronal expression of the respective inserted genes encoding small non-protein coding RNAs (npcRNAs): BC200 RNA in anthropoid primates and G22 RNA in the Lorisoidea branch of prosimians. To avoid primate experimentation, we generated transgenic mice to study neuronal expression and protein binding partners for BC200 and G22 npcRNAs. The BC200 gene, with sufficient upstream flanking sequences, is expressed in transgenic mouse brain areas comparable to those in human brain, and G22 gene, with upstream flanks, has a similar expression pattern. However, when all upstream regions of the G22 gene were removed, expression was completely abolished, despite the presence of intact internal RNA polymerase III promoter elements. Transgenic BC200 RNA is transported into neuronal dendrites as it is in human brain. G22 RNA, almost twice as large as BC200 RNA, has a similar subcellular localization. Both transgenically expressed npcRNAs formed RNP complexes with poly(A) binding protein and the heterodimer SRP9/14, as does BC200 RNA in human. These observations strongly support the possibility that the independently exapted npcRNAs have similar functions, perhaps in translational regulation of dendritic protein biosynthesis in neurons of the respective primates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jürgen Brosius
- To whom correspondence should be addressed. Tel: +49 251 8358511; Fax: +49 251 8358512;
| | | |
Collapse
|
29
|
Abstract
Alu elements are the most abundant repetitive elements in the human genome; they emerged 65 million years ago from a 5' to 3' fusion of the 7SL RNA gene and amplified throughout the human genome by retrotransposition to reach the present number of more than one million copies. Over the last years, several lines of evidence demonstrated that these elements modulate gene expression at the post-transcriptional level in at least three independent manners. They have been shown to be involved in alternative splicing, RNA editing and translation regulation. These findings highlight how the genome adapted to these repetitive elements by assigning them important functions in regulation of gene expression. Alu elements should therefore be considered as a large reservoir of potential regulatory functions that have been actively participating in primate evolution.
Collapse
Affiliation(s)
| | - Katharina Strub
- To whom correspondence should be addressed. Tel: +41 22 379 67 24; Fax: +41 22 379 64 42;
| |
Collapse
|
30
|
Zhang S, Xiao Y. Quasiperiodic property in Alu repeats. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:022901. [PMID: 17025492 DOI: 10.1103/physreve.74.022901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/06/2006] [Indexed: 05/12/2023]
Abstract
We investigate the possible quasiperiodic property in the sequences of Alu repeats, one of typical noncoding DNA sequences. We calculated the quasiperiods of the right and left monomers of Alu repeats of different families with quasiperiodic matrix algorithm. It is interesting that the right monomers of all families show significant quasiperiod 8 in their sequences while the left monomers show quasiperiods 8 or 5. Our results indicate that there exist common quasiperiods in most Alu repeats. This may be helpful to further explore possible functions of Alu repeats.
Collapse
Affiliation(s)
- Shihua Zhang
- Biomolecular Physics and Modeling Group, Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | | |
Collapse
|
31
|
Abstract
Alu elements are the most abundant repetitive elements in the human genome; they emerged from the signal recognition particle RNA gene and are composed of two related but distinct monomers (left and right arms). Alu RNAs transcribed from these elements are present at low levels at normal cell growth but various stress conditions increase their abundance. Alu RNAs are known to bind the cognate proteins SRP9/14. We purified synthetic Alu RNP, composed of Alu RNA in complex with SRP9/14, and investigated the effects of Alu RNPs and naked Alu RNA on protein translation. We found that the dimeric Alu RNP and the monomeric left and right Alu RNPs have a general dose-dependent inhibitory effect on protein translation. In the absence of SRP9/14, Alu RNA has a stimulatory effect on all reporter mRNAs. The unstable structure of sRight RNA suggests that the differential activities of Alu RNP and Alu RNA may be explained by conformational changes in the RNA. We demonstrate that Alu RNPs and Alu RNAs do not stably associate with ribosomes during translation and, based on the analysis of polysome profiles and synchronized translation, we show that Alu RNP and Alu RNA regulate translation at the level of initiation.
Collapse
Affiliation(s)
| | - Katharina Strub
- To whom correspondence should be addressed. Tel: +41 22 379 67 24; Fax: +41 22 379 64 42;
| |
Collapse
|
32
|
Kondrashov AV, Kiefmann M, Ebnet K, Khanam T, Muddashetty RS, Brosius J. Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol Biol 2005; 353:88-103. [PMID: 16154588 DOI: 10.1016/j.jmb.2005.07.049] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 07/08/2005] [Accepted: 07/18/2005] [Indexed: 11/19/2022]
Abstract
Regulated protein biosynthesis in dendrites of neurons might be a key mechanism underlying learning and memory. Neuronal dendritic BC1 RNA and BC200 RNA and similar small untranslated RNAs inhibit protein translation in vitro systems, such as rabbit reticulocyte lysate. Likewise, co-transfection of these RNAs with reporter mRNA suppressed translation levels in HeLa cells. The oligo(A)-rich region of all active small RNAs were identified as the RNA domains chiefly responsible for the inhibitory effects. Addition of recombinant human poly(A)-binding protein (PABP) significantly compensated the inhibitory effect of the small oligo(A)-rich RNA. In vivo, all BC1 RNA appears to be complexed with PABP. Nevertheless, in the micro-environment of dendritic spines of neuronal cells, BC1 RNPs or BC200 RNPs might mediate regulatory functions by differential interactions with locally limited PABP and/or directly or indirectly, with other translation initiation factors.
Collapse
Affiliation(s)
- Alexander V Kondrashov
- Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Zalfa F, Adinolfi S, Napoli I, Kühn-Hölsken E, Urlaub H, Achsel T, Pastore A, Bagni C. Fragile X mental retardation protein (FMRP) binds specifically to the brain cytoplasmic RNAs BC1/BC200 via a novel RNA-binding motif. J Biol Chem 2005; 280:33403-10. [PMID: 16006558 DOI: 10.1074/jbc.m504286200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fragile X mental retardation protein (FMRP), the protein responsible for the fragile X syndrome, is an RNA-binding protein involved in localization and translation of neuronal mRNAs. One of the RNAs known to interact with FMRP is the dendritic non-translatable brain cytoplasmic RNA 1 BC1 RNA that works as an adaptor molecule linking FMRP and some of its regulated mRNAs. Here, we showed that the N terminus of FMRP binds strongly and specifically to BC1 and to its potential human analog BC200. This region does not contain a motif known to specifically recognize RNA and thus constitutes a new RNA-binding motif. We further demonstrated that FMRP recognition involves the 5' stem loop of BC1 and that this is the region that exhibits complementarity to FMRP target mRNAs, raising the possibility that FMRP plays a direct role in BC1/mRNA annealing.
Collapse
Affiliation(s)
- Francesca Zalfa
- Dipartimento di Biologia, Università Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Huck L, Scherrer A, Terzi L, Johnson AE, Bernstein HD, Cusack S, Weichenrieder O, Strub K. Conserved tertiary base pairing ensures proper RNA folding and efficient assembly of the signal recognition particle Alu domain. Nucleic Acids Res 2004; 32:4915-24. [PMID: 15383645 PMCID: PMC519120 DOI: 10.1093/nar/gkh837] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proper folding of the RNA is an essential step in the assembly of functional ribonucleoprotein complexes. We examined the role of conserved base pairs formed between two distant loops in the Alu portion of the mammalian signal recognition particle RNA (SRP RNA) in SRP assembly and functions. Mutations disrupting base pairing interfere with folding of the Alu portion of the SRP RNA as monitored by probing the RNA structure and the binding of the protein SRP9/14. Complementary mutations rescue the defect establishing a role of the tertiary loop-loop interaction in RNA folding. The same mutations in the Alu domain have no major effect on binding of proteins to the S domain suggesting that the S domain can fold independently. Once assembled into a complete SRP, even particles that contain mutant RNA are active in arresting nascent chain elongation and translocation into microsomes, and, therefore, tertiary base pairing does not appear to be essential for these activities. Our results suggest a model in which the loop-loop interaction and binding of the protein SRP9/14 play an important role in the early steps of SRP RNA folding and assembly.
Collapse
Affiliation(s)
- Laurent Huck
- Département de Biologie Cellulaire, Université de Genève, CH-1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Muddashetty R, Khanam T, Kondrashov A, Bundman M, Iacoangeli A, Kremerskothen J, Duning K, Barnekow A, Hüttenhofer A, Tiedge H, Brosius J. Poly(A)-binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J Mol Biol 2002; 321:433-45. [PMID: 12162957 DOI: 10.1016/s0022-2836(02)00655-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BC1 RNA and BC200 RNA are two non-homologous, small non-messenger RNAs (snmRNAs) that were generated, evolutionarily, quite recently by retroposition. This process endowed the RNA polymerase III transcripts with central adenosine-rich regions. Both RNAs are expressed almost exclusively in neurons, where they are transported into dendritic processes as ribonucleoprotein particles (RNPs). Here, we demonstrate with a variety of experimental approaches that poly(A)-binding protein (PABP1), a regulator of translation initiation, binds to both RNAs in vitro and in vivo. We identified the association of PABP with BC200 RNA in a tri-hybrid screen and confirmed this binding in electrophoretic mobility-shift assays and via anti-PABP immunoprecipitation of BC1 and BC200 RNAs from crude extracts, immunodepleted extracts, partially purified RNPs and cells transfected with naked RNA. Furthermore, PABP immunoreactivity was localized to neuronal dendrites. Competition experiments using variants of BC1 and BC200 RNAs demonstrated that the central adenosine-rich region of both RNAs mediates binding to PABP. These findings lend support to the hypothesis that the BC1 and BC200 RNPs are involved in protein translation in neuronal dendrites.
Collapse
Affiliation(s)
- Ravi Muddashetty
- Institute of Experimental Pathology, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Weichenrieder O, Wild K, Strub K, Cusack S. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 2000; 408:167-73. [PMID: 11089964 DOI: 10.1038/35041507] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Alu domain of the mammalian signal recognition particle (SRP) comprises the heterodimer of proteins SRP9 and SRP14 bound to the 5' and 3' terminal sequences of SRP RNA. It retards the ribosomal elongation of signal-peptide-containing proteins before their engagement with the translocation machinery in the endoplasmic reticulum. Here we report two crystal structures of the heterodimer SRP9/14 bound either to the 5' domain or to a construct containing both 5' and 3' domains. We present a model of the complete Alu domain that is consistent with extensive biochemical data. SRP9/14 binds strongly to the conserved core of the 5' domain, which forms a U-turn connecting two helical stacks. Reversible docking of the more weakly bound 3' domain might be functionally important in the mechanism of translational regulation. The Alu domain structure is probably conserved in other cytoplasmic ribonucleoprotein particles and retroposition intermediates containing SRP9/14-bound RNAs transcribed from Alu repeats or related elements in genomic DNA.
Collapse
Affiliation(s)
- O Weichenrieder
- European Molecular Laboratory Biology, Grenoble Outstation, France
| | | | | | | |
Collapse
|
37
|
Kremerskothen J, Nettermann M, op de Bekke A, Bachmann M, Brosius J. Identification of human autoantigen La/SS-B as BC1/BC200 RNA-binding protein. DNA Cell Biol 1998; 17:751-9. [PMID: 9778034 DOI: 10.1089/dna.1998.17.751] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rodent BC1 RNA and primate BC200 RNA are small cytoplasmic non-messenger RNAs that are phylogenetically unrelated. Nevertheless, the two RNAs exhibit a large degree of parallelism. In addition to some sequence similarities in their 3' domains, they are prevalently expressed in a similar subset of neurons and belong to a small group of transcripts with a somatodendritic location. Both RNAs are complexed with proteins as ribonucleoprotein particles (RNPs). Their similarities may even extend to analogous functional roles, for example, in the regulation of decentralized dendritic translation. To shed further light on the physiological role(s) of the BC1/BC200 RNPs, we began to analyze protein components that specifically bind to these RNAs. Ultraviolet-crosslinking experiments and affinity purification techniques revealed that the human autoantigen La/SS-B is associated with BC1/BC200 RNA in vitro and in vivo. As with other RNA polymerase III transcripts, La protein binds with high affinity to the 3' end of BC200 RNA. Our results suggest that an additional function of La may be control of dendritic translation by providing a link between the 5' Alu domain of BC200 RNP and the ribosome via the La protein dimer. The fact that La binds both BC1 and BC200 RNAs further supports the notion that the RNAs are functional analogs despite the fact that they arose from two separate retroposition events in two different mammalian lineages.
Collapse
Affiliation(s)
- J Kremerskothen
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Germany
| | | | | | | | | |
Collapse
|
38
|
Kremerskothen J, Zopf D, Walter P, Cheng JG, Nettermann M, Niewerth U, Maraia RJ, Brosius J. Heterodimer SRP9/14 is an integral part of the neural BC200 RNP in primate brain. Neurosci Lett 1998; 245:123-6. [PMID: 9605471 DOI: 10.1016/s0304-3940(98)00215-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BC200 RNA is a brain-specific, small non-messenger RNA with a somatodendritic localization in primate neurons and a constituent of a ribonucleoprotein (RNP) complex. The primary and secondary structure of the 5' domain of BC200 RNA resembles that of the Alu domain of 7SL RNA, which is an integral part of the signal recognition particle (SRP). This would predict that similar proteins bind to this defined domain of both RNA species in vitro and in vivo. The data presented in this paper reveal that a protein that binds BC200 RNA in vivo is immunoreactive with antibodies against SRP9. This further supports the notion that the 5' domain of the BC200 RNA can fold into structures similar to the SRP Alu domain and, as a result, bind identical or similar proteins in vivo. The SRP9 protein binds only as dimer with SRP14 protein to the Alu domain of 7SL RNA to form a subdomain that, in SRP, is functional in translation arrest. Therefore, our data also indicate that the neuronal BC200 RNP is a candidate for regulating decentralized protein biosynthesis in dendrites, possibly with a mechanism that resembles translation arrest of the SRP.
Collapse
Affiliation(s)
- J Kremerskothen
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Alu sequences are frequently encountered during study of human genomic nucleic acid and form a major component of repetitive DNA. This review describes the origin of Alu sequences and their subsequent amplification and evolution into distinct subfamilies. In recent years a number of different functional roles for Alu sequences have been described. The multiple influences of Alu sequences on RNA polymerase II-mediated gene expression and the presence of Alu sequences in RNA polymerase III-generated transcripts are discussed.
Collapse
Affiliation(s)
- A J Mighell
- Molecular Medicine Unit, The University of Leeds, St. James's University Hospital, UK.
| | | | | |
Collapse
|
40
|
Thomas Y, Bui N, Strub K. A truncation in the 14 kDa protein of the signal recognition particle leads to tertiary structure changes in the RNA and abolishes the elongation arrest activity of the particle. Nucleic Acids Res 1997; 25:1920-9. [PMID: 9115358 PMCID: PMC146678 DOI: 10.1093/nar/25.10.1920] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The signal recognition particle (SRP) provides the molecular link between synthesis of polypeptides and their concomitant translocation into the endoplasmic reticulum. During targeting, SRP arrests or delays elongation of the nascent chain, thereby presumably ensuring a high translocation efficiency. Components of the Alu domain, SRP9/14 and the Alu sequences of SRP RNA, have been suggested to play a role in the elongation arrest function of SRP. We generated a truncated SRP14 protein, SRP14-20C, which forms, together with SRP9, a stable complex with SRP RNA. However, particles reconstituted with SRP9/14-20C, RC(9/14-20C), completely lack elongation arrest activity. RC(9/14-20C) particles have intact signal recognition, targeting and ribosome binding activities. SRP9/14-20C therefore only impairs interactions with the ribosome that are required to effect elongation arrest. This result provides evidence that direct interactions between the Alu domain components and the ribosome are required for this function. Furthermore, SRP9/14-20C binding to SRP RNA results in tertiary structure changes in the RNA. Our results strongly indicate that these changes account for the negative effect of SRP14 truncation on elongation arrest, thus revealing a critical role of the RNA in this function.
Collapse
Affiliation(s)
- Y Thomas
- Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | | | | |
Collapse
|