1
|
Conti BA, Novikov L, Tong D, Xiang Q, Vigil S, McLellan TJ, Nguyen C, De La Cruz N, Veettil RT, Pradhan P, Sahasrabudhe P, Arroyo JD, Shang L, Sabari BR, Shields DJ, Oppikofer M. N6-methyladenosine in DNA promotes genome stability. eLife 2025; 13:RP101626. [PMID: 40193195 PMCID: PMC11975372 DOI: 10.7554/elife.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.
Collapse
Affiliation(s)
- Brooke A Conti
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Leo Novikov
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Deyan Tong
- Target Sciences, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Qing Xiang
- Target Sciences, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Savon Vigil
- Discovery Sciences, PfizerGrotonUnited States
| | | | | | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | | | - Jason D Arroyo
- Target Sciences, Emerging Sciences and Innovation, PfizerCambridgeUnited States
| | - Lei Shang
- Target Sciences, Emerging Sciences and Innovation, PfizerCambridgeUnited States
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - David J Shields
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| | - Mariano Oppikofer
- Centers for Therapeutic Innovation, Emerging Sciences and Innovation, PfizerNew YorkUnited States
| |
Collapse
|
2
|
Zhao Y, Chen D, Grin IR, Zharkov DO, Yu B. Developing plant-derived DNA repair enzyme resources through studying the involvement of base excision repair DNA glycosylases in stress responses of plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70162. [PMID: 40113437 DOI: 10.1111/ppl.70162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
DNA damage caused by internal and external stresses negatively affects plant growth and development. In this, DNA repair enzymes play an important role in recognizing and repairing the caused DNA damage. The first key enzymes in the base excision repair (BER) pathway are DNA glycosylases. In this paper, we present updated knowledge on the classification, phylogeny and conserved structural domains of DNA glycosylases in the plant base excision repair pathway. It describes the key roles played by the DNA glycosylases in plant stress responses, and focuses on the molecular mechanisms of plant stress tolerance from the perspective of the DNA repair system. New opportunities for the development of plant-derived DNA repair genes and DNA repair enzyme resources are discussed.
Collapse
Affiliation(s)
- Ying Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| | - Daniel Chen
- MD program, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Inga R Grin
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Novosibirsk State University, Novosibirsk, Russia
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Bing Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
3
|
Torres JR, Lescano López I, Ayala AM, Alvarez ME. The Arabidopsis DNA glycosylase MBD4L repairs the nuclear genome in vivo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1633-1646. [PMID: 37278489 DOI: 10.1111/tpj.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
DNA glycosylases remove mispaired or modified bases from DNA initiating the base excision repair (BER) pathway. The DNA glycosylase MBD4 (methyl-CpG-binding domain protein 4) has been functionally characterized in mammals, but not yet in plants, where it is called MBD4-like (MBD4L). Mammalian MBD4 and Arabidopsis recombinant MBD4L excise U and T mispaired with G, as well as 5-fluorouracil (5-FU) and 5-bromouracil (5-BrU) in vitro. Here, we investigate the ability of Arabidopsis MBD4L to remove some of these substrates from the nuclear genome in vivo in coordination with uracil DNA glycosylase (AtUNG). We found that mbd4l mutants are hypersensitive to 5-FU and 5-BrU, as they displayed smaller size, less root growth, and higher cell death than control plants in both media. Using comet assays, we determined BER-associated DNA fragmentation in isolated nuclei and observed reduced DNA breaks in mbd4l plants under both conditions, but particularly with 5-BrU. The use of ung and ung x mbd4l mutants in these assays indicated that both MBD4L and AtUNG trigger nuclear DNA fragmentation in response to 5-FU. Consistently, we here report the nuclear localization of AtUNG based on the expression of AtUNG-GFP/RFP constructs in transgenic plants. Interestingly, MBD4L and AtUNG are transcriptionally coordinated but display not completely overlapping functions. MBD4L-deficient plants showed reduced expression of BER genes and enhanced expression of DNA damage response (DDR) gene markers. Overall, our findings indicate that Arabidopsis MBD4L is critical for maintaining nuclear genome integrity and preventing cell death under genotoxic stress conditions.
Collapse
Affiliation(s)
- José Roberto Torres
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Ignacio Lescano López
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - Ana María Ayala
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| | - María Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba, X5000HUA, Argentina
| |
Collapse
|
4
|
Akbari M, Nilsen HL, Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription. Front Cell Dev Biol 2022; 10:984245. [PMID: 36158192 PMCID: PMC9491825 DOI: 10.3389/fcell.2022.984245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are the primary sites for cellular energy production and are required for many essential cellular processes. Mitochondrial DNA (mtDNA) is a 16.6 kb circular DNA molecule that encodes only 13 gene products of the approximately 90 different proteins of the respiratory chain complexes and an estimated 1,200 mitochondrial proteins. MtDNA is, however, crucial for organismal development, normal function, and survival. MtDNA maintenance requires mitochondrially targeted nuclear DNA repair enzymes, a mtDNA replisome that is unique to mitochondria, and systems that control mitochondrial morphology and quality control. Here, we provide an overview of the current literature on mtDNA repair and transcription machineries and discuss how dynamic functional interactions between the components of these systems regulate mtDNA maintenance and transcription. A profound understanding of the molecular mechanisms that control mtDNA maintenance and transcription is important as loss of mtDNA integrity is implicated in normal process of aging, inflammation, and the etiology and pathogenesis of a number of diseases.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Unit for precision medicine, Akershus University Hospital, Nordbyhagen, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Nicola Pietro Montaldo,
| |
Collapse
|
5
|
Torgasheva NA, Diatlova EA, Grin IR, Endutkin AV, Mechetin GV, Vokhtantsev IP, Yudkina AV, Zharkov DO. Noncatalytic Domains in DNA Glycosylases. Int J Mol Sci 2022; 23:ijms23137286. [PMID: 35806289 PMCID: PMC9266487 DOI: 10.3390/ijms23137286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Many proteins consist of two or more structural domains: separate parts that have a defined structure and function. For example, in enzymes, the catalytic activity is often localized in a core fragment, while other domains or disordered parts of the same protein participate in a number of regulatory processes. This situation is often observed in many DNA glycosylases, the proteins that remove damaged nucleobases thus initiating base excision DNA repair. This review covers the present knowledge about the functions and evolution of such noncatalytic parts in DNA glycosylases, mostly concerned with the human enzymes but also considering some unique members of this group coming from plants and prokaryotes.
Collapse
Affiliation(s)
- Natalia A. Torgasheva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Inga R. Grin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Ivan P. Vokhtantsev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
| | - Anna V. Yudkina
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Avenue, 630090 Novosibirsk, Russia; (N.A.T.); (E.A.D.); (I.R.G.); (A.V.E.); (G.V.M.); (I.P.V.); (A.V.Y.)
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
6
|
Manco G, Lacerra G, Porzio E, Catara G. ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives. Biomolecules 2022; 12:biom12030443. [PMID: 35327636 PMCID: PMC8946771 DOI: 10.3390/biom12030443] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3′ untranslated regions (UTRs).
Collapse
Affiliation(s)
- Giuseppe Manco
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| | - Giuseppina Lacerra
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino 111, 80131 Naples, Italy;
- Correspondence: (G.M.); (G.C.)
| |
Collapse
|
7
|
Renganathan S, Pramanik S, Ekambaram R, Kutzner A, Kim PS, Heese K. Identification of a Chemotherapeutic Lead Molecule for the Potential Disruption of the FAM72A-UNG2 Interaction to Interfere with Genome Stability, Centromere Formation, and Genome Editing. Cancers (Basel) 2021; 13:5870. [PMID: 34831023 PMCID: PMC8616359 DOI: 10.3390/cancers13225870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 01/05/2023] Open
Abstract
Family with sequence similarity 72 A (FAM72A) is a pivotal mitosis-promoting factor that is highly expressed in various types of cancer. FAM72A interacts with the uracil-DNA glycosylase UNG2 to prevent mutagenesis by eliminating uracil from DNA molecules through cleaving the N-glycosylic bond and initiating the base excision repair pathway, thus maintaining genome integrity. In the present study, we determined a specific FAM72A-UNG2 heterodimer protein interaction using molecular docking and dynamics. In addition, through in silico screening, we identified withaferin B as a molecule that can specifically prevent the FAM72A-UNG2 interaction by blocking its cell signaling pathways. Our results provide an excellent basis for possible therapeutic approaches in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department of Bioinformatics, Marudupandiyar College, Thanjavur 613403, India;
| | - Subrata Pramanik
- Department of Biology, Life Science Centre, School of Science and Technology, Örebro University, 701-82 Örebro, Sweden;
| | | | - Arne Kutzner
- Department of Information Systems, College of Engineering, Hanyang University, Seoul 133-791, Korea;
| | - Pok-Son Kim
- Department of Information Security, Cryptology, and Mathematics, Kookmin University, Seoul 136-702, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
8
|
Allkanjari K, Baldock RA. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci Rep 2021; 41:BSR20211320. [PMID: 34608928 PMCID: PMC8527207 DOI: 10.1042/bsr20211320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function - deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria. Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kathrin Allkanjari
- Formerly: Solent University Southampton, East Park Terrace, Southampton, SO14 0YN, UK
| | - Robert A. Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| |
Collapse
|
9
|
Kavli B, Iveland TS, Buchinger E, Hagen L, Liabakk NB, Aas PA, Obermann TS, Aachmann FL, Slupphaug G. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2021; 49:3948-3966. [PMID: 33784377 PMCID: PMC8053108 DOI: 10.1093/nar/gkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/14/2023] Open
Abstract
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Edith Buchinger
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Obermann
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| |
Collapse
|
10
|
Perkins JL, Zhao L. The N-terminal domain of uracil-DNA glycosylase: Roles for disordered regions. DNA Repair (Amst) 2021; 101:103077. [PMID: 33640758 DOI: 10.1016/j.dnarep.2021.103077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
The presence of uracil in DNA calls for rapid removal facilitated by the uracil-DNA glycosylase superfamily of enzymes, which initiates the base excision repair (BER) pathway. In humans, uracil excision is accomplished primarily by the human uracil-DNA glycosylase (hUNG) enzymes. In addition to BER, hUNG enzymes play a key role in somatic hypermutation to generate antibody diversity. hUNG has several isoforms, with hUNG1 and hUNG2 being the two major isoforms. Both isoforms contain disordered N-terminal domains, which are responsible for a wide range of functions, with minimal direct impact on catalytic efficiency. Subcellular localization of hUNG enzymes is directed by differing N-terminal sequences, with hUNG1 dedicated to mitochondria and hUNG2 dedicated to the nucleus. An alternative isoform of hUNG1 has also been identified to localize to the nucleus in mouse and human cell models. Furthermore, hUNG2 has been observed at replication forks performing both pre- and post-replicative uracil excision to maintain genomic integrity. Replication protein A (RPA) and proliferating cell nuclear antigen (PCNA) are responsible for recruitment to replication forks via protein-protein interactions with the N-terminus of hUNG2. These interactions, along with protein degradation, are regulated by various post-translational modifications within the N-terminal tail, which are primarily cell-cycle dependent. Finally, translocation on DNA is also mediated by interactions between the N-terminus and DNA, which is enhanced under molecular crowding conditions by preventing diffusion events and compacting tail residues. This review summarizes recent research supporting the emerging roles of the N-terminal domain of hUNG.
Collapse
Affiliation(s)
- Jacob L Perkins
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, United States
| | - Linlin Zhao
- Department of Chemistry and Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
11
|
Hans F, Senarisoy M, Bhaskar Naidu C, Timmins J. Focus on DNA Glycosylases-A Set of Tightly Regulated Enzymes with a High Potential as Anticancer Drug Targets. Int J Mol Sci 2020; 21:ijms21239226. [PMID: 33287345 PMCID: PMC7730500 DOI: 10.3390/ijms21239226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death with tens of millions of people diagnosed with cancer every year around the world. Most radio- and chemotherapies aim to eliminate cancer cells, notably by causing severe damage to the DNA. However, efficient repair of such damage represents a common mechanism of resistance to initially effective cytotoxic agents. Thus, development of new generation anticancer drugs that target DNA repair pathways, and more particularly the base excision repair (BER) pathway that is responsible for removal of damaged bases, is of growing interest. The BER pathway is initiated by a set of enzymes known as DNA glycosylases. Unlike several downstream BER enzymes, DNA glycosylases have so far received little attention and the development of specific inhibitors of these enzymes has been lagging. Yet, dysregulation of DNA glycosylases is also known to play a central role in numerous cancers and at different stages of the disease, and thus inhibiting DNA glycosylases is now considered a valid strategy to eliminate cancer cells. This review provides a detailed overview of the activities of DNA glycosylases in normal and cancer cells, their modes of regulation, and their potential as anticancer drug targets.
Collapse
|
12
|
Bao Y, Tong L, Song B, Liu G, Zhu Q, Lu X, Zhang J, Lu YF, Wen H, Tian Y, Sun Y, Zhu WG. UNG2 deacetylation confers cancer cell resistance to hydrogen peroxide-induced cytotoxicity. Free Radic Biol Med 2020; 160:403-417. [PMID: 32649985 DOI: 10.1016/j.freeradbiomed.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer therapeutics produce reactive oxygen species (ROS) that damage the cancer genome and lead to cell death. However, cancer cells can resist ROS-induced cytotoxicity and survive. We show that nuclear-localized uracil-DNA N-glycosylase isoform 2 (UNG2) has a critical role in preventing ROS-induced DNA damage and enabling cancer-cell resistance. Under physiological conditions, UNG2 is targeted for rapid degradation via an interaction with the E3 ligase UHRF1. In response to ROS, however, UNG2 protein in cancer cells exhibits a remarkably extended half-life. Upon ROS exposure, UNG2 is deacetylated at lysine 78 by histone deacetylases, which prevents the UNG2-UHRF1 interaction. Accumulated UNG2 protein can thus excise the base damaged by ROS and enable the cell to survive these otherwise toxic conditions. Consequently, combining HDAC inhibitors (to permit UNG2 degradation) with genotoxic agents (to produce cytotoxic cellular levels of ROS) leads to a robust synergistic killing effect in cancer cells in vitro. Altogether, these data support the application of a novel approach to cancer treatment based on promoting UNG2 degradation by altering its acetylation status using an HDAC inhibitor.
Collapse
Affiliation(s)
- Yantao Bao
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China; International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Lili Tong
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Boyan Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ge Liu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Qian Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Xiaopeng Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Ya-Fei Lu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - He Wen
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Yuan Tian
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Yujie Sun
- Department of Cell Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China; International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518055, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China; Shenzhen Bay Laboratory, Shenzhen University School of Medicine, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
14
|
Single-stranded DNA damage: Protecting the single-stranded DNA from chemical attack. DNA Repair (Amst) 2020; 87:102804. [PMID: 31981739 DOI: 10.1016/j.dnarep.2020.102804] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 01/08/2023]
Abstract
Cellular processes, such as DNA replication, recombination and transcription, require DNA strands separation and single-stranded DNA is formation. The single-stranded DNA is promptly wrapped by human single-stranded DNA binding proteins, replication protein A (RPA) complex. RPA binding not only prevent nuclease degradation and annealing, but it also coordinates cell-cycle checkpoint activation and DNA repair. However, RPA binding offers little protection against the chemical modification of DNA bases. This review focuses on the type of DNA base damage that occurs in single-stranded DNA and how the damage is rectified in human cells. The discovery of DNA repair proteins, such as ALKBH3, AGT, UNG2, NEIL3, being able to repair the damaged base in the single-stranded DNA, renewed the interest to study single-stranded DNA repair. These mechanistically different proteins work independently from each other with the overarching goal of increasing fidelity of recombination and promoting error-free replication.
Collapse
|
15
|
Rodriguez G, Orris B, Majumdar A, Bhat S, Stivers JT. Macromolecular crowding induces compaction and DNA binding in the disordered N-terminal domain of hUNG2. DNA Repair (Amst) 2019; 86:102764. [PMID: 31855846 DOI: 10.1016/j.dnarep.2019.102764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/15/2022]
Abstract
Many human DNA repair proteins have disordered domains at their N- or C-termini with poorly defined biological functions. We recently reported that the partially structured N-terminal domain (NTD) of human uracil DNA glycosylase 2 (hUNG2), functions to enhance DNA translocation in crowded environments and also targets the enzyme to single-stranded/double-stranded DNA junctions. To understand the structural basis for these effects we now report high-resolution heteronuclear NMR studies of the isolated NTD in the presence and absence of an inert macromolecular crowding agent (PEG8K). Compared to dilute buffer, we find that crowding reduces the degrees of freedom for the structural ensemble, increases the order of a PCNA binding motif and dramatically promotes binding of the NTD for DNA through a conformational selection mechanism. These findings shed new light on the function of this disordered domain in the context of the crowded nuclear environment.
Collapse
Affiliation(s)
- Gaddiel Rodriguez
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - Benjamin Orris
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, United States.
| |
Collapse
|
16
|
Sarno A, Lundbæk M, Liabakk NB, Aas PA, Mjelle R, Hagen L, Sousa MML, Krokan HE, Kavli B. Uracil-DNA glycosylase UNG1 isoform variant supports class switch recombination and repairs nuclear genomic uracil. Nucleic Acids Res 2019; 47:4569-4585. [PMID: 30838409 PMCID: PMC6511853 DOI: 10.1093/nar/gkz145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/18/2019] [Accepted: 02/25/2019] [Indexed: 11/23/2022] Open
Abstract
UNG is the major uracil-DNA glycosylase in mammalian cells and is involved in both error-free base excision repair of genomic uracil and mutagenic uracil-processing at the antibody genes. However, the regulation of UNG in these different processes is currently not well understood. The UNG gene encodes two isoforms, UNG1 and UNG2, each possessing unique N-termini that mediate translocation to the mitochondria and the nucleus, respectively. A strict subcellular localization of each isoform has been widely accepted despite a lack of models to study them individually. To determine the roles of each isoform, we generated and characterized several UNG isoform-specific mouse and human cell lines. We identified a distinct UNG1 isoform variant that is targeted to the cell nucleus where it supports antibody class switching and repairs genomic uracil. We propose that the nuclear UNG1 variant, which in contrast to UNG2 lacks a PCNA-binding motif, may be specialized to act on ssDNA through its ability to bind RPA. RPA-coated ssDNA regions include both transcribed antibody genes that are targets for deamination by AID and regions in front of the moving replication forks. Our findings provide new insights into the function of UNG isoforms in adaptive immunity and DNA repair.
Collapse
Affiliation(s)
- Antonio Sarno
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Marie Lundbæk
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nina Beate Liabakk
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Per Arne Aas
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Robin Mjelle
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Mirta M L Sousa
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Core Facility for Proteomics and Modomics at NTNU and the Central Norway Regional Health Authority
| | - Hans E Krokan
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
17
|
Weiser BP, Rodriguez G, Cole PA, Stivers JT. N-terminal domain of human uracil DNA glycosylase (hUNG2) promotes targeting to uracil sites adjacent to ssDNA-dsDNA junctions. Nucleic Acids Res 2019; 46:7169-7178. [PMID: 29917162 PMCID: PMC6101581 DOI: 10.1093/nar/gky525] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023] Open
Abstract
The N-terminal domain (NTD) of nuclear human uracil DNA glycosylase (hUNG2) assists in targeting hUNG2 to replication forks through specific interactions with replication protein A (RPA). Here, we explored hUNG2 activity in the presence and absence of RPA using substrates with ssDNA–dsDNA junctions that mimic structural features of the replication fork and transcriptional R-loops. We find that when RPA is tightly bound to the ssDNA overhang of junction DNA substrates, base excision by hUNG2 is strongly biased toward uracils located 21 bp or less from the ssDNA–dsDNA junction. In the absence of RPA, hUNG2 still showed an 8-fold excision bias for uracil located <10 bp from the junction, but only when the overhang had a 5′ end. Biased targeting required the NTD and was not observed with the hUNG2 catalytic domain alone. Consistent with this requirement, the isolated NTD was found to bind weakly to ssDNA. These findings indicate that the NTD of hUNG2 targets the enzyme to ssDNA–dsDNA junctions using RPA-dependent and RPA-independent mechanisms. This structure-based specificity may promote efficient removal of uracils that arise from dUTP incorporation during DNA replication, or additionally, uracils that arise from DNA cytidine deamination at transcriptional R-loops during immunoglobulin class-switch recombination.
Collapse
Affiliation(s)
- Brian P Weiser
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Gaddiel Rodriguez
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine and Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - James T Stivers
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
18
|
Ertuzun T, Semerci A, Cakir ME, Ekmekcioglu A, Gok MO, Soltys DT, de Souza-Pinto NC, Sezerman U, Muftuoglu M. Investigation of base excision repair gene variants in late-onset Alzheimer's disease. PLoS One 2019; 14:e0221362. [PMID: 31415677 PMCID: PMC6695184 DOI: 10.1371/journal.pone.0221362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer’s disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase β (POLβ) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLβ rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLβ variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or–translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk.
Collapse
Affiliation(s)
- Tugce Ertuzun
- Department of Molecular Biology and Genetics
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Asli Semerci
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Emin Cakir
- Department of Neurology, Medeniyet University, Goztepe Training and Research Hospital, Istanbul, Turkey
| | - Aysegul Ekmekcioglu
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Mehmet Oguz Gok
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Daniela T. Soltys
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C. de Souza-Pinto
- Departmento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Meltem Muftuoglu
- Department of Molecular Biology and Genetics
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
19
|
Boldinova EO, Khairullin RF, Makarova AV, Zharkov DO. Isoforms of Base Excision Repair Enzymes Produced by Alternative Splicing. Int J Mol Sci 2019; 20:ijms20133279. [PMID: 31277343 PMCID: PMC6651865 DOI: 10.3390/ijms20133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Transcripts of many enzymes involved in base excision repair (BER) undergo extensive alternative splicing, but functions of the corresponding alternative splice variants remain largely unexplored. In this review, we cover the studies describing the common alternatively spliced isoforms and disease-associated variants of DNA glycosylases, AP-endonuclease 1, and DNA polymerase beta. We also discuss the roles of alternative splicing in the regulation of their expression, catalytic activities, and intracellular transport.
Collapse
Affiliation(s)
| | - Rafil F Khairullin
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 9 Parizhskoy Kommuny Str., 420012 Kazan, Russia
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., 123182 Moscow, Russia.
| | - Dmitry O Zharkov
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia.
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
20
|
Esadze A, Stivers JT. Facilitated Diffusion Mechanisms in DNA Base Excision Repair and Transcriptional Activation. Chem Rev 2018; 118:11298-11323. [PMID: 30379068 DOI: 10.1021/acs.chemrev.8b00513] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Preservation of the coding potential of the genome and highly regulated gene expression over the life span of a human are two fundamental requirements of life. These processes require the action of repair enzymes or transcription factors that efficiently recognize specific sites of DNA damage or transcriptional regulation within a restricted time frame of the cell cycle or metabolism. A failure of these systems to act results in accumulated mutations, metabolic dysfunction, and disease. Despite the multifactorial complexity of cellular DNA repair and transcriptional regulation, both processes share a fundamental physical requirement that the proteins must rapidly diffuse to their specific DNA-binding sites that are embedded within the context of a vastly greater number of nonspecific DNA-binding sites. Superimposed on the needle-in-the-haystack problem is the complex nature of the cellular environment, which contains such high concentrations of macromolecules that the time frame for diffusion is expected to be severely extended as compared to dilute solution. Here we critically review the mechanisms for how these proteins solve the needle-in-the-haystack problem and how the effects of cellular macromolecular crowding can enhance facilitated diffusion processes. We restrict the review to human proteins that use stochastic, thermally driven site-recognition mechanisms, and we specifically exclude systems involving energy cofactors or circular DNA clamps. Our scope includes ensemble and single-molecule studies of the past decade or so, with an emphasis on connecting experimental observations to biological function.
Collapse
Affiliation(s)
- Alexandre Esadze
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences , Johns Hopkins University School of Medicine , 725 North Wolfe Street , WBSB 314, Baltimore , Maryland 21205 , United States
| |
Collapse
|
21
|
Rodriguez G, Esadze A, Weiser BP, Schonhoft JD, Cole PA, Stivers JT. Disordered N-Terminal Domain of Human Uracil DNA Glycosylase (hUNG2) Enhances DNA Translocation. ACS Chem Biol 2017; 12:2260-2263. [PMID: 28787572 DOI: 10.1021/acschembio.7b00521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear human uracil-DNA glycosylase (hUNG2) initiates base excision repair (BER) of genomic uracils generated through misincorporation of dUMP or through deamination of cytosines. Like many human DNA glycosylases, hUNG2 contains an unstructured N-terminal domain that encodes a nuclear localization signal, protein binding motifs, and sites for post-translational modifications. Although the N-terminal domain has minimal effects on DNA binding and uracil excision kinetics, we report that this domain enhances the ability of hUNG2 to translocate on DNA chains as compared to the catalytic domain alone. The enhancement is most pronounced when physiological ion concentrations and macromolecular crowding agents are used. These data suggest that crowded conditions in the human cell nucleus promote the interaction of the N-terminus with duplex DNA during translocation. The increased contact time with the DNA chain likely contributes to the ability of hUNG2 to locate densely spaced uracils that arise during somatic hypermutation and during fluoropyrimidine chemotherapy.
Collapse
Affiliation(s)
- Gaddiel Rodriguez
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Alexandre Esadze
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Brian P. Weiser
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Joseph D. Schonhoft
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - Philip A. Cole
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| | - James T. Stivers
- Department of Pharmacology
and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205−2185, United States
| |
Collapse
|
22
|
Alsøe L, Sarno A, Carracedo S, Domanska D, Dingler F, Lirussi L, SenGupta T, Tekin NB, Jobert L, Alexandrov LB, Galashevskaya A, Rada C, Sandve GK, Rognes T, Krokan HE, Nilsen H. Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in Mice Lacking UNG and SMUG1. Sci Rep 2017; 7:7199. [PMID: 28775312 PMCID: PMC5543110 DOI: 10.1038/s41598-017-07314-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 12/30/2022] Open
Abstract
Both a DNA lesion and an intermediate for antibody maturation, uracil is primarily processed by base excision repair (BER), either initiated by uracil-DNA glycosylase (UNG) or by single-strand selective monofunctional uracil DNA glycosylase (SMUG1). The relative in vivo contributions of each glycosylase remain elusive. To assess the impact of SMUG1 deficiency, we measured uracil and 5-hydroxymethyluracil, another SMUG1 substrate, in Smug1−/− mice. We found that 5-hydroxymethyluracil accumulated in Smug1−/− tissues and correlated with 5-hydroxymethylcytosine levels. The highest increase was found in brain, which contained about 26-fold higher genomic 5-hydroxymethyluracil levels than the wild type. Smug1−/− mice did not accumulate uracil in their genome and Ung−/− mice showed slightly elevated uracil levels. Contrastingly, Ung−/−Smug1−/− mice showed a synergistic increase in uracil levels with up to 25-fold higher uracil levels than wild type. Whole genome sequencing of UNG/SMUG1-deficient tumours revealed that combined UNG and SMUG1 deficiency leads to the accumulation of mutations, primarily C to T transitions within CpG sequences. This unexpected sequence bias suggests that CpG dinucleotides are intrinsically more mutation prone. In conclusion, we showed that SMUG1 efficiently prevent genomic uracil accumulation, even in the presence of UNG, and identified mutational signatures associated with combined UNG and SMUG1 deficiency.
Collapse
Affiliation(s)
- Lene Alsøe
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Antonio Sarno
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,The Liaison Committee for Education, Research and Innovation in Central Norway, Trondheim, Norway
| | - Sergio Carracedo
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Diana Domanska
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway
| | | | - Lisa Lirussi
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Tanima SenGupta
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Nuriye Basdag Tekin
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway
| | - Laure Jobert
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway.,Akershus University Hospital, Lørenskog, Norway.,LifeTechnologies AS, Ullernschauseen 52, 0379, Oslo, Norway
| | - Ludmil B Alexandrov
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, 87102, USA
| | - Anastasia Galashevskaya
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Geir Kjetil Sandve
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway
| | - Torbjørn Rognes
- Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-0316, Oslo, Norway.,Department of Microbiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, NO-0424, Oslo, Norway
| | - Hans E Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, Ahus Campus, University of Oslo, Oslo, Norway. .,Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
23
|
Kwon E, Pathak D, Chang HW, Kim DY. Crystal structure of mimivirus uracil-DNA glycosylase. PLoS One 2017; 12:e0182382. [PMID: 28763516 PMCID: PMC5538708 DOI: 10.1371/journal.pone.0182382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/17/2017] [Indexed: 01/28/2023] Open
Abstract
Cytosine deamination induced by stresses or enzymatic catalysis converts deoxycytidine into deoxyuridine, thereby introducing a G to A mutation after DNA replication. Base-excision repair to correct uracil to cytosine is initiated by uracil-DNA glycosylase (UDG), which recognizes and eliminates uracil from DNA. Mimivirus, one of the largest known viruses, also encodes a distinctive UDG gene containing a long N-terminal domain (N-domain; residues 1–130) and a motif-I (residues 327–343), in addition to the canonical catalytic domain of family I UDGs (also called UNGs). To understand the structural and functional features of the additional segments, we have determined the crystal structure of UNG from Acanthamoeba polyphaga mimivirus (mvUNG). In the crystal structure of mvUNG, residues 95–130 in the N-domain bind to a hydrophobic groove in the catalytic domain, and motif-I forms a short β-sheet with a positively charged surface near the active site. Circular dichroism spectra showed that residues 1–94 are in a random coil conformation. Deletion of the three additional fragments reduced the activity and thermal stability, compared to full-length mvUNG. The results suggested that the mvUNG N-domain and motif-I are required for its structural and functional integrity.
Collapse
Affiliation(s)
- Eunju Kwon
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Deepak Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Hyeun Wook Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, South Korea
- * E-mail:
| |
Collapse
|
24
|
Caston RA, Demple B. Risky repair: DNA-protein crosslinks formed by mitochondrial base excision DNA repair enzymes acting on free radical lesions. Free Radic Biol Med 2017; 107:146-150. [PMID: 27867099 PMCID: PMC5815828 DOI: 10.1016/j.freeradbiomed.2016.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/06/2023]
Abstract
Oxygen is both necessary and dangerous for aerobic cell function. ATP is most efficiently made by the electron transport chain, which requires oxygen as an electron acceptor. However, the presence of oxygen, and to some extent the respiratory chain itself, poses a danger to cellular components. Mitochondria, the sites of oxidative phosphorylation, have defense and repair pathways to cope with oxidative damage. For mitochondrial DNA, an essential pathway is base excision repair, which acts on a variety of small lesions. There are instances, however, in which attempted DNA repair results in more damage, such as the formation of a DNA-protein crosslink trapping the repair enzyme on the DNA. That is the case for mitochondrial DNA polymerase γ acting on abasic sites oxidized at the 1-carbon of 2-deoxyribose. Such DNA-protein crosslinks presumably must be removed in order to restore function. In nuclear DNA, ubiquitylation of the crosslinked protein and digestion by the proteasome are essential first processing steps. How and whether such mechanisms operate on DNA-protein crosslinks in mitochondria remains to be seen.
Collapse
Affiliation(s)
- Rachel Audrey Caston
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Bruce Demple
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA.
| |
Collapse
|
25
|
Lauritzen KH, Hasan-Olive MM, Regnell CE, Kleppa L, Scheibye-Knudsen M, Gjedde A, Klungland A, Bohr VA, Storm-Mathisen J, Bergersen LH. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging 2016; 48:34-47. [PMID: 27639119 DOI: 10.1016/j.neurobiolaging.2016.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders.
Collapse
Affiliation(s)
- Knut H Lauritzen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Md Mahdi Hasan-Olive
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Christine E Regnell
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway; Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Liv Kleppa
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Albert Gjedde
- Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Klungland
- Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jon Storm-Mathisen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Linda H Bergersen
- Synaptic Neurochemistry Laboratory, Division of Anatomy and CMBN/SERTA Healthy Brain Ageing Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Brain and Muscle Energy Group, Electron Microscopy Laboratory, Institute of Oral Biology, University of Oslo, Oslo, Norway; Center for Healthy Aging and Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Shinmura K, Kato H, Kawanishi Y, Goto M, Tao H, Inoue Y, Nakamura S, Sugimura H. NEIL1 p.Gln282Stop variant is predominantly localized in the cytoplasm and exhibits reduced activity in suppressing mutations. Gene 2015; 571:33-42. [PMID: 26095805 DOI: 10.1016/j.gene.2015.06.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 06/16/2015] [Indexed: 01/04/2023]
Abstract
Human NEIL1 protein is a DNA glycosylase known to be involved in the repair of oxidized DNA lesions. A c.C844T germline variant of the NEIL1 gene has recently been identified in the Japanese population, however, the p.Q282Stop-type protein produced from this variant gene has not yet been characterized. In this study to determine whether the NEIL1 c.C844T variant might be a defective allele, we investigated the subcellular localization of the p.Q282Stop-type protein and its ability to suppress the development of mutations in mammalian cells. In contrast to the nuclear localization of wild-type (WT) NEIL1, the p.Q282Stop-type protein tagged with GFP or FLAG was localized predominantly in the cytoplasm of human H1299 cells. Mutant forms of the putative nuclear localization signal (NLS, amino acid sequences 359 to 378) of NEIL1-GFP resulted in predominant cytoplasmic localization of the mutants, suggesting that the abnormal localization of p.Q282Stop-type NEIL1 may also be caused by a loss of the putative NLS in the protein. Next, V79 mammalian cell lines inducibly expressing WT NEIL1 or p.Q282Stop-type NEIL1 were established using the piggyBac transposon vector system, and the mutation frequency was compared between the cell lines by HPRT assay. The frequency of mutations induced by glucose oxidase, an oxidative stress inducer, was higher in the p.Q282Stop-type NEIL1-transposed cells than that in the WT NEIL1-transposed cells. Finally, the Cancer Genome Atlas (TCGA) data showed an increased number of somatic mutations in primary carcinomas containing a truncating NEIL1 mutation. These results suggest that p.Q282Stop-type NEIL1 is predominantly localized in the cytoplasm, possibly due to a loss of the NLS, and possesses a reduced ability to suppress the onset of mutations, both findings suggesting that NEIL1 c.C844T is a defective allele.
Collapse
Affiliation(s)
- Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuichi Kawanishi
- Research Equipment Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masanori Goto
- Division of Carcinogenesis and Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Hong Tao
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoki Nakamura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
28
|
Róna G, Borsos M, Ellis JJ, Mehdi AM, Christie M, Környei Z, Neubrandt M, Tóth J, Bozóky Z, Buday L, Madarász E, Bodén M, Kobe B, Vértessy BG. Dynamics of re-constitution of the human nuclear proteome after cell division is regulated by NLS-adjacent phosphorylation. Cell Cycle 2015; 13:3551-64. [PMID: 25483092 DOI: 10.4161/15384101.2014.960740] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphorylation by the cyclin-dependent kinase 1 (Cdk1) adjacent to nuclear localization signals (NLSs) is an important mechanism of regulation of nucleocytoplasmic transport. However, no systematic survey has yet been performed in human cells to analyze this regulatory process, and the corresponding cell-cycle dynamics have not yet been investigated. Here, we focused on the human proteome and found that numerous proteins, previously not identified in this context, are associated with Cdk1-dependent phosphorylation sites adjacent to their NLSs. Interestingly, these proteins are involved in key regulatory events of DNA repair, epigenetics, or RNA editing and splicing. This finding indicates that cell-cycle dependent events of genome editing and gene expression profiling may be controlled by nucleocytoplasmic trafficking. For in-depth investigations, we selected a number of these proteins and analyzed how point mutations, expected to modify the phosphorylation ability of the NLS segments, perturb nucleocytoplasmic localization. In each case, we found that mutations mimicking hyper-phosphorylation abolish nuclear import processes. To understand the mechanism underlying these phenomena, we performed a video microscopy-based kinetic analysis to obtain information on cell-cycle dynamics on a model protein, dUTPase. We show that the NLS-adjacent phosphorylation by Cdk1 of human dUTPase, an enzyme essential for genomic integrity, results in dynamic cell cycle-dependent distribution of the protein. Non-phosphorylatable mutants have drastically altered protein re-import characteristics into the nucleus during the G1 phase. Our results suggest a dynamic Cdk1-driven mechanism of regulation of the nuclear proteome composition during the cell cycle.
Collapse
Key Words
- Cdc28, cyclin-dependent protein kinase (Cdk) encoded by CDC28
- Cdk1, cyclin-dependent kinase 1
- GO, gene ontology
- NES, nuclear export signal
- NLS, nuclear localization signal
- SNP, single nucleotide polymorphisms
- SV40, Simian virus 40
- UBA1, Ubiquitin-activating enzyme E1
- UNG2, Human Uracil-DNA glycosylase 2
- cNLS, classical nuclear localization signal
- cell cycle
- dNTP, deoxyribonucleotide triphosphate
- dTTP, deoxythymidine triphosphate
- dUMP, deoxyuridine monophosphate
- dUTP, deoxyuridine triphosphate
- dUTPase
- importin
- phosphorylation
- trafficking
Collapse
Affiliation(s)
- Gergely Róna
- a Institute of Enzymology; RCNS; Hungarian Academy of Sciences ; Budapest , Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Uracil DNA glycosylase BKRF3 contributes to Epstein-Barr virus DNA replication through physical interactions with proteins in viral DNA replication complex. J Virol 2014; 88:8883-99. [PMID: 24872582 DOI: 10.1128/jvi.00950-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) BKRF3 shares sequence homology with members of the uracil-N-glycosylase (UNG) protein family and has DNA glycosylase activity. Here, we explored how BKRF3 participates in the DNA replication complex and contributes to viral DNA replication. Exogenously expressed Flag-BKRF3 was distributed mostly in the cytoplasm, whereas BKRF3 was translocated into the nucleus and colocalized with the EBV DNA polymerase BALF5 in the replication compartment during EBV lytic replication. The expression level of BKRF3 increased gradually during viral replication, coupled with a decrease of cellular UNG2, suggesting BKRF3 enzyme activity compensates for UNG2 and ensures the fidelity of viral DNA replication. In immunoprecipitation-Western blotting, BKRF3 was coimmuno-precipitated with BALF5, the polymerase processivity factor BMRF1, and the immediate-early transactivator Rta. Coexpression of BMRF1 appeared to facilitate the nuclear targeting of BKRF3 in immunofluorescence staining. Residues 164 to 255 of BKRF3 were required for interaction with Rta and BALF5, whereas residues 81 to 166 of BKRF3 were critical for BMRF1 interaction in glutathione S-transferase (GST) pulldown experiments. Viral DNA replication was defective in cells harboring BKRF3 knockout EBV bacmids. In complementation assays, the catalytic mutant BKRF3(Q90L,D91N) restored viral DNA replication, whereas the leucine loop mutant BKRF3(H213L) only partially rescued viral DNA replication, coupled with a reduced ability to interact with the viral DNA polymerase and Rta. Our data suggest that BKRF3 plays a critical role in viral DNA synthesis predominantly through its interactions with viral proteins in the DNA replication compartment, while its enzymatic activity may be supplementary for uracil DNA glycosylase (UDG) function during virus replication. IMPORTANCE Catalytic activities of both cellular UDG UNG2 and viral UDGs contribute to herpesviral DNA replication. To ensure that the enzyme activity executes at the right time and the right place in DNA replication forks, complex formation with other components in the DNA replication machinery provides an important regulation for UDG function. In this study, we provide the mechanism for EBV UDG BKRF3 nuclear targeting and the interacting domains of BKRF3 with viral DNA replication proteins. Through knockout and complementation approaches, we further demonstrate that in addition to UDG activity, the interaction of BKRF3 with viral proteins in the replication compartment is crucial for efficient viral DNA replication.
Collapse
|
30
|
Weatheritt RJ, Gibson TJ. Linear motifs: lost in (pre)translation. Trends Biochem Sci 2012; 37:333-41. [PMID: 22705166 DOI: 10.1016/j.tibs.2012.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 12/27/2022]
Abstract
Pretranslational modification by alternative splicing, alternative promoter usage and RNA editing enables the production of multiple protein isoforms from a single gene. A large quantity of data now supports the notion that short linear motifs (SLiMs), which are protein interaction modules enriched within intrinsically disordered regions, are key for the functional diversification of these isoforms. The inclusion or removal of these SLiMs can switch the subcellular localisation of an isoform, promote cooperative associations, refine the affinity of an interaction, coordinate phase transitions within the cell, and even create isoforms of opposing function. This article discusses the novel functionality enabled by the addition or removal of SLiM-containing exons by pretranslational modifications, such as alternative splicing and alternative promoter usage, and how these alterations enable the creation and modulation of complex regulatory and signalling pathways.
Collapse
Affiliation(s)
- Robert J Weatheritt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
31
|
Expression and purification of active mouse and human NEIL3 proteins. Protein Expr Purif 2012; 84:130-9. [PMID: 22569481 DOI: 10.1016/j.pep.2012.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/24/2012] [Accepted: 04/27/2012] [Indexed: 11/23/2022]
Abstract
Endonuclease VIII-like 3 (Neil3) is one of the five DNA glycosylases found in mammals that recognize and remove oxidized bases, and initiate the base excision repair (BER) pathway. Previous attempts to express and purify the mouse and human orthologs of Neil3 in their active form have not been successful. Here we report the construction of bicistronic expression vectors for expressing in Escherichia coli the full-length mouse Neil3 (MmuNeil3), its glycosylase domain (MmuNeil3Δ324), as well as the glycosylase domain of human Neil3 (NEIL3Δ324). The purified Neil3 proteins are all active, and NEIL3Δ324 exhibits similar glycosylase/lyase activity as MmuNeil3Δ324 on both single-stranded and double-stranded substrates containing thymine glycol (Tg), spiroiminodihydantoin (Sp) or an abasic site (AP). We show that N-terminal initiator methionine processing is critical for the activity of both mouse and human Neil3 proteins. Co-expressing an E. coli methionine aminopeptidase (EcoMap) Y168A variant with MmuNeil3, MmuNeil3Δ324 and NEIL3Δ324 improves the N-terminal methionine processing and increases the percentage of active Neil3 proteins in the preparation. The purified Neil3 proteins are suitable for biochemical, structural and functional studies.
Collapse
|
32
|
Torseth K, Doseth B, Hagen L, Olaisen C, Liabakk NB, Græsmann H, Durandy A, Otterlei M, Krokan HE, Kavli B, Slupphaug G. The UNG2 Arg88Cys variant abrogates RPA-mediated recruitment of UNG2 to single-stranded DNA. DNA Repair (Amst) 2012; 11:559-69. [PMID: 22521144 DOI: 10.1016/j.dnarep.2012.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/28/2012] [Accepted: 03/28/2012] [Indexed: 11/26/2022]
Abstract
In human cell nuclei, UNG2 is the major uracil-DNA glycosylase initiating DNA base excision repair of uracil. In activated B cells it has an additional role in facilitating mutagenic processing of AID-induced uracil at Ig loci and UNG-deficient patients develop hyper-IgM syndrome characterized by impaired class-switch recombination and disturbed somatic hypermutation. How UNG2 is recruited to either error-free or mutagenic uracil processing remains obscure, but likely involves regulated interactions with other proteins. The UNG2 N-terminal domain contains binding motifs for both proliferating cell nuclear antigen (PCNA) and replication protein A (RPA), but the relative contribution of these interactions to genomic uracil processing is not understood. Interestingly, a heterozygous germline single-nucleotide variant leading to Arg88Cys (R88C) substitution in the RPA-interaction motif of UNG2 has been observed in humans, but with unknown functional relevance. Here we demonstrate that UNG2-R88C protein is expressed from the variant allele in a lymphoblastoid cell line derived from a heterozygous germ line carrier. Enzyme activity as well as localization in replication foci of UNG2-R88C was similar to that of WT. However, binding to RPA was essentially abolished by the R88C substitution, whereas binding to PCNA was unaffected. Moreover, we show that disruption of the PCNA-binding motif impaired recruitment of UNG2 to S-phase replication foci, demonstrating that PCNA is a major factor for recruitment of UNG2 to unperturbed replication forks. Conversely, in cells treated with hydroxyurea, RPA mediated recruitment of UNG2 to stalled replication forks independently of functional PCNA binding. Modulation of PCNA- versus RPA-binding may thus constitute a functional switch for UNG2 in cells subsequent to genotoxic stress and potentially also during the processing of uracil at the immunoglobulin locus in antigen-stimulated B cells.
Collapse
Affiliation(s)
- Kathrin Torseth
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, the FUGE Proteomics Node, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hegde ML, Izumi T, Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:123-53. [PMID: 22749145 DOI: 10.1016/b978-0-12-387665-2.00006-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
34
|
Zeitlin SG, Chapados BR, Baker NM, Tai C, Slupphaug G, Wang JYJ. Uracil DNA N-glycosylase promotes assembly of human centromere protein A. PLoS One 2011; 6:e17151. [PMID: 21399697 PMCID: PMC3047565 DOI: 10.1371/journal.pone.0017151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/19/2011] [Indexed: 11/19/2022] Open
Abstract
Uracil is removed from DNA by the conserved enzyme Uracil DNA N-glycosylase (UNG). Previously, we observed that inhibiting UNG in Xenopus egg extracts blocked assembly of CENP-A, a histone H3 variant. CENP-A is an essential protein in all species, since it is required for chromosome segregation during mitosis. Thus, the implication of UNG in CENP-A assembly implies that UNG would also be essential, but UNG mutants lacking catalytic activity are viable in all species. In this paper, we present evidence that UNG2 colocalizes with CENP-A and H2AX phosphorylation at centromeres in normally cycling cells. Reduction of UNG2 in human cells blocks CENP-A assembly, and results in reduced cell proliferation, associated with increased frequencies of mitotic abnormalities and rapid cell death. Overexpression of UNG2 induces high levels of CENP-A assembly in human cells. Using a multiphoton laser approach, we demonstrate that UNG2 is rapidly recruited to sites of DNA damage. Taken together, our data are consistent with a model in which the N-terminus of UNG2 interacts with the active site of the enzyme and with chromatin.
Collapse
Affiliation(s)
- Samantha G Zeitlin
- Moores UCSD Cancer Center and Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America.
| | | | | | | | | | | |
Collapse
|
35
|
Modeling the impact of mitochondrial DNA damage in forebrain neurons and beyond. Mech Ageing Dev 2011; 132:424-8. [PMID: 21354441 DOI: 10.1016/j.mad.2011.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 01/30/2023]
Abstract
We have generated an inducible transgenic mouse model, which expresses a mutated version of UNG1 (mutUNG1) that removes thymine, in addition to uracil from mitochondrial DNA. The abasic-sites (AP-sites) generated by removal of thymine or uracil are a threat to genomic integrity, and are particularly harmful in mitochondria due to inhibition of mitochondrial DNA polymerase. MutUNG1, accompanied by a luciferase reporter-gene, is controlled by the Tet-on system. Transgene expression is spatially regulated by the forebrain specific CaMKIIα-promoter, and temporally by the addition of doxycycline. Mice harboring this transgene develop compromised mitochondrial dynamics, neurodegeneration and impaired behavior.
Collapse
|
36
|
Hegde ML, Hazra TK, Mitra S. Functions of disordered regions in mammalian early base excision repair proteins. Cell Mol Life Sci 2010; 67:3573-87. [PMID: 20714778 DOI: 10.1007/s00018-010-0485-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 11/30/2022]
Abstract
Reactive oxygen species, generated endogenously and induced as a toxic response, produce several dozen oxidized or modified bases and/or single-strand breaks in mammalian and other genomes. These lesions are predominantly repaired via the conserved base excision repair (BER) pathway. BER is initiated with excision of oxidized or modified bases by DNA glycosylases leading to formation of abasic (AP) site or strand break at the lesion site. Structural analysis by experimental and modeling approaches shows the presence of a disordered segment commonly localized at the N- or C-terminus as a characteristic signature of mammalian DNA glycosylases which is absent in their bacterial prototypes. Recent studies on unstructured regions in DNA metabolizing proteins have indicated their essential role in interaction with other proteins and target DNA recognition. In this review, we have discussed the unique presence of disordered segments in human DNA glycosylases, and AP endonuclease involved in the processing of glycosylase products, and their critical role in regulating repair functions. These disordered segments also include sites for posttranslational modifications and nuclear localization signal. The teleological basis for their structural flexibility is discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-1079, USA
| | | | | |
Collapse
|
37
|
Abstract
Proteins with oxidizable thiols are essential to many functions of cell nuclei, including transcription, chromatin stability, nuclear protein import and export, and DNA replication and repair. Control of the nuclear thiol-disulfide redox states involves both the elimination of oxidants to prevent oxidation and the reduction of oxidized thiols to restore function. These processes depend on the common thiol reductants, glutathione (GSH) and thioredoxin-1 (Trx1). Recent evidence shows that these systems are controlled independent of the cytoplasmic counterparts. In addition, the GSH and Trx1 couples are not in redox equilibrium, indicating that these reductants have nonredundant functions in their support of proteins involved in transcriptional regulation, nuclear protein trafficking, and DNA repair. Specific isoforms of glutathione peroxidases, glutathione S-transferases, and peroxiredoxins are enriched in nuclei, further supporting the interpretation that functions of the thiol-dependent systems in nuclei are at least quantitatively distinct, and probably also qualitatively distinct, from similar processes in the cytoplasm. Elucidation of the distinct nuclear functions and regulation of the thiol redox pathways in nuclei can be expected to improve understanding of nuclear processes and also to provide the basis for novel approaches to treat aging and disease processes associated with oxidative stress in the nuclei.
Collapse
Affiliation(s)
- Young-Mi Go
- Department of Medicine, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
38
|
Zharkov DO, Mechetin GV, Nevinsky GA. Uracil-DNA glycosylase: Structural, thermodynamic and kinetic aspects of lesion search and recognition. Mutat Res 2010; 685:11-20. [PMID: 19909758 PMCID: PMC3000906 DOI: 10.1016/j.mrfmmm.2009.10.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/24/2009] [Accepted: 10/29/2009] [Indexed: 11/19/2022]
Abstract
Uracil appears in DNA as a result of cytosine deamination and by incorporation from the dUTP pool. As potentially mutagenic and deleterious for cell regulation, uracil must be removed from DNA. The major pathway of its repair is initiated by uracil-DNA glycosylases (UNG), ubiquitously found enzymes that hydrolyze the N-glycosidic bond of deoxyuridine in DNA. This review describes the current understanding of the mechanism of uracil search and recognition by UNG. The structure of UNG proteins from several species has been solved, revealing a specific uracil-binding pocket located in a DNA-binding groove. DNA in the complex with UNG is highly distorted to allow the extrahelical recognition of uracil. Thermodynamic studies suggest that UNG binds with appreciable affinity to any DNA, mainly due to the interactions with the charged backbone. The increase in the affinity for damaged DNA is insufficient to account for the exquisite specificity of UNG for uracil. This specificity is likely to result from multistep lesion recognition process, in which normal bases are rejected at one or several pre-excision stages of enzyme-substrate complex isomerization, and only uracil can proceed to enter the active site in a catalytically competent conformation. Search for the lesion by UNG involves random sliding along DNA alternating with dissociation-association events and partial eversion of undamaged bases for initial sampling.
Collapse
Affiliation(s)
- Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Molecular Biology, Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Georgy A. Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
- Department of Molecular Biology, Faculty of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| |
Collapse
|
39
|
Mitochondrial DNA toxicity in forebrain neurons causes apoptosis, neurodegeneration, and impaired behavior. Mol Cell Biol 2010; 30:1357-67. [PMID: 20065039 DOI: 10.1128/mcb.01149-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dysfunction underlying changes in neurodegenerative diseases is often associated with apoptosis and a progressive loss of neurons, and damage to the mitochondrial genome is proposed to be involved in such pathologies. In the present study we designed a mouse model that allows us to specifically induce mitochondrial DNA toxicity in the forebrain neurons of adult mice. This is achieved by CaMKIIalpha-regulated inducible expression of a mutated version of the mitochondrial UNG DNA repair enzyme (mutUNG1). This enzyme is capable of removing thymine from the mitochondrial genome. We demonstrate that a continual generation of apyrimidinic sites causes apoptosis and neuronal death. These defects are associated with behavioral alterations characterized by increased locomotor activity, impaired cognitive abilities, and lack of anxietylike responses. In summary, whereas mitochondrial base substitution and deletions previously have been shown to correlate with premature and natural aging, respectively, we show that a high level of apyrimidinic sites lead to mitochondrial DNA cytotoxicity, which causes apoptosis, followed by neurodegeneration.
Collapse
|
40
|
Cole HA, Tabor-Godwin JM, Hayes JJ. Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets. J Biol Chem 2009; 285:2876-85. [PMID: 19933279 DOI: 10.1074/jbc.m109.073544] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The activity of uracil DNA glycosylases (UDGs), which recognize and excise uracil bases from DNA, has been well characterized on naked DNA substrates but less is known about activity in chromatin. We therefore prepared a set of model nucleosome substrates in which single thymidine residues were replaced with uracil at specific locations and a second set of nucleosomes in which uracils were randomly substituted for all thymidines. We found that UDG efficiently removes uracil from internal locations in the nucleosome where the DNA backbone is oriented away from the surface of the histone octamer, without significant disruption of histone-DNA interactions. However, uracils at sites oriented toward the histone octamer surface were excised at much slower rates, consistent with a mechanism requiring spontaneous DNA unwrapping from the nucleosome. In contrast to the nucleosome core, UDG activity on DNA outside the core DNA region was similar to that of naked DNA. Association of linker histone reduced activity of UDG at selected sites near where the globular domain of H1 is proposed to bind to the nucleosome as well as within the extra-core DNA. Our results indicate that some sites within the nucleosome core and the extra-core (linker) DNA regions represent hot spots for repair that could influence critical biological processes.
Collapse
Affiliation(s)
- Hope A Cole
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
41
|
Li LS, Morales JC, Veigl M, Sedwick D, Greer S, Meyers M, Wagner M, Fishel R, Boothman DA. DNA mismatch repair (MMR)-dependent 5-fluorouracil cytotoxicity and the potential for new therapeutic targets. Br J Pharmacol 2009; 158:679-92. [PMID: 19775280 DOI: 10.1111/j.1476-5381.2009.00423.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The metabolism and efficacy of 5-fluorouracil (FUra) and other fluorinated pyrimidine (FP) derivatives have been intensively investigated for over fifty years. FUra and its antimetabolites can be incorporated at RNA- and DNA-levels, with RNA level incorporation provoking toxic responses in human normal tissue, and DNA-level antimetabolite formation and incorporation believed primarily responsible for tumour-selective responses. Attempts to direct FUra into DNA-level antimetabolites, based on mechanism-of-action studies, have led to gradual improvements in tumour therapy. These include the use of leukovorin to stabilize the inhibitory thymidylate synthase-5-fluoro-2'-deoxyuridine 5' monophoshate (FdUMP)-5,10-methylene tetrahydrofolate (5,10-CH(2)FH(4)) trimeric complex. FUra incorporated into DNA also contributes to antitumour activity in preclinical and clinical studies. This review examines our current state of knowledge regarding the mechanistic aspects of FUra:Gua lesion detection by DNA mismatch repair (MMR) machinery that ultimately results in lethality. MMR-dependent direct cell death signalling or futile cycle responses will be discussed. As 10-30% of sporadic colon and endometrial tumours display MMR defects as a result of human MutL homologue-1 (hMLH1) promoter hypermethylation, we discuss the use and manipulation of the hypomethylating agent, 5-fluorodeoxycytidine (FdCyd), and our ability to manipulate its metabolism using the cytidine or deoxycytidylate (dCMP) deaminase inhibitors, tetrahydrouridine or deoxytetrahydrouridine, respectively, as a method for re-expression of hMLH1 and re-sensitization of tumours to FP therapy.
Collapse
Affiliation(s)
- Long Shan Li
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kalifa L, Beutner G, Phadnis N, Sheu SS, Sia EA. Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair (Amst) 2009; 8:1242-9. [PMID: 19699691 DOI: 10.1016/j.dnarep.2009.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 02/05/2023]
Abstract
Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle's high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5' flap structures generated during DNA synthesis. Furthermore, removal of 5' flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity.
Collapse
Affiliation(s)
- Lidza Kalifa
- Department of Biology, University of Rochester, NY 14627, United States
| | | | | | | | | |
Collapse
|
43
|
Pulukuri SMK, Knost JA, Estes N, Rao JS. Small interfering RNA-directed knockdown of uracil DNA glycosylase induces apoptosis and sensitizes human prostate cancer cells to genotoxic stress. Mol Cancer Res 2009; 7:1285-93. [PMID: 19671688 DOI: 10.1158/1541-7786.mcr-08-0508] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Uracil DNA glycosylase (UNG) is the primary enzyme responsible for removing uracil residues from DNA. Although a substantial body of evidence suggests that DNA damage plays a role in cancer cell apoptosis, the underlying mechanisms are poorly understood. In particular, very little is known about the role of base excision repair of misincorporated uracil in cell survival. To test the hypothesis that the repair of DNA damage associated with uracil misincorporation is critical for cancer cell survival, we used small interfering RNA (siRNA) to target the human UNG gene. In a dose-dependent and time-dependent manner, siRNA specifically inhibited UNG expression and modified the expression of several genes at both mRNA and protein levels. In LNCaP cells, p53, p21, and Bax protein levels increased, whereas Bcl2 levels decreased. In DU145 cells, p21 levels were elevated, although mutant p53 and Bax levels remained unchanged. In PC3 cells, UNG inhibition resulted in elevated p21 and Bax levels. In all three cell lines, UNG inhibition reduced cell proliferation, induced apoptosis, and increased cellular sensitivity to genotoxic stress. Furthermore, an in vitro cleavage experiment using uracil-containing double-stranded DNA as a template has shown that siRNA-mediated knockdown of UNG expression significantly reduced the uracil-excising activity of UNG in human prostate cancer cells, which was associated with DNA damage analyzed by comet assay. Taken together, these findings indicate that RNA interference-directed targeting of UNG is a convenient, novel tool for studying the biological role of UNG and raises the potential of its application for prostate cancer therapy.
Collapse
Affiliation(s)
- Sai Murali Krishna Pulukuri
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61605, USA
| | | | | | | |
Collapse
|
44
|
Knudsen NØ, Andersen SD, Lützen A, Nielsen FC, Rasmussen LJ. Nuclear translocation contributes to regulation of DNA excision repair activities. DNA Repair (Amst) 2009; 8:682-9. [PMID: 19376751 DOI: 10.1016/j.dnarep.2009.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 03/06/2009] [Accepted: 03/14/2009] [Indexed: 11/26/2022]
Abstract
DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M.T. Tomicic, W.P. Roos, B. Kaina, Mechanisms of human DNA repair: an update, Toxicology 193 (2003) 3-34; N.B. Larsen, M. Rasmussen, L.J. Rasmussen, Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion 5 (2005) 89-108]. Protein interactions are not only important for function, but also for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import, co-import of proteins, and alternative transport pathways. Most excision repair proteins appear to contain classical NLS sequences directing their nuclear import, however, additional import mechanisms add alternative regulatory levels to protein import, indirectly affecting protein function. Protein co-import appears to be a mechanism employed by the composite repair systems NER and MMR to enhance and regulate nuclear accumulation of repair proteins thereby ensuring faithful DNA repair.
Collapse
Affiliation(s)
- Nina Østergaard Knudsen
- Department of Science, Systems and Models, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | | | | | | | | |
Collapse
|
45
|
Chien CY, Chou CK, Su JY. Ung1p-mediated uracil-base excision repair in mitochondria is responsible for the petite formation in thymidylate deficient yeast. FEBS Lett 2009; 583:1499-504. [PMID: 19362086 DOI: 10.1016/j.febslet.2009.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 03/26/2009] [Accepted: 04/03/2009] [Indexed: 11/30/2022]
Abstract
The budding yeast CDC21 gene, which encodes thymidylate synthase, is crucial in the thymidylate biosynthetic pathway. Early studies revealed that high frequency of petites were formed in heat-sensitive cdc21 mutants grown at the permissive temperature. However, the molecular mechanism involved in such petite formation is largely unknown. Here we used a yeast cdc21-1 mutant to demonstrate that the mutant cells accumulated dUMP in the mitochondrial genome. When UNG1 (encoding uracil-DNA glycosylase) was deleted from cdc21-1, we found that the ung1Delta cdc21-1 double mutant reduced frequency of petite formation to the level found in wild-type cells. We propose that the initiation of Ung1p-mediated base excision repair in the uracil-laden mitochondrial genome in a cdc21-1 mutant is responsible for the mitochondrial petite mutations.
Collapse
Affiliation(s)
- Chia-Yi Chien
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
46
|
Yonekura SI, Nakamura N, Yonei S, Zhang-Akiyama QM. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. JOURNAL OF RADIATION RESEARCH 2009; 50:19-26. [PMID: 18987436 DOI: 10.1269/jrr.08080] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Base moieties in DNA are spontaneously threatened by naturally occurring chemical reactions such as deamination, hydrolysis and oxidation. These DNA modifications have been considered to be major causes of cell death, mutations and cancer induction in organisms. Organisms have developed the DNA base excision repair pathway as a defense mechanism to protect them from these threats. DNA glycosylases, the key enzyme in the base excision repair pathway, are highly conserved in evolution. Uracil constantly occurs in DNA. Uracil in DNA arises by spontaneous deamination of cytosine to generate pro-mutagenic U:G mispairs. Uracil in DNA is also produced by the incorporation of dUMP during DNA replication. Uracil-DNA glycosylase (UNG) acts as a major repair enzyme that protects DNA from the deleterious consequences of uracil. The first UNG activity was discovered in E. coli in 1974. This was also the first discovery of base excision repair. The sequence encoded by the ung gene demonstrates that the E. coli UNG is highly conserved in viruses, bacteria, archaea, yeast, mice and humans. In this review, we will focus on central and recent findings on the generation, biological consequences and repair mechanisms of uracil in DNA and on the biological significance of uracil-DNA glycosylase.
Collapse
Affiliation(s)
- Shin-Ichiro Yonekura
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
47
|
Krokeide SZ, Bolstad N, Laerdahl JK, Bjørås M, Luna L. Expression and purification of NEIL3, a human DNA glycosylase homolog. Protein Expr Purif 2008; 65:160-4. [PMID: 19121397 DOI: 10.1016/j.pep.2008.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 11/26/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
The base excision repair (BER) pathway is mainly responsible for the repair of a vast number of non-bulky lesions produced by alkylation, oxidation or deamination of bases. DNA glycosylases are the key enzymes that recognize damaged bases and initiate BER by catalyzing the cleavage of the N-glycosylic bond between the base and the sugar. Many of the mammalian DNA glycosylases have been identified by a combination of biochemical and bioinformatics analysis. Thus, a mammalian family of three proteins (NEIL1, NEIL2 and NEIL3) that showed homology to the Escherichia coli Fpg/Nei DNA glycosylases was identified. Two of the proteins, NEIL1 and NEIL2 have been thoroughly characterized and shown to initiate BER of a diverse number of oxidized lesions. However, much less is known about NEIL3. The biochemical properties of NEIL3 have not been elucidated. This is mainly due to the difficulty in the expression and purification of NEIL3. Here, we describe the expression and partial purification of full-length human NEIL3 and the expression, purification and characterization of a truncated human core-NEIL3 (amino acids 1-301) that contains the complete E. coli Fpg/Nei-like domain but lacks the C-terminal region.
Collapse
Affiliation(s)
- Silje Z Krokeide
- Centre for Molecular Biology and Neuroscience, Department of Molecular Biology, Institute of Microbiology, Rikshospitalet Medical Centre, Sognsvannsveien 28, N0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
48
|
Akbari M, Visnes T, Krokan HE, Otterlei M. Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst) 2008; 7:605-16. [PMID: 18295553 DOI: 10.1016/j.dnarep.2008.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 01/04/2008] [Accepted: 01/04/2008] [Indexed: 01/28/2023]
Abstract
Base excision repair (BER) corrects a variety of small base lesions in DNA. The UNG gene encodes both the nuclear (UNG2) and the mitochondrial (UNG1) forms of the human uracil-DNA glycosylase (UDG). We prepared mitochondrial extracts free of nuclear BER proteins from human cell lines. Using these extracts we show that UNG is the only detectable UDG in mitochondria, and mitochondrial BER (mtBER) of uracil and AP sites occur by both single-nucleotide insertion and long-patch repair DNA synthesis. Importantly, extracts of mitochondria carry out repair of modified AP sites which in nuclei occurs through long-patch BER. Such lesions may be rather prevalent in mitochondrial DNA because of its proximity to the electron transport chain, the primary site of production of reactive oxygen species. Furthermore, mitochondrial extracts remove 5' protruding flaps from DNA which can be formed during long-patch BER, by a "flap endonuclease like" activity, although flap endonuclease (FEN1) is not present in mitochondria. In conclusion, combined short- and long-patch BER activities enable mitochondria to repair a broader range of lesions in mtDNA than previously known.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | | | |
Collapse
|
49
|
Setzer B, Lebrecht D, Walker UA. Pyrimidine nucleoside depletion sensitizes to the mitochondrial hepatotoxicity of the reverse transcriptase inhibitor stavudine. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:681-90. [PMID: 18276780 DOI: 10.2353/ajpath.2008.070613] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Stavudine is a hepatotoxic antiretroviral nucleoside analogue that also inhibits the replication of mitochondrial DNA (mtDNA). To elucidate the mechanism and consequences of mtDNA depletion, we treated HepG2 cells with stavudine and either redoxal, an inhibitor of de novo pyrimidine synthesis, or uridine, from which pyrimidine pools are salvaged. Compared with treatment with stavudine alone, co-treatment with redoxal accelerated mtDNA depletion, impaired cell division, and activated caspase 3. These adverse effects were completely abrogated by uridine. Intracellular ATP levels were unaffected. Transcriptosome profiling demonstrated that redoxal and stavudine acted synergistically to induce CDKN2A and p21, indicating cell cycle arrest in G1, as well as genes involved in intrinsic and extrinsic apoptosis. Moreover, redoxal and stavudine showed synergistic interaction in the up-regulation of transcripts encoded by mtDNA and the induction of nuclear transcripts participating in energy metabolism, mitochondrial biogenesis, oxidative stress, and DNA repair. Genes involved in nucleotide metabolism were also synergistically up-regulated by both agents; this effect was completely antagonized by uridine. Thus, pyrimidine depletion sensitizes cells to stavudine-mediated mtDNA depletion and enhances secondary cell toxicity. Our results indicate that drugs that diminish pyrimidine pools should be avoided in stavudine-treated human immunodeficiency virus patients. Uridine supplementation reverses this toxicity and, because of its good tolerability, has potential clinical value for the treatment of side effects associated with pyrimidine depletion.
Collapse
Affiliation(s)
- Bernhard Setzer
- Department of Rheumatology and Clinical Immunology,Medizinische Universitätsklinik, Hugstetterstr. 55, D-79106 Freiburg, Germany
| | | | | |
Collapse
|
50
|
Hagen L, Kavli B, Sousa MML, Torseth K, Liabakk NB, Sundheim O, Pena-Diaz J, Otterlei M, Hørning O, Jensen ON, Krokan HE, Slupphaug G. Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J 2007; 27:51-61. [PMID: 18079698 PMCID: PMC2147998 DOI: 10.1038/sj.emboj.7601958] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 11/22/2007] [Indexed: 12/30/2022] Open
Abstract
Human UNG2 is a multifunctional glycosylase that removes uracil near replication forks and in non-replicating DNA, and is important for affinity maturation of antibodies in B cells. How these diverse functions are regulated remains obscure. Here, we report three new phosphoforms of the non-catalytic domain that confer distinct functional properties to UNG2. These are apparently generated by cyclin-dependent kinases through stepwise phosphorylation of S23, T60 and S64 in the cell cycle. Phosphorylation of S23 in late G1/early S confers increased association with replication protein A (RPA) and replicating chromatin and markedly increases the catalytic turnover of UNG2. Conversely, progressive phosphorylation of T60 and S64 throughout S phase mediates reduced binding to RPA and flag UNG2 for breakdown in G2 by forming a cyclin E/c-myc-like phosphodegron. The enhanced catalytic turnover of UNG2 p-S23 likely optimises the protein to excise uracil along with rapidly moving replication forks. Our findings may aid further studies of how UNG2 initiates mutagenic rather than repair processing of activation-induced deaminase-generated uracil at Ig loci in B cells.
Collapse
Affiliation(s)
- Lars Hagen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|