1
|
Romano G, Le P, Nigita G, Saviana M, Micalo L, Lovat F, Del Valle Morales D, Li H, Nana-Sinkam P, Acunzo M. A-to-I edited miR-411-5p targets MET and promotes TKI response in NSCLC-resistant cells. Oncogene 2023; 42:1597-1606. [PMID: 37002315 PMCID: PMC10336698 DOI: 10.1038/s41388-023-02673-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation have an initial favorable clinical response to the tyrosine kinase inhibitors (TKIs). Unfortunately, rapid resistance occurs mainly because of genetic alterations, including amplification of the hepatocyte growth factor receptor (MET) and its abnormal activity. The RNA post-transcriptional modifications that contribute to aberrant expression of MET in cancer are largely under-investigated and among them is the adenosine-to-inosine (A-to-I) RNA editing of microRNAs. A reduction of A-to-I editing in position 5 of miR-411-5p has been identified in several cancers, including NSCLC. In this study, thanks to cancer-associated gene expression analysis, we assessed the effect of the edited miR-411-5p on NSCLC cell lines. We found that edited miR-411-5p directly targets MET and negatively affects the mitogen-activated protein kinases (MAPKs) pathway. Considering the predominant role of the MAPKs pathway on TKIs resistance, we generated NSCLC EGFR mutated cell lines resistant to TK inhibitors and evaluated the effect of edited miR-411-5p overexpression. We found that the edited miR-411-5p reduces proliferation and induces apoptosis, promoting EGFR TKIs response in NSCLC-resistant cells.
Collapse
Affiliation(s)
- Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lavender Micalo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Del Valle Morales
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
2
|
Soave C, Ducker C, Islam N, Kim S, Yurgelevic S, Nicely NI, Pardy L, Huang Y, Shaw PE, Auner G, Dickson A, Ratnam M. The Small Molecule Antagonist KCI807 Disrupts Association of the Amino-Terminal Domain of the Androgen Receptor with ELK1 by Modulating the Adjacent DNA Binding Domain. Mol Pharmacol 2023; 103:211-220. [PMID: 36720643 PMCID: PMC11033959 DOI: 10.1124/molpharm.122.000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/11/2022] [Accepted: 12/27/2022] [Indexed: 02/02/2023] Open
Abstract
The androgen receptor (AR) is a crucial coactivator of ELK1 for prostate cancer (PCa) growth, associating with ELK1 through two peptide segments (358-457 and 514-557) within the amino-terminal domain (NTD) of AR. The small-molecule antagonist 5-hydroxy-2-(3-hydroxyphenyl)chromen-4-one (KCI807) binds to AR, blocking ELK1 binding and inhibiting PCa growth. We investigated the mode of interaction of KCI807 with AR using systematic mutagenesis coupled with ELK1 coactivation assays, testing polypeptide binding and Raman spectroscopy. In full-length AR, deletion of neither ELK1 binding segment affected sensitivity of residual ELK1 coactivation to KCI807. Although the NTD is sufficient for association of AR with ELK1, interaction of the isolated NTD with ELK1 was insensitive to KCI807. In contrast, coactivation of ELK1 by the AR-V7 splice variant, comprising the NTD and the DNA binding domain (DBD), was sensitive to KCI807. Deletions and point mutations within DBD segment 558-595, adjacent to the NTD, interfered with coactivation of ELK1, and residual ELK1 coactivation by the mutants was insensitive to KCI807. In a glutathione S-transferase pull-down assay, KCI807 inhibited ELK1 binding to an AR polypeptide that included the two ELK1 binding segments and the DBD but did not affect ELK1 binding to a similar AR segment that lacked the sequence downstream of residue 566. Raman spectroscopy detected KCI807-induced conformational change in the DBD. The data point to a putative KCI807 binding pocket within the crystal structure of the DBD and indicate that either mutations or binding of KCI807 at this site will induce conformational changes that disrupt ELK1 binding to the NTD. SIGNIFICANCE STATEMENT: The small-molecule antagonist KCI807 disrupts association of the androgen receptor (AR) with ELK1, serving as a prototype for the development of small molecules for a novel type of therapeutic intervention in drug-resistant prostate cancer. This study provides basic information needed for rational KCI807-based drug design by identifying a putative binding pocket in the DNA binding domain of AR through which KCI807 modulates the amino-terminal domain to inhibit ELK1 binding.
Collapse
Affiliation(s)
- Claire Soave
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Charles Ducker
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Naeyma Islam
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Seongho Kim
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Sally Yurgelevic
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Nathan I Nicely
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Luke Pardy
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Yanfang Huang
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Peter E Shaw
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Gregory Auner
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Alex Dickson
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| | - Manohar Ratnam
- Department of Oncology (C.S., S.K., Y.H., L.P., M.R.) and Smart Sensors and Integrated Microsystems (SSIM) Program (S.Y., G.A.), Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan; Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, Michigan (N.I. and A.D.); School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom (C.D. and P.E.S.); and Department of Pharmacology, UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina (N.N.)
| |
Collapse
|
3
|
Identification of ELK1 interacting peptide segments in the androgen receptor. Biochem J 2022; 479:1519-1531. [PMID: 35781489 DOI: 10.1042/bcj20220297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer (PCa) growth requires tethering of the androgen receptor (AR) to chromatin by the ETS domain transcription factor ELK1 to coactivate critical cell proliferation genes. Disruption of the ELK1-AR complex is a validated potential means of therapeutic intervention in PCa. AR associates with ELK1 by co-opting its two ERK docking sites, through the amino-terminal domain (A/B domain) of AR. Using a mammalian two-hybrid assay, we have now functionally mapped amino acids within the peptide segments 358-457 and 514-557 in the A/B domain as required for association with ELK1. The mapping data was validated by GST (glutathione S-transferase)-pulldown and BRET (bioluminescence resonance energy transfer) assays. Comparison of the relative contributions of the interacting motifs/segments in ELK1 and AR to coactivation of ELK1 by AR suggested a parallel mode of binding of AR and ELK1 polypeptides. Growth of PCa cells was partially inhibited by deletion of the upstream segment in AR and nearly fully inhibited by deletion of the downstream segment. Our studies have identified two peptide segments in AR that mediate functional association of AR with its two docking sites in ELK1. Identification of the ELK1 recognition sites in AR should enable further structural studies of the ELK1-AR interaction and rational design of small molecule drugs to disrupt this interaction.
Collapse
|
4
|
Jafari Nivlouei S, Soltani M, Shirani E, Salimpour MR, Travasso R, Carvalho J. A multiscale cell-based model of tumor growth for chemotherapy assessment and tumor-targeted therapy through a 3D computational approach. Cell Prolif 2022; 55:e13187. [PMID: 35132721 PMCID: PMC8891571 DOI: 10.1111/cpr.13187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/09/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Computational modeling of biological systems is a powerful tool to clarify diverse processes contributing to cancer. The aim is to clarify the complex biochemical and mechanical interactions between cells, the relevance of intracellular signaling pathways in tumor progression and related events to the cancer treatments, which are largely ignored in previous studies. MATERIALS AND METHODS A three-dimensional multiscale cell-based model is developed, covering multiple time and spatial scales, including intracellular, cellular, and extracellular processes. The model generates a realistic representation of the processes involved from an implementation of the signaling transduction network. RESULTS Considering a benign tumor development, results are in good agreement with the experimental ones, which identify three different phases in tumor growth. Simulating tumor vascular growth, results predict a highly vascularized tumor morphology in a lobulated form, a consequence of cells' motile behavior. A novel systematic study of chemotherapy intervention, in combination with targeted therapy, is presented to address the capability of the model to evaluate typical clinical protocols. The model also performs a dose comparison study in order to optimize treatment efficacy and surveys the effect of chemotherapy initiation delays and different regimens. CONCLUSIONS Results not only provide detailed insights into tumor progression, but also support suggestions for clinical implementation. This is a major step toward the goal of predicting the effects of not only traditional chemotherapy but also tumor-targeted therapies.
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.,Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran.,Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| | | | - Rui Travasso
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| | - João Carvalho
- Department of Physics, CFisUC, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Thiel G, Backes TM, Guethlein LA, Rössler OG. Critical Protein-Protein Interactions Determine the Biological Activity of Elk-1, a Master Regulator of Stimulus-Induced Gene Transcription. Molecules 2021; 26:molecules26206125. [PMID: 34684708 PMCID: PMC8541449 DOI: 10.3390/molecules26206125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Elk-1 is a transcription factor that binds together with a dimer of the serum response factor (SRF) to the serum-response element (SRE), a genetic element that connects cellular stimulation with gene transcription. Elk-1 plays an important role in the regulation of cellular proliferation and apoptosis, thymocyte development, glucose homeostasis and brain function. The biological function of Elk-1 relies essentially on the interaction with other proteins. Elk-1 binds to SRF and generates a functional ternary complex that is required to activate SRE-mediated gene transcription. Elk-1 is kept in an inactive state under basal conditions via binding of a SUMO-histone deacetylase complex. Phosphorylation by extracellular signal-regulated protein kinase, c-Jun N-terminal protein kinase or p38 upregulates the transcriptional activity of Elk-1, mediated by binding to the mediator of RNA polymerase II transcription (Mediator) and the transcriptional coactivator p300. Strong and extended phosphorylation of Elk-1 attenuates Mediator and p300 recruitment and allows the binding of the mSin3A-histone deacetylase corepressor complex. The subsequent dephosphorylation of Elk-1, catalyzed by the protein phosphatase calcineurin, facilitates the re-SUMOylation of Elk-1, transforming Elk-1 back to a transcriptionally inactive state. Thus, numerous protein–protein interactions control the activation cycle of Elk-1 and are essential for its biological function.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
- Correspondence: ; Tel.: +49-6841-1626506; Fax: +49-6841-1626500
| | - Tobias M. Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Oliver G. Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
| |
Collapse
|
6
|
Jafari Nivlouei S, Soltani M, Carvalho J, Travasso R, Salimpour MR, Shirani E. Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy. PLoS Comput Biol 2021; 17:e1009081. [PMID: 34161319 PMCID: PMC8259971 DOI: 10.1371/journal.pcbi.1009081] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/06/2021] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
The dynamics of tumor growth and associated events cover multiple time and spatial scales, generally including extracellular, cellular and intracellular modifications. The main goal of this study is to model the biological and physical behavior of tumor evolution in presence of normal healthy tissue, considering a variety of events involved in the process. These include hyper and hypoactivation of signaling pathways during tumor growth, vessels' growth, intratumoral vascularization and competition of cancer cells with healthy host tissue. The work addresses two distinctive phases in tumor development-the avascular and vascular phases-and in each stage two cases are considered-with and without normal healthy cells. The tumor growth rate increases considerably as closed vessel loops (anastomoses) form around the tumor cells resulting from tumor induced vascularization. When taking into account the host tissue around the tumor, the results show that competition between normal cells and cancer cells leads to the formation of a hypoxic tumor core within a relatively short period of time. Moreover, a dense intratumoral vascular network is formed throughout the entire lesion as a sign of a high malignancy grade, which is consistent with reported experimental data for several types of solid carcinomas. In comparison with other mathematical models of tumor development, in this work we introduce a multiscale simulation that models the cellular interactions and cell behavior as a consequence of the activation of oncogenes and deactivation of gene signaling pathways within each cell. Simulating a therapy that blocks relevant signaling pathways results in the prevention of further tumor growth and leads to an expressive decrease in its size (82% in the simulation).
Collapse
Affiliation(s)
- Sahar Jafari Nivlouei
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - M. Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Rui Travasso
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | | | - Ebrahim Shirani
- Department of Mechanical Engineering, Isfahan University of Technology, Isafahan, Iran
- Department of Mechanical Engineering, Foolad Institute of Technology, Fooladshahr, Iran
| |
Collapse
|
7
|
Nguyen LP, Nguyen HT, Yong HJ, Reyes-Alcaraz A, Lee YN, Park HK, Na YH, Lee CS, Ham BJ, Seong JY, Hwang JI. Establishment of a NanoBiT-Based Cytosolic Ca 2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels. Mol Cells 2020; 43:909-920. [PMID: 33162399 PMCID: PMC7700839 DOI: 10.14348/molcells.2020.0144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.
Collapse
Affiliation(s)
- Lan Phuong Nguyen
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Huong Thi Nguyen
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hyo Jeong Yong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | | | - Yoo-Na Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Hee-Kyung Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Yun Hee Na
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Cheol Soon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul 02841, Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Jong-Ik Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
8
|
Pardy L, Rosati R, Soave C, Huang Y, Kim S, Ratnam M. The ternary complex factor protein ELK1 is an independent prognosticator of disease recurrence in prostate cancer. Prostate 2020; 80:198-208. [PMID: 31794091 PMCID: PMC7302117 DOI: 10.1002/pros.23932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Both hormone-sensitive and castration- and enzalutamide-resistant prostate cancers (PCa) depend on the ternary complex factor (TCF) protein ELK1 to serve as a tethering protein for the androgen receptor (AR) to activate a critical set of growth genes. The two sites in ELK1 required for AR binding are conserved in other members of the TCF subfamily, ELK3 and ELK4. Here we examine the potential utility of the three proteins as prognosticators of disease recurrence in PCa. METHODS Transcriptional activity assays; Retrospective analysis of PCa recurrence using data on 501 patients in The Cancer Genome Atlas (TCGA) database; Unpaired Wilcoxon rank-sum test and multiple comparison correction using the Holm's method; Spearman's correlations; Kaplan-Meier methods; Univariable and multivariable Cox regression analyses; LASSO-based penalized Cox regression models; Time-dependent area under the receiver operating characteristic (ROC) curve. RESULTS ELK4 but not ELK3 was coactivated by AR similar to ELK1. Tumor expression of neither ELK3 nor ELK4 was associated with disease-free survival (DFS). ELK1 was associated with higher clinical T-stage, pathology T-stage, Gleason score, prognostic grade, and positive lymph node status. ELK1 was a negative prognosticator of DFS, independent of ELK3, ELK4, clinical T-stage, pathology T-stage, prognostic grade, lymph node status, age, and race. Inclusion of ELK1 increased the abilities of the Oncotype DX and Prolaris gene panels to predict disease recurrence, correctly predicting disease recurrence in a unique subset of patients. CONCLUSIONS ELK1 is a strong, independent prognosticator of disease recurrence in PCa, underscoring its unique role in PCa growth. Inclusion of ELK1 may enhance the utility of currently used prognosticators for clinical decision making in prostate cancer.
Collapse
Affiliation(s)
- Luke Pardy
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Rayna Rosati
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Claire Soave
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Yanfang Huang
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Seongho Kim
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Manohar Ratnam
- Department of Oncology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| |
Collapse
|
9
|
Ducker C, Chow LKY, Saxton J, Handwerger J, McGregor A, Strahl T, Layfield R, Shaw PE. De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation. Nucleic Acids Res 2019; 47:4495-4508. [PMID: 30854565 PMCID: PMC6511843 DOI: 10.1093/nar/gkz166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/06/2023] Open
Abstract
ELK-1 is a transcription factor involved in ERK-induced cellular proliferation. Here, we show that its transcriptional activity is modulated by ubiquitination at lysine 35 (K35). The level of ubiquitinated ELK-1 rises in mitogen-deprived cells and falls upon mitogen stimulation or oncogene expression. Ectopic expression of USP17, a cell cycle-dependent deubiquitinase, decreases ELK-1 ubiquitination and up-regulates ELK-1 target-genes with a concomitant increase in cyclin D1 expression. In contrast, USP17 depletion attenuates ELK-1-dependent gene expression and slows cell proliferation. The reduced rate of proliferation upon USP17 depletion appears to be a direct effect of ELK-1 ubiquitination because it is rescued by an ELK-1(K35R) mutant refractory to ubiquitination. Overall, our results show that ubiquitination of ELK-1 at K35, and its reversal by USP17, are important mechanisms in the regulation of nuclear ERK signalling and cellular proliferation. Our findings will be relevant for tumours that exhibit elevated USP17 expression and suggest a new target for intervention.
Collapse
Affiliation(s)
- Charles Ducker
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Leo Kam Yuen Chow
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Janice Saxton
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Jürgen Handwerger
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Alexander McGregor
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Thomas Strahl
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Robert Layfield
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter E Shaw
- Transcription and Molecular Signalling Laboratory, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
10
|
Rosati R, Polin L, Ducker C, Li J, Bao X, Selvakumar D, Kim S, Xhabija B, Larsen M, McFall T, Huang Y, Kidder BL, Fribley A, Saxton J, Kakuta H, Shaw P, Ratnam M. Strategy for Tumor-Selective Disruption of Androgen Receptor Function in the Spectrum of Prostate Cancer. Clin Cancer Res 2018; 24:6509-6522. [PMID: 30185422 PMCID: PMC6295231 DOI: 10.1158/1078-0432.ccr-18-0982] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Testosterone suppression in prostate cancer is limited by serious side effects and resistance via restoration of androgen receptor (AR) functionality. ELK1 is required for AR-dependent growth in various hormone-dependent and castration-resistant prostate cancer models. The amino-terminal domain of AR docks at two sites on ELK1 to coactivate essential growth genes. This study explores the ability of small molecules to disrupt the ELK1-AR interaction in the spectrum of prostate cancer, inhibiting AR activity in a manner that would predict functional tumor selectivity. EXPERIMENTAL DESIGN Small-molecule drug discovery and extensive biological characterization of a lead compound. RESULTS We have discovered a lead molecule (KCI807) that selectively disrupts ELK1-dependent promoter activation by wild-type and variant ARs without interfering with ELK1 activation by ERK. KCI807 has an obligatory flavone scaffold and functional hydroxyl groups on C5 and C3'. KCI807 binds to AR, blocking ELK1 binding, and selectively blocks recruitment of AR to chromatin by ELK1. KCI807 primarily affects a subset of AR target growth genes selectively suppressing AR-dependent growth of prostate cancer cell lines with a better inhibitory profile than enzalutamide. KCI807 also inhibits in vivo growth of castration/enzalutamide-resistant cell line-derived and patient-derived tumor xenografts. In the rodent model, KCI807 has a plasma half-life of 6 hours, and maintenance of its antitumor effect is limited by self-induced metabolism at its 3'-hydroxyl. CONCLUSIONS The results offer a mechanism-based therapeutic paradigm for disrupting the AR growth-promoting axis in the spectrum of prostate tumors while reducing global suppression of testosterone actions. KCI807 offers a good lead molecule for drug development.
Collapse
Affiliation(s)
- Rayna Rosati
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Charles Ducker
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Dakshnamurthy Selvakumar
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Besa Xhabija
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
- Department of Chemistry and Biochemistry, University of Michigan-Flint, Flint, Michigan
| | - Martha Larsen
- University of Michigan, Life Sciences Institute and Center for Chemical Genomics, Ann Arbor, Michigan
| | - Thomas McFall
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Yanfang Huang
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Benjamin L Kidder
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Andrew Fribley
- Department of Pediatrics, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Janice Saxton
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Okayama University, Okayama, Japan
| | - Peter Shaw
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, United Kingdom
| | - Manohar Ratnam
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
11
|
Ahn J, Lee JG, Chin C, In S, Yang A, Park HS, Kim J, Park JH. MSK1 functions as a transcriptional coactivator of p53 in the regulation of p21 gene expression. Exp Mol Med 2018; 50:1-12. [PMID: 30305627 PMCID: PMC6180136 DOI: 10.1038/s12276-018-0160-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022] Open
Abstract
Mitogen- and stress-activated kinase 1 (MSK1) is a chromatin kinase that facilitates activator-dependent transcription by altering chromatin structure through histone H3 phosphorylation. The kinase activity of MSK1 is activated by intramolecular autophosphorylation, which is initially triggered by the activation of upstream mitogen-activated protein kinases (MAPKs), such as p38 and ERK1/2. MSK1 has been implicated in the expression of p21, a p53 target gene; however, the precise connection between MSK1 and p53 has not been clearly elucidated. Here, using in vitro and cell-based transcription assays, we show that MSK1 functions as a transcriptional coactivator of p53 in p21 expression, an action associated with MAPK-dependent phosphorylation of MSK1 and elevated kinase activity. Of special significance, we show that MSK1 directly interacts with p53 and is recruited to the p21 promoter, where it phosphorylates histone H3 in a p53-dependent manner. In addition, phosphomimetic mutant analysis demonstrated that negative charges in the hydrophobic motif are critical for serine 212 phosphorylation in the N-terminal kinase domain, which renders MSK1 competent for histone kinase activity. These studies suggest that MSK1 acts through a direct interaction with p53 to function as a transcriptional coactivator and that MSK1 activation by upstream MAPK signaling is important for efficient p21 gene expression.
Collapse
Affiliation(s)
- Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jin Gyeong Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Chuevin Chin
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Suna In
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Aerin Yang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| | - Jeong Hyeon Park
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand.
| |
Collapse
|
12
|
The Transcription Factor ETV5 Mediates BRAFV600E-Induced Proliferation and TWIST1 Expression in Papillary Thyroid Cancer Cells. Neoplasia 2018; 20:1121-1134. [PMID: 30265861 PMCID: PMC6161370 DOI: 10.1016/j.neo.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022] Open
Abstract
The ETS family of transcription factors is involved in several normal remodeling events and pathological processes including tumor progression. ETS transcription factors are divided into subfamilies based on the sequence and location of the ETS domain. ETV5 (Ets variant gene 5; also known as ERM) is a member of the PEA3 subfamily. Our meta-analysis of normal, benign, and malignant thyroid samples demonstrated that ETV5 expression is upregulated in papillary thyroid cancer and was predominantly associated with BRAF V600E or RAS mutations. However, the precise role of ETV5 in these lesions is unknown. In this study, we used the KTC1 cell line as a model for human advanced papillary thyroid cancer (PTC) because the cells harbor the heterozygous BRAF (V600E) mutation together with the C250T TERT promoter mutation. The role of ETV5 in PTC proliferation was tested using RNAi followed by high-throughput screening. Signaling pathways driving ETV5 expression were identified using specific pharmacological inhibitors. To determine if ETV5 influences the expression of epithelial-to-mesenchymal (EMT) markers in these cells, an EMT PCR array was used, and data were confirmed by qPCR and ChIP-qPCR. We found that ETV5 is critical for PTC cell growth, is expressed downstream of the MAPK pathway, and directly upregulates the transcription factor TWIST1, a known marker of intravasation and metastasis. Increased ETV5 expression could therefore be considered as a marker for advanced PTCs and a possible future therapeutic target.
Collapse
|
13
|
Yu T, Yu Q, Chen X, Zhou L, Wang Y, Yu C. Exclusive enteral nutrition protects against inflammatory bowel disease by inhibiting NF‑κB activation through regulation of the p38/MSK1 pathway. Int J Mol Med 2018; 42:1305-1316. [PMID: 29901086 PMCID: PMC6089761 DOI: 10.3892/ijmm.2018.3713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/30/2018] [Indexed: 12/28/2022] Open
Abstract
Although enteral nutrition therapy for inflammatory bowel disease has been confirmed to be an effective treatment method, the exact mechanism responsible for the effects of enteral nutrition remains unclear. The aim of the present study was to investigate the protective effect of exclusive enteral nutrition (EEN) against colitis, and to elucidate the potential mechanisms by inhibiting p65 activation via regulating the p38/mitogen‑ and stress‑activated protein kinase‑1 (MSK1) pathway. Experiments were performed by establishing dextran sulfate sodium (DSS)‑mice colitis and picrylsulfonic acid solution (TNBS)‑induced rat colitis, and the results demonstrated that EEN treatment attenuated body weight loss, colon length shortening and colonic pathological damage caused by colitis. EEN also inhibited inflammatory cells infiltration and decreased myeloperoxidase and inducible nitric oxide synthase activities. Furthermore, EEN significantly reduced the production of pro‑inflammatory mediators in serum and the colon. Mechanically, EEN suppressed activation of p65 by inhibiting the p38/MSK1 pathway. In conclusion, the present study demonstrated that EEN attenuated DSS‑ and TNBS‑induced colitis by inhibiting p65 activation via regulating the p38/MSK1 pathway, thus suggesting that EEN is effective in the treatment of colitis.
Collapse
Affiliation(s)
- Ting Yu
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qian Yu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaotian Chen
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Chenggong Yu
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
14
|
Noncanonical hedgehog pathway activation through SRF-MKL1 promotes drug resistance in basal cell carcinomas. Nat Med 2018; 24:271-281. [PMID: 29400712 PMCID: PMC5839965 DOI: 10.1038/nm.4476] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
Abstract
Hedgehog pathway-dependent cancers can escape smoothened (SMO) inhibition
through canonical pathway mutations, however, 50% of resistant BCCs lack
additional variants in hedgehog genes. Here we use multi-dimensional genomics in
human and mouse resistant BCCs to identify a non-canonical hedgehog activation
pathway driven by the transcription factor, serum response factor (SRF). Active
SRF along with its co-activator megakaryoblastic leukemia 1 (MKL1) form a novel
protein complex and share chromosomal occupancy with the hedgehog transcription
factor GLI1, causing amplification of GLI1 transcriptional activity. We show
cytoskeletal activation by Rho and the formin family member Diaphanous (mDia)
are required for SRF/MKL-driven GLI1 activation and tumor cell viability.
Remarkably, we use nuclear MKL1 staining in mouse and human patient tumors to
define drug responsiveness to MKL inhibitors highlighting the therapeutic
potential of targeting this pathway. Thus, our studies illuminate for the first
time cytoskeletal-driven transcription as a personalized therapeutic target to
combat drug resistant malignancies.
Collapse
|
15
|
Carter SD, Mifsud KR, Reul JMHM. Acute Stress Enhances Epigenetic Modifications But Does Not Affect the Constitutive Binding of pCREB to Immediate-Early Gene Promoters in the Rat Hippocampus. Front Mol Neurosci 2017; 10:416. [PMID: 29311809 PMCID: PMC5742222 DOI: 10.3389/fnmol.2017.00416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/30/2017] [Indexed: 01/13/2023] Open
Abstract
The immediate early genes (IEGs) c-Fos and Egr-1 are rapidly and transiently induced in sparse neurons within the hippocampus after exposure to an acute stressor. The induction of these genes is a critical part of the molecular mechanisms underlying successful behavioral adaptation to stress. Our previous work has shown that transcriptional activation of c-Fos and Egr-1 in the hippocampus requires formation of a dual histone mark within their promoter regions, the phosphorylation of serine 10 and acetylation of lysine 9/14 of histone H3. In the present study, using chromatin immuno-precipitation (ChIP), we found that an increase in the formation of H3K9ac-S10p occurs within the c-Fos and Egr-1 promoters after FS stress in vivo and that these histone modifications were located to promoter regions containing cAMP Responsive Elements (CREs), but not in neighboring regions containing only Serum Responsive Elements (SREs). Surprisingly, however, subsequent ChIP analyses showed no changes in the binding of pCREB or CREB-binding protein (CBP) to the CREs after FS. In fact, pCREB binding to the c-Fos and Egr-1 promoters was already highly enriched under baseline conditions and did not increase further after stress. We suggest that constitutive pCREB binding may keep c-Fos and Egr-1 in a poised state for activation. Possibly, the formation of H3K9ac-S10p in the vicinity of CRE sites may participate in unblocking transcriptional elongation through recruitment of additional epigenetic factors.
Collapse
Affiliation(s)
| | | | - Johannes M. H. M. Reul
- Neuro-Epigenetics Research Group, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Hunter CJ, Remenyi J, Correa SA, Privitera L, Reyskens KMSE, Martin KJ, Toth R, Frenguelli BG, Arthur JSC. MSK1 regulates transcriptional induction of Arc/Arg3.1 in response to neurotrophins. FEBS Open Bio 2017; 7:821-834. [PMID: 28593137 PMCID: PMC5458472 DOI: 10.1002/2211-5463.12232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
The immediate early gene activity‐regulated cytoskeletal protein (Arc)/Arg3.1 and the neurotrophin brain‐derived neurotrophic factor (BDNF) play important roles in synaptic plasticity and learning and memory in the mammalian brain. However, the mechanisms by which BDNF regulates the expression of Arc/Arg3.1 are unclear. In this study, we show that BDNF acts via the ERK1/2 pathway to activate the nuclear kinase mitogen‐ and stress‐activated protein kinase 1 (MSK1). MSK1 then induces Arc/Arg3.1 expression via the phosphorylation of histone H3 at the Arc/Arg3.1 promoter. MSK1 can also phosphorylate the transcription factor cyclic‐AMP response element‐binding protein (CREB) on Ser133. However, this is not required for BDNF‐induced Arc.Arg3.1 transcription as a Ser133Ala knockin mutation had no effect on Arc/Arg3.1 induction. In parallel, ERK1/2 directly activates Arc/Arg3.1 mRNA transcription via at least one serum response element on the promoter, which bind a complex of the Serum Response Factor (SRF) and a Ternary Complex Factor (TCF).
Collapse
Affiliation(s)
- Chris J Hunter
- MRC Protein Phosphorylation Unit College of Life Sciences Sir James Black Centre University of Dundee UK
| | - Judit Remenyi
- Wellcome Trust Centre for Gene Regulation and Expression Wellcome Trust Building College of Life Sciences University of Dundee UK
| | - Sonia A Correa
- Bradford School of Pharmacy Faculty of Life Sciences University of Bradford UK
| | | | - Kathleen M S E Reyskens
- Division of Cell Signalling and Immunology Wellcome Trust Building College of Life Sciences University of Dundee UK
| | - Kirsty J Martin
- MRC Protein Phosphorylation Unit College of Life Sciences Sir James Black Centre University of Dundee UK
| | - Rachel Toth
- MRC Protein Phosphorylation Unit College of Life Sciences Sir James Black Centre University of Dundee UK
| | | | - J Simon C Arthur
- Division of Cell Signalling and Immunology Wellcome Trust Building College of Life Sciences University of Dundee UK
| |
Collapse
|
17
|
Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-catenin pathways. Mol Cancer 2017; 16:70. [PMID: 28356111 PMCID: PMC5372323 DOI: 10.1186/s12943-017-0629-4] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Metastasis is a major cause of death in human colorectal cancer patients. However, the contribution of chemokines in the tumor microenvironment to tumor metastasis is not fully understood. Methods Herein, we examinined several chemokines in colorectal cancer patients using chemokine ELISA array. Immunohistochemistry was used to detect expression of CXCL5 in colorectal cancer patients tissues. Human HCT116 and SW480 cell lines stably transfected with CXCL5, shCXCL5 and shCXCR2 lentivirus plasmids were used in our in vitro study. Immunoblot, immunofluorescence and transwell assay were used to examine the molecular biology and morphological changes in these cells. In addition, we used nude mice to detect the influence of CXCL5 on tumor metastasis in vivo. Results We found that CXCL5 was overexpressed in tumor tissues and associated with advanced tumor stage as well as poor prognosis in colorectal cancer patients. We also demonstrated that CXCL5 was primarily expressed in the tumor cell cytoplasm and cell membranes, which may indicate that the CXCL5 was predominantly produced by cancer epithelial cells instead of fibroblasts in the tumor mesenchyme. Additionally, overexpression of CXCL5 enhanced the migration and invasion of colorectal cancer cells by inducing the epithelial-mesenchymal transition (EMT) through activation of the ERK/Elk-1/Snail pathway and the AKT/GSK3β/β-catenin pathway in a CXCR2-dependent manner. The silencing of Snail and β-catenin attenuated CXCL5/CXCR2-enhanced cell migration and invasion in vitro. The elevated expression of CXCL5 can also potentiate the metastasis of colorectal cancer cells to the liver in vivo in nude mice intrasplenic injection model. Conclusion In conclusion, our findings support CXCL5 as a promoter of colorectal cancer metastasis and a predictor of poor clinical outcomes in colorectal cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0629-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Esnault C, Gualdrini F, Horswell S, Kelly G, Stewart A, East P, Matthews N, Treisman R. ERK-Induced Activation of TCF Family of SRF Cofactors Initiates a Chromatin Modification Cascade Associated with Transcription. Mol Cell 2017; 65:1081-1095.e5. [PMID: 28286024 PMCID: PMC5364370 DOI: 10.1016/j.molcel.2017.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
Abstract
We investigated the relationship among ERK signaling, histone modifications, and transcription factor activity, focusing on the ERK-regulated ternary complex factor family of SRF partner proteins. In MEFs, activation of ERK by TPA stimulation induced a common pattern of H3K9acS10ph, H4K16ac, H3K27ac, H3K9acK14ac, and H3K4me3 at hundreds of transcription start site (TSS) regions and remote regulatory sites. The magnitude of the increase in histone modification correlated well with changes in transcription. H3K9acS10ph preceded the other modifications. Most induced changes were TCF dependent, but TCF-independent TSSs exhibited the same hierarchy, indicating that it reflects gene activation per se. Studies with TCF Elk-1 mutants showed that TCF-dependent ERK-induced histone modifications required Elk-1 to be phosphorylated and competent to activate transcription. Analysis of direct TCF-SRF target genes and chromatin modifiers confirmed this and showed that H3S10ph required only Elk-1 phosphorylation. Induction of histone modifications following ERK stimulation is thus directed by transcription factor activation and transcription.
Collapse
Affiliation(s)
- Cyril Esnault
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Francesco Gualdrini
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stuart Horswell
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Phil East
- Bioinformatics and Biostatistics STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nik Matthews
- Advanced Sequencing STP, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Treisman
- Signalling and Transcription Group, Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
19
|
Khan DH, Healy S, He S, Lichtensztejn D, Klewes L, Sharma KL, Lau V, Mai S, Delcuve GP, Davie JR. Mitogen-induced distinct epialleles are phosphorylated at either H3S10 or H3S28, depending on H3K27 acetylation. Mol Biol Cell 2017; 28:817-824. [PMID: 28077620 PMCID: PMC5349788 DOI: 10.1091/mbc.e16-08-0618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 11/11/2022] Open
Abstract
Stimulation of the MAPK pathway results in mitogen- and stress-activated protein kinase 1/2 (MSK1/2)-catalyzed phosphorylation of histone H3 at serine 10 or 28 and expression of immediate-early (IE) genes. In 10T1/2 mouse fibroblasts, phosphorylation of H3S10 and H3S28 occurs on different H3 molecules and in different nuclear regions. Similarly, we show that mitogen-induced H3S10 and H3S28 phosphorylation occurs in separate pools in human primary fibroblasts. High-resolution imaging studies on both cell types reveal that H3S10 and H3S28 phosphorylation events can be induced in a single cell but on different alleles, giving rise to H3S10ph and H3S28ph epialleles. Coimmunoprecipitation and inhibition studies demonstrate that CBP/p300-mediated H3K27 acetylation is required for MSK1/2 to phosphorylate S28. Although the K9ac and S10ph marks coexist on H3, S10 phosphorylation is not dependent on K9 acetylation by PCAF. We propose that random targeting of H3S10 or H3S28 results from the stochastic acetylation of H3 by CBP/p300 or PCAF, a process comparable to transcriptional bursting causing temporary allelic imbalance. In 10T1/2 cells expressing Jun, at least two of three alleles per cell were induced, a sign of high expression level. The redundant roles of H3S10ph and H3S28ph might enable rapid and efficient IE gene induction.
Collapse
Affiliation(s)
- Dilshad H Khan
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Shannon Healy
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Shihua He
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Daniel Lichtensztejn
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Ludger Klewes
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Kiran L Sharma
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Veronica Lau
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Sabine Mai
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Geneviève P Delcuve
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - James R Davie
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
20
|
Rosati R, Patki M, Chari V, Dakshnamurthy S, McFall T, Saxton J, Kidder BL, Shaw PE, Ratnam M. The Amino-terminal Domain of the Androgen Receptor Co-opts Extracellular Signal-regulated Kinase (ERK) Docking Sites in ELK1 Protein to Induce Sustained Gene Activation That Supports Prostate Cancer Cell Growth. J Biol Chem 2016; 291:25983-25998. [PMID: 27793987 PMCID: PMC5207070 DOI: 10.1074/jbc.m116.745596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/17/2016] [Indexed: 11/24/2022] Open
Abstract
The ETS domain transcription factor ELK1 is in a repressive association with growth genes and is transiently activated through phosphorylation by ERK1/2. In prostate cancer (PCa) cells the androgen receptor (AR) is recruited by ELK1, via its amino-terminal domain (A/B), as a transcriptional co-activator, without ELK1 hyper-phosphorylation. Here we elucidate the structural basis of the interaction of AR with ELK1. The ELK1 polypeptide motifs required for co-activation by AR versus those required for activation of ELK1 by ERK were systematically mapped using a mammalian two-hybrid system and confirmed using a co-immunoprecipitation assay. The mapping precisely identified the two ERK-docking sites in ELK1, the D-box and the DEF (docking site for ERK, FXFP) motif, as the essential motifs for its cooperation with AR(A/B) or WTAR. In contrast, the transactivation domain in ELK1 was only required for activation by ERK. ELK1-mediated transcriptional activity of AR(A/B) was optimal in the absence of ELK1 binding partners, ERK1/2 and serum-response factor. Purified ELK1 and AR bound with a dissociation constant of 1.9 × 10−8m. A purified mutant ELK1 in which the D-box and DEF motifs were disrupted did not bind AR. An ELK1 mutant with deletion of the D-box region had a dominant-negative effect on androgen-dependent growth of PCa cells that were insensitive to MEK inhibition. This novel mechanism in which a nuclear receptor impinges on a signaling pathway by co-opting protein kinase docking sites to constitutively activate growth genes could enable rational design of a new class of targeted drug interventions.
Collapse
Affiliation(s)
- Rayna Rosati
- From the Barbara Ann Karmanos Cancer Institute and Department of Oncology.,Wayne State University School of Medicine, Detroit, Michigan 48201-2013 and
| | - Mugdha Patki
- From the Barbara Ann Karmanos Cancer Institute and Department of Oncology.,Wayne State University School of Medicine, Detroit, Michigan 48201-2013 and
| | - Venkatesh Chari
- From the Barbara Ann Karmanos Cancer Institute and Department of Oncology
| | | | - Thomas McFall
- From the Barbara Ann Karmanos Cancer Institute and Department of Oncology.,Wayne State University School of Medicine, Detroit, Michigan 48201-2013 and
| | - Janice Saxton
- the School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Benjamin L Kidder
- From the Barbara Ann Karmanos Cancer Institute and Department of Oncology.,Wayne State University School of Medicine, Detroit, Michigan 48201-2013 and
| | - Peter E Shaw
- the School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Manohar Ratnam
- From the Barbara Ann Karmanos Cancer Institute and Department of Oncology, .,Wayne State University School of Medicine, Detroit, Michigan 48201-2013 and
| |
Collapse
|
21
|
Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul 2016; 62:37-49. [PMID: 27220739 DOI: 10.1016/j.jbior.2016.05.001] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/03/2016] [Indexed: 05/13/2023]
Abstract
Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, without the need for de novo protein synthesis, and they are stimulated in response to both cell-extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, through receptors activating a chain of proteins in the cell, in particular extracellular-signal-regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These communicate through a signaling cascade by adding phosphate groups to neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and thereby induce gene expression. The gene activation also involves proximal and distal enhancers that interact with promoters to simulate gene expression. The immediate-early genes have essential biological roles, in particular in stress response, like the immune system, and in differentiation. Therefore they also have important roles in various diseases, including cancer development. In this paper we summarize some recent advances on key aspects of the activation and regulation of immediate-early genes.
Collapse
Affiliation(s)
- Shahram Bahrami
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
22
|
Yu L, Ham K, Gao X, Castro L, Yan Y, Kissling GE, Tucker CJ, Flagler N, Dong R, Archer TK, Dixon D. Epigenetic regulation of transcription factor promoter regions by low-dose genistein through mitogen-activated protein kinase and mitogen-and-stress activated kinase 1 nongenomic signaling. Cell Commun Signal 2016; 14:18. [PMID: 27582276 PMCID: PMC5007815 DOI: 10.1186/s12964-016-0141-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023] Open
Abstract
Background The phytoestrogen, genistein at low doses nongenomically activates mitogen-activated protein kinase p44/42 (MAPKp44/42) via estrogen receptor alpha (ERα) leading to proliferation of human uterine leiomyoma cells. In this study, we evaluated if MAPKp44/42 could activate downstream effectors such as mitogen- and stress-activated protein kinase 1 (MSK1), which could then epigenetically modify histone H3 by phosphorylation following a low dose (1 μg/ml) of genistein. Results Using hormone-responsive immortalized human uterine leiomyoma (ht-UtLM) cells, we found that genistein activated MAPKp44/42 and MSK1, and also increased phosphorylation of histone H3 at serine10 (H3S10ph) in ht-UtLM cells. Colocalization of phosphorylated MSK1 and H3S10ph was evident by confocal microscopy in ht-UtLM cells (r = 0.8533). Phosphorylation of both MSK1and H3S10ph was abrogated by PD98059 (PD), a MEK1 kinase inhibitor, thereby supporting genistein’s activation of MSK1 and Histone H3 was downstream of MAPKp44/42. In proliferative (estrogenic) phase human uterine fibroid tissues, phosphorylated MSK1 and H3S10ph showed increased immunoexpression compared to normal myometrial tissues, similar to results observed in in vitro studies following low-dose genistein administration. Real-time RT-PCR arrays showed induction of growth-related transcription factor genes, EGR1, Elk1, ID1, and MYB (cMyb) with confirmation by western blot, downstream of MAPK in response to low-dose genistein in ht-UtLM cells. Additionally, genistein induced associations of promoter regions of the above transcription factors with H3S10ph as evidenced by Chromatin Immunoprecipitation (ChIP) assays, which were inhibited by PD. Therefore, genistein epigenetically modified histone H3 by phosphorylation of serine 10, which was regulated by MSK1 and MAPK activation. Conclusion Histone H3 phosphorylation possibly represents a mechanism whereby increased transcriptional activation occurs following low-dose genistein exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0141-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linda Yu
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Kyle Ham
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Lysandra Castro
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Yitang Yan
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Grace E Kissling
- Biostatistics and Computational Biology Branch, Division of Intramural Research (DIR), NIEHS, NIH, HHS, Research Triangle Park, North Carolina, 27709, USA
| | - Charles J Tucker
- Signal Transduction Laboratory, DIR, NIEHS, NIH, HHS, Research Triangle Park, North Carolina, 27709, USA
| | - Norris Flagler
- Cellular and Molecular Pathology Branch, DNTP, NIEHS, NIH, HHS, Research Triangle Park, North Carolina, 27709, USA
| | - Ray Dong
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Group, Epigenetics and Stem Cell Biology Laboratory, DIR, NIEHS, NIH, HHS, Research Triangle Park, North Carolina, 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, National Toxicology Program (NTP) Laboratory, Division of the NTP (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
23
|
Quercetin and Cisplatin combined treatment altered cell cycle and mitogen activated protein kinase expressions in malignant mesotelioma cells. Altern Ther Health Med 2016; 16:281. [PMID: 27514524 PMCID: PMC4982421 DOI: 10.1186/s12906-016-1267-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/05/2016] [Indexed: 01/03/2023]
Abstract
Background Malignant mesothelioma is a locally aggressive and highly lethal neoplasm of pleural, peritoneal and pericardial mesothelial cells without successful therapy. Previously, we reported that Quercetin in combination with Cisplatin inhibits cell proliferation and activates caspase-9 and -3 enzymes in different malignant mesothelioma cell lines. Moreover, Quercetin + Cisplatin lead to accumulation of both SPC111 and SPC212 cell lines in S phase. Methods In present work, 84 genes involved in cell growth and proliferation have analysed by using RT2-PCR array system and protein profile of mitogen activated protein kinase (MAPK) family proteins investigated by western blots. Results Our results showed that Quercetin and Quercetin + Cisplatin modulated gene expression of cyclins, cyclin dependent kinases and cyclin dependent kinases inhibitors. In addition genes involved in JNK, p38 and MAPK/ERK pathways were up regulated. Moreover, while p38 and JNK phosphorylations were increased, ERK phosphorylations were decreased after using Quercetin + Cisplatin. Conclusion This research has clarified our previous results and detailed mechanism of anti-carcinogenic potential of Quercetin alone and incombination with Cisplatin on malignant mesothelioma cells.
Collapse
|
24
|
Cui T, Srivastava AK, Han C, Yang L, Zhao R, Zou N, Qu M, Duan W, Zhang X, Wang QE. XPC inhibits NSCLC cell proliferation and migration by enhancing E-Cadherin expression. Oncotarget 2016; 6:10060-72. [PMID: 25871391 PMCID: PMC4496340 DOI: 10.18632/oncotarget.3542] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/13/2015] [Indexed: 02/07/2023] Open
Abstract
Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair. Deletion of XPC is associated with early stages of human lung carcinogenesis, and reduced XPC mRNA levels predict poor patient outcome for non-small cell lung cancer (NSCLC). However, the mechanisms linking loss of XPC expression and poor prognosis in lung cancer are still unclear. Here, we report evidence that XPC silencing drives proliferation and migration of NSCLC cells by down-regulating E-Cadherin. XPC knockdown enhanced proliferation and migration while decreasing E-Cadherin expression in NSCLC cells with an epithelial phenotype. Restoration of E-Cadherin in these cells suppressed XPC knockdown-induced cell growth both in vitro and in vivo. Mechanistic studies showed that the loss of XPC repressed E-Cadherin expression by activating the ERK pathway and upregulating Snail expression. Our findings indicate that XPC silencing-induced reduction of E-Cadherin expression contributes, at least in part, to the poor outcome of NSCLC patients with low XPC expression.
Collapse
Affiliation(s)
- Tiantian Cui
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amit Kumar Srivastava
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chunhua Han
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Linlin Yang
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ran Zhao
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ning Zou
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Meihua Qu
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wenrui Duan
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Qi-En Wang
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
25
|
Saxton J, Ferjentsik Z, Ducker C, Johnson AD, Shaw PE. Stepwise evolution of Elk-1 in early deuterostomes. FEBS J 2016; 283:1025-38. [PMID: 26613204 DOI: 10.1111/febs.13607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 11/29/2022]
Abstract
Metazoans have multiple ETS paralogues with overlapping or indiscriminate biological functions. Elk-1, one of three mammalian ternary complex factors (TCFs), is a well-conserved, ETS domain-containing transcriptional regulator of mitogen-responsive genes that operates in concert with serum response factor (SRF). Nonetheless, its genetic role remains unresolved because the elk-1 gene could be deleted from the mouse genome seemingly without adverse effect. Here we have explored the evolution of Elk-1 to gain insight into its conserved biological role. We identified antecedent Elk-1 proteins in extant early metazoans and used amino acid sequence alignments to chart the appearance of domains characteristic of human Elk-1. We then performed biochemical studies to determine whether putative domains apparent in the Elk-1 protein of a primitive hemichordate were functionally orthologous to those of human Elk-1. Our findings imply the existence of primordial Elk-1 proteins in primitive deuterostomes that could operate as mitogen-responsive ETS transcription factors but not as TCFs. The role of TCF was acquired later, but presumably prior to the whole genome duplications in the basal vertebrate lineage. Thus its evolutionary origins link Elk-1 to the appearance of mesoderm.
Collapse
Affiliation(s)
- Janice Saxton
- School of Life Sciences, University of Nottingham, UK
| | | | | | | | - Peter E Shaw
- School of Life Sciences, University of Nottingham, UK
| |
Collapse
|
26
|
Li YB, Sun SR, Han XH. Down-regulation of AQP4 Inhibits Proliferation, Migration and Invasion of Human Breast Cancer Cells. Folia Biol (Praha) 2016; 62:131-7. [PMID: 27516192 DOI: 10.14712/fb2016062030131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Aquaporins (AQPs), proteinaceous water channels, have been proposed as mediators of tumour development and progression. However, the role of aquaporin 4 (AQP4), a member of the AQP family, in breast cancer has not been distinctly evaluated. The aim of the present study was to examine the effect of AQP4 down-regulation on proliferation, migration and invasion in human breast cancer. To determine this effect, siRNA interference was used to knock down its expression in T47D and MCF-7 cell lines. Down-regulation of AQP4 resulted in increased expression of E-cadherin along with an inhibitory effect on the proliferation, migration and invasion in breast cancer cells. In addition, AQP4 regulation of cell proliferation could be related with the ERK/Ecadherin pathway. In conclusion, the present data have suggested that down-regulation of AQP4 inhibits breast cancer cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Y-B Li
- Renmin Hospital of Wuhan University, Wuhan, China
| | - S-R Sun
- Renmin Hospital of Wuhan University, Wuhan, China
| | - X-H Han
- Inner Mongolia People's Hospital, Hohhot, China
| |
Collapse
|
27
|
Overexpression of prohibitin-1 inhibits RANKL-induced activation of p38-Elk-1-SRE signaling axis blocking MKK6 activity. Biochem Biophys Res Commun 2015; 463:1028-33. [DOI: 10.1016/j.bbrc.2015.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 12/21/2022]
|
28
|
Pascoli V, Cahill E, Bellivier F, Caboche J, Vanhoutte P. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation. Biol Psychiatry 2014; 76:917-26. [PMID: 24844603 DOI: 10.1016/j.biopsych.2014.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 01/25/2023]
Abstract
Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction.
Collapse
Affiliation(s)
- Vincent Pascoli
- Department of Basic Neurosciences, University Medical Center, University of Geneva, Geneva, Switzerland
| | - Emma Cahill
- Institut de Biologie Paris, Seine, CNRS/UMR8246-INSERM/UMR-S1130, Université Pierre et Marie Curie
| | - Frank Bellivier
- Department of Adult Psychiatry, L׳Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Saint-Louis, Lariboisière, Fernand-Widal Sites; Unité de Formation et de Recherche de Médecine, Université Denis Diderot; Variability of the Response to Psychotropic Drugs, Institut National de la Santé et de la; Recherche Médicale, Paris; and Fondation FondaMental, Créteil, France
| | - Jocelyne Caboche
- Institut de Biologie Paris, Seine, CNRS/UMR8246-INSERM/UMR-S1130, Université Pierre et Marie Curie
| | - Peter Vanhoutte
- Institut de Biologie Paris, Seine, CNRS/UMR8246-INSERM/UMR-S1130, Université Pierre et Marie Curie.
| |
Collapse
|
29
|
Nitric oxide affects ERK signaling through down-regulation of MAP kinase phosphatase levels during larval development of the ascidian Ciona intestinalis. PLoS One 2014; 9:e102907. [PMID: 25058405 PMCID: PMC4109947 DOI: 10.1371/journal.pone.0102907] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/25/2014] [Indexed: 02/07/2023] Open
Abstract
In the ascidian Ciona intestinalis larval development and metamorphosis require a complex interplay of events, including nitric oxide (NO) production, MAP kinases (ERK, JNK) and caspase-3 activation. We have previously shown that NO levels affect the rate of metamorphosis, regulate caspase activity and promote an oxidative stress pathway, resulting in protein nitration. Here, we report that NO down-regulates MAP kinase phosphatases (mkps) expression affecting positively ERK signaling. By pharmacological approach, we observed that the reduction of endogenous NO levels caused a decrease of ERK phosphorylation, whereas increasing levels of NO induced ERK activation. We have also identified the ERK gene network affected by NO, including mpk1, mpk3 and some key developmental genes by quantitative gene expression analysis. We demonstrate that NO induces an ERK-independent down-regulation of mkp1 and mkp3, responsible for maintaining the ERK phosphorylation levels necessary for transcription of key metamorphic genes, such as the hormone receptor rev-erb and the van willebrand protein vwa1c. These results add new insights into the role played by NO during larval development and metamorphosis in Ciona, highlighting the cross-talk between different signaling pathways.
Collapse
|
30
|
Chatfield J, O'Reilly MA, Bachvarova RF, Ferjentsik Z, Redwood C, Walmsley M, Patient R, Loose M, Johnson AD. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. Development 2014; 141:2429-40. [PMID: 24917499 PMCID: PMC4050694 DOI: 10.1242/dev.105346] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/22/2014] [Indexed: 01/18/2023]
Abstract
A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.
Collapse
Affiliation(s)
- Jodie Chatfield
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Marie-Anne O'Reilly
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Rosemary F Bachvarova
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Zoltan Ferjentsik
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Catherine Redwood
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Maggie Walmsley
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Roger Patient
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Mathew Loose
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
31
|
Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes. Clin Sci (Lond) 2014; 126:367-75. [PMID: 24001173 DOI: 10.1042/cs20130260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.
Collapse
|
32
|
Tu YC, Huang DY, Shiah SG, Wang JS, Lin WW. Regulation of c-Fos gene expression by NF-κB: a p65 homodimer binding site in mouse embryonic fibroblasts but not human HEK293 cells. PLoS One 2013; 8:e84062. [PMID: 24386331 PMCID: PMC3875526 DOI: 10.1371/journal.pone.0084062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 11/11/2013] [Indexed: 11/26/2022] Open
Abstract
The immediate early gene c-Fos is reported to be regulated by Elk-1 and cAMP response element-binding protein (CREB), but whether nuclear factor (NF)-κB is also required for controlling c-Fos expression is unclear. In this study, we determined how NF-κB’s coordination with Elk/serum response factor (SRF) regulates c-fos transcription. We report that PMA strongly induced c-Fos expression, but tumor necrosis factor (TNF)-α did not. In mouse embryonic fibroblasts, the PMA induction of c-Fos was suppressed by a deficiency in IKKα, IKKβ, IKKγ, or p65. By contrast, in human embryonic kidney 293 cells, PMA induced c-Fos independently of p65. In accordance with these results, we identified an NF-κB binding site in the mouse but not human c-fos promoter. Under PMA stimulation, IKKα/β mediated p65 phosphorylation and the binding of the p65 homodimer to the NF-κB site in the mouse c-fos promoter. Furthermore, our studies demonstrated independent but coordinated functions of the IKKα/β-p65 and extracellular signal-regulated kinase (ERK)-Elk-1 pathways in the PMA induction of c-Fos. Collectively, these results reveal the distinct requirement of NF-κB for mouse and human c-fos regulation. Binding of the p65 homodimer to the κB site was indispensable for mouse c-fos expression, whereas the κB binding site was not present in the human c-fos promoter. Because of an inability to evoke sufficient ERK activation and Elk-1 phosphorylation, TNF-α induces c-Fos more weakly than PMA does in both mouse and human cells.
Collapse
Affiliation(s)
- Yu-Cheng Tu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jang-Shiun Wang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Galbraith MD, Saxton J, Li L, Shelton SJ, Zhang H, Espinosa JM, Shaw PE. ERK phosphorylation of MED14 in promoter complexes during mitogen-induced gene activation by Elk-1. Nucleic Acids Res 2013; 41:10241-53. [PMID: 24049075 PMCID: PMC3905876 DOI: 10.1093/nar/gkt837] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ETS domain transcription factor Elk-1 stimulates expression of immediate early genes (IEGs) in response to mitogens. These events require phosphorylation of Elk-1 by extracellular signal-regulated kinase (ERK) and phosphorylation-dependent interaction of Elk-1 with co-activators, including histone acetyltransferases and the Mediator complex. Elk-1 also recruits ERK to the promoters of its target genes, suggesting that ERK phosphorylates additional substrates in transcription complexes at mitogen-responsive promoters. Here we report that MED14, a core subunit of the Mediator, is a bona fide ERK substrate and identify serine 986 (S986) within a serine-proline rich region of MED14 as the major ERK phosphorylation site. Mitogens induced phosphorylation of MED14 on S986 at IEG promoters; RNAi knockdown of MED14 reduced CDK8 and RNA polymerase II (RNAPII) recruitment, RNAPII C-terminal domain phosphorylation and impaired activation of IEG transcription. A single alanine substitution at S986 reduced activation of an E26 (ETS)-responsive reporter by oncogenic Ras and mitogen-induced, Elk-1-dependent transcription, whereas activities of other transcriptional activators were unaffected. We also demonstrate that Elk-1 can associate with MED14 independently of MED23, which may facilitate phosphorylation of MED14 by ERK to impart a positive and selective impact on mitogen-responsive gene expression.
Collapse
Affiliation(s)
- Matthew D Galbraith
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK, Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO 80309, USA, Department of Neurology, Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 90089, USA and Department of Pharmacology, Ningxia Medical University, Yinchuan 750004, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Karki R, Ho OM, Kim DW. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells. Biochim Biophys Acta Gen Subj 2013; 1830:2619-28. [PMID: 23274740 DOI: 10.1016/j.bbagen.2012.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/19/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. METHODS Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. RESULTS Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. CONCLUSION Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. GENERAL SIGNIFICANCE Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.
Collapse
Affiliation(s)
- Rajendra Karki
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, USA
| | | | | |
Collapse
|
35
|
Shift from extracellular signal-regulated kinase to AKT/cAMP response element-binding protein pathway increases survival-motor-neuron expression in spinal-muscular-atrophy-like mice and patient cells. J Neurosci 2013; 33:4280-94. [PMID: 23467345 DOI: 10.1523/jneurosci.2728-12.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA), a recessive neurodegenerative disease, is characterized by the selective loss of spinal motor neurons. No available therapy exists for SMA, which represents one of the leading genetic causes of death in childhood. SMA is caused by a mutation of the survival-of-motor-neuron 1 (SMN1) gene, leading to a quantitative defect in the survival-motor-neuron (SMN) protein expression. All patients retain one or more copies of the SMN2 gene, which modulates the disease severity by producing a small amount of stable SMN protein. We reported recently that NMDA receptor activation, directly in the spinal cord, significantly enhanced the transcription rate of the SMN2 genes in a mouse model of very severe SMA (referred as type 1) by a mechanism that involved AKT/CREB pathway activation. Here, we provide the first compelling evidence for a competition between the MEK/ERK/Elk-1 and the phosphatidylinositol 3-kinase/AKT/CREB signaling pathways for SMN2 gene regulation in the spinal cord of type 1 SMA-like mice. The inhibition of the MEK/ERK/Elk-1 pathway promotes the AKT/CREB pathway activation, leading to (1) an enhanced SMN expression in the spinal cord of SMA-like mice and in human SMA myotubes and (2) a 2.8-fold lifespan extension in SMA-like mice. Furthermore, we identified a crosstalk between ERK and AKT signaling pathways that involves the calcium-dependent modulation of CaMKII activity. Together, all these data open new perspectives to the therapeutic strategy for SMA patients.
Collapse
|
36
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 328] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
37
|
Breast tumor-associated osteoblast-derived CXCL5 increases cancer progression by ERK/MSK1/Elk-1/snail signaling pathway. Oncogene 2012; 32:4436-47. [PMID: 23045282 DOI: 10.1038/onc.2012.444] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 12/17/2022]
Abstract
The skeleton is the most common metastatic site for breast cancer, with bone metastasis causing pain as well as risk of pathological fractures. Interaction between tumors and the bone microenvironment creates a vicious cycle that accelerates both bone destruction and cancer progression. This study is the first to analyze the soluble factors secreted by breast tumor-associated osteoblasts (TAOBs), which are responsible for promoting cancer progression. The addition of CXCL5 (chemokine (C-X-C motif) ligand 5), present in large amounts in TAOB-condition medium (TAOB-CM), mimicked the inductive effect of TAOB-CM on breast cancer epithelial-mesenchymal transition, migration and invasion. In contrast, inhibition of CXCL5 in OBs decreased TAOB-mediated cancer progression. Inducement of MCF-7 and MDA-MB-231 cancer progression by TAOB-derived CXCL5 is associated with increased Raf/MEK/ERK activation, and mitogen- and stress-activated protein kinase 1 (MSK1) and Elk-1 phosphorylation, as well as Snail upregulation. Activation of Elk-1 facilitates recruitment of phosphorylated MSK1, which in turn enhances histone H3 acetylation and phosphorylation (serine 10) of Snail promoter, resulting in Snail enhancement and E-cadherin downregulation. Moreover, mice treated with anti-CXCL5 antibodies showed decreased metastasis of 4T1 breast cancer cells. Our study suggests that inhibition of CXCL5-mediated ERK/Snail signaling is an attractive therapeutic target for treating metastases in breast cancer patients.
Collapse
|
38
|
Gregg J, Fraizer G. Transcriptional Regulation of EGR1 by EGF and the ERK Signaling Pathway in Prostate Cancer Cells. Genes Cancer 2012; 2:900-9. [PMID: 22593802 DOI: 10.1177/1947601911431885] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 10/30/2011] [Indexed: 10/14/2022] Open
Abstract
The early growth response gene 1, EGR1, is an important transcriptional regulator and acts as the convergent point between a variety of extracellular stimuli and activation of target genes. Unlike other tumor types, prostate tumors express high levels of EGR1 relative to normal tissues. However, the mechanism of EGR1 regulation in prostate tumor cells is unknown. As EGR1 expression and epidermal growth factor (EGF) signaling are frequently upregulated in prostate tumors, we tested the hypothesis that EGF induces EGR1 expression in prostate cancer cells. Using RT-PCR to quantify EGR1 transcripts, we found that EGF induced EGR1 expression in a dose- and time-dependent manner and the ERK pathway inhibitor, PD98059, abrogated the EGF-mediated EGR1 response in LNCaP and PC3 cells. Analysis of the EGR1 promoter using deletion constructs identified an EGF-responsive region in the proximal promoter (-771 to -245 bp) containing 3 potential serum response element (SRE) sites. In vivo chromatin immunoprecipitation assays demonstrated that Elk-1 binding at the SRE sites of the EGR1 promoter was enhanced by EGF treatment in PC3 cells. Overexpression of Elk-1 was sufficient to activate the EGF-responsive region of EGR1 promoter in PC3 cells and, similarly, a dominant-negative Elk-1 suppressed EGR1 promoter activity. Taken together, these results demonstrate for the first time that EGR1 expression in PC3 cells is mediated through an EGF-ERK-Elk-1 signaling cascade.
Collapse
|
39
|
Sen A, De Castro I, Defranco DB, Deng FM, Melamed J, Kapur P, Raj GV, Rossi R, Hammes SR. Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J Clin Invest 2012; 122:2469-81. [PMID: 22684108 DOI: 10.1172/jci62044] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/02/2012] [Indexed: 01/26/2023] Open
Abstract
In prostate cancer, the signals that drive cell proliferation change as tumors progress from castration-sensitive (androgen-dominant) to castration-resistant states. While the mechanisms underlying this change remain uncertain, characterization of common signaling components that regulate both stages of prostate cancer proliferation is important for developing effective treatment strategies. Here, we demonstrate that paxillin, a known cytoplasmic adaptor protein, regulates both androgen- and EGF-induced nuclear signaling. We show that androgen and EGF promoted MAPK-dependent phosphorylation of paxillin, resulting in nuclear translocation of paxillin. We found nuclear paxillin could then associate with androgen-stimulated androgen receptor (AR). This complex bound AR-sensitive promoters, retaining AR within the nucleus and regulating AR-mediated transcription. Nuclear paxillin also complexed with ERK and ELK1, mediating c-FOS and cyclin D1 expression; this was followed by proliferation. Thus, paxillin is a liaison between extranuclear MAPK signaling and nuclear transcription in response to androgens and growth factors, making it a potential regulator of both castration-sensitive and castration-resistant prostate cancer. Accordingly, paxillin was required for normal growth of human prostate cancer cell xenografts, and its expression was elevated in human prostate cancer tissue microarrays. Paxillin is therefore a potential biomarker for prostate cancer proliferation and a possible therapeutic target for prostate cancer treatment.
Collapse
Affiliation(s)
- Aritro Sen
- Division of Endocrinology and Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Immediate-early gene activation by the MAPK pathways: what do and don't we know? Biochem Soc Trans 2012; 40:58-66. [PMID: 22260666 DOI: 10.1042/bst20110636] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The study of IE (immediate-early) gene activation mechanisms has provided numerous paradigms for how transcription is controlled in response to extracellular signalling. Many of the findings have been derived from investigating one of the IE genes, FOS, and the models extrapolated to regulatory mechanisms for other IE genes. However, whereas the overall principles of activation appear similar, recent evidence suggests that the underlying mechanistic details may differ depending on cell type, cellular stimulus and IE gene under investigation. In the present paper, we review recent advances in our understanding of IE gene transcription, chiefly focusing on FOS and its activation by ERK (extracellular-signal-regulated kinase) MAPK (mitogen-activated protein kinase) pathway signalling. We highlight important fundamental regulatory principles, but also illustrate the gaps in our current knowledge and the potential danger in making assumptions based on extrapolation from disparate studies.
Collapse
|
41
|
Ryan MM, Mason-Parker SE, Tate WP, Abraham WC, Williams JM. Rapidly induced gene networks following induction of long-term potentiation at perforant path synapses in vivo. Hippocampus 2012; 21:541-53. [PMID: 20108223 DOI: 10.1002/hipo.20770] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The canonical view of the maintenance of long-term potentiation (LTP), a widely accepted experimental model for memory processes, is that new gene transcription contributes to its consolidation; however, the gene networks involved are unknown. To address this issue, we have used high-density Rat 230.2 Affymetrix arrays to establish a set of genes induced 20-min post-LTP, and using Ingenuity Pathway network analysis tools we have investigated how these early responding genes are interrelated. This analysis identified LTP-induced regulatory networks in which the transcription factors (TFs) nuclear factor-KB and serum response factor, which, to date, have not been widely recognized as coordinating the early gene response, play a key role alongside the more well-known TFs cyclic AMP response element-binding protein, and early growth response 1. Analysis of gene-regulatory promoter sites and chromosomal locations of the genes within the dataset reinforced the importance of these molecules in the early gene response and predicted that the coordinated action might arise from gene clustering on particular chromosomes. We have also identified a transcription-based response that affects mitogen-activated protein kinase signaling pathways and protein synthesis during the stabilization of the LTP response. Furthermore, evidence from biological function, networks, and regulatory analyses showed convergence on genes related to development, proliferation, and neurogenesis, suggesting that these functions are regulated early following LTP induction. This raises the interesting possibility that LTP-related gene expression plays a role in both synaptic reorganization and neurogenesis.
Collapse
Affiliation(s)
- Margaret M Ryan
- Department of Anatomy and Structural Biology, Otago School of Medical Sciences, P.O. Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
42
|
Rieker C, Schober A, Bilbao A, Schütz G, Parkitna JR. Ablation of serum response factor in dopaminergic neurons exacerbates susceptibility towards MPTP-induced oxidative stress. Eur J Neurosci 2012; 35:735-41. [PMID: 22356487 DOI: 10.1111/j.1460-9568.2012.08003.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The high susceptibility of dopaminergic (DA) neurons to cellular stress is regarded as a primary cause of Parkinson's disease. Here we investigate the role of the serum response factor (SRF), an important regulator of anti-apoptotic responses, for the survival of DA neurons in mice. We show that loss of SRF in DA neurons does not affect their viability and does not influence dopamine-dependent behaviors. However, ablation of SRF causes exacerbated sensitivity to 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP), leading to significantly greater loss of DA neurons in the substantia nigra, compared with DA neurons located in the ventral tegmental area. In addition, loss of SRF decreases levels of the anti-apoptotic proteins brain-derived neurotrophic factor (BDNF) and Bcl-2, a plausible underlying cause of increased sensitivity to oxidative stress. These observations support the notion that dysfunction of the SRF-activating mitogen-associated kinase pathway may be part of Parkinson's disease etiology.
Collapse
Affiliation(s)
- Claus Rieker
- Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
43
|
Healy S, Khan P, He S, Davie JR. Histone H3 phosphorylation, immediate-early gene expression, and the nucleosomal response: a historical perspective1This article is part of Special Issue entitled Asilomar Chromatin and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2012; 90:39-54. [DOI: 10.1139/o11-092] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Histone H3 is modified at serines 10 and 28 in interphase cells following activation of the RAS-MAPK or p38-MAPK pathways by growth factors or stress. These modifications are involved in the regulation of immediate-early genes, including Jun and Fos, whose increased expression is a trademark of various cancers. This review outlines the series of discoveries that led to the characterization of these modifications, the kinase, MSK1/2, which is activated by both MAPK pathways and directs phosphorylation of H3, and the mechanistic function of these modifications in transcriptional activation. Research examining the effect of deregulated MSK1/2 in human disorders, namely cancer, is evaluated. Recently, a number of reports proposed novel, intervening pathways leading to enrichment of phosphorylated serine 10 and 28 and the activation of MSK1/2. These novel pathways predict an even more complicated signalling mechanism for cell growth, apoptosis, and the immune response, suggesting that MSK1/2 is intrinsically responsible for an even greater number of biological processes. This review proposes that MSK1/2 is an optimal target for cancer therapy, based on its fundamental role in transmitting external signals into varied responses involved in cancer development.
Collapse
Affiliation(s)
- Shannon Healy
- MB Institute of Cell Biology, University of Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada
| | - Protiti Khan
- MB Institute of Cell Biology, University of Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada
| | - Shihua He
- MB Institute of Cell Biology, University of Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada
| | - James R. Davie
- MB Institute of Cell Biology, University of Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
44
|
Lubelski D, Ponzio TA, Gainer H. Effects of A-CREB, a dominant negative inhibitor of CREB, on the expression of c-fos and other immediate early genes in the rat SON during hyperosmotic stimulation in vivo. Brain Res 2012; 1429:18-28. [PMID: 22079318 PMCID: PMC5079538 DOI: 10.1016/j.brainres.2011.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 01/28/2023]
Abstract
Intraperitoneal administration of hypertonic saline to the rat supraoptic nucleus (SON) increases the expression of several immediate early genes (IEG) and the vasopressin gene. These increases have usually been attributed to action of the cyclic-AMP Response Element Binding Protein (CREB). In this paper, we study the role of CREB in these events in vivo by delivering a potent dominant-negative form of CREB, known as A-CREB, to the rat SON through the use of an adeno-associated viral (AAV) vector. Preliminary experiments on HEK 293 cells in vitro showed that the A-CREB vector that we used completely eliminated CREB-induced c-fos expression. We stereotaxically injected this AAV-A-CREB into one SON and a control AAV into the contralateral SON of the same rat. Two weeks following these injections we injected hypertonic saline intraperitoneally into the rat. Using this paradigm, we could measure the relative effects of inhibiting CREB on the induced expression of c-fos, ngfi-a, ngfi-b, and vasopressin genes in the A-CREB AAV injected SON versus the control AAV injected SON in the same rat. We found only a small (20%) decrease of c-fos expression and a 30% decrease of ngfi-b expression in the presence of the A-CREB. There were no significant changes in expression found in the other IEGs nor in vasopressin that were produced by the A-CREB. This suggests that CREB may play only a minor role in the expression of IEGs and vasopressin in the osmotically activated SON in vivo.
Collapse
Affiliation(s)
- Daniel Lubelski
- Laboratory of Neurochemistry, Molecular Neuroscience Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
45
|
Regulation of primary response genes. Mol Cell 2011; 44:348-60. [PMID: 22055182 DOI: 10.1016/j.molcel.2011.09.014] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/29/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022]
Abstract
Primary response genes (PRGs) are a set of genes that are induced in response to both cell-extrinsic and cell-intrinsic signals and do not require de novo protein synthesis for their expression. These "first responders" in the waves of transcription of signal-responsive genes play pivotal roles in a wide range of biological responses, including neuronal survival and plasticity, cardiac stress response, innate and adaptive immune responses, glucose metabolism, and oncogeneic transformation. Here we bring together recent advances and our current understanding of the signal-induced transcriptional and epigenetic regulation of PRGs.
Collapse
|
46
|
Alterations of molecular and behavioral responses to cocaine by selective inhibition of Elk-1 phosphorylation. J Neurosci 2011; 31:14296-307. [PMID: 21976515 DOI: 10.1523/jneurosci.2890-11.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of the extracellular signal-regulated kinase (ERK) signaling pathway in the striatum is crucial for molecular adaptations and long-term behavioral alterations induced by cocaine. In response to cocaine, ERK controls the phosphorylation levels of both mitogen and stress-activated protein kinase 1 (MSK-1), a nuclear kinase involved in histone H3 (Ser10) and cAMP response element binding protein phosphorylation, and Elk-1, a transcription factor involved in serum response element (SRE)-driven gene regulations. We recently characterized the phenotype of msk-1 knock-out mice in response to cocaine. Herein, we wanted to address the role of Elk-1 phosphorylation in cocaine-induced molecular, morphological, and behavioral responses. We used a cell-penetrating peptide, named TAT-DEF-Elk-1 (TDE), which corresponds to the DEF docking domain of Elk-1 toward ERK and inhibits Elk-1 phosphorylation induced by ERKs without modifying ERK or MSK-1 in vitro. The peptide was injected in vivo before cocaine administration in mice. Immunocytochemical, molecular, morphological, and behavioral studies were performed. The TDE inhibited Elk-1 and H3 (Ser10) phosphorylation induced by cocaine, sparing ERK and MSK-1 activation. Consequently, TDE altered cocaine-induced regulation of genes bearing SRE site(s) in their promoters, including c-fos, zif268, ΔFosB, and arc/arg3.1 (activity-regulated cytoskeleton-associated protein). In a chronic cocaine administration paradigm, TDE reversed cocaine-induced increase in dendritic spine density. Finally, the TDE delayed the establishment of cocaine-induced psychomotor sensitization and conditioned-place preference. We conclude that Elk-1 phosphorylation downstream from ERK is a key molecular event involved in long-term neuronal and behavioral adaptations to cocaine.
Collapse
|
47
|
de Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nat Rev Genet 2011; 12:833-45. [PMID: 22048664 DOI: 10.1038/nrg3055] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute stress puts cells at risk, and rapid adaptation is crucial for maximizing cell survival. Cellular adaptation mechanisms include modification of certain aspects of cell physiology, such as the induction of efficient changes in the gene expression programmes by intracellular signalling networks. Recent studies using genome-wide approaches as well as single-cell transcription measurements, in combination with classical genetics, have shown that rapid and specific activation of gene expression can be accomplished by several different strategies. This article discusses how organisms can achieve generic and specific responses to different stresses by regulating gene expression at multiple stages of mRNA biogenesis from chromatin structure to transcription, mRNA stability and translation.
Collapse
Affiliation(s)
- Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
48
|
Evans EL, Saxton J, Shelton SJ, Begitt A, Holliday ND, Hipskind RA, Shaw PE. Dimer formation and conformational flexibility ensure cytoplasmic stability and nuclear accumulation of Elk-1. Nucleic Acids Res 2011; 39:6390-402. [PMID: 21543455 PMCID: PMC3159454 DOI: 10.1093/nar/gkr266] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 02/05/2023] Open
Abstract
The ETS (E26) protein Elk-1 serves as a paradigm for mitogen-responsive transcription factors. It is multiply phosphorylated by mitogen-activated protein kinases (MAPKs), which it recruits into pre-initiation complexes on target gene promoters. However, events preparatory to Elk-1 phosphorylation are less well understood. Here, we identify two novel, functional elements in Elk-1 that determine its stability and nuclear accumulation. One element corresponds to a dimerization interface in the ETS domain and the second is a cryptic degron adjacent to the serum response factor (SRF)-interaction domain that marks dimerization-defective Elk-1 for rapid degradation by the ubiquitin-proteasome system. Dimerization appears to be crucial for Elk-1 stability only in the cytoplasm, as latent Elk-1 accumulates in the nucleus and interacts dynamically with DNA as a monomer. These findings define a novel role for the ETS domain of Elk-1 and demonstrate that nuclear accumulation of Elk-1 involves conformational flexibility prior to its phosphorylation by MAPKs.
Collapse
Affiliation(s)
- Emma L. Evans
- School of Biomedical Sciences, Queen’s Medical Centre, Nottingham, NG7 2UH, UK and Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 route de Mende, 34293 - Montpellier Cedex 05, France
| | - Janice Saxton
- School of Biomedical Sciences, Queen’s Medical Centre, Nottingham, NG7 2UH, UK and Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 route de Mende, 34293 - Montpellier Cedex 05, France
| | - Samuel J. Shelton
- School of Biomedical Sciences, Queen’s Medical Centre, Nottingham, NG7 2UH, UK and Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 route de Mende, 34293 - Montpellier Cedex 05, France
| | - Andreas Begitt
- School of Biomedical Sciences, Queen’s Medical Centre, Nottingham, NG7 2UH, UK and Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 route de Mende, 34293 - Montpellier Cedex 05, France
| | - Nicholas D. Holliday
- School of Biomedical Sciences, Queen’s Medical Centre, Nottingham, NG7 2UH, UK and Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 route de Mende, 34293 - Montpellier Cedex 05, France
| | - Robert A. Hipskind
- School of Biomedical Sciences, Queen’s Medical Centre, Nottingham, NG7 2UH, UK and Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 route de Mende, 34293 - Montpellier Cedex 05, France
| | - Peter E. Shaw
- School of Biomedical Sciences, Queen’s Medical Centre, Nottingham, NG7 2UH, UK and Institut de Génétique Moléculaire de Montpellier, CNRS, UMR5535, 1919 route de Mende, 34293 - Montpellier Cedex 05, France
| |
Collapse
|
49
|
Guedea AL, Schrick C, Guzman YF, Leaderbrand K, Jovasevic V, Corcoran KA, Tronson NC, Radulovic J. ERK-associated changes of AP-1 proteins during fear extinction. Mol Cell Neurosci 2011; 47:137-44. [PMID: 21463687 PMCID: PMC3121188 DOI: 10.1016/j.mcn.2011.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/03/2011] [Accepted: 03/28/2011] [Indexed: 02/04/2023] Open
Abstract
Extensive research has unraveled the molecular basis of learning processes underlying contextual fear conditioning, but the mechanisms of fear extinction remain less known. Contextual fear extinction occurs when an aversive stimulus that initially caused fear is no longer present and depends on the activation of the extracellular signal-regulated kinase (ERK), among other molecules. Here we investigated how ERK signaling triggered by extinction affects its downstream targets belonging to the activator protein-1 (AP-1) transcription factor family. We found that extinction, when compared to conditioning of fear, markedly enhanced the interactions of active, phospho-ERK (pERK ) with c-Jun causing alterations of its phosphorylation state. The AP-1 binding of c-Jun was decreased whereas AP-1 binding of JunD, Jun dimerization protein 2 (JDP2) and ERK were significantly enhanced. The increased AP-1 binding of the inhibitory JunD and JDP2 transcription factors was paralleled by decreased levels of the AP-1 regulated proteins c-Fos and GluR2. These changes were specific for extinction and were MEK-dependent. Overall, fear extinction involves ERK/Jun interactions and a decrease of a subset of AP-1-regulated proteins that are typically required for fear conditioning. Facilitating the formation of inhibitory AP-1 complexes may thus facilitate the reduction of fear.
Collapse
Affiliation(s)
- Anita L. Guedea
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611
| | - Christina Schrick
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611
| | - Yomayra F. Guzman
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611
| | - Katie Leaderbrand
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611
| | - Vladimir Jovasevic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611
| | - Kevin A. Corcoran
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611
| | - Natalie C. Tronson
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E Chicago Ave, Chicago, IL 60611
| |
Collapse
|
50
|
Pérez-Cadahía B, Drobic B, Davie JR. Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 2011; 89:61-73. [PMID: 21326363 DOI: 10.1139/o10-138] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immediate-early genes have important roles in processes such as brain development, learning, and responses to drug abuse. Further, immediate-early genes play an essential role in cellular responses that contribute to long-term neuronal plasticity. Neuronal plasticity is a characteristic of the nervous system that is not limited to the first stages of brain development but persists in adulthood and seems to be an inherent feature of everyday brain function. The plasticity refers to the neuron's capability of showing short- or long-lasting phenotypic changes in response to different stimuli and cellular scenarios. In this review, we focus on the immediate-early genes encoding transcription factors (AP-1 and Egr) that are relevant for neuronal responses. Our current understanding of the mechanisms involved in the induction of the immediate-early genes is presented.
Collapse
Affiliation(s)
- Beatriz Pérez-Cadahía
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain
| | | | | |
Collapse
|