1
|
Yu X, Li S. Specific regulation of epigenome landscape by metabolic enzymes and metabolites. Biol Rev Camb Philos Soc 2024; 99:878-900. [PMID: 38174803 DOI: 10.1111/brv.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Metabolism includes anabolism and catabolism, which play an essential role in many biological processes. Chromatin modifications are post-translational modifications of histones and nucleic acids that play important roles in regulating chromatin-associated processes such as gene transcription. There is a tight connection between metabolism and chromatin modifications. Many metabolic enzymes and metabolites coordinate cellular activities with alterations in nutrient availability by regulating gene expression through epigenetic mechanisms such as DNA methylation and histone modifications. The dysregulation of gene expression by metabolism and epigenetic modifications may lead to diseases such as diabetes and cancer. Recent studies reveal that metabolic enzymes and metabolites specifically regulate chromatin modifications, including modification types, modification residues and chromatin regions. This specific regulation has been implicated in the development of human diseases, yet the underlying mechanisms are only beginning to be uncovered. In this review, we summarise recent studies of the molecular mechanisms underlying the metabolic regulation of histone and DNA modifications and discuss how they contribute to pathogenesis. We also describe recent developments in technologies used to address the key questions in this field. We hope this will inspire further in-depth investigations of the specific regulatory mechanisms involved, and most importantly will shed lights on the development of more effective disease therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
2
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
3
|
Townsel A, Jaffe M, Wu Y, Henry CJ, Haynes KA. The Epigenetic Landscape of Breast Cancer, Metabolism, and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:37-53. [PMID: 39586992 DOI: 10.1007/978-3-031-66686-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity is a risk factor for developing breast cancer, and significantly increases mortality rates in patients diagnosed with this disease. Drivers of this unfortunate relationships are multifactorial, with obesity-induced changes in the epigenetic state of breast cancer cells being identified as a critical mechanism that impact survival, metastasis, and therapeutic responses. Recent studies have investigated the epigenetic landscape of breast cancer to elucidate the molecular interplay between the breast tissue epigenome and its cellular microenvironment. This chapter highlights studies that demonstrates the impact of obesity on the epigenome and metabolome of breast cancer cells. Furthermore, we discuss how obesity impacts the efficacy of chemotherapy and epigenetic targeting drugs, including the emergence of drug-resistance clonal populations. Delineating the relationships between the obesity and epigenetic changes in breast cancer cells will help identify therapeutic strategies which could improve survival outcomes in the rapidly growing number of patients with obesity and cancer.
Collapse
Affiliation(s)
- Ashley Townsel
- Department of Cancer Biology, Emory School of Medicine, Atlanta, GA, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA
| | - Yifei Wu
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA
| | - Curtis J Henry
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Chen T, Xu ZG, Luo J, Manne RK, Wang Z, Hsu CC, Pan BS, Cai Z, Tsai PJ, Tsai YS, Chen ZZ, Li HY, Lin HK. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab 2023; 35:1782-1798.e8. [PMID: 37586363 PMCID: PMC10726430 DOI: 10.1016/j.cmet.2023.07.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Glucose metabolism is known to orchestrate oncogenesis. Whether glucose serves as a signaling molecule directly regulating oncoprotein activity for tumorigenesis remains elusive. Here, we report that glucose is a cofactor binding to methyltransferase NSUN2 at amino acid 1-28 to promote NSUN2 oligomerization and activation. NSUN2 activation maintains global m5C RNA methylation, including TREX2, and stabilizes TREX2 to restrict cytosolic dsDNA accumulation and cGAS/STING activation for promoting tumorigenesis and anti-PD-L1 immunotherapy resistance. An NSUN2 mutant defective in glucose binding or disrupting glucose/NSUN2 interaction abolishes NSUN2 activity and TREX2 induction leading to cGAS/STING activation for oncogenic suppression. Strikingly, genetic deletion of the glucose/NSUN2/TREX2 axis suppresses tumorigenesis and overcomes anti-PD-L1 immunotherapy resistance in those cold tumors through cGAS/STING activation to facilitate apoptosis and CD8+ T cell infiltration. Our study identifies NSUN2 as a direct glucose sensor whose activation by glucose drives tumorigenesis and immunotherapy resistance by maintaining TREX2 expression for cGAS/STING inactivation.
Collapse
Affiliation(s)
- Tingjin Chen
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhi-Gang Xu
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Jie Luo
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Rajesh Kumar Manne
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhengyu Wang
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Che-Chia Hsu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhen Cai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Pei-Jane Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Yau-Sheng Tsai
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Zhong-Zhu Chen
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, IATTI, Chongqing University of Arts and Sciences, Yongchuan, Chongqing 402160, China
| | - Hong-Yu Li
- University of Arkansas for Medical Sciences, College of Pharmacy, Division of Pharmaceutical Science, 200 South Cedar, Little Rock, AR 72202, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston-Salem, NC 27157, USA.
| |
Collapse
|
5
|
Soukar I, Amarasinghe A, Pile LA. Coordination of cross-talk between metabolism and epigenetic regulation by the SIN3 complex. Enzymes 2023; 53:33-68. [PMID: 37748836 DOI: 10.1016/bs.enz.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Post-translational modifications of histone proteins control the expression of genes. Metabolites from central and one-carbon metabolism act as donor moieties to modify histones and regulate gene expression. Thus, histone modification and gene regulation are connected to the metabolite status of the cell. Histone modifiers, such as the SIN3 complex, regulate genes involved in proliferation and metabolism. The SIN3 complex contains a histone deacetylase and a histone demethylase, which regulate the chromatin landscape and gene expression. In this chapter, we review the cross-talk between metabolic pathways that produce donor moieties, and epigenetic complexes regulating proliferation and metabolic genes. This cross-talk between gene regulation and metabolism is tightly controlled, and disruption of this cross-talk leads to metabolic diseases. We discuss promising therapeutics that directly regulate histone modifiers, and can affect the metabolic status of the cell, alleviating some metabolic diseases.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Anjalie Amarasinghe
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Lori A Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
6
|
Opalek M, Tutaj H, Pirog A, Smug BJ, Rutkowska J, Wloch-Salamon D. A Systematic Review on Quiescent State Research Approaches in S. cerevisiae. Cells 2023; 12:1608. [PMID: 37371078 DOI: 10.3390/cells12121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Quiescence, the temporary and reversible arrest of cell growth, is a fundamental biological process. However, the lack of standardization in terms of reporting the experimental details of quiescent cells and populations can cause confusion and hinder knowledge transfer. We employ the systematic review methodology to comprehensively analyze the diversity of approaches used to study the quiescent state, focusing on all published research addressing the budding yeast Saccharomyces cerevisiae. We group research articles into those that consider all cells comprising the stationary-phase (SP) population as quiescent and those that recognize heterogeneity within the SP by distinguishing phenotypically distinct subpopulations. Furthermore, we investigate the chronological age of the quiescent populations under study and the methods used to induce the quiescent state, such as gradual starvation or abrupt environmental change. We also assess whether the strains used in research are prototrophic or auxotrophic. By combining the above features, we identify 48 possible experimental setups that can be used to study quiescence, which can be misleading when drawing general conclusions. We therefore summarize our review by proposing guidelines and recommendations pertaining to the information included in research articles. We believe that more rigorous reporting on the features of quiescent populations will facilitate knowledge transfer within and between disciplines, thereby stimulating valuable scientific discussion.
Collapse
Affiliation(s)
- Monika Opalek
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Hanna Tutaj
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Adrian Pirog
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Bogna J Smug
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Dominika Wloch-Salamon
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
7
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Komaki Y, Ono S, Okuya T, Ibuki Y. Glucose starvation impairs NER and γ-H2AX after UVB irradiation. Toxicol In Vitro 2023; 86:105503. [DOI: 10.1016/j.tiv.2022.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
|
10
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
11
|
Lu PYT, Kirlin AC, Aristizabal MJ, Brewis HT, Lévesque N, Setiaputra DT, Avvakumov N, Benschop JJ, Groot Koerkamp M, Holstege FCP, Krogan NJ, Yip CK, Côté J, Kobor MS. A balancing act: interactions within NuA4/TIP60 regulate picNuA4 function in Saccharomyces cerevisiae and humans. Genetics 2022; 222:iyac136. [PMID: 36066422 PMCID: PMC9630986 DOI: 10.1093/genetics/iyac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The NuA4 lysine acetyltransferase complex acetylates histone and nonhistone proteins and functions in transcription regulation, cell cycle progression, and DNA repair. NuA4 harbors an interesting duality in that its catalytic module can function independently and distinctly as picNuA4. At the molecular level, picNuA4 anchors to its bigger brother via physical interactions between the C-terminus of Epl1 and the HSA domain of Eaf1, the NuA4 central scaffolding subunit. This is reflected at the regulatory level, as picNuA4 can be liberated genetically from NuA4 by disrupting the Epl1-Eaf1 interaction. As such, removal of either Eaf1 or the Epl1 C-terminus offers a unique opportunity to elucidate the contributions of Eaf1 and Epl1 to NuA4 biology and in turn their roles in balancing picNuA4 and NuA4 activities. Using high-throughput genetic and gene expression profiling, and targeted functional assays to compare eaf1Δ and epl1-CΔ mutants, we found that EAF1 and EPL1 had both overlapping and distinct roles. Strikingly, loss of EAF1 or its HSA domain led to a significant decrease in the amount of picNuA4, while loss of the Epl1 C-terminus increased picNuA4 levels, suggesting starkly opposing effects on picNuA4 regulation. The eaf1Δ epl1-CΔ double mutants resembled the epl1-CΔ single mutants, indicating that Eaf1's role in picNuA4 regulation depended on the Epl1 C-terminus. Key aspects of this regulation were evolutionarily conserved, as truncating an Epl1 homolog in human cells increased the levels of other picNuA4 subunits. Our findings suggested a model in which distinct aspects of the Epl1-Eaf1 interaction regulated picNuA4 amount and activity.
Collapse
Affiliation(s)
- Phoebe Y T Lu
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Alyssa C Kirlin
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hilary T Brewis
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nancy Lévesque
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Dheva T Setiaputra
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikita Avvakumov
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center-Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Joris J Benschop
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | | | - Frank C P Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584 CS, The Netherlands
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jacques Côté
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center-Oncology Division, Quebec City, QC G1R 3S3, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
12
|
Yu Q, Gong X, Tong Y, Wang M, Duan K, Zhang X, Ge F, Yu X, Li S. Phosphorylation of Jhd2 by the Ras-cAMP-PKA(Tpk2) pathway regulates histone modifications and autophagy. Nat Commun 2022; 13:5675. [PMID: 36167807 PMCID: PMC9515143 DOI: 10.1038/s41467-022-33423-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Cells need to coordinate gene expression with their metabolic states to maintain cell homeostasis and growth. How cells transduce nutrient availability to appropriate gene expression remains poorly understood. Here we show that glycolysis regulates histone modifications and gene expression by activating protein kinase A (PKA) via the Ras-cyclic AMP pathway. The catalytic subunit of PKA, Tpk2 antagonizes Jhd2-catalyzed H3K4 demethylation by phosphorylating Jhd2 at Ser321 and Ser340 in response to glucose availability. Tpk2-catalyzed Jhd2 phosphorylation impairs its nuclear localization, reduces its binding to chromatin, and promotes its polyubiquitination and degradation by the proteasome. Tpk2-catalyzed Jhd2 phosphorylation also maintains H3K14 acetylation by preventing the binding of histone deacetylase Rpd3 to chromatin. By phosphorylating Jhd2, Tpk2 regulates gene expression, maintains normal chronological life span and promotes autophagy. These results provide a direct connection between metabolism and histone modifications and shed lights on how cells rewire their biological responses to nutrient signals.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yue Tong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Min Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Kai Duan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xinyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
13
|
Chen C, Wang Z, Qin Y. Connections between metabolism and epigenetics: mechanisms and novel anti-cancer strategy. Front Pharmacol 2022; 13:935536. [PMID: 35935878 PMCID: PMC9354823 DOI: 10.3389/fphar.2022.935536] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/29/2022] [Indexed: 12/26/2022] Open
Abstract
Cancer cells undergo metabolic adaptations to sustain their growth and proliferation under several stress conditions thereby displaying metabolic plasticity. Epigenetic modification is known to occur at the DNA, histone, and RNA level, which can alter chromatin state. For almost a century, our focus in cancer biology is dominated by oncogenic mutations. Until recently, the connection between metabolism and epigenetics in a reciprocal manner was spotlighted. Explicitly, several metabolites serve as substrates and co-factors of epigenetic enzymes to carry out post-translational modifications of DNA and histone. Genetic mutations in metabolic enzymes facilitate the production of oncometabolites that ultimately impact epigenetics. Numerous evidences also indicate epigenome is sensitive to cancer metabolism. Conversely, epigenetic dysfunction is certified to alter metabolic enzymes leading to tumorigenesis. Further, the bidirectional relationship between epigenetics and metabolism can impact directly and indirectly on immune microenvironment, which might create a new avenue for drug discovery. Here we summarize the effects of metabolism reprogramming on epigenetic modification, and vice versa; and the latest advances in targeting metabolism-epigenetic crosstalk. We also discuss the principles linking cancer metabolism, epigenetics and immunity, and seek optimal immunotherapy-based combinations.
Collapse
|
14
|
Mendoza M, Egervari G, Sidoli S, Donahue G, Alexander DC, Sen P, Garcia BA, Berger SL. Enzymatic transfer of acetate on histones from lysine reservoir sites to lysine activating sites. SCIENCE ADVANCES 2022; 8:eabj5688. [PMID: 35061542 PMCID: PMC8782443 DOI: 10.1126/sciadv.abj5688] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/29/2021] [Indexed: 05/04/2023]
Abstract
Histone acetylation is governed by nuclear acetyl-CoA pools generated, in part, from local acetate by metabolic enzyme acetyl-CoA synthetase 2 (ACSS2). We hypothesize that during gene activation, a local transfer of intact acetate occurs via sequential action of epigenetic and metabolic enzymes. Using stable isotope labeling, we detect transfer between histone acetylation sites both in vitro using purified mammalian enzymes and in vivo using quiescence exit in Saccharomyces cerevisiae as a change-of-state model. We show that Acs2, the yeast ortholog of ACSS2, is recruited to chromatin during quiescence exit and observe dynamic histone acetylation changes proximal to Acs2 peaks. We find that Acs2 is preferentially associated with the most up-regulated genes, suggesting that acetyl group transfer plays an important role in gene activation. Overall, our data reveal direct transfer of acetate between histone lysine residues to facilitate rapid transcriptional induction, an exchange that may be critical during changes in nutrient availability.
Collapse
Affiliation(s)
- Mariel Mendoza
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabor Egervari
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Greg Donahue
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Desi C. Alexander
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Payel Sen
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L. Berger
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Sun Y, Yu R, Guo HB, Qin H, Dang W. A quantitative yeast aging proteomics analysis reveals novel aging regulators. GeroScience 2021; 43:2573-2593. [PMID: 34241809 DOI: 10.1007/s11357-021-00412-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 06/23/2021] [Indexed: 11/29/2022] Open
Abstract
Calorie restriction (CR) is the most robust longevity intervention, extending lifespan from yeast to mammals. Numerous conserved pathways regulating aging and mediating CR have been identified; however, the overall proteomic changes during these conditions remain largely unexplored. We compared proteomes between young and replicatively aged yeast cells under normal and CR conditions using the Stable-Isotope Labeling by Amino acids in Cell culture (SILAC) quantitative proteomics and discovered distinct signatures in the aging proteome. We found remarkable proteomic similarities between aged and CR cells, including induction of stress response pathways, providing evidence that CR pathways are engaged in aged cells. These observations also uncovered aberrant changes in mitochondria membrane proteins as well as a proteolytic cellular state in old cells. These proteomics analyses help identify potential genes and pathways that have causal effects on longevity.
Collapse
Affiliation(s)
- Yu Sun
- Huffington Center On Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ruofan Yu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hao-Bo Guo
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, The University of Tennessee At Chattanooga, Chattanooga, TN, 37403, USA
| | - Hong Qin
- Department of Computer Science and Engineering, Department of Biology, Geology and Environmental Science, SimCenter, The University of Tennessee At Chattanooga, Chattanooga, TN, 37403, USA
| | - Weiwei Dang
- Huffington Center On Aging and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
16
|
Zhang JJ, Fan TT, Mao YZ, Hou JL, Wang M, Zhang M, Lin Y, Zhang L, Yan GQ, An YP, Yao J, Zhang C, Lin PC, Yuan YY, Zhao JY, Xu W, Zhao SM. Nuclear dihydroxyacetone phosphate signals nutrient sufficiency and cell cycle phase to global histone acetylation. Nat Metab 2021; 3:859-875. [PMID: 34140692 DOI: 10.1038/s42255-021-00405-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Global histone acetylation varies with changes in the nutrient and cell cycle phases; however, the mechanisms connecting these variations are not fully understood. Herein, we report that nutrient-related and cell-cycle-regulated nuclear acetate regulates global histone acetylation. Histone deacetylation-generated acetate accumulates in the nucleus and induces histone hyperacetylation. The nuclear acetate levels were controlled by glycolytic enzyme triosephosphate isomerase 1 (TPI1). Cyclin-dependent kinase 2 (CDK2), which is phosphorylated and activated by nutrient-activated mTORC1, phosphorylates TPI1 Ser 117 and promotes nuclear translocation of TPI1, decreases nuclear dihydroxyacetone phosphate (DHAP) and induces nuclear acetate accumulation because DHAP scavenges acetate via the formation of 1-acetyl-DHAP. CDK2 accumulates in the cytosol during the late G1/S phases. Inactivation or blockade of nuclear translocation of TPI1 abrogates nutrient-dependent and cell-cycle-dependent global histone acetylation, chromatin condensation, gene transcription and DNA replication. These results identify the mechanism of maintaining global histone acetylation by nutrient and cell cycle signals.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Ting-Ting Fan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Yun-Zi Mao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, Shanghai, China
| | - Meng Wang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Min Zhang
- Department of Chemistry, Fudan University, Shanghai, China
| | - Yan Lin
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Lei Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Guo-Quan Yan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Yan-Peng An
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Jun Yao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Cheng Zhang
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
| | - Peng-Cheng Lin
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China
| | - Yi-Yuan Yuan
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Jian-Yuan Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China
| | - Wei Xu
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China.
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China.
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Shi-Min Zhao
- Obstetrics & Gynecology Hospital of Fudan University, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling, School of Life Sciences and Institutes of Biomedical Sciences, Shanghai, China.
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Institute of Metabolism and Integrative Biology and Children's Hospital of Fudan University, Shanghai, China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, China.
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
18
|
Mutlu B, Puigserver P. GCN5 acetyltransferase in cellular energetic and metabolic processes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194626. [PMID: 32827753 PMCID: PMC7854474 DOI: 10.1016/j.bbagrm.2020.194626] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/23/2022]
Abstract
General Control Non-repressed 5 protein (GCN5), encoded by the mammalian gene Kat2a, is the first histone acetyltransferase discovered to link histone acetylation to transcriptional activation [1]. The enzymatic activity of GCN5 is linked to cellular metabolic and energetic states regulating gene expression programs. GCN5 has a major impact on energy metabolism by i) sensing acetyl-CoA, a central metabolite and substrate of the GCN5 catalytic reaction, and ii) acetylating proteins such as PGC-1α, a transcriptional coactivator that controls genes linked to energy metabolism and mitochondrial biogenesis. PGC-1α is biochemically associated with the GCN5 protein complex during active metabolic reprogramming. In the first part of the review, we examine how metabolism can change GCN5-dependent histone acetylation to regulate gene expression to adapt cells. In the second part, we summarize the GCN5 function as a nutrient sensor, focusing on non-histone protein acetylation, mainly the metabolic role of PGC-1α acetylation across different tissues.
Collapse
Affiliation(s)
- Beste Mutlu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Oxidized ATM promotes breast cancer stem cell enrichment through energy metabolism reprogram-mediated acetyl-CoA accumulation. Cell Death Dis 2020; 11:508. [PMID: 32641713 PMCID: PMC7343870 DOI: 10.1038/s41419-020-2714-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cell (CSC) is a challenge in the therapy of triple-negative breast cancer (TNBC). Intratumoral hypoxia is a common feature of solid tumor. Hypoxia may contribute to the maintenance of CSC, resulting in a poor efficacy of traditional treatment and recurrence of TNBC cases. However, the underlying molecular mechanism involved in hypoxia-induced CSC stemness maintenance remains unclear. Here, we report that hypoxia stimulated DNA double-strand breaks independent of ATM kinase activation (called oxidized ATM in this paper) play a crucial role in TNBC mammosphere formation and stemness maintenance by governing a specific energy metabolism reprogramming (EMR). Oxidized ATM up-regulates GLUT1, PKM2, and PDHa expressions to enhance the uptake of glucose and production of pyruvate rather than lactate products, which facilitates glycolytic flux to mitochondrial pyruvate and citrate, thus resulting in accumulation of cytoplasmic acetyl-CoA instead of the tricarboxylic acid (TCA) cycle by regulating ATP-citrate lyase (ACLY) activity. Our findings unravel a novel model of TNBC-CSC glucose metabolism and its functional role in maintenance of hypoxic TNBC-CSC stemness. This work may help us to develop new therapeutic strategies for TNBC treatment.
Collapse
|
20
|
Hou PP, Luo LJ, Chen HZ, Chen QT, Bian XL, Wu SF, Zhou JX, Zhao WX, Liu JM, Wang XM, Zhang ZY, Yao LM, Chen Q, Zhou D, Wu Q. Ectosomal PKM2 Promotes HCC by Inducing Macrophage Differentiation and Remodeling the Tumor Microenvironment. Mol Cell 2020; 78:1192-1206.e10. [PMID: 32470318 DOI: 10.1016/j.molcel.2020.05.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Tumor-derived extracellular vesicles are important mediators of cell-to-cell communication during tumorigenesis. Here, we demonstrated that hepatocellular carcinoma (HCC)-derived ectosomes remodel the tumor microenvironment to facilitate HCC progression in an ectosomal PKM2-dependent manner. HCC-derived ectosomal PKM2 induced not only metabolic reprogramming in monocytes but also STAT3 phosphorylation in the nucleus to upregulate differentiation-associated transcription factors, leading to monocyte-to-macrophage differentiation and tumor microenvironment remodeling. In HCC cells, sumoylation of PKM2 induced its plasma membrane targeting and subsequent ectosomal excretion via interactions with ARRDC1. The PKM2-ARRDC1 association in HCC was reinforced by macrophage-secreted cytokines/chemokines in a CCL1-CCR8 axis-dependent manner, further facilitating PKM2 excretion from HCC cells to form a feedforward regulatory loop for tumorigenesis. In the clinic, ectosomal PKM2 was clearly detected in the plasma of HCC patients. This study highlights a mechanism by which ectosomal PKM2 remodels the tumor microenvironment and reveals ectosomal PKM2 as a potential diagnostic marker for HCC.
Collapse
Affiliation(s)
- Pei-Pei Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Li-Juan Luo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Qi-Tao Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Xue-Li Bian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Sheng-Fu Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Jia-Xin Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Wen-Xiu Zhao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhong Shan Hospital, Xiamen University, Xiamen 361005, Fujian Province, PR China
| | - Jian-Ming Liu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhong Shan Hospital, Xiamen University, Xiamen 361005, Fujian Province, PR China
| | - Xiao-Min Wang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhong Shan Hospital, Xiamen University, Xiamen 361005, Fujian Province, PR China
| | - Zhi-Yuan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Lu-Ming Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Qinghua Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian Province, PR China.
| |
Collapse
|
21
|
Wu Y, Zhang S, Gong X, Yu Q, Zhang Y, Luo M, Zhang X, Workman JL, Yu X, Li S. Glycolysis regulates gene expression by promoting the crosstalk between H3K4 trimethylation and H3K14 acetylation in Saccharomyces cerevisiae. J Genet Genomics 2019; 46:561-574. [PMID: 32014433 DOI: 10.1016/j.jgg.2019.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Abstract
Cells need to coordinate gene expression with their metabolic states to maintain cell homeostasis and growth. However, how cells transduce nutrient availability to appropriate gene expression response via histone modifications remains largely unknown. Here, we report that glucose specifically induces histone H3K4 trimethylation (H3K4me3), an evolutionarily conserved histone covalent modification associated with active gene transcription, and that glycolytic enzymes and metabolites are required for this induction. Although glycolysis supplies S-adenosylmethionine for histone methyltransferase Set1 to catalyze H3K4me3, glucose induces H3K4me3 primarily by inhibiting histone demethylase Jhd2-catalyzed H3K4 demethylation. Glycolysis provides acetyl-CoA to stimulate histone acetyltransferase Gcn5 to acetylate H3K14, which then inhibits the binding of Jhd2 to chromatin to increase H3K4me3. By repressing Jhd2-mediated H3K4 demethylation, glycolytic enzymes regulate gene expression and cell survival during chronological aging. Thus, our results elucidate how cells reprogram their gene expression programs in response to glucose availability via histone modifications.
Collapse
Affiliation(s)
- Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Shihao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xuanyunjing Gong
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Mingdan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
22
|
Ma R, Wu Y, Zhai Y, Hu B, Ma W, Yang W, Yu Q, Chen Z, Workman JL, Yu X, Li S. Exogenous pyruvate represses histone gene expression and inhibits cancer cell proliferation via the NAMPT-NAD+-SIRT1 pathway. Nucleic Acids Res 2019; 47:11132-11150. [PMID: 31598701 PMCID: PMC6868375 DOI: 10.1093/nar/gkz864] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Pyruvate is a glycolytic metabolite used for energy production and macromolecule biosynthesis. However, little is known about its functions in tumorigenesis. Here, we report that exogenous pyruvate inhibits the proliferation of different types of cancer cells. This inhibitory effect of pyruvate on cell growth is primarily attributed to its function as a signal molecule to repress histone gene expression, which leads to less compact chromatin and misregulation of genome-wide gene expression. Pyruvate represses histone gene expression by inducing the expression of NAD+ biosynthesis enzyme, nicotinamide phosphoribosyltransferase (NAMPT) via myocyte enhancer factor 2C (MEF2C), which then increases NAD+ levels and activates the histone deacetylase activity of SIRT1. Chromatin immunoprecipitation analysis indicates that pyruvate enhances SIRT1 binding at histone gene promoters where it reduces histone acetylation. Although pyruvate delays cell entry into S phase, pyruvate represses histone gene expression independent of cell cycle progression. Moreover, we find that administration of pyruvate reduces histone expression and retards tumor growth in xenograft mice without significant side effects. Using tissues from cervical and lung cancer patients, we find intracellular pyruvate concentrations inversely correlate with histone protein levels. Together, we uncover a previously unknown function of pyruvate in regulating histone gene expression and cancer cell proliferation.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yansheng Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Wei Ma
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Wenqiang Yang
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei 430022, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zhen Chen
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
23
|
Kollenstart L, de Groot AJL, Janssen GMC, Cheng X, Vreeken K, Martino F, Côté J, van Veelen PA, van Attikum H. Gcn5 and Esa1 function as histone crotonyltransferases to regulate crotonylation-dependent transcription. J Biol Chem 2019; 294:20122-20134. [PMID: 31699900 PMCID: PMC6937567 DOI: 10.1074/jbc.ra119.010302] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Histone post-translational modifications (PTMs) are critical for processes such as transcription. The more notable among these are the nonacetyl histone lysine acylation modifications such as crotonylation, butyrylation, and succinylation. However, the biological relevance of these PTMs is not fully understood because their regulation is largely unknown. Here, we set out to investigate whether the main histone acetyltransferases in budding yeast, Gcn5 and Esa1, possess crotonyltransferase activity. In vitro studies revealed that the Gcn5-Ada2-Ada3 (ADA) and Esa1-Yng2-Epl1 (Piccolo NuA4) histone acetyltransferase complexes have the capacity to crotonylate histones. Mass spectrometry analysis revealed that ADA and Piccolo NuA4 crotonylate lysines in the N-terminal tails of histone H3 and H4, respectively. Functionally, we show that crotonylation selectively affects gene transcription in vivo in a manner dependent on Gcn5 and Esa1. Thus, we identify the Gcn5- and Esa1-containing ADA and Piccolo NuA4 complexes as bona fide crotonyltransferases that promote crotonylation-dependent transcription.
Collapse
Affiliation(s)
- Leonie Kollenstart
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Anton J L de Groot
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - George M C Janssen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZC, Leiden, The Netherlands
| | - Xue Cheng
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Axe Oncologie, Québec City, QC G1R 3S3, Canada
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Fabrizio Martino
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (Spanish National Research Council), (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Axe Oncologie, Québec City, QC G1R 3S3, Canada
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZC, Leiden, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
24
|
Thakur C, Chen F. Connections between metabolism and epigenetics in cancers. Semin Cancer Biol 2019; 57:52-58. [PMID: 31185282 DOI: 10.1016/j.semcancer.2019.06.006] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/28/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
Abstract
In the past half century, our version on cancer, from tumor initiation, growth, to metastasis, is dominated by genetic mutation. The importance of metabolism and epigenetics was not recognized until most recently. Extensive cell proliferation is one of the hallmarks of cancers. To support the energetic and anabolic demands of enhanced proliferation, tumors reprogram the pathways of nutrient procurement and metabolism. In this context, a new link between metabolic alterations and cancer progression has been unraveled over the last decade by the studies conducted in the area of cancer cell metabolism. Cancer cells are known to alter their metabolic profile during the course of tumorigenesis and metastasis thereby exhibiting a tightly regulated program of metabolic plasticity. Noteworthy, certain metabolic alteration are known to occur at the epigenetic level, thus making epigenetics and metabolism highly interwoven in a reciprocal manner. Metabolites that are generated during metabolic pathways, such as in glycolytic cycle and oxidative phosphorylation, serve as cofactors or substrates for the enzymatic reactions that catalyze the epigenetic modifications and transcriptional regulation. Several studies also indicate that the epigenome is sensitive to cellular metabolism. Since many of the metabolic alterations and consequently aberrated epigenetic regulation are common to a wide range of cancer types, they serve as promising targets for anti-cancer therapies. Here we discuss the latest findings in cancer cell metabolism, elucidating the major anabolic, catabolic and energetic demands required for sustaining cancer growth, and the influence of altered metabolism on epigenetics and vice versa. A comprehensive research pertaining to metabolomic profiling and epigenome interactors/mediators in malignant neoplasias is imperative in deciphering the potential targets that can be exploited for the development of robust anti-cancer therapies.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
25
|
He Y, Gao M, Tang H, Cao Y, Liu S, Tao Y. Metabolic Intermediates in Tumorigenesis and Progression. Int J Biol Sci 2019; 15:1187-1199. [PMID: 31223279 PMCID: PMC6567815 DOI: 10.7150/ijbs.33496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
Traditional antitumor drugs inhibit the proliferation and metastasis of tumour cells by restraining the replication and expression of DNA. These drugs are usually highly cytotoxic. They kill tumour cells while also cause damage to normal cells at the same time, especially the hematopoietic cells that divide vigorously. Patients are exposed to other serious situations such as a severe infection caused by a decrease in the number of white blood cells. Energy metabolism is an essential process for the survival of all cells, but differs greatly between normal cells and tumour cells in metabolic pathways and metabolic intermediates. Whether this difference could be used as new therapeutic target while reducing damage to normal tissues is the topic of this paper. In this paper, we introduce five major metabolic intermediates in detail, including acetyl-CoA, SAM, FAD, NAD+ and THF. Their contents and functions in tumour cells and normal cells are significantly different. And the possible regulatory mechanisms that lead to these differences are proposed carefully. It is hoped that the key enzymes in these regulatory pathways could be used as new targets for tumour therapy.
Collapse
Affiliation(s)
- Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqu Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008 China.,Cancer Research Institute, Key Laboratory of Carcinogenesis, Ministry of Health, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078 China.,Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Li Y, Lu B, Sheng L, Zhu Z, Sun H, Zhou Y, Yang Y, Xue D, Chen W, Tian X, Du Y, Yan M, Zhu W, Xing F, Li K, Lin S, Qiu P, Su X, Huang Y, Yan G, Yin W. Hexokinase 2-dependent hyperglycolysis driving microglial activation contributes to ischemic brain injury. J Neurochem 2019; 144:186-200. [PMID: 29205357 DOI: 10.1111/jnc.14267] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
Abstract
Hyperglycolysis, observed within the penumbra zone during brain ischemia, was shown to be detrimental for tissue survival because of lactate accumulation and reactive oxygen species overproduction in clinical and experimental settings. Recently, mounting evidence suggests that glycolytic reprogramming and induced metabolic enzymes can fuel the activation of peripheral immune cells. However, the possible roles and details regarding hyperglycolysis in neuroinflammation during ischemia are relatively poorly understood. Here, we investigated whether overactivated glycolysis could activate microglia and identified the crucial regulators of neuroinflammatory responses in vitro and in vivo. Using BV 2 and primary microglial cultures, we found hyperglycolysis and induction of the key glycolytic enzyme hexokinase 2 (HK2) were essential for microglia-mediated neuroinflammation under hypoxia. Mechanistically, HK2 up-regulation led to accumulated acetyl-coenzyme A, which accounted for the subsequent histone acetylation and transcriptional activation of interleukin (IL)-1β. The inhibition and selective knockdown of HK2 in vivo significantly protected against ischemic brain injury by suppressing microglial activation and IL-1β production in male Sprague-Dawley rats subjected to transient middle cerebral artery occlusion (MCAo) surgery. We provide novel insights for HK2 specifically serving as a neuroinflammatory determinant, thus explaining the neurotoxic effect of hyperglycolysis and indicating the possibility of selectively targeting HK2 as a therapeutic strategy in acute ischemic stroke.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bingzheng Lu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Longxiang Sheng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhu Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongjiaqi Sun
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuwei Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dongdong Xue
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenli Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xuyan Tian
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yun Du
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Yan
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fan Xing
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Suizhen Lin
- Guangzhou Cellprotek Pharmaceutical Co. ltd., Science City, Guangzhou, China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yijun Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Laurian R, Dementhon K, Doumèche B, Soulard A, Noel T, Lemaire M, Cotton P. Hexokinase and Glucokinases Are Essential for Fitness and Virulence in the Pathogenic Yeast Candida albicans. Front Microbiol 2019; 10:327. [PMID: 30858840 PMCID: PMC6401654 DOI: 10.3389/fmicb.2019.00327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/08/2019] [Indexed: 01/28/2023] Open
Abstract
The pathogenic yeast Candida albicans is both a powerful commensal and a pathogen of humans that can infect wide range of organs and body sites. Metabolic flexibility promotes infection and commensal colonization by this opportunistic pathogen. Yeast cell survival depends upon assimilation of fermentable and non-fermentable locally available carbon sources. Physiologically relevant sugars like glucose and fructose are present at low levels in host niches. However, because glucose is the preferred substrate for energy and biosynthesis of structural components, its efficient detection and metabolism are fundamental for the metabolic adaptation of the pathogen. We explored and characterized the C. albicans hexose kinase system composed of one hexokinase (CaHxk2) and two glucokinases (CaGlk1 and CaGlk4). Using a set of mutant strains, we found that hexose phosphorylation is mostly performed by CaHxk2, which sustains growth on hexoses. Our data on hexokinase and glucokinase expression point out an absence of cross regulation mechanisms at the transcription level and different regulatory pathways. In the presence of glucose, CaHxk2 migrates in the nucleus and contributes to the glucose repression signaling pathway. In addition, CaHxk2 participates in oxidative, osmotic and cell wall stress responses, while glucokinases are overexpressed under hypoxia. Hexose phosphorylation is a key step necessary for filamentation that is affected in the hexokinase mutant. Virulence of this mutant is clearly impacted in the Galleria mellonella and macrophage models. Filamentation, glucose phosphorylation and stress response defects of the hexokinase mutant prevent host killing by C. albicans. By contributing to metabolic flexibility, stress response and morphogenesis, hexose kinase enzymes play an essential role in the virulence of C. albicans.
Collapse
Affiliation(s)
- Romain Laurian
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Karine Dementhon
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Bastien Doumèche
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Université de Lyon – Université Lyon 1, Lyon, France
| | - Alexandre Soulard
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Thierry Noel
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, UMR-CNRS 5234, Université de Bordeaux, Bordeaux, France
| | - Marc Lemaire
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| | - Pascale Cotton
- Génétique Moléculaire des Levures, UMR-CNRS 5240 Microbiologie Adaptation et Pathogénie, Université de Lyon – Université Lyon 1, Lyon, France
| |
Collapse
|
28
|
Abstract
Posttranslational modifications of proteins control many complex biological processes, including genome expression, chromatin dynamics, metabolism, and cell division through a language of chemical modifications. Improvements in mass spectrometry-based proteomics have demonstrated protein acetylation is a widespread and dynamic modification in the cell; however, many questions remain on the regulation and downstream effects, and an assessment of the overall acetylation stoichiometry is needed. In this chapter, we describe the determination of acetylation stoichiometry using data-independent acquisition mass spectrometry to expand the number of acetylation sites quantified. However, the increased depth of data-independent acquisition is limited by the spectral library used to deconvolute fragmentation spectra. We describe a powerful approach of subcellular fractionation in conjunction with offline prefractionation to increase the depth of the spectral library. This deep interrogation of subcellular compartments provides essential insights into the compartment-specific regulation and downstream functions of protein acetylation.
Collapse
|
29
|
Varland S, Aksnes H, Kryuchkov F, Impens F, Van Haver D, Jonckheere V, Ziegler M, Gevaert K, Van Damme P, Arnesen T. N-terminal Acetylation Levels Are Maintained During Acetyl-CoA Deficiency in Saccharomyces cerevisiae. Mol Cell Proteomics 2018; 17:2309-2323. [PMID: 30150368 PMCID: PMC6283290 DOI: 10.1074/mcp.ra118.000982] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/22/2018] [Indexed: 12/17/2022] Open
Abstract
Nt-acetylation is a prevalent protein modification catalyzed by N-terminal acetyltransferases using acetyl-CoA as acetyl donor. Here, we performed a global analysis of Nt-acetylation in yeast following nutrient starvation. Contrary to histone acetylation, which is sensitive to acetyl-CoA levels, we demonstrate that Nt-acetylation remains largely unaffected to changes in cellular metabolism. We did, however, identify two protein groups that were differentially Nt-acetylated, one showing the same sensitivity to acetyl-CoA as histones. We propose that specific, rather than global, Nt-acetylation events are subject to metabolic regulation. N-terminal acetylation (Nt-acetylation) is a highly abundant protein modification in eukaryotes and impacts a wide range of cellular processes, including protein quality control and stress tolerance. Despite its prevalence, the mechanisms regulating Nt-acetylation are still nebulous. Here, we present the first global study of Nt-acetylation in yeast cells as they progress to stationary phase in response to nutrient starvation. Surprisingly, we found that yeast cells maintain their global Nt-acetylation levels upon nutrient depletion, despite a marked decrease in acetyl-CoA levels. We further observed two distinct sets of protein N termini that display differential and opposing Nt-acetylation behavior upon nutrient starvation, indicating a dynamic process. The first protein cluster was enriched for annotated N termini showing increased Nt-acetylation in stationary phase compared with exponential growth phase. The second protein cluster was conversely enriched for alternative nonannotated N termini (i.e. N termini indicative of shorter N-terminal proteoforms) and, like histones, showed reduced acetylation levels in stationary phase when acetyl-CoA levels were low. Notably, the degree of Nt-acetylation of Pcl8, a negative regulator of glycogen biosynthesis and two components of the pre-ribosome complex (Rsa3 and Rpl7a) increased during starvation. Moreover, the steady-state levels of these proteins were regulated both by starvation and NatA activity. In summary, this study represents the first comprehensive analysis of metabolic regulation of Nt-acetylation and reveals that specific, rather than global, Nt-acetylation events are subject to metabolic regulation.
Collapse
Affiliation(s)
- Sylvia Varland
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Donnelly Center for Cellular and Bio‡molecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Henriette Aksnes
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Fedor Kryuchkov
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium; VIB Proteomics Core, B-9000 Ghent, Belgium
| | - Veronique Jonckheere
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Department of Biomolecular Medicine, Ghent University, B-9000 Ghent, Belgium.
| | - Thomas Arnesen
- Department of Biomedicine, University of Bergen, N-5020 Bergen, Norway; Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway; Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
30
|
Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex. Nat Commun 2018; 9:1147. [PMID: 29559617 PMCID: PMC5861120 DOI: 10.1038/s41467-018-03504-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/19/2018] [Indexed: 01/06/2023] Open
Abstract
The NuA4/TIP60 acetyltransferase complex is required for gene regulation, DNA repair and cell cycle progression. The limited structural information impeded understanding of NuA4/TIP60 assembly and regulatory mechanism. Here, we report the 4.7 Å cryo-electron microscopy (cryo-EM) structure of a NuA4/TIP60 TEEAA assembly (Tra1, Eaf1, Eaf5, actin and Arp4) and the 7.6 Å cryo-EM structure of a TEEAA-piccolo assembly (Esa1, Epl1, Yng2 and Eaf6). The Tra1 and Eaf1 constitute the assembly scaffold. The Eaf1 SANT domain tightly binds to the LBE and FATC domains of Tra1 by ionic interactions. The actin/Arp4 peripherally associates with Eaf1 HSA domain. The Eaf5/7/3 (TINTIN) and piccolo modules largely pack against the FAT and HEAT repeats of Tra1 and their association depends on Eaf1 N-terminal and HSA regions, respectively. These structures elucidate the detailed architecture and molecular interactions between NuA4 subunits and offer exciting insights into the scaffolding and regulatory mechanisms of Tra1 pseudokinase. The NuA4 histone acetyltransferase complex is important for gene regulation, DNA repair processes and cell cycle progression. Here the authors give molecular insights into the NuA4 complex by presenting the cryo-EM structures of the NuA4 TEEAA (Tra1, Eaf1, Eaf5, actin, and Arp4) and TEEAA-piccolo NuA4 assemblies.
Collapse
|
31
|
Grunt TW. Interacting Cancer Machineries: Cell Signaling, Lipid Metabolism, and Epigenetics. Trends Endocrinol Metab 2018; 29:86-98. [PMID: 29203141 DOI: 10.1016/j.tem.2017.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
Cancer-specific perturbations of signaling, metabolism, and epigenetics can be a cause and/or consequence of malignant transformation. Evidence indicates that these regulatory systems interact with each other to form highly flexible and robust cybernetic networks that promote malignant growth and confer treatment resistance. Deciphering these plexuses using holistic approaches known from systems biology can be instructive for the future design of novel anticancer strategies. In this review, I discuss novel findings elucidating the multiple molecular interdependence among cancer-specific signaling, cell metabolism, and epigenetics to provide an insightful understanding of how major cancer machineries interact with each other during cancer development and progression, and how this knowledge may be used for future co-targeting strategies.
Collapse
Affiliation(s)
- Thomas W Grunt
- Signaling Networks Program, Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Kim JA, Yeom YI. Metabolic Signaling to Epigenetic Alterations in Cancer. Biomol Ther (Seoul) 2018; 26:69-80. [PMID: 29212308 PMCID: PMC5746039 DOI: 10.4062/biomolther.2017.185] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.
Collapse
Affiliation(s)
- Jung-Ae Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young Il Yeom
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
33
|
Huang J, Luo Z, Ying W, Cao Q, Huang H, Dong J, Wu Q, Zhao Y, Qian X, Dai J. 2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:8782-8787. [PMID: 28768809 PMCID: PMC5565412 DOI: 10.1073/pnas.1700796114] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
New types of modifications of histones keep emerging. Recently, histone H4K8 2-hydroxyisobutyrylation (H4K8hib) was identified as an evolutionarily conserved modification. However, how this modification is regulated within a cell is still elusive, and the enzymes adding and removing 2-hydroxyisobutyrylation have not been found. Here, we report that the amount of H4K8hib fluctuates in response to the availability of carbon source in Saccharomyces cerevisiae and that low-glucose conditions lead to diminished modification. The removal of the 2-hydroxyisobutyryl group from H4K8 is mediated by the histone lysine deacetylase Rpd3p and Hos3p in vivo. In addition, eliminating modifications at this site by alanine substitution alters transcription in carbon transport/metabolism genes and results in a reduced chronological life span (CLS). Furthermore, consistent with the glucose-responsive H4K8hib regulation, proteomic analysis revealed that a large set of proteins involved in glycolysis/gluconeogenesis are modified by lysine 2-hydroxyisobutyrylation. Cumulatively, these results established a functional and regulatory network among Khib, glucose metabolism, and CLS.
Collapse
Affiliation(s)
- Jing Huang
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhouqing Luo
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, National Protein Science Center, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Qichen Cao
- State Key Laboratory of Proteomics, National Protein Science Center, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - He Huang
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637
| | - Junkai Dong
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingyu Wu
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingming Zhao
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Protein Science Center, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China;
| | - Junbiao Dai
- Ministry of Education Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China;
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
34
|
Abstract
In this review, van der Knapp and Verrijzer discuss the current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease. To make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expression response remain poorly understood. There is a growing awareness that central components of intermediary metabolism are cofactors or cosubstrates of chromatin-modifying enzymes. As such, their concentrations constitute a potential regulatory interface between the metabolic and chromatin states. In addition, there is increasing evidence for a direct involvement of classic metabolic enzymes in gene expression control. These dual-function proteins may provide a direct link between metabolic programing and the control of gene expression. Here, we discuss our current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease.
Collapse
Affiliation(s)
- Jan A van der Knaap
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, 3000 DR Rotterdam, the Netherlands
| |
Collapse
|
35
|
Lysine acetyltransferase NuA4 and acetyl-CoA regulate glucose-deprived stress granule formation in Saccharomyces cerevisiae. PLoS Genet 2017; 13:e1006626. [PMID: 28231279 PMCID: PMC5344529 DOI: 10.1371/journal.pgen.1006626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/09/2017] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic cells form stress granules under a variety of stresses, however the signaling pathways regulating their formation remain largely unknown. We have determined that the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 is required for stress granule formation upon glucose deprivation but not heat stress. Further, the Tip60 complex, the human homolog of the NuA4 complex, is required for stress granule formation in cancer cell lines. Surprisingly, the impact of NuA4 on glucose-deprived stress granule formation is partially mediated through regulation of acetyl-CoA levels, which are elevated in NuA4 mutants. While elevated acetyl-CoA levels suppress the formation of glucose-deprived stress granules, decreased acetyl-CoA levels enhance stress granule formation upon glucose deprivation. Further our work suggests that NuA4 regulates acetyl-CoA levels through the Acetyl-CoA carboxylase Acc1. Altogether this work establishes both NuA4 and the metabolite acetyl-CoA as critical signaling pathways regulating the formation of glucose-deprived stress granules.
Collapse
|
36
|
Chromatin Regulation by the NuA4 Acetyltransferase Complex Is Mediated by Essential Interactions Between Enhancer of Polycomb (Epl1) and Esa1. Genetics 2017; 205:1125-1137. [PMID: 28108589 DOI: 10.1534/genetics.116.197830] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
Enzymes that modify and remodel chromatin act in broadly conserved macromolecular complexes. One key modification is the dynamic acetylation of histones and other chromatin proteins by opposing activities of acetyltransferase and deacetylase complexes. Among acetyltransferases, the NuA4 complex containing Tip60 or its Saccharomyces cerevisiae ortholog Esa1 is of particular significance because of its roles in crucial genomic processes including DNA damage repair and transcription. The catalytic subunit Esa1 is essential, as are five noncatalytic NuA4 subunits. We found that of the noncatalytic subunits, deletion of Enhancer of polycomb (Epl1), but not the others, can be bypassed by loss of a major deacetylase complex, a property shared by Esa1 Noncatalytic complex subunits can be critical for complex assembly, stability, genomic targeting, substrate specificity, and regulation. Understanding the essential role of Epl1 has been previously limited, a limitation now overcome by the discovery of its bypass suppression. Here, we present a comprehensive in vivo study of Epl1 using the powerful tool of suppression combined with transcriptional and mutational analyses. Our results highlight functional parallels between Epl1 and Esa1 and further illustrate that the structural role of Epl1 is important for promotion of Esa1 activity. This conclusion is strengthened by our dissection of Epl1 domains required in vivo for interaction with specific NuA4 subunits, histone acetylation, and chromatin targeting. These results provide new insights for the conserved, essential nature of Epl1 and its homologs, such as EPC1/2 in humans, which is frequently altered in cancers.
Collapse
|
37
|
Ryall JG, Cliff T, Dalton S, Sartorelli V. Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell 2017; 17:651-662. [PMID: 26637942 DOI: 10.1016/j.stem.2015.11.012] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For many years, stem cell metabolism was viewed as a byproduct of cell fate status rather than an active regulatory mechanism; however, there is now a growing appreciation that metabolic pathways influence epigenetic changes associated with lineage commitment, specification, and self-renewal. Here we review how metabolites generated during glycolytic and oxidative processes are utilized in enzymatic reactions leading to epigenetic modifications and transcriptional regulation. We discuss how "metabolic reprogramming" contributes to global epigenetic changes in the context of naive and primed pluripotent states, somatic reprogramming, and hematopoietic and skeletal muscle tissue stem cells, and we discuss the implications for regenerative medicine.
Collapse
Affiliation(s)
- James G Ryall
- Stem Cell Metabolism and Regenerative Medicine Group, Basic & Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Tim Cliff
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, GA 30602, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, Paul D. Coverdell Center for Biomedical and Health Sciences, The University of Georgia, Athens, GA 30602, USA
| | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20829, USA.
| |
Collapse
|
38
|
Canzonetta C, Leo M, Guarino SR, Montanari A, Francisci S, Filetici P. SAGA complex and Gcn5 are necessary for respiration in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3160-3168. [DOI: 10.1016/j.bbamcr.2016.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/13/2016] [Accepted: 10/07/2016] [Indexed: 10/25/2022]
|
39
|
Abstract
There is a dynamic interplay between metabolic processes and gene regulation via the remodeling of chromatin. Most chromatin-modifying enzymes use cofactors, which are products of metabolic processes. This article explores the biosynthetic pathways of the cofactors nicotinamide adenine dinucleotide (NAD), acetyl coenzyme A (acetyl-CoA), S-adenosyl methionine (SAM), α-ketoglutarate, and flavin adenine dinucleotide (FAD), and their role in metabolically regulating chromatin processes. A more detailed look at the interaction between chromatin and the metabolic processes of circadian rhythms and aging is described as a paradigm for this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Shelley L Berger
- Department of Cell & Developmental Biology, Department of Biology, and Department of Genetics, Epigenetics Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6508
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697-4049
| |
Collapse
|
40
|
Non-metabolic functions of glycolytic enzymes in tumorigenesis. Oncogene 2016; 36:2629-2636. [PMID: 27797379 DOI: 10.1038/onc.2016.410] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/19/2022]
Abstract
Cancer cells reprogram their metabolism to meet the requirement for survival and rapid growth. One hallmark of cancer metabolism is elevated aerobic glycolysis and reduced oxidative phosphorylation. Emerging evidence showed that most glycolytic enzymes are deregulated in cancer cells and play important roles in tumorigenesis. Recent studies revealed that all essential glycolytic enzymes can be translocated into nucleus where they participate in tumor progression independent of their canonical metabolic roles. These noncanonical functions include anti-apoptosis, regulation of epigenetic modifications, modulation of transcription factors and co-factors, extracellular cytokine, protein kinase activity and mTORC1 signaling pathway, suggesting that these multifaceted glycolytic enzymes not only function in canonical metabolism but also directly link metabolism to epigenetic and transcription programs implicated in tumorigenesis. These findings underscore our understanding about how tumor cells adapt to nutrient and fuel availability in the environment and most importantly, provide insights into development of cancer therapy.
Collapse
|
41
|
Combined Action of Histone Reader Modules Regulates NuA4 Local Acetyltransferase Function but Not Its Recruitment on the Genome. Mol Cell Biol 2016; 36:2768-2781. [PMID: 27550811 DOI: 10.1128/mcb.00112-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
Recognition of histone marks by reader modules is thought to be at the heart of epigenetic mechanisms. These protein domains are considered to function by targeting regulators to chromosomal loci carrying specific histone modifications. This is important for proper gene regulation as well as propagation of epigenetic information. The NuA4 acetyltransferase complex contains two of these reader modules, an H3K4me3-specific plant homeodomain (PHD) within the Yng2 subunit and an H3K36me2/3-specific chromodomain in the Eaf3 subunit. While each domain showed a close functional interaction with the respective histone mark that it recognizes, at the biochemical level, genetic level (as assessed with epistatic miniarray profile screens), and phenotypic level, cells with the combined loss of both readers showed greatly enhanced phenotypes. Chromatin immunoprecipitation coupled with next-generation sequencing experiments demonstrated that the Yng2 PHD specifically directs H4 acetylation near the transcription start site of highly expressed genes, while Eaf3 is important downstream on the body of the genes. Strikingly, the recruitment of the NuA4 complex to these loci was not significantly affected. Furthermore, RNA polymerase II occupancy was decreased only under conditions where both PHD and chromodomains were lost, generally in the second half of the gene coding regions. Altogether, these results argue that methylated histone reader modules in NuA4 are not responsible for its recruitment to the promoter or coding regions but, rather, are required to orient its acetyltransferase catalytic site to the methylated histone 3-bearing nucleosomes in the surrounding chromatin, cooperating to allow proper transition from transcription initiation to elongation.
Collapse
|
42
|
Zhang GC, Kong II, Wei N, Peng D, Turner TL, Sung BH, Sohn JH, Jin YS. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Biotechnol Bioeng 2016; 113:2587-2596. [DOI: 10.1002/bit.26021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Guo-Chang Zhang
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - In Iok Kong
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences; University of Notre Dame; South Bend Indiana
| | - Dairong Peng
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Timothy L. Turner
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Bong Hyun Sung
- Bioenergy and Biochemical Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Jung-Hoon Sohn
- Bioenergy and Biochemical Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| |
Collapse
|
43
|
Attenuation of transcriptional and signaling responses limits viability of ρ(0)Saccharomyces cerevisiae during periods of glucose deprivation. Biochim Biophys Acta Gen Subj 2016; 1860:2563-2575. [PMID: 27478089 DOI: 10.1016/j.bbagen.2016.07.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/09/2016] [Accepted: 07/27/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND The maintenance of viability during periods when a glycolytic carbon source is limited (or absent) is a major obstacle for cells whose mitochondrial DNA (mtDNA) has been damaged or lost. METHODS We utilized genome wide transcriptional profiling and in gel mobility analyses to examine the transcriptional response and characterize defects in the phosphorylation dependent signaling events that occur during acute glucose starvation in ρ(0) cells that lack mtDNA. Genetic and pharmacological interventions were employed to clarify the contribution of nutrient responsive kinases to regulation of the transcription factors that displayed abnormal phosphoregulation in ρ(0) cells. RESULTS The transcriptional response to glucose deprivation is dampened but not blocked in ρ(0) cells. Genes regulated by the transcription factors Mig1, Msn2, Gat1, and Ume6 were noticeably affected and phosphorylation of these factors in response to nutrient depletion is abnormal in ρ(0) cells. Regulation of the nutrient responsive kinases PKA and Snf1 remains normal in ρ(0) cells. The phosphorylation defect results from ATP depletion and loss of the activity of kinases including GSK3β, Rim15, and Yak1. Interventions which rescue phosphoregulation of transcription factors bolster maintenance of viability in ρ(0) cells during subsequent glucose deprivation. CONCLUSIONS A subset of nutrient responsive kinases is especially sensitive to ATP levels and their misregulation may underlie regulatory defects presented by ρ(0) cells. GENERAL SIGNIFICANCE Abnormal regulation of mitochondrial function is implicated in numerous human disorders. This work illustrates that some signaling pathways are more sensitive than others to metabolic defects caused by mitochondrial dysfunction.
Collapse
|
44
|
Mahmood S, Birkaya B, Rideout TC, Patel MS. Lack of mitochondria-generated acetyl-CoA by pyruvate dehydrogenase complex downregulates gene expression in the hepatic de novo lipogenic pathway. Am J Physiol Endocrinol Metab 2016; 311:E117-27. [PMID: 27166281 PMCID: PMC4967143 DOI: 10.1152/ajpendo.00064.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
During the absorptive state, the liver stores excess glucose as glycogen and synthesizes fatty acids for triglyceride synthesis for export as very low density lipoproteins. For de novo synthesis of fatty acids from glucose, the mitochondrial pyruvate dehydrogenase complex (PDC) is the gatekeeper for the generation of acetyl-CoA from glucose-derived pyruvate. Here, we tested the hypothesis that limiting the supply of PDC-generated acetyl-CoA from glucose would have an impact on expression of key genes in the lipogenic pathway. In the present study, although the postnatal growth of liver-specific PDC-deficient (L-PDCKO) male mice was largely unaltered, the mice developed hyperinsulinemia with lower blood glucose levels in the fed state. Serum and liver lipid triglyceride and cholesterol levels remained unaltered in L-PDCKO mice. Expression of several key genes (ACL, ACC1) in the lipogenic pathway and their upstream regulators (LXR, SREBP1, ChREBP) as well as several genes in glucose metabolism (Pklr, G6pd2, Pck1) and fatty acid oxidation (FAT, Cpt1a) was downregulated in livers from L-PDCKO mice. Interestingly, there was concomitant upregulation of lipogenic genes in adipose tissue from L-PDCKO mice. Although, the total hepatic acetyl-CoA content remained unaltered in L-PDCKO mice, modified acetylation profiles of proteins in the nuclear compartment suggested an important role for PDC-generated acetyl-CoA in gene expression in de novo fatty acid synthesis in the liver. This finding has important implications for the regulation of hepatic lipid synthesis in pathological states.
Collapse
Affiliation(s)
- Saleh Mahmood
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, and
| | - Barbara Birkaya
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, and
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Mulchand S Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, and
| |
Collapse
|
45
|
Saccharomyces cerevisiae TORC1 Controls Histone Acetylation by Signaling Through the Sit4/PP6 Phosphatase to Regulate Sirtuin Deacetylase Nuclear Accumulation. Genetics 2016; 203:1733-46. [PMID: 27343235 PMCID: PMC4981274 DOI: 10.1534/genetics.116.188458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/15/2016] [Indexed: 01/09/2023] Open
Abstract
The epigenome responds to changes in the extracellular environment, yet how this information is transmitted to the epigenetic regulatory machinery is unclear. Using a Saccharomyces cerevisiae yeast model, we demonstrate that target of rapamycin complex 1 (TORC1) signaling, which is activated by nitrogen metabolism and amino acid availability, promotes site-specific acetylation of histone H3 and H4 N-terminal tails by opposing the activity of the sirtuin deacetylases Hst3 and Hst4. TORC1 does so through suppression of the Tap42-regulated Sit4 (PP6) phosphatase complex, as sit4Δ rescues histone acetylation under TORC1-repressive conditions. We further demonstrate that TORC1 inhibition, and subsequent PP6 activation, causes a selective, rapid, nuclear accumulation of Hst4, which correlates with decreased histone acetylation. This increased Hst4 nuclear localization precedes an elevation in Hst4 protein expression, which is attributed to reduced protein turnover, suggesting that nutrient signaling through TORC1 may limit Hst4 nuclear accumulation to facilitate Hst4 degradation and maintain histone acetylation. This pathway is functionally relevant to TORC1 signaling since the stress sensitivity of a nonessential TORC1 mutant (tco89Δ) to hydroxyurea and arsenic can be reversed by combining tco89Δ with either hst3Δ, hst4Δ, or sit4Δ. Surprisingly, while hst3Δ or hst4Δ rescues the sensitivity tco89Δ has to low concentrations of the TORC1 inhibitor rapamycin, sit4Δ fails to do so. These results suggest Sit4 provides an additional function necessary for TORC1-dependent cell growth and proliferation. Collectively, this study defines a novel mechanism by which TORC1 suppresses a PP6-regulated sirtuin deacetylase pathway to couple nutrient signaling to epigenetic regulation.
Collapse
|
46
|
Mews P, Berger SL. Exploring the Dynamic Relationship Between Cellular Metabolism and Chromatin Structure Using SILAC-Mass Spec and ChIP-Sequencing. Methods Enzymol 2016; 574:311-329. [PMID: 27423866 DOI: 10.1016/bs.mie.2016.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Metabolic state and chromatin structure are tightly linked, enabling adaptation of gene expression to changing environment and metabolism. The bioenergetic pathways and enzymes that provide metabolic cofactors for histone modification have recently emerged as central regulators of chromatin. Current research therefore focuses on the dynamic interface of cellular metabolism and chromatin structure. Here, we provide an adaptable approach to examine broadly in changing physiological states, how chromatin structure is dynamically modulated by metabolic activity. We employ two complementary methods: high-throughput sequencing to establish the location of epigenetic changes, and stable isotope tracing using mass spectrometry to evaluate chromatin modification dynamics. Our two-pronged approach is of particular advantage when interrogating how metabolic and oncogenic mutations influence the dynamic relationship between metabolism, nutritional environment, and chromatin regulation.
Collapse
Affiliation(s)
- P Mews
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - S L Berger
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
47
|
Glycolytic metabolism influences global chromatin structure. Oncotarget 2016; 6:4214-25. [PMID: 25784656 PMCID: PMC4414184 DOI: 10.18632/oncotarget.2929] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022] Open
Abstract
Metabolic rewiring, specifically elevated glycolytic metabolism is a hallmark of cancer. Global chromatin structure regulates gene expression, DNA repair, and also affects cancer progression. But the interrelationship between tumor metabolism and chromatin architecture remain unclear. Here we show that increased glycolysis in cancer cells promotes an open chromatin configuration. Using complementary methods including Micrococcal nuclease (MNase) digestion assay, electron microscope and immunofluorescence staining, we demonstrate that glycolysis inhibition by pharmacological and genetic approaches was associated with induction of compacted chromatin structure. This condensed chromatin status appeared to result chiefly from histone hypoacetylation as restoration of histone acetylation with an HDAC inhibitor reversed the compacted chromatin state. Interestingly, glycolysis inhibition-induced chromatin condensation impeded DNA repair efficiency leading to increased sensitivity of cancer cells to DNA damage drugs, which may represent a novel molecular mechanism that can be exploited for cancer therapy.
Collapse
|
48
|
Regulation of Antisense Transcription by NuA4 Histone Acetyltransferase and Other Chromatin Regulatory Factors. Mol Cell Biol 2016; 36:992-1006. [PMID: 26755557 DOI: 10.1128/mcb.00808-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/30/2015] [Indexed: 12/26/2022] Open
Abstract
NuA4 histone lysine (K) acetyltransferase (KAT) promotes transcriptional initiation of TATA-binding protein (TBP)-associated factor (TAF)-dependent ribosomal protein genes. TAFs have also been recently found to enhance antisense transcription from the 3' end of the GAL10 coding sequence. However, it remains unknown whether, like sense transcription of the ribosomal protein genes, TAF-dependent antisense transcription of GAL10 also requires NuA4 KAT. Here, we show that NuA4 KAT associates with the GAL10 antisense transcription initiation site at the 3' end of the coding sequence. Such association of NuA4 KAT depends on the Reb1p-binding site that recruits Reb1p activator to the GAL10 antisense transcription initiation site. Targeted recruitment of NuA4 KAT to the GAL10 antisense transcription initiation site promotes GAL10 antisense transcription. Like NuA4 KAT, histone H3 K4/36 methyltransferases and histone H2B ubiquitin conjugase facilitate GAL10 antisense transcription, while the Swi/Snf and SAGA chromatin remodeling/modification factors are dispensable for antisense, but not sense, transcription of GAL10. Taken together, our results demonstrate for the first time the roles of NuA4 KAT and other chromatin regulatory factors in controlling antisense transcription, thus illuminating chromatin regulation of antisense transcription.
Collapse
|
49
|
Abstract
Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Hongbo Zhang
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, 1015 Lausanne, Switzerland
| | - Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, 1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, Green MF, Jones LW, Ko YH, Le A, Lea MA, Locasale JW, Longo VD, Lyssiotis CA, McDonnell E, Mehrmohamadi M, Michelotti G, Muralidhar V, Murphy MP, Pedersen PL, Poore B, Raffaghello L, Rathmell JC, Sivanand S, Vander Heiden MG, Wellen KE. Dysregulated metabolism contributes to oncogenesis. Semin Cancer Biol 2015; 35 Suppl:S129-S150. [PMID: 26454069 PMCID: PMC4656121 DOI: 10.1016/j.semcancer.2015.10.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review "Hallmarks of Cancer", where dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results demonstrate that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it.
Collapse
Affiliation(s)
- Matthew D Hirschey
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas - Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Mae E Diehl
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Janice E Drew
- Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | - Michelle F Green
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Lee W Jones
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Young H Ko
- University of Maryland BioPark, KoDiscovery, Baltimore, MD 20201, USA
| | - Anne Le
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael A Lea
- New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Jason W Locasale
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14850, USA
| | - Valter D Longo
- Andrus Gerontology Center, Division of Biogerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, University of Michigan, Ann Arbor 48109, USA
| | - Eoin McDonnell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Mahya Mehrmohamadi
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14850, USA
| | - Gregory Michelotti
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Vinayak Muralidhar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Cambridge, United Kingdom
| | - Peter L Pedersen
- Department of Biological Chemistry and Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brad Poore
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Jeffrey C Rathmell
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA; Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sharanya Sivanand
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|