1
|
Cebola I, Birdsey GM, Randi AM. Transcriptional pausing as a molecular mechanism of sprouting angiogenesis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1184-1186. [PMID: 39375478 DOI: 10.1038/s44161-024-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Affiliation(s)
- Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Graeme M Birdsey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
2
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
3
|
Downes N, Niskanen H, Tomas Bosch V, Taipale M, Godiwala M, Väänänen MA, Turunen TA, Aavik E, Laham-Karam N, Ylä-Herttuala S, Kaikkonen MU. Hypoxic regulation of hypoxia inducible factor 1 alpha via antisense transcription. J Biol Chem 2023; 299:105291. [PMID: 37748649 PMCID: PMC10630634 DOI: 10.1016/j.jbc.2023.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Impaired oxygen homeostasis is a frequently encountered pathophysiological factor in multiple complex diseases, including cardiovascular disease and cancer. While the canonical hypoxia response pathway is well characterized, less is known about the role of noncoding RNAs in this process. Here, we investigated the nascent and steady-state noncoding transcriptional responses in endothelial cells and their potential roles in regulating the hypoxic response. Notably, we identify a novel antisense long noncoding RNA that convergently overlaps the majority of the hypoxia inducible factor 1 alpha (HIF1A) locus, which is expressed across several cell types and elevated in atherosclerotic lesions. The antisense (HIF1A-AS) is produced as a stable, unspliced, and polyadenylated nuclear retained transcript. HIF1A-AS is highly induced in hypoxia by both HIF1A and HIF2A and exhibits anticorrelation with the coding HIF1A transcript and protein expression. We further characterized this functional relationship by CRISPR-mediated bimodal perturbation of the HIF1A-AS promoter. We provide evidence that HIF1A-AS represses the expression of HIF1a in cis by repressing transcriptional elongation and deposition of H3K4me3, and that this mechanism is dependent on the act of antisense transcription itself. Overall, our results indicate a critical regulatory role of antisense mediated transcription in regulation of HIF1A expression and cellular response to hypoxia.
Collapse
Affiliation(s)
- Nicholas Downes
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Henri Niskanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Vanesa Tomas Bosch
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mari Taipale
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mehvash Godiwala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Mari-Anna Väänänen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Tiia A Turunen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Einari Aavik
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland; School of Medicine, University of Eastern Finland, Kuopio, North-Savo, Finland; Heart Center, Kuopio University Hospital, Kuopio, Finland.
| | - Minna U Kaikkonen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, North-Savo, Finland.
| |
Collapse
|
4
|
Wei J, Xiong Z, Zhu G. Network Pharmacology and Molecular Docking Analysis on Molecular Targets and Mechanisms of "Chuanxiong Rhizoma: Radix Salviae miltiorrhizae" Herb Couples in the Treatment of Preeclampsia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2568008. [PMID: 36118076 PMCID: PMC9473876 DOI: 10.1155/2022/2568008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/28/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022]
Abstract
Objective The aim of the study is to explore the molecular mechanism of activating blood circulation and dispersing stasis herbs in the treatment of pre-eclampsia with Chuanxiong Rhizoma-Radix Salvia miltiorrhiza. Methods The chemical composition and targets of Chuanxiong Rhizoma-Radix Salvia miltiorrhiza were retrieved from the TCMSP database, and a PPI network was constructed for common genes. Subsequently, a graph of the "active component-target-action pathway" was plotted by Cytoscape 3.7.2 and a KEGG pathway enrichment was performed using the R language cluster profiler package. Molecular docking was conducted between the top five PPI targets of Chuanxiong Rhizoma-Radix Salvia miltiorrhiza. Results According to network pharmacology, there were 32 target genes, 60 active components, and 59 pathways in Chuanxiong Rhizoma-Radix Salvia miltiorrhiza, and its most evident effects were exerted on G-protein-coupled amine receptors and the neuroactive ligand-receptor interaction signaling pathway. Molecular docking indicated that the target protein had a good binding ability with the drugs. Conclusion Chuanxiong Rhizoma-Radix Salvia miltiorrhiza have therapeutic effects in pre-eclampsia, as confirmed by the results of molecular biology analysis. Thus, the Chuanxiong Rhizoma-Radix Salvia miltiorrhiza regimen provides a basis for the treatment of pre-eclampsia using traditional Chinese medicine.
Collapse
Affiliation(s)
- Jing Wei
- Department of Obstetrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhihui Xiong
- Department of Obstetrics, Tongde Hospital of Zhejiang, Hangzhou 310012, China
| | - Guang Zhu
- Department of Obstetrics, Tongde Hospital of Zhejiang, Hangzhou 310012, China
| |
Collapse
|
5
|
Toropainen A, Stolze LK, Örd T, Whalen MB, Torrell PM, Link VM, Kaikkonen MU, Romanoski CE. Functional noncoding SNPs in human endothelial cells fine-map vascular trait associations. Genome Res 2022; 32:409-424. [PMID: 35193936 PMCID: PMC8896458 DOI: 10.1101/gr.276064.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/06/2022] [Indexed: 11/25/2022]
Abstract
Functional consequences of genetic variation in the noncoding human genome are difficult to ascertain despite demonstrated associations to common, complex disease traits. To elucidate properties of functional noncoding SNPs with effects in human endothelial cells (ECs), we utilized our previous molecular quantitative trait locus (molQTL) analysis for transcription factor binding, chromatin accessibility, and H3K27 acetylation to nominate a set of likely functional noncoding SNPs. Together with information from genome-wide association studies (GWASs) for vascular disease traits, we tested the ability of 34,344 variants to perturb enhancer function in ECs using the highly multiplexed STARR-seq assay. Of these, 5711 variants validated, whose enriched attributes included: (1) mutations to TF binding motifs for ETS or AP-1 that are regulators of the EC state; (2) location in accessible and H3K27ac-marked EC chromatin; and (3) molQTL associations whereby alleles associate with differences in chromatin accessibility and TF binding across genetically diverse ECs. Next, using pro-inflammatory IL1B as an activator of cell state, we observed robust evidence (>50%) of context-specific SNP effects, underscoring the prevalence of noncoding gene-by-environment (GxE) effects. Lastly, using these cumulative data, we fine-mapped vascular disease loci and highlighted evidence suggesting mechanisms by which noncoding SNPs at two loci affect risk for pulse pressure/large artery stroke and abdominal aortic aneurysm through respective effects on transcriptional regulation of POU4F1 and LDAH. Together, we highlight the attributes and context dependence of functional noncoding SNPs and provide new mechanisms underlying vascular disease risk.
Collapse
Affiliation(s)
- Anu Toropainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Lindsey K Stolze
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona 85721, USA.,The Genetics Interdisciplinary Graduate Program, The University of Arizona, Tucson, Arizona 85721, USA
| | - Tiit Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Michael B Whalen
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona 85721, USA
| | - Paula Martí Torrell
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Casey E Romanoski
- The Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona 85721, USA.,The Genetics Interdisciplinary Graduate Program, The University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
6
|
Mushimiyimana I, Niskanen H, Beter M, Laakkonen JP, Kaikkonen MU, Ylä-Herttuala S, Laham-Karam N. Characterization of a functional endothelial super-enhancer that regulates ADAMTS18 and angiogenesis. Nucleic Acids Res 2021; 49:8078-8096. [PMID: 34320216 PMCID: PMC8373076 DOI: 10.1093/nar/gkab633] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/28/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022] Open
Abstract
Super-enhancers are clusters of enhancers associated with cell lineage. They can be powerful gene-regulators and may be useful in cell-type specific viral-vector development. Here, we have screened for endothelial super-enhancers and identified an enhancer from within a cluster that conferred 5–70-fold increase in transgene expression. Importantly, CRISPR/Cas9 deletion of enhancers demonstrated regulation of ADAMTS18, corresponding to evidence of chromatin contacts between these genomic regions. Cell division-related pathways were primarily affected by the enhancer deletions, which correlated with significant reduction in cell proliferation. Furthermore, we observed changes in angiogenesis-related genes consistent with the endothelial specificity of this SE. Indeed, deletion of the enhancers affected tube formation, resulting in reduced or shortened sprouts. The super-enhancer angiogenic role is at least partly due to its regulation of ADAMTS18, as siRNA knockdown of ADAMTS18 resulted in significantly shortened endothelial sprouts. Hence, functional characterization of a novel endothelial super-enhancer has revealed substantial downstream effects from single enhancer deletions and led to the discovery of the cis-target gene ADAMTS18 and its role in endothelial function.
Collapse
Affiliation(s)
- Isidore Mushimiyimana
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Mustafa Beter
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Johanna P Laakkonen
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland.,Heart Center and Gene Therapy Unit; Kuopio University Hospital; Kuopio 70029, Finland
| | - Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio 70211, Finland
| |
Collapse
|
7
|
Moreau PR, Tomas Bosch V, Bouvy-Liivrand M, Õunap K, Örd T, Pulkkinen HH, Pölönen P, Heinäniemi M, Ylä-Herttuala S, Laakkonen JP, Linna-Kuosmanen S, Kaikkonen MU. Profiling of Primary and Mature miRNA Expression in Atherosclerosis-Associated Cell Types. Arterioscler Thromb Vasc Biol 2021; 41:2149-2167. [PMID: 33980036 PMCID: PMC8216629 DOI: 10.1161/atvbaha.121.315579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pierre R. Moreau
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Vanesa Tomas Bosch
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
- Now with Genevia Technologies Oy, Tampere, Finland (M.B.-L.)
| | - Kadri Õunap
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Heidi H. Pulkkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Petri Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN (P.P.)
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio (M.B.-L., P.P., M.H.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Johanna P. Laakkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| | - Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
- Now with MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, and Broad Institute of MIT and Harvard, Cambridge, MA (S.L.-K.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (P.R.M., V.T.B., K.O., T.O., H.H.P., S.Y.-H., J.P.L., S.L.-K., M.U.K.)
| |
Collapse
|
8
|
Higashijima Y, Kanki Y. Potential roles of super enhancers in inflammatory gene transcription. FEBS J 2021; 289:5762-5775. [PMID: 34173323 DOI: 10.1111/febs.16089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022]
Abstract
Acute and chronic inflammation is a basic pathological event that contributes to atherosclerosis, cancer, infectious diseases, and immune disorders. Inflammation is an adaptive process to both external and internal stimuli experienced by the human body. Although the mechanism of gene transcription is highly complicated and orchestrated in a timely and spatial manner, recent developments in next-generation sequencing, genome-editing, cryo-electron microscopy, and single cell-based technologies could provide us with insights into the roles of super enhancers (SEs). Initially, SEs were implicated in determining cell fate; subsequent studies have clarified that SEs are associated with various pathological conditions, including cancer and inflammatory diseases. Recent technological advances have unveiled the molecular mechanisms of SEs, which involve epigenetic histone modifications, chromatin three-dimensional structures, and phase-separated condensates. In this review, we discuss the relationship between inflammation and SEs and the therapeutic potential of SEs for inflammatory diseases.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Japan.,Laboratory of Laboratory/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
9
|
Mushimiyimana I, Tomas Bosch V, Niskanen H, Downes NL, Moreau PR, Hartigan K, Ylä-Herttuala S, Laham-Karam N, Kaikkonen MU. Genomic Landscapes of Noncoding RNAs Regulating VEGFA and VEGFC Expression in Endothelial Cells. Mol Cell Biol 2021; 41:e0059420. [PMID: 33875575 PMCID: PMC8224232 DOI: 10.1128/mcb.00594-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/29/2020] [Accepted: 04/03/2021] [Indexed: 12/26/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are best known as key regulators of angiogenesis and lymphangiogenesis. Although VEGFs have been promising therapeutic targets for various cardiovascular diseases, their regulatory landscape in endothelial cells remains elusive. Several studies have highlighted the involvement of noncoding RNAs (ncRNAs) in the modulation of VEGF expression. In this study, we investigated the role of two classes of ncRNAs, long ncRNAs (lncRNAs) and enhancer RNAs (eRNAs), in the transcriptional regulation of VEGFA and VEGFC. By integrating genome-wide global run-on sequencing (GRO-Seq) and chromosome conformation capture (Hi-C) data, we identified putative lncRNAs and eRNAs associated with VEGFA and VEGFC genes in endothelial cells. A subset of the identified putative enhancers demonstrated regulatory activity in a reporter assay. Importantly, we demonstrate that deletion of enhancers and lncRNAs by CRISPR/Cas9 promoted significant changes in VEGFA and VEGFC expression. Transcriptome sequencing (RNA-Seq) data from lncRNA deletions showed downstream factors implicated in VEGFA- and VEGFC-linked pathways, such as angiogenesis and lymphangiogenesis, suggesting functional roles for these lncRNAs. Our study uncovers novel lncRNAs and eRNAs regulating VEGFA and VEGFC that can be targeted to modulate the expression of these important molecules in endothelial cells.
Collapse
Affiliation(s)
- Isidore Mushimiyimana
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vanesa Tomas Bosch
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nicholas L. Downes
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pierre R. Moreau
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Nihay Laham-Karam
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
10
|
Polycomb Repressive Complex 2 Regulates Genes Necessary for Intestinal Microfold Cell (M Cell) Development. Cell Mol Gastroenterol Hepatol 2021; 12:873-889. [PMID: 34058415 PMCID: PMC8346665 DOI: 10.1016/j.jcmgh.2021.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Microfold cells (M cells) are immunosurveillance epithelial cells located in the Peyer's patches (PPs) in the intestine and are responsible for monitoring and transcytosis of antigens, microorganisms, and pathogens. Mature M cells use the receptor glycoprotein 2 (GP2) to aid in transcytosis. Recent studies have shown transcription factors, Spi-B and SRY-Box Transcription Factor 8 (Sox8). are necessary for M-cell differentiation, but not sufficient. An exhaustive set of factors sufficient for differentiation and development of a mature GP2+ M cell remains elusive. Our aim was to understand the role of polycomb repressive complex 2 (PRC2) as an epigenetic regulator of M-cell development. Estrogen-related-receptor γ (Esrrg), identified as a PRC2-regulated gene, was studied in depth, in addition to its relationship with Spi-B and Sox8. METHODS Comparative chromatin immunoprecipitation and global run-on sequencing analysis of mouse intestinal organoids were performed in stem condition, enterocyte conditions, and receptor activator of nuclear factor κ B ligand-induced M-cell condition. Esrrg, which was identified as one of the PRC2-regulated transcription factors, was studied in wild-type mice and knocked out in intestinal organoids using guide RNA's. Sox8 null mice were used to study Esrrg and its relation to Sox8. RESULTS chromatin immunoprecipitation and global run-on sequencing analysis showed 12 novel PRC2 regulated transcription factors, PRC2-regulated Esrrg is a novel M-cell-specific transcription factor acting on a receptor activator of nuclear factor κB ligand-receptor activator of nuclear factor κB-induced nuclear factor-κB pathway, upstream of Sox8, and necessary but not sufficient for a mature M-cell marker of Gp2 expression. CONCLUSIONS PRC2 regulates a significant set of genes in M cells including Esrrg, which is critical for M-cell development and differentiation. Loss of Esrrg led to an immature M-cell phenotype lacking in Sox8 and Gp2 expression. Transcript profiling: the data have been deposited in the NCBI Gene Expression Omnibus database (GSE157629).
Collapse
|
11
|
Linna-Kuosmanen S, Tomas Bosch V, Moreau PR, Bouvy-Liivrand M, Niskanen H, Kansanen E, Kivelä A, Hartikainen J, Hippeläinen M, Kokki H, Tavi P, Levonen AL, Kaikkonen MU. NRF2 is a key regulator of endothelial microRNA expression under proatherogenic stimuli. Cardiovasc Res 2021; 117:1339-1357. [PMID: 32683448 PMCID: PMC8064437 DOI: 10.1093/cvr/cvaa219] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS Oxidized phospholipids and microRNAs (miRNAs) are increasingly recognized to play a role in endothelial dysfunction driving atherosclerosis. NRF2 transcription factor is one of the key mediators of the effects of oxidized phospholipids, but the gene regulatory mechanisms underlying the process remain obscure. Here, we investigated the genome-wide effects of oxidized phospholipids on transcriptional gene regulation in human umbilical vein endothelial cells and aortic endothelial cells with a special focus on miRNAs. METHODS AND RESULTS We integrated data from HiC, ChIP-seq, ATAC-seq, GRO-seq, miRNA-seq, and RNA-seq to provide deeper understanding of the transcriptional mechanisms driven by NRF2 in response to oxidized phospholipids. We demonstrate that presence of NRF2 motif and its binding is more prominent in the vicinity of up-regulated transcripts and transcriptional initiation represents the most likely mechanism of action. We further identified NRF2 as a novel regulator of over 100 endothelial pri-miRNAs. Among these, we characterize two hub miRNAs miR-21-5p and miR-100-5p and demonstrate their opposing roles on mTOR, VEGFA, HIF1A, and MYC expressions. Finally, we provide evidence that the levels of miR-21-5p and miR-100-5p in exosomes are increased upon senescence and exhibit a trend to correlate with the severity of coronary artery disease. CONCLUSION Altogether, our analysis provides an integrative view into the regulation of transcription and miRNA function that could mediate the proatherogenic effects of oxidized phospholipids in endothelial cells.
Collapse
Affiliation(s)
- Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Vanesa Tomas Bosch
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pierre R Moreau
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Emilia Kansanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Annukka Kivelä
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juha Hartikainen
- School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Heart Center, Kuopio University Hospital, 70211 Kuopio, Finland
| | | | - Hannu Kokki
- School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Anesthesia and Operative Services, Kuopio University Hospital, 70211 Kuopio, Finland
| | - Pasi Tavi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
12
|
Integrative analysis of liver-specific non-coding regulatory SNPs associated with the risk of coronary artery disease. Am J Hum Genet 2021; 108:411-430. [PMID: 33626337 DOI: 10.1016/j.ajhg.2021.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
Genetic factors underlying coronary artery disease (CAD) have been widely studied using genome-wide association studies (GWASs). However, the functional understanding of the CAD loci has been limited by the fact that a majority of GWAS variants are located within non-coding regions with no functional role. High cholesterol and dysregulation of the liver metabolism such as non-alcoholic fatty liver disease confer an increased risk of CAD. Here, we studied the function of non-coding single-nucleotide polymorphisms in CAD GWAS loci located within liver-specific enhancer elements by identifying their potential target genes using liver cis-eQTL analysis and promoter Capture Hi-C in HepG2 cells. Altogether, 734 target genes were identified of which 121 exhibited correlations to liver-related traits. To identify potentially causal regulatory SNPs, the allele-specific enhancer activity was analyzed by (1) sequence-based computational predictions, (2) quantification of allele-specific transcription factor binding, and (3) STARR-seq massively parallel reporter assay. Altogether, our analysis identified 1,277 unique SNPs that display allele-specific regulatory activity. Among these, susceptibility enhancers near important cholesterol homeostasis genes (APOB, APOC1, APOE, and LIPA) were identified, suggesting that altered gene regulatory activity could represent another way by which genetic variation regulates serum lipoprotein levels. Using CRISPR-based perturbation, we demonstrate how the deletion/activation of a single enhancer leads to changes in the expression of many target genes located in a shared chromatin interaction domain. Our integrative genomics approach represents a comprehensive effort in identifying putative causal regulatory regions and target genes that could predispose to clinical manifestation of CAD by affecting liver function.
Collapse
|
13
|
Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, Holappa L, Niskanen H, Kaikkonen MU, Ylä-Herttuala S, Laakkonen JP. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis 2021; 24:129-144. [PMID: 33021694 PMCID: PMC7921060 DOI: 10.1007/s10456-020-09748-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
The BMP/TGFβ-Smad, Notch and VEGF signaling guides formation of endothelial tip and stalk cells. However, the crosstalk of bone morphogenetic proteins (BMPs) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling has remained largely unknown. We demonstrate that BMP family members regulate VEGFR2 and Notch signaling, and act via TAZ-Hippo signaling pathway. BMPs were found to be regulated after VEGF gene transfer in C57/Bl6 mice and in a porcine myocardial ischemia model. BMPs 2/4/6 were identified as endothelium-specific targets of VEGF. BMP2 modulated VEGF-mediated endothelial sprouting via Delta like Canonical Notch Ligand 4 (DLL4). BMP6 modulated VEGF signaling by regulating VEGFR2 expression and acted via Hippo signaling effector TAZ, known to regulate cell survival/proliferation, and to be dysregulated in cancer. In a matrigel plug assay in nude mice BMP6 was further demonstrated to induce angiogenesis. BMP6 is the first member of BMP family found to directly regulate both Hippo signaling and neovessel formation. It may thus serve as a target in pro/anti-angiogenic therapies.
Collapse
Affiliation(s)
- H H Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J P Lappalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - A Toropainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Beter
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
14
|
Liu OHF, Kiema M, Beter M, Ylä-Herttuala S, Laakkonen JP, Kaikkonen MU. Hypoxia-Mediated Regulation of Histone Demethylases Affects Angiogenesis-Associated Functions in Endothelial Cells. Arterioscler Thromb Vasc Biol 2020; 40:2665-2677. [PMID: 32938217 DOI: 10.1161/atvbaha.120.315214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Previous studies have demonstrated that the expression of several lysine (K)-specific demethylases (KDMs) is induced by hypoxia. Here, we sought to investigate the exact mechanisms underlying this regulation and its functional implications for endothelial cell function, such as angiogenesis. Approach and Results: We analyzed the expression changes of KDMs under hypoxia and modulation of HIF (hypoxia-inducible factor) expression using GRO-Seq and RNA-Seq in endothelial cells. We provide evidence that the majority of the KDMs are induced at the level of nascent transcription mediated by the action of HIF-1α and HIF-2α. Importantly, we show that transcriptional changes at the level of initiation represent the major mechanism of gene activation. To delineate the epigenetic effects of hypoxia and HIF activation in normoxia, we analyzed the genome-wide changes of H3K27me3 using chromosome immunoprecipitation-Seq. We discovered a redistribution of H3K27me3 at ≈2000 to 3000 transcriptionally active loci nearby genes implicated in angiogenesis. Among these, we demonstrate that vascular endothelial growth factor A (VEGFA) expression is partly induced by KDM4B- and KDM6B-mediated demethylation of nearby regions. Knockdown of KDM4B and KDM6B decreased cell proliferation, tube formation, and endothelial sprouting while affecting hundreds of genes associated with angiogenesis. These findings provide novel insights into the regulation of KDMs by hypoxia and the epigenetic regulation of VEGFA-mediated angiogenesis. CONCLUSIONS Our study describes an additional level of epigenetic regulation where hypoxia induces redistribution of H3K27me3 around genes implicated in proliferation and angiogenesis. More specifically, we demonstrate that KDM4B and KDM6B play a key role in modulating the expression of the major angiogenic driver VEGFA.
Collapse
Affiliation(s)
- Oscar Hsin-Fu Liu
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Miika Kiema
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Mustafa Beter
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Seppo Ylä-Herttuala
- Science Service Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio (O.H.-F.L., M.K., M.B., S.Y.-H., J.P.L., M.U.K.)
| |
Collapse
|
15
|
Sallinen H, Janhonen S, Pölönen P, Niskanen H, Liu OH, Kivelä A, Hartikainen JM, Anttila M, Heinäniemi M, Ylä-Herttuala S, Kaikkonen MU. Comparative transcriptome analysis of matched primary and distant metastatic ovarian carcinoma. BMC Cancer 2019; 19:1121. [PMID: 31744494 PMCID: PMC6862850 DOI: 10.1186/s12885-019-6339-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/06/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND High grade serous ovarian carcinoma (HGSOC) is the most common subtype of epithelial ovarian cancers (EOC) with poor prognosis. In most cases EOC is widely disseminated at the time of diagnosis. Despite the optimal cytoreductive surgery and chemotherapy most patients develop chemoresistance, and the 5-year overall survival being only 25-35%. METHODS Here we analyzed the gene expression profiles of 10 primary HGSOC tumors and 10 related omental metastases using RNA sequencing and identified 100 differentially expressed genes. RESULTS The differentially expressed genes were associated with decreased embryogenesis and vasculogenesis and increased cellular proliferation and organismal death. Top upstream regulators responsible for this gene signature were NR5A1, GATA4, FOXL2, TP53 and BMP7. A subset of these genes were highly expressed in the ovarian cancer among the cancer transcriptomes of The Cancer Genome Atlas. Importantly, the metastatic gene signature was suggestive of poor survival in TCGA data based on gene enrichment analysis. CONCLUSION By comparing the gene expression profiles of primary HGSOC tumors and their matched metastasis, we provide evidence that a signature of 100 genes is able to separate these two sample types and potentially predict patient survival. Our study identifies functional categories of genes and transcription factors that could play important roles in promoting metastases and serve as markers for cancer prognosis.
Collapse
Affiliation(s)
- H. Sallinen
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - S. Janhonen
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - P. Pölönen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - H. Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - O. H. Liu
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - A. Kivelä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - J. M. Hartikainen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
| | - M. Anttila
- Department of Obstetrics and Gynecology, Kuopio University Hospital, Kuopio, Finland
| | - M. Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - S. Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - M. U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
16
|
Benhammou JN, Ko A, Alvarez M, Kaikkonen MU, Rankin C, Garske KM, Padua D, Bhagat Y, Kaminska D, Kärjä V, Pihlajamäki J, Pisegna JR, Pajukanta P. Novel Lipid Long Intervening Noncoding RNA, Oligodendrocyte Maturation-Associated Long Intergenic Noncoding RNA, Regulates the Liver Steatosis Gene Stearoyl-Coenzyme A Desaturase As an Enhancer RNA. Hepatol Commun 2019; 3:1356-1372. [PMID: 31592021 PMCID: PMC6771395 DOI: 10.1002/hep4.1413] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022] Open
Abstract
The global obesity epidemic is driving the concomitant rise in nonalcoholic fatty liver disease (NAFLD). To identify new genes involved in central liver functions, we examined liver RNA-sequence data from 259 patients who underwent morbidly obese bariatric surgery. Of these patients, 84 had normal liver histology, 40 simple steatosis, 43 nonalcoholic steatohepatitis, and the remaining 92 patients had varying degrees of NAFLD based on liver histology. We discovered oligodendrocyte maturation-associated long intergenic noncoding RNA (OLMALINC), a long intervening noncoding RNA (lincRNA) in a human liver co-expression network (n = 75 genes) that was strongly associated with statin use and serum triglycerides (TGs). OLMALINC liver expression was highly correlated with the expression of known cholesterol biosynthesis genes and stearoyl-coenzyme A desaturase (SCD). SCD is the rate-limiting enzyme in monounsaturated fatty acids and a key TG gene that is known to be up-regulated in liver steatosis and NAFLD and resides adjacent to OLMALINC on the human chromosome 10q24.31. Next, we functionally demonstrated that OLMALINC regulates SCD as an enhancer-RNA (eRNA), thus describing the first lincRNA that functions as an eRNA to regulate lipid metabolism. Specifically, we show that OLMALINC promotes liver expression of SCD in cis through regional chromosomal DNA-DNA looping interactions. Conclusion: The primate-specific lincRNA OLMALINC is a novel epigenetic regulator of the key TG and NAFLD gene SCD.
Collapse
Affiliation(s)
- Jihane N. Benhammou
- Vatche and Tamar Manoukian Division of Digestive DiseasesUniversity of California Los AngelesLos AngelesCA
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Department of MedicineVeterans Administration Greater Los Angeles Healthcare SystemLos AngelesCA
| | - Arthur Ko
- Department of MedicineDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
| | - Marcus Alvarez
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
| | - Minna U. Kaikkonen
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Carl Rankin
- Vatche and Tamar Manoukian Division of Digestive DiseasesUniversity of California Los AngelesLos AngelesCA
| | - Kristina M. Garske
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
| | - David Padua
- Vatche and Tamar Manoukian Division of Digestive DiseasesUniversity of California Los AngelesLos AngelesCA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Department of MedicineVeterans Administration Greater Los Angeles Healthcare SystemLos AngelesCA
| | - Yash Bhagat
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
| | - Dorota Kaminska
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Vesa Kärjä
- Department of Clinical PathologyKuopio University HospitalKuopioFinland
| | - Jussi Pihlajamäki
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
- Clinical Nutrition and Obesity CenterKuopio University HospitalKuopioFinland
| | - Joseph R. Pisegna
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
- Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Department of MedicineVeterans Administration Greater Los Angeles Healthcare SystemLos AngelesCA
| | - Päivi Pajukanta
- Department of Human GeneticsDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCA
- Bioinformatics Interdepartmental ProgramUniversity of California Los AngelesLos AngelesCA
- Institute for Precision Health of University of California Los AngelesLos AngelesCA
| |
Collapse
|
17
|
Kalna V, Yang Y, Peghaire CR, Frudd K, Hannah R, Shah AV, Osuna Almagro L, Boyle JJ, Göttgens B, Ferrer J, Randi AM, Birdsey GM. The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program. Circ Res 2019; 124:1337-1349. [PMID: 30892142 PMCID: PMC6493686 DOI: 10.1161/circresaha.118.313788] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE The ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG's homeostatic function is lineage-specific, because aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers). OBJECTIVE To investigate whether ERG regulates endothelial-specific gene expression via super-enhancers. METHODS AND RESULTS Chromatin immunoprecipitation with high-throughput sequencing in human umbilical vein endothelial cells showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4 (Delta-like protein 4), CLDN5 (claudin-5), VWF (von Willebrand factor), and CDH5 (VE-cadherin). Comparison between human umbilical vein endothelial cell and prostate cancer TMPRSS2 (transmembrane protease, serine-2):ERG fusion-positive human prostate epithelial cancer cell line (VCaP) cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and MED (Mediator complex subunit)-1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 (GATA-binding protein 2) and AP-1 (activator protein 1) is significantly lower compared with super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in endothelial cells and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms from genome-wide association studies lie within noncoding regions and perturb transcription factor recognition sequences in relevant cell types. Analysis of genome-wide association studies data shows significant enrichment of risk variants for cardiovascular disease and other diseases, at ERG endothelial enhancers and super-enhancers. CONCLUSIONS The transcription factor ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of cardiovascular disease-associated single nucleotide polymorphisms at ERG super-enhancers suggests that ERG-dependent transcription modulates disease risk.
Collapse
Affiliation(s)
- Viktoria Kalna
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Youwen Yang
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Claire R. Peghaire
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Karen Frudd
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Rebecca Hannah
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom (R.H., B.G.)
| | - Aarti V. Shah
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Lourdes Osuna Almagro
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Joseph J. Boyle
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom (R.H., B.G.)
| | - Jorge Ferrer
- Epigenomics and Disease, Department of Medicine (J.F.), Imperial College London, United Kingdom
| | - Anna M. Randi
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Graeme M. Birdsey
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| |
Collapse
|
18
|
Jauhiainen S, Laakkonen JP, Ketola K, Toivanen PI, Nieminen T, Ninchoji T, Levonen AL, Kaikkonen MU, Ylä-Herttuala S. Axon Guidance-Related Factor FLRT3 Regulates VEGF-Signaling and Endothelial Cell Function. Front Physiol 2019; 10:224. [PMID: 30930791 PMCID: PMC6423482 DOI: 10.3389/fphys.2019.00224] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/21/2019] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are key mediators of endothelial cell (EC) function in angiogenesis. Emerging knowledge also supports the involvement of axon guidance-related factors in the regulation of angiogenesis and vascular patterning. In the current study, we demonstrate that fibronectin and leucine-rich transmembrane protein-3 (FLRT3), an axon guidance-related factor connected to the regulation of neuronal cell outgrowth and morphogenesis but not to VEGF-signaling, was upregulated in ECs after VEGF binding to VEGFR2. We found that FLRT3 exhibited a transcriptionally paused phenotype in non-stimulated human umbilical vein ECs. After VEGF-stimulation its nascent RNA and mRNA-levels were rapidly upregulated suggesting that the regulation of FLRT3 expression is mainly occurring at the level of transcriptional elongation. Blockage of FLRT3 by siRNA decreased survival of ECs and their arrangement into capillary-like structures but enhanced cell migration and wound closure in wound healing assay. Bifunctional role of FLRT3 in repulsive vs. adhesive cell signaling has been already detected during embryogenesis and neuronal growth, and depends on its interactions either with UNC5B or another FLRT3 expressed by adjacent cells. In conclusion, our findings demonstrate that besides regulating neuronal cell outgrowth and morphogenesis, FLRT3 has a novel role in ECs via regulating VEGF-stimulated EC-survival, migration, and tube formation. Thus, FLRT3 becomes a new member of the axon guidance-related factors which participate in the VEGF-signaling and regulation of the EC functions.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Rudbeck Laboratory, University of Uppsala, Uppsala, Sweden
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kirsi Ketola
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Pyry I Toivanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiina Nieminen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
19
|
Viiri LE, Rantapero T, Kiamehr M, Alexanova A, Oittinen M, Viiri K, Niskanen H, Nykter M, Kaikkonen MU, Aalto-Setälä K. Extensive reprogramming of the nascent transcriptome during iPSC to hepatocyte differentiation. Sci Rep 2019; 9:3562. [PMID: 30837492 PMCID: PMC6401154 DOI: 10.1038/s41598-019-39215-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocyte-like cells (HLCs) derived from induced pluripotent stem cells (iPSCs) provide a renewable source of cells for drug discovery, disease modelling and cell-based therapies. Here, by using GRO-Seq we provide the first genome-wide analysis of the nascent RNAs in iPSCs, HLCs and primary hepatocytes to extend our understanding of the transcriptional changes occurring during hepatic differentiation process. We demonstrate that a large fraction of hepatocyte-specific genes are regulated at transcriptional level and identify hundreds of differentially expressed non-coding RNAs (ncRNAs), including primary miRNAs (pri-miRNAs) and long non-coding RNAs (lncRNAs). Differentiation induced alternative transcription start site (TSS) usage between the cell types as evidenced for miR-221/222 and miR-3613/15a/16-1 clusters. We demonstrate that lncRNAs and coding genes are tightly co-expressed and could thus be co-regulated. Finally, we identified sets of transcriptional regulators that might drive transcriptional changes during hepatocyte differentiation. These included RARG, E2F1, SP1 and FOXH1, which were associated with the down-regulated transcripts, and hepatocyte-specific TFs such as FOXA1, FOXA2, HNF1B, HNF4A and CEBPA, as well as RXR, PPAR, AP-1, JUNB, JUND and BATF, which were associated with up-regulated transcripts. In summary, this study clarifies the role of regulatory ncRNAs and TFs in differentiation of HLCs from iPSCs.
Collapse
Affiliation(s)
- Leena E Viiri
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland.
| | - Tommi Rantapero
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Mostafa Kiamehr
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Anna Alexanova
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Mikko Oittinen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Keijo Viiri
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Katriina Aalto-Setälä
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Heart Center, Tampere University Hospital, Tampere, 33520, Finland
| |
Collapse
|
20
|
Moreau PR, Örd T, Downes NL, Niskanen H, Bouvy-Liivrand M, Aavik E, Ylä-Herttuala S, Kaikkonen MU. Transcriptional Profiling of Hypoxia-Regulated Non-coding RNAs in Human Primary Endothelial Cells. Front Cardiovasc Med 2018; 5:159. [PMID: 30456215 PMCID: PMC6230589 DOI: 10.3389/fcvm.2018.00159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/16/2018] [Indexed: 01/04/2023] Open
Abstract
Hypoxia occurs in human atherosclerotic lesions and has multiple adverse effects on endothelial cell metabolism. Recently, key roles of long non-coding RNAs (lncRNAs) in the development of atherosclerosis have begun to emerge. In this study, we investigate the lncRNA profiles of human umbilical vein endothelial cells subjected to hypoxia using global run-on sequencing (GRO-Seq). We demonstrate that hypoxia regulates the nascent transcription of ~1800 lncRNAs. Interestingly, we uncover evidence that promoter-associated lncRNAs are more likely to be induced by hypoxia compared to enhancer-associated lncRNAs, which exhibit an equal distribution of up- and downregulated transcripts. We also demonstrate that hypoxia leads to a significant induction in the activity of super-enhancers next to transcription factors and other genes implicated in angiogenesis, cell survival and adhesion, whereas super-enhancers near several negative regulators of angiogenesis were repressed. Despite the majority of lncRNAs exhibiting low detection in RNA-Seq, a subset of lncRNAs were expressed at comparable levels to mRNAs. Among these, MALAT1, HYMAI, LOC730101, KIAA1656, and LOC339803 were found differentially expressed in human atherosclerotic lesions, compared to normal vascular tissue, and may thus serve as potential biomarkers for lesion hypoxia.
Collapse
Affiliation(s)
- Pierre R Moreau
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nicholas L Downes
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Einari Aavik
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland.,Heart Center, Kuopio University Hospital, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
21
|
Genetics instability of wtAAV2 genome and AAV promoter activities in the Baculovirus/Sf9 cells system. PLoS One 2018; 13:e0199866. [PMID: 29975713 PMCID: PMC6033426 DOI: 10.1371/journal.pone.0199866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
The human Adeno-Associated Virus serotype 2 (wtAAV2) is a common non-pathological virus and its recombinant form (rAAV) is widely used as gene therapy vector. Although rAAVs are routinely produced in the Baculovirus/Sf9 cell system, wtAAV2 has never been studied in this context. We tried to produce wtAAV2 in the baculovirus/Sf9 cell system hypothesizing that the wtAAV2 may be considered as a normal recombinant AAV transgene. Through our attempts to produce wtAAV2 in Baculovirus/Sf9, we found that wtAAV2 p5 promoter, which controls the expression of large Rep proteins in mammalian cells, was active in this system. p5 promoter activity in the baculovirus/Sf9 cell system leads to the expression of Rep78 that finally excises wtAAV2 genome from the baculovirus genome during the earliest phases of baculovirus stock production. Via p5 promoter expression kinetics and strand specific RNA-Seq analysis of wtAAV2, rAAV and Rep2/Cap2 cassettes in the baculovirus context we could demonstrate that wtAAV2 native promoters, p5, p19 and p40 are all active in the context of the baculovirus system and lead to the expression of different proteins and peptides. In addition, this study has proven that the baculovirus brings at least some of the helper functions needed in the AAV replication/life cycle.
Collapse
|
22
|
Belt H, Koponen JK, Kekarainen T, Puttonen KA, Mäkinen PI, Niskanen H, Oja J, Wirth G, Koistinaho J, Kaikkonen MU, Ylä-Herttuala S. Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules. Front Cardiovasc Med 2018; 5:16. [PMID: 29594149 PMCID: PMC5861200 DOI: 10.3389/fcvm.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/16/2018] [Indexed: 01/22/2023] Open
Abstract
Endothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic AMP signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells and, consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy.
Collapse
Affiliation(s)
- Heini Belt
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna K Koponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Katja A Puttonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Petri I Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Joni Oja
- FinVector Vision Therapies Oy, Kuopio, Finland
| | - Galina Wirth
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
23
|
Azofeifa JG, Allen MA, Hendrix JR, Read T, Rubin JD, Dowell RD. Enhancer RNA profiling predicts transcription factor activity. Genome Res 2018; 28:334-344. [PMID: 29449408 PMCID: PMC5848612 DOI: 10.1101/gr.225755.117] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Transcription factors (TFs) exert their regulatory influence through the binding of enhancers, resulting in coordination of gene expression programs. Active enhancers are often characterized by the presence of short, unstable transcripts termed enhancer RNAs (eRNAs). While their function remains unclear, we demonstrate that eRNAs are a powerful readout of TF activity. We infer sites of eRNA origination across hundreds of publicly available nascent transcription data sets and show that eRNAs initiate from sites of TF binding. By quantifying the colocalization of TF binding motif instances and eRNA origins, we derive a simple statistic capable of inferring TF activity. In doing so, we uncover dozens of previously unexplored links between diverse stimuli and the TFs they affect.
Collapse
Affiliation(s)
- Joseph G Azofeifa
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
| | - Josephina R Hendrix
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular and Developmental Biology
| | - Timothy Read
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Jonathan D Rubin
- Department of Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Robin D Dowell
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA
- BioFrontiers Institute, University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular and Developmental Biology
| |
Collapse
|
24
|
Niskanen H, Tuszynska I, Zaborowski R, Heinäniemi M, Ylä-Herttuala S, Wilczynski B, Kaikkonen MU. Endothelial cell differentiation is encompassed by changes in long range interactions between inactive chromatin regions. Nucleic Acids Res 2018; 46:1724-1740. [PMID: 29216379 PMCID: PMC5829566 DOI: 10.1093/nar/gkx1214] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/21/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
Endothelial cells (ECs) differentiate from mesodermal progenitors during vasculogenesis. By comparing changes in chromatin interactions between human umbilical vein ECs, embryonic stem cells and mesendoderm cells, we identified regions exhibiting EC-specific compartmentalization and changes in the degree of connectivity within topologically associated domains (TADs). These regions were characterized by EC-specific transcription, binding of lineage-determining transcription factors and cohesin. In addition, we identified 1200 EC-specific long-range interactions (LRIs) between TADs. Most of the LRIs were connected between regions enriched for H3K9me3 involving pericentromeric regions, suggesting their involvement in establishing compartmentalization of heterochromatin during differentiation. Second, we provide evidence that EC-specific LRIs correlate with changes in the hierarchy of chromatin aggregation. Despite these rearrangements, the majority of chromatin domains fall within a pre-established hierarchy conserved throughout differentiation. Finally, we investigated the effect of hypoxia on chromatin organization. Although hypoxia altered the expression of hundreds of genes, minimal effect on chromatin organization was seen. Nevertheless, 70% of hypoxia-inducible genes situated within a TAD bound by HIF1α suggesting that transcriptional responses to hypoxia largely depend on pre-existing chromatin organization. Collectively our results show that large structural rearrangements establish chromatin architecture required for functional endothelium and this architecture remains largely unchanged in response to hypoxia.
Collapse
Affiliation(s)
- Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Irina Tuszynska
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Rafal Zaborowski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Merja Heinäniemi
- School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, FI-70211 Kuopio, Finland
| | - Bartek Wilczynski
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
25
|
Kuosmanen SM, Kansanen E, Kaikkonen MU, Sihvola V, Pulkkinen K, Jyrkkänen HK, Tuoresmäki P, Hartikainen J, Hippeläinen M, Kokki H, Tavi P, Heikkinen S, Levonen AL. NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res 2018; 46:1124-1138. [PMID: 29161413 PMCID: PMC5815049 DOI: 10.1093/nar/gkx1155] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 01/02/2023] Open
Abstract
Phospholipids, such as 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC), are the major components of cell membranes. Their exposure to reactive oxygen species creates oxidized phospholipids, which predispose to the development of chronic inflammatory diseases and metabolic disorders through endothelial activation and dysfunction. Although the effects of oxidized PAPC (oxPAPC) on endothelial cells have been previously studied, the underlying molecular mechanisms evoking biological responses remain largely unknown. Here, we investigated the molecular mechanisms of oxPAPC function with a special emphasis on NRF2-regulated microRNAs (miRNAs) in human umbilical vein endothelial cells (HUVECs) utilizing miRNA profiling, global run-on sequencing (GRO-seq), genome-wide NRF2 binding model, and RNA sequencing (RNA-seq) with miRNA overexpression and silencing. We report that the central regulators of endothelial activity, KLF2 for quiescence, PFKFB3 for glycolysis, and VEGFA, FOXO1 and MYC for growth and proliferation, are regulated by transcription factor NRF2 and the NRF2-regulated miR-106b∼25 cluster member, miR-93, in HUVECs. Mechanistically, oxPAPC was found to induce glycolysis and proliferation NRF2-dependently, and oxPAPC-dependent induction of the miR-106b∼25 cluster was mediated by NRF2. Additionally, several regulatory loops were established between NRF2, miR-93 and the essential regulators of healthy endothelium, collectively implying that NRF2 controls the switch between the quiescent and the proliferative endothelial states together with miR-93.
Collapse
Affiliation(s)
- Suvi M Kuosmanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Emilia Kansanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Virve Sihvola
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kati Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Henna-Kaisa Jyrkkänen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Pauli Tuoresmäki
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juha Hartikainen
- School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Heart Centre, Kuopio University Hospital, 70211 Kuopio, Finland
| | | | - Hannu Kokki
- School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Anaesthesia and Operative Services, 70211 Kuopio University Hospital, Kuopio, Finland
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
26
|
Bouvy-Liivrand M, Hernández de Sande A, Pölönen P, Mehtonen J, Vuorenmaa T, Niskanen H, Sinkkonen L, Kaikkonen MU, Heinäniemi M. Analysis of primary microRNA loci from nascent transcriptomes reveals regulatory domains governed by chromatin architecture. Nucleic Acids Res 2017; 45:9837-9849. [PMID: 28973462 PMCID: PMC5737680 DOI: 10.1093/nar/gkx680] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
Changes in mature microRNA (miRNA) levels that occur downstream of signaling cascades play an important role during human development and disease. However, the regulation of primary microRNA (pri-miRNA) genes remains to be dissected in detail. To address this, we followed a data-driven approach and developed a transcript identification, validation and quantification pipeline for characterizing the regulatory domains of pri-miRNAs. Integration of 92 nascent transcriptomes and multilevel data from cells arising from ecto-, endo- and mesoderm lineages reveals cell type-specific expression patterns, allows fine-resolution mapping of transcription start sites (TSS) and identification of candidate regulatory regions. We show that inter- and intragenic pri-miRNA transcripts span vast genomic regions and active TSS locations differ across cell types, exemplified by the mir-29a∼29b-1, mir-100∼let-7a-2∼125b-1 and miR-221∼222 clusters. Considering the presence of multiple TSS as an important regulatory feature at miRNA loci, we developed a strategy to quantify differential TSS usage. We demonstrate that the TSS activities associate with cell type-specific super-enhancers, differential stimulus responsiveness and higher-order chromatin structure. These results pave the way for building detailed regulatory maps of miRNA loci.
Collapse
Affiliation(s)
- Maria Bouvy-Liivrand
- School of Medicine, University of Eastern Finland, Kuopio, North-Savo 70200, Finland
| | | | - Petri Pölönen
- School of Medicine, University of Eastern Finland, Kuopio, North-Savo 70200, Finland
| | - Juha Mehtonen
- School of Medicine, University of Eastern Finland, Kuopio, North-Savo 70200, Finland
| | - Tapio Vuorenmaa
- School of Medicine, University of Eastern Finland, Kuopio, North-Savo 70200, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute,University of Eastern Finland, Kuopio, North-Savo 70200, Finland
| | - Lasse Sinkkonen
- Life Sciences Research Unit, University of Luxembourg, Belvaux L-4367, Luxembourg
| | - Minna Unelma Kaikkonen
- A. I. Virtanen Institute,University of Eastern Finland, Kuopio, North-Savo 70200, Finland
| | - Merja Heinäniemi
- School of Medicine, University of Eastern Finland, Kuopio, North-Savo 70200, Finland
| |
Collapse
|
27
|
VEGF amplifies transcription through ETS1 acetylation to enable angiogenesis. Nat Commun 2017; 8:383. [PMID: 28851877 PMCID: PMC5575285 DOI: 10.1038/s41467-017-00405-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Release of promoter-proximally paused RNA polymerase II (RNAPII) is a recently recognized transcriptional regulatory checkpoint. The biological roles of RNAPII pause release and the mechanisms by which extracellular signals control it are incompletely understood. Here we show that VEGF stimulates RNAPII pause release by stimulating acetylation of ETS1, a master endothelial cell transcriptional regulator. In endothelial cells, ETS1 binds transcribed gene promoters and stimulates their expression by broadly increasing RNAPII pause release. 34VEGF enhances ETS1 chromatin occupancy and increases ETS1 acetylation, enhancing its binding to BRD4, which recruits the pause release machinery and increases RNAPII pause release. Endothelial cell angiogenic responses in vitro and in vivo require ETS1-mediated transduction of VEGF signaling to release paused RNAPII. Our results define an angiogenic pathway in which VEGF enhances ETS1–BRD4 interaction to broadly promote RNAPII pause release and drive angiogenesis. Promoter proximal RNAPII pausing is a rate-limiting transcriptional mechanism. Chen et al. show that this process is essential in angiogenesis by demonstrating that the endothelial master transcription factor ETS1 promotes global RNAPII pause release, and that this process is governed by VEGF.
Collapse
|
28
|
Hogan NT, Whalen MB, Stolze LK, Hadeli NK, Lam MT, Springstead JR, Glass CK, Romanoski CE. Transcriptional networks specifying homeostatic and inflammatory programs of gene expression in human aortic endothelial cells. eLife 2017; 6. [PMID: 28585919 PMCID: PMC5461113 DOI: 10.7554/elife.22536] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/22/2017] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (ECs) are critical determinants of vascular homeostasis and inflammation, but transcriptional mechanisms specifying their identities and functional states remain poorly understood. Here, we report a genome-wide assessment of regulatory landscapes of primary human aortic endothelial cells (HAECs) under basal and activated conditions, enabling inference of transcription factor networks that direct homeostatic and pro-inflammatory programs. We demonstrate that 43% of detected enhancers are EC-specific and contain SNPs associated to cardiovascular disease and hypertension. We provide evidence that AP1, ETS, and GATA transcription factors play key roles in HAEC transcription by co-binding enhancers associated with EC-specific genes. We further demonstrate that exposure of HAECs to oxidized phospholipids or pro-inflammatory cytokines results in signal-specific alterations in enhancer landscapes and associate with coordinated binding of CEBPD, IRF1, and NFκB. Collectively, these findings identify cis-regulatory elements and corresponding trans-acting factors that contribute to EC identity and their specific responses to pro-inflammatory stimuli. DOI:http://dx.doi.org/10.7554/eLife.22536.001
Collapse
Affiliation(s)
- Nicholas T Hogan
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Michael B Whalen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Lindsey K Stolze
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Nizar K Hadeli
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| | - Michael T Lam
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - James R Springstead
- Department of Chemical and Paper Engineering, University of Western Michigan, Kalamazoo, United States
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, United States
| |
Collapse
|
29
|
Kaikkonen MU, Halonen P, Liu OHF, Turunen TA, Pajula J, Moreau P, Selvarajan I, Tuomainen T, Aavik E, Tavi P, Ylä-Herttuala S. Genome-Wide Dynamics of Nascent Noncoding RNA Transcription in Porcine Heart After Myocardial Infarction. ACTA ACUST UNITED AC 2017; 10:CIRCGENETICS.117.001702. [DOI: 10.1161/circgenetics.117.001702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/25/2017] [Indexed: 11/16/2022]
Abstract
Background—
Microarrays and RNA sequencing are widely used to profile transcriptome remodeling during myocardial ischemia. However, the steady-state RNA analysis lacks in sensitivity to detect all noncoding RNA species and does not provide separation between transcriptional and post-transcriptional regulations. Here, we provide the first comprehensive analysis of nascent RNA profiles of mRNAs, primary micro-RNAs, long noncoding RNAs, and enhancer RNAs in a large animal model of acute infarction.
Methods and Results—
Acute infarction was induced by cardiac catheterization of domestic swine. Nuclei isolated from healthy, border zone, and ischemic regions of the affected heart were subjected to global run-on sequencing. Global run-on sequencing analysis indicated that half of affected genes are regulated at the level of transcriptional pausing. A gradient of induction of inflammatory mediators and repression of peroxisome proliferator-activated receptor signaling and oxidative phosphorylation was detected when moving from healthy toward infarcted area. In addition, we interrogated the transcriptional regulation of primary micro-RNAs and provide evidence that several arrhythmia-related target genes exhibit repression at post-transcriptional level. We identified 450 long noncoding RNAs differently regulated by ischemia, including novel conserved long noncoding RNAs expressed in antisense orientation to myocardial transcription factors GATA-binding protein 4, GATA-binding protein 6, and Krüppel-like factor 6. Finally, characterization of enhancers exhibiting differential expression of enhancer RNAs pointed a central role for Krüppel-like factor, MEF2C, ETS, NFY, ATF, E2F2, and NRF1 transcription factors in determining transcriptional responses to ischemia.
Conclusions—
Global run-on sequencing allowed us to follow the gradient of gene expression occurring in the ischemic heart and identify novel noncoding RNAs regulated by oxygen deprivation. These findings highlight potential new targets for diagnosis and treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Minna U. Kaikkonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Paavo Halonen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Oscar Hsin-Fu Liu
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Tiia A. Turunen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Juho Pajula
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Pierre Moreau
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Ilakya Selvarajan
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Tomi Tuomainen
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Einari Aavik
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Pasi Tavi
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| | - Seppo Ylä-Herttuala
- From the Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (M.U.K., P.H., O.H.-F.L., T.T., J.P., P.M., I.S., T.T., E.A., P.T., S.Y.-H.); and Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
30
|
Niskanen EA, Palvimo JJ. Chromatin SUMOylation in heat stress: To protect, pause and organise?: SUMO stress response on chromatin. Bioessays 2017; 39. [PMID: 28440894 DOI: 10.1002/bies.201600263] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Post-translational modifications, e.g. SUMO modifications (SUMOylation), provide a mechanism for swiftly changing a protein's activity. Various stress conditions trigger a SUMO stress response (SSR) - a stress-induced rapid change in the conjugation of SUMO to multiple proteins, which predominantly targets nuclear proteins. The SSR has been postulated to protect stressed cells by preserving the functionality of crucial proteins. However, it is unclear how it exerts its protective functions. Interestingly, heat stress (HS) increases SUMOylation of proteins at active promoters and enhancers. In promoters, HS-induced SUMOylation correlates with gene transcription and stress-induced RNA polymerase II (Pol2) pausing. Conversely, a disappearance of SUMOylation in HS occurs at chromatin anchor points that maintain chromatin-looping structures and the spatial organisation of chromatin. In reviewing the literature, we hypothesise that the SSR regulates Pol2 pausing by modulating the interactions of pausing-regulating proteins, whereas deSUMOylation alters the function of chromatin anchors.
Collapse
Affiliation(s)
- Einari A Niskanen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Jorma J Palvimo
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| |
Collapse
|
31
|
Malinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-κB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res 2016; 45:619-630. [PMID: 27672034 PMCID: PMC5314794 DOI: 10.1093/nar/gkw855] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 01/01/2023] Open
Abstract
Inflammatory processes and androgen signaling are critical for the growth of prostate cancer (PC), the most common cancer among males in Western countries. To understand the importance of potential interplay between pro-inflammatory and androgen signaling for gene regulation, we have interrogated the crosstalk between androgen receptor (AR) and NF-κB, a key transcriptional mediator of inflammatory responses, by utilizing genome-wide chromatin immunoprecipitation sequencing and global run-on sequencing in PC cells. Co-stimulation of LNCaP cells with androgen and pro-inflammatory cytokine TNFα invoked a transcriptome which was very distinct from that induced by either stimulation alone. The altered transcriptome that included gene programs linked to cell migration and invasiveness was orchestrated by significant remodeling of NF-κB and AR cistrome and enhancer landscape. Although androgen multiplied the NF-κB cistrome and TNFα restrained the AR cistrome, there was no general reciprocal tethering of the AR to the NF-κB on chromatin. Instead, redistribution of FOXA1, PIAS1 and PIAS2 contributed to the exposure of latent NF-κB chromatin-binding sites and masking of AR chromatin-binding sites. Taken together, concomitant androgen and pro-inflammatory signaling significantly remodels especially the NF-κB cistrome, reprogramming the PC cell transcriptome in fashion that may contribute to the progression of PC.
Collapse
Affiliation(s)
- Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Minna U Kaikkonen
- A.I. Virtanen Institute, University of Eastern Finland, 70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
32
|
Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets. Sci Rep 2016; 6:33510. [PMID: 27641228 PMCID: PMC5027586 DOI: 10.1038/srep33510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells.
Collapse
|
33
|
Oittinen M, Popp A, Kurppa K, Lindfors K, Mäki M, Kaikkonen MU, Viiri K. Polycomb Repressive Complex 2 Enacts Wnt Signaling in Intestinal Homeostasis and Contributes to the Instigation of Stemness in Diseases Entailing Epithelial Hyperplasia or Neoplasia. Stem Cells 2016; 35:445-457. [PMID: 27570105 DOI: 10.1002/stem.2479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/11/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
Canonical Wnt/β-catenin signaling regulates the homeostasis of intestinal epithelium by controlling the balance between intestinal stem cell self-renewal and differentiation but epigenetic mechanisms enacting the process are not known. We hypothesized that epigenetic regulator, Polycomb Repressive Complex-2 (PRC2), is involved in Wnt-mediated epithelial homeostasis on the crypt-villus axis and aberrancies therein are implicated both in celiac disease and in intestinal malignancies. We found that PRC2 establishes repressive crypt and villus specific trimethylation of histone H3 lysine 27 (H3K27me3) signature on genes responsible for, for example, nutrient transport and cell killing in crypts and, for example, proliferation and differentiation in mature villi, suggesting that PRC2 facilitates the Wnt-governed intestinal homeostasis. When celiac patients are on gluten-containing diet PRC2 is out-of-bounds active and consequently its target genes were found affected in intestinal epithelium. Significant set of effective intestinal PRC2 targets are also differentially expressed in colorectal adenoma and carcinomas. Our results suggest that PRC2 gives rise and maintains polar crypt and villus specific H3K27me3 signatures. As H3K27me3 is a mark enriched in developmentally important genes, identified intestinal PRC2 targets are possibly imperative drivers for enterocyte differentiation and intestinal stem cell maintenance downstream to Wnt-signaling. Our work also elucidates the mechanism sustaining the crypt hyperplasia in celiac disease and suggest that PRC2-dependent fostering of epithelial stemness is a common attribute in intestinal diseases in which epithelial hyperplasia or neoplasia prevails. Finally, this work demonstrates that in intestine PRC2 represses genes having both pro-stemness and pro-differentiation functions, fact need to be considered when designing epigenetic therapies including PRC2 as a drug target. Stem Cells 2017;35:445-457.
Collapse
Affiliation(s)
- Mikko Oittinen
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| | - Alina Popp
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland.,University of Medicine and Pharmacy "Carol Davila", Department of Pediatrics and Institute for Mother and Child Care, Bucharest, Romania
| | - Kalle Kurppa
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| | - Katri Lindfors
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| | - Markku Mäki
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| | - Minna U Kaikkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Keijo Viiri
- Tampere Centre for Child Health Research, University of Tampere, Department of Pediatrics and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
34
|
Beagrie RA, Pombo A. Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription. Bioessays 2016; 38:881-93. [PMID: 27452946 DOI: 10.1002/bies.201600032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enhancers can stimulate transcription by a number of different mechanisms which control different stages of the transcription cycle of their target genes, from recruitment of the transcription machinery to elongation by RNA polymerase. These mechanisms may not be mutually exclusive, as a single enhancer may act through different pathways by binding multiple transcription factors. Multiple enhancers may also work together to regulate transcription of a shared target gene. Most of the evidence supporting different enhancer mechanisms comes from the study of single genes, but new high-throughput experimental frameworks offer the opportunity to integrate and generalize disparate mechanisms identified at single genes. This effort is especially important if we are to fully understand how sequence variation within enhancers contributes to human disease.
Collapse
Affiliation(s)
- Robert A Beagrie
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| |
Collapse
|
35
|
Barutcu AR, Fritz AJ, Zaidi SK, van Wijnen AJ, Lian JB, Stein JL, Nickerson JA, Imbalzano AN, Stein GS. C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol 2016. [DOI: 10.1002/jcp.25062 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- A. Rasim Barutcu
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Andrew J. Fritz
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Sayyed K. Zaidi
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology; Mayo Clinic; Rochester Massachusetts
| | - Jane B. Lian
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Janet L. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Jeffrey A. Nickerson
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Gary S. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
36
|
Barutcu AR, Fritz AJ, Zaidi SK, van Wijnen AJ, Lian JB, Stein JL, Nickerson JA, Imbalzano AN, Stein GS. C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol 2016. [DOI: 10.1002/jcp.25062 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- A. Rasim Barutcu
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Andrew J. Fritz
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Sayyed K. Zaidi
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology; Mayo Clinic; Rochester Massachusetts
| | - Jane B. Lian
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Janet L. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Jeffrey A. Nickerson
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Gary S. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
37
|
Barutcu AR, Fritz AJ, Zaidi SK, van Wijnen AJ, Lian JB, Stein JL, Nickerson JA, Imbalzano AN, Stein GS. C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol 2016. [DOI: 10.1002/jcp.25062 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- A. Rasim Barutcu
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Andrew J. Fritz
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Sayyed K. Zaidi
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology; Mayo Clinic; Rochester Massachusetts
| | - Jane B. Lian
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Janet L. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Jeffrey A. Nickerson
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Gary S. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
38
|
Barutcu AR, Fritz AJ, Zaidi SK, van Wijnen AJ, Lian JB, Stein JL, Nickerson JA, Imbalzano AN, Stein GS. C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol 2016. [DOI: 10.1002/jcp.25062 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- A. Rasim Barutcu
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Andrew J. Fritz
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Sayyed K. Zaidi
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology; Mayo Clinic; Rochester Massachusetts
| | - Jane B. Lian
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Janet L. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Jeffrey A. Nickerson
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Gary S. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
39
|
Barutcu AR, Fritz AJ, Zaidi SK, van Wijnen AJ, Lian JB, Stein JL, Nickerson JA, Imbalzano AN, Stein GS. C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol 2016. [DOI: 10.1002/jcp.25062 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- A. Rasim Barutcu
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Andrew J. Fritz
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Sayyed K. Zaidi
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology; Mayo Clinic; Rochester Massachusetts
| | - Jane B. Lian
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Janet L. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Jeffrey A. Nickerson
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Gary S. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
40
|
Barutcu AR, Fritz AJ, Zaidi SK, van Wijnen AJ, Lian JB, Stein JL, Nickerson JA, Imbalzano AN, Stein GS. C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol 2016. [DOI: 10.1002/jcp.25062 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- A. Rasim Barutcu
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Andrew J. Fritz
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Sayyed K. Zaidi
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology; Mayo Clinic; Rochester Massachusetts
| | - Jane B. Lian
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Janet L. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Jeffrey A. Nickerson
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Gary S. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
41
|
Barutcu AR, Fritz AJ, Zaidi SK, van Wijnen AJ, Lian JB, Stein JL, Nickerson JA, Imbalzano AN, Stein GS. C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol 2016. [DOI: 10.1002/jcp.25062 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- A. Rasim Barutcu
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Andrew J. Fritz
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Sayyed K. Zaidi
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - André J. van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology; Mayo Clinic; Rochester Massachusetts
| | - Jane B. Lian
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Janet L. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| | - Jeffrey A. Nickerson
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology; University of Massachusetts Medical School; Worcester Massachusetts
| | - Gary S. Stein
- Department of Biochemistry; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
42
|
Barutcu AR, Fritz AJ, Zaidi SK, vanWijnen AJ, Lian JB, Stein JL, Nickerson JA, Imbalzano AN, Stein GS. C-ing the Genome: A Compendium of Chromosome Conformation Capture Methods to Study Higher-Order Chromatin Organization. J Cell Physiol 2016; 231:31-5. [PMID: 26059817 PMCID: PMC4586368 DOI: 10.1002/jcp.25062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022]
Abstract
Three-dimensional organization of the chromatin has important roles in transcription, replication, DNA repair, and pathologic events such as translocations. There are two fundamental ways to study higher-order chromatin organization: microscopic and molecular approaches. In this review, we briefly introduce the molecular approaches, focusing on chromosome conformation capture or "3C" technology and its derivatives, which can be used to probe chromatin folding at resolutions beyond that provided by microscopy techniques. We further discuss the different types of data generated by the 3C-based methods and how they can be used to answer distinct biological questions.
Collapse
Affiliation(s)
- A. Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Andrew J. Fritz
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Sayyed K. Zaidi
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - André J. vanWijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Jane B. Lian
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L. Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jeffrey A. Nickerson
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
43
|
Laakkonen JP, Ylä-Herttuala S. Recent Advancements in Cardiovascular Gene Therapy and Vascular Biology. Hum Gene Ther 2015; 26:518-24. [DOI: 10.1089/hum.2015.095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Johanna P. Laakkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, University of Eastern Finland, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
44
|
Niskanen EA, Malinen M, Sutinen P, Toropainen S, Paakinaho V, Vihervaara A, Joutsen J, Kaikkonen MU, Sistonen L, Palvimo JJ. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biol 2015; 16:153. [PMID: 26259101 PMCID: PMC4531811 DOI: 10.1186/s13059-015-0717-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cells have developed many ways to cope with external stress. One distinctive feature in acute proteotoxic stresses, such as heat shock (HS), is rapid post-translational modification of proteins by SUMOs (small ubiquitin-like modifier proteins; SUMOylation). While many of the SUMO targets are chromatin proteins, there is scarce information on chromatin binding of SUMOylated proteins in HS and the role of chromatin SUMOylation in the regulation of transcription. RESULTS We mapped HS-induced genome-wide changes in chromatin occupancy of SUMO-2/3-modified proteins in K562 and VCaP cells using ChIP-seq. Chromatin SUMOylation was further correlated with HS-induced global changes in transcription using GRO-seq and RNA polymerase II (Pol2) ChIP-seq along with ENCODE data for K562 cells. HS induced a rapid and massive rearrangement of chromatin SUMOylation pattern: SUMOylation was gained at active promoters and enhancers associated with multiple transcription factors, including heat shock factor 1. Concomitant loss of SUMOylation occurred at inactive intergenic chromatin regions that were associated with CTCF-cohesin complex and SETDB1 methyltransferase complex. In addition, HS triggered a dynamic chromatin binding of SUMO ligase PIAS1, especially onto promoters. The HS-induced SUMOylation on chromatin was most notable at promoters of transcribed genes where it positively correlated with active transcription and Pol2 promoter-proximal pausing. Furthermore, silencing of SUMOylation machinery either by depletion of UBC9 or PIAS1 enhanced expression of HS-induced genes. CONCLUSIONS HS-triggered SUMOylation targets promoters and enhancers of actively transcribed genes where it restricts the transcriptional activity of the HS-induced genes. PIAS1-mediated promoter SUMOylation is likely to regulate Pol2-associated factors in HS.
Collapse
Affiliation(s)
- Einari A Niskanen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Marjo Malinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Päivi Sutinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Sari Toropainen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Present Address: Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, 20892, USA.
| | - Anniina Vihervaara
- Department of Biosciences, Åbo Akademi University, Turku, Finland. .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FI-20521, Turku, Finland.
| | - Jenny Joutsen
- Department of Biosciences, Åbo Akademi University, Turku, Finland. .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FI-20521, Turku, Finland.
| | - Minna U Kaikkonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Lea Sistonen
- Department of Biosciences, Åbo Akademi University, Turku, Finland. .,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, P.O. Box 123, FI-20521, Turku, Finland.
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|