1
|
Zhou Y, Zeng H, Ye L, Wang J, Feng G, Chen Y, Fang D, Lu J, Lu G. The role of cyclin dependent kinase molecules in the pathogenesis and immune cell infiltration of TNBC in silicosis: Based on core stem cell related genes TPX2 and CCNA2. Int J Biol Macromol 2025; 306:141683. [PMID: 40037461 DOI: 10.1016/j.ijbiomac.2025.141683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/01/2025] [Indexed: 03/06/2025]
Abstract
Silicosis is a pulmonary fibrotic disease caused by long-term inhalation of silica dust. CDKs regulate the process of cell cycle by binding with cyclin. This study revealed the role of cyclin-dependent kinase molecules in the pathogenesis of TNBC in silicosis and analyzed its influence on immune cell infiltration. By retrospective analysis of clinical samples from silicosis patients and TNBC patients, we evaluated the expression level of CDKs molecules. Then, the effect of silica dust exposure on breast cancer cell cycle was simulated using in vitro cell culture technology, and the expression changes of TPX2 and CCNA2 genes were observed. Immunohistochemical techniques were used to detect the infiltration of immune cells in silicosis and TNBC tissue samples, and to analyze its correlation with the expression of CDKs. The findings from the conducted research indicated that there was a significant elevation in the expression levels of cyclin-dependent kinases, or CDKs, in patients diagnosed with silicosis as well as those with triple-negative breast cancer, or TNBC. Through immunohistochemical analysis, it was further revealed that there was an increased infiltration of immune cells within the tissues of both silicosis and TNBC patients. Interestingly, this infiltration of immune cells was found to be positively correlated with the expression levels of CDK molecules. The up-regulated expression of the TPX2 and CCNA2 genes is believed to be associated with abnormal regulation of the cell cycle, which in turn affects the infiltration patterns of immune cells within the affected tissues.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China; Department of Breast and Thyroid Surgery, The Third People's Hospital of Hechi, Hechi 547000, Guangxi, PR China
| | - Huifang Zeng
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Li Ye
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Jin Wang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Guangqing Feng
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Yongcheng Chen
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China
| | - Dalang Fang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China.
| | - Jinlan Lu
- Department of Stomatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, PR China.
| | - Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Key Laloratory of Molecular Pathology in Tumors of Baise, Baise 533000, Guangxi, PR China; Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE-17176, Sweden.
| |
Collapse
|
2
|
Wu L, Wang Z, Zia A, Kelley SO, de Perrot M. Mesothelioma cell heterogeneity identified by single cell RNA sequencing. Sci Rep 2025; 15:8725. [PMID: 40082554 PMCID: PMC11906801 DOI: 10.1038/s41598-025-92542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Mesothelioma cell heterogeneity encompasses diverse morphological and molecular characteristics observed within tumors, significantly impacting disease progression, treatment outcomes, and the development of targeted therapies. This heterogeneity has long posed challenges for accurate diagnosis and effective treatment, but understanding its complexities offers the potential for novel diagnostic modalities and therapeutic interventions. This study employed single-cell RNA sequencing (scRNA-seq) to investigate mesothelioma cell heterogeneity from various sources, including cell culture (CC), peritoneal lavage (Lav) from the tumor microenvironment, and circulating tumor cells (CTC) in murine models. Gene set enrichment analysis was used to identify distinct gene signatures for each subpopulation. The results revealed unique characteristics for mesothelioma cells depending on their origin. In the CC group, up-regulated genes were primarily involved in tumor cell cycle control, proliferation, and apoptosis. In the CTC group, up-regulated genes were associated with cancer cell stemness. The Lav group showed up-regulated genes facilitating interactions between tumor cells and the microenvironment, such as epithelial-mesenchymal transition and immune responses mediated by IFN-α and IFN-γ. Some pathways were shared among all tumor cells, suggesting the potential for transitioning between functional states under specific conditions. This may be the first study to explore circulating mesothelioma cell heterogeneity using scRNA-seq. The distinct gene signatures identified in each mesothelioma cell subpopulation likely play critical roles in tumor initiation and progression, offering potential novel targets for therapeutic intervention. These findings could help inform the development of more effective, personalized treatments for mesothelioma, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Licun Wu
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Zongjie Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Amin Zia
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, M5G 1L7, Canada
- dYcode Inc., Toronto, ON, L6C 2R9, Canada
| | - Shana O Kelley
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
| | - Marc de Perrot
- Latner Thoracic Surgery Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Division of Thoracic Surgery, Toronto General Hospital, 9N-961, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
3
|
Liu X, Li H, Wang Y, Zhang Q, Liu Y, Liu T. LOX + iCAFs in HNSCC have the potential to predict prognosis and immunotherapy responses revealed by single cell RNA sequencing analysis. Sci Rep 2025; 15:7028. [PMID: 40016474 PMCID: PMC11868481 DOI: 10.1038/s41598-025-91036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) exhibit significant heterogeneity and are closely associated with progression, resistance to anticancer therapies, and poor prognosis in head and neck squamous cell carcinoma (HNSCC). However, the specific functional role of CAFs in HNSCC has been inadequately explored. In this study, we utilized a single-cell RNA sequencing dataset from HNSCC (GSE103322) to recluster CAFs via the Seurat pipeline. On the basis of the reported markers, we identified two CAF subtypes, LOX-myCAFs and LOX + iCAFs, and generated signature markers for each. Through unsupervised consensus clustering, we identified and characterized two molecular subtypes of HNSCC-TCGA, each exhibiting distinct dysregulated cancer hallmarks, immunological tumor microenvironments, and stemness characteristics. The robustness of the LOX + iCAF-related signature clustering, particularly in terms of prognosis and prediction of immunotherapeutic response, was validated in an ANOVA cohort via a GEO dataset (GSE159067) consisting of 102 HNSCC patients. A positive correlation was validated between the expression of LOX and that of CD86, a marker of M1 macrophage polarization. Further experiments involving the coculture of conditioned medium derived from LOX-silenced CAFs with CAL-27 and UM-SCC-1 cell lines revealed that LOX silencing led to decreased proliferation and migration of these cancer cells, which was mediated by epithelial-mesenchymal transition (EMT) through IL-34- induced CSF1R/Akt signaling. In summary, our single-cell and bulk RNA sequencing analyses revealed a LOX + iCAF-related signature that can predict the prognosis and response to immunotherapy in HNSCC patients. Additionally, the LOX gene was identified as a promising therapeutic target for HNSCC treatment.
Collapse
Affiliation(s)
- Xue Liu
- Department of Multidisciplinary Consultant Center, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Huibing Li
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Yanjin Wang
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China
| | - Qian Zhang
- Department of Oral Pathology, Dalian Stomatological Hospital, Changjiang Road No.935, Shahekou District, Dalian, 116021, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, East Beijing Road No.356, Huangpu District, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| | - Tingjiao Liu
- Department of Oral Pathology, School of Stomatology, Shanghai Stomatological Hospital, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Tianjin Road No.2, Huangpu District, Shanghai, 200001, China.
| |
Collapse
|
4
|
Wang H, Li F, Wang Q, Guo X, Chen X, Zou X, Yuan J. Identifying ADME-related gene signature for immune landscape and prognosis in KIRC by single-cell and spatial transcriptome analysis. Sci Rep 2025; 15:1294. [PMID: 39779746 PMCID: PMC11711672 DOI: 10.1038/s41598-024-84018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most prevalent subtype of kidney cancer. Although multiple therapeutic agents have been proven effective in KIRC, their clinical application has been hindered by a lack of reliable biomarkers. This study focused on the prognostic value and function of drug absorption, distribution, metabolism, and excretion- (ADME-) related genes (ARGs) in KIRC to enhance personalized therapy. The critical role of ARGs in KIRC microenvironment was confirmed by single cell RNA-seq analysis and spatial transcriptome sequencing analysis for the first time. Then, an ADME-related prognostic signature (ARPS) was developed by the bulk RNA-seq analysis. The ARPS, created through Cox regression, LASSO, and stepAIC analyses, identified eight ARGs that stratified patients into high-risk and low-risk groups. High-risk patients had significantly poorer overall survival. Multivariate analysis confirmed the independent predictive ability of ARPS, and an ARPS-based nomogram was constructed for clinical application. Gene ontology and KEGG pathway analyses revealed immune-related functions and pathways enriched in these groups, with low-risk patients showing better responses to immunotherapy. Finally, the expression of ARGs was validated by qRT-PCR and Western blotting experiments. These findings underscore the prognostic significance of ARPS in KIRC and its potential application in guiding personalized treatment strategies.
Collapse
Affiliation(s)
- Hongyun Wang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Feizhou Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Qiong Wang
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyuan Guo
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinbing Chen
- Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinrong Zou
- Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430061, China.
- Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Institute of Chinese Medicine Nephrology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China.
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine (Hubei Province Hospital of Traditional Chinese Medicine), Wuhan, 430061, China.
| | - Jun Yuan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Yang X, Yang X, Tang H, Chen X, Wang J, Zhao H. Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in breast cancer. Discov Oncol 2025; 16:9. [PMID: 39755992 DOI: 10.1007/s12672-025-01742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025] Open
Abstract
A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed. Our research utilized bioinformatics techniques and TCGA data to explore the complex relationship between CSCs and BRCA development. We identified 26 stem cell gene sets from the Stem Checker database and classified BRCA samples into stemness subtypes using consensus clustering. Prognosis, tumor microenvironment (TME) elements, and treatment responses varied across subtypes. Using LASSO, Cox regression, and differential expression analysis, we developed a stemness-risk model. BRCA patients were divided into two groups (Cluster A and Cluster B). Cluster B exhibited an improved prognosis, higher PIK3CA mutation frequency, and increased levels of CD8 T cells and regulatory Tregs. A 5-gene stemness model was constructed, showing that higher stemness scores correlated with poorer prognosis. The model was validated using the METABRIC cohort data from cBioPortal. Our findings identify two stemness-related subgroups with distinct prognoses and TME patterns. Further experimental validation is necessary before this model can be considered for clinical application.
Collapse
Affiliation(s)
- Xiaozhou Yang
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China
| | - Xiaojun Yang
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China
| | - Haili Tang
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China
| | - Xin Chen
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China
| | - Jiangang Wang
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China
| | - Huadong Zhao
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
6
|
Zu F, Chen C, Geng Q, Li H, Chan B, Luo G, Wu M, Ilmer M, Renz BW, Bentum-Ennin L, Gu H, Sheng W. Smad2 Cooperating with TGIF2 Contributes to EMT and Cancer Stem Cells Properties in Pancreatic Cancer via Co-Targeting SOX2. Int J Biol Sci 2025; 21:524-543. [PMID: 39781447 PMCID: PMC11705628 DOI: 10.7150/ijbs.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
The underlying mechanisms between cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) remain unclear. In this study, we identified TGIF2 as a target gene of CSC using sncRNA and machine learning. TGIF2 is closely related to the expression of SOX2, EGFR, and E-cadherin, indicating poor prognosis. Mechanistically, TGIF2 promoted the EMT phenotype and CSC properties following the activation of SOX2, Slug, CD44, and ERGF/MAPK signaling, which were rescued by SOX2 silencing. TGIF2 silencing contributes to the opposite phenotype via SOX2. Notably, Smad2 cooperates with TGIF2 to co-regulate the SOX2 promoter, which in turn promotes EMT and CSC signaling by transactivating Slug and EGFR, respectively. The transactivation of EGFR/MAPK signaling by SOX2 promotes TGIF2 nuclear translocation, forming a positive feedback loop in vitro. Moreover, the interaction of TGIF2 and SOX2 with EGFR inhibitors promoted subcutaneous tumors and liver metastasis in vivo. Thus, the TGIF2/SOX2 axis contributes to CSC, EMT, and chemoresistance, providing a promising target for PC therapy.
Collapse
Affiliation(s)
- Fuqiang Zu
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - ChuanPing Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Qilong Geng
- Department of Clinical Medicine, Anhui Medical University, Hefei, 230022, China
| | - Haoyu Li
- Department of Clinical Medicine, Anhui Medical University, Hefei, 230022, China
| | - Boyuan Chan
- Department of Clinical Medicine, Anhui Medical University, Hefei, 230022, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Mengcheng Wu
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Matthias Ilmer
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernhard W Renz
- German Cancer Consortium (DKTK), Partner Site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lutterodt Bentum-Ennin
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Weiwei Sheng
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| |
Collapse
|
7
|
Wang J, Luo J, Yang S, Deng Y, Chen P, Tan Y, Liu Y. Development and validation of disulfidptosis-related genes signature for patients with glioma. Discov Oncol 2024; 15:758. [PMID: 39692962 DOI: 10.1007/s12672-024-01664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms. METHODS Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA). Glioma samples were classified using non-negative matrix factorization (NMF). A predictive model was constructed using Lasso regression analysis, and its performance was evaluated through receiver operating characteristic (ROC) and Kaplan-Meier survival analyses. The relationship between the model and the tumor immune microenvironment (TIME) as well as treatment sensitivity was also assessed. Finally, we validated the expression of key signature genes in glioma. RESULTS Glioma samples were categorized into two distinct subtypes based on disulfidptosis-related genes, showing significant differences in overall survival (OS) and progression-free survival (PFS) between the subtypes. A genetic risk score model was then developed using these genes. A nomogram predicting OS was constructed using the risk score and clinical variables. Patients were stratified into low- and high-risk groups based on the median risk score from the TCGA cohort. Low-risk patients had significantly better outcomes compared to high-risk patients (TCGA cohort, OS: p < 0.001; PFS: p < 0.001; CGGA cohort, OS: p < 0.001). The risk score was associated with HLA expression, immune checkpoint genes, immune cell infiltration, immune function, tumor mutation burden, tumor stemness score, and drug sensitivity. Lastly, the expression of 11 signature genes was confirmed in glioma tissues. CONCLUSIONS The disulfidptosis-related gene-based risk score model effectively predicted glioma outcomes and highlighted the role of disulfidptosis-related genes in tumor immunity. This study offers potential new avenues for glioma treatment by targeting disulfidptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Junchi Luo
- Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Sha Yang
- Guizhou University Medical College, Guiyang, 550025, Guizhou Province, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Ying Tan
- Zunyi Medical University, Zunyi, Guizhou Province, China
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yang Liu
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
| |
Collapse
|
8
|
Sui X, Wang W, Zhang D, Xu J, Li J, Jia Y, Qin Y. Integrated analysis of ferroptosis and stemness based on single-cell and bulk RNA-sequencing data provide insights into the prognosis and treatment of esophageal carcinoma. Gene 2024; 927:148701. [PMID: 38885819 DOI: 10.1016/j.gene.2024.148701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) play a significant role in the recurrence and drug resistance of esophageal carcinoma (ESCA). Ferroptosis is a promising anticancer therapeutic strategy that effectively targets CSCs exhibiting high tumorigenicity and treatment resistance. However, there is a lack of research on the combined role of ferroptosis-related genes (FRGs) and stemness signature in the prognosis of ESCA. METHODS The cellular compositions were characterized using single-cell RNA sequencing (scRNA-seq) data from 18 untreated ESCA samples. 50 ferroptosis-related stemness genes (FRSGs) were identified by integrating FRGs with stemness-related genes (SRGs), and then the cells were grouped by AUCell analysis. Next, functional enrichment, intercellular communication, and trajectory analyses were performed to characterize the different groups of cells. Subsequently, the stem-ferr-index was calculated using machine learning algorithms based on the expression profiles of the identified risk genes. Additionally, therapeutic drugs were predicted by analyzing the GDSC2 database. Finally, the expression and functional roles of the identified marker genes were validated through in vitro experiments. RESULTS The analysis of scRNA-seq data demonstrates the diversity and cellular heterogeneity of ESCA. Then, we identified 50 FRSGs and classified cells into high or low ferroptosis score stemness cells accordingly. Functional enrichment analysis conducted on the differentially up-regulated genes between these groups revealed predominant enrichment in pathways associated with intercellular communication and cell differentiation. Subsequently, we identified 9 risk genes and developed a prognostic signature, termed stem_ferr_index, based on these identified risk genes. We found that the stem-ferr-index was correlated with the clinical characteristics of patients, and patients with high stem-ferr-index had poor prognosis. Furthermore, we identified four drugs (Navitoclax, Foretinib, Axitinib, and Talazoparib) with potential efficacy targeting patients with a high stem_ferr_index. Additionally, we delineated two marker genes (STMN1 and SLC2A1). Particularly noteworthy, SLC2A1 exhibited elevated expression levels in ESCA tissues and cells. We provided evidence suggesting that SLC2A1 could influence the migration, invasion, and stemness of ESCA cells, and it was associated with sensitivity to Foretinib. CONCLUSION This study constructed a novel ferroptosis-related stemness signature, identified two marker genes for ESCA, and provided valuable insights for developing more effective therapeutic targets targeting ESCA CSCs in the future.
Collapse
Affiliation(s)
- Xin Sui
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Wenjia Wang
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Daidi Zhang
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Jiayao Xu
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Li
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Yongxu Jia
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China
| | - Yanru Qin
- Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
9
|
Ren YY, Liu Z. Characterization of Single-Cell Cis-regulatory Elements Informs Implications for Cell Differentiation. Genome Biol Evol 2024; 16:evae241. [PMID: 39506564 PMCID: PMC11580522 DOI: 10.1093/gbe/evae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/08/2024] Open
Abstract
Cis-regulatory elements govern the specific patterns and dynamics of gene expression in cells during development, which are the fundamental mechanisms behind cell differentiation. However, the genomic characteristics of single-cell cis-regulatory elements closely linked to cell differentiation during development remain unclear. To explore this, we systematically analyzed ∼250,000 putative single-cell cis-regulatory elements obtained from snATAC-seq analysis of the developing mouse cerebellum. We found that over 80% of these single-cell cis-regulatory elements show pleiotropic effects, being active in 2 or more cell types. The pleiotropic degrees of proximal and distal single-cell cis-regulatory elements are positively correlated with the density and diversity of transcription factor binding motifs and GC content. There is a negative correlation between the pleiotropic degrees of single-cell cis-regulatory elements and their distances to the nearest transcription start sites, and proximal single-cell cis-regulatory elements display higher relevance strengths than distal ones. Furthermore, both proximal and distal single-cell cis-regulatory elements related to cell differentiation exhibit enhanced sequence-level evolutionary conservation, increased density and diversity of transcription factor binding motifs, elevated GC content, and greater distances from their nearest genes. Together, our findings reveal the general genomic characteristics of putative single-cell cis-regulatory elements and provide insights into the genomic and evolutionary mechanisms by which single-cell cis-regulatory elements regulate cell differentiation during development.
Collapse
Affiliation(s)
- Ying-Ying Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
10
|
Guo Q, Qiu P, Pan K, Liang H, Liu Z, Lin J. Integrated machine learning algorithms identify KIF15 as a potential prognostic biomarker and correlated with stemness in triple-negative breast cancer. Sci Rep 2024; 14:21449. [PMID: 39271768 PMCID: PMC11399402 DOI: 10.1038/s41598-024-72406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer stem cells (CSCs) have the potential to self-renew and induce cancer, which may contribute to a poor prognosis by enabling metastasis, recurrence, and therapy resistance. Hence, this study was performed to identify the association between CSC-related genes and triple-negative breast cancer (TNBC) development. Stemness gene sets were downloaded from StemChecker. Based on the online databases, a consensus clustering algorithm was conducted for unsupervised classification of TNBC samples. The variations between subtypes were assessed with regard to prognosis, tumor immune microenvironment (TIME), and chemotherapeutic sensitivity. The stemness-related gene signature was established and random survival forest analysis was employed to identify the core gene for validation experiments and tumor sphere formation assays. 499 patients with TNBC were classified into three subgroups and the Cluster 1 had a better OS than others. After that, WGCNA study was performed to identify genes important for Cluster 1 subtype. Out of all 8 modules, the subtype of Cluster 1 and the yellow module with 103 genes demonstrated the largest positive association. After that, a four-gene stemness-related signature was established. Based on the yellow module, the 39 potential pivotal genes were subjected to the random forest survival analysis to find out the gene that was relatively important for OS. KIF15 was confirmed as the targeted gene by LASSO and random survival forest analyses. In vitro experiments, the downregulation of KIF15 promoted the stemness of TNBC cells. The expression levels of stem cell markers Nanog, SOX2, and OCT4 were found to be elevated in TNBC cell lines after KIF15 inhibition. A stemness-associated risk model was constructed to forecast the clinical outcomes of TNBC patients. The downregulation of KIF15 expression in a subpopulation of TNBC stem cells may promote stemness and possibly TNBC progression.
Collapse
Affiliation(s)
- Qiaonan Guo
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Pengjun Qiu
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Kelun Pan
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Huikai Liang
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Zundong Liu
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| | - Jianqing Lin
- Department of Breast and Thyroid Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
11
|
Li M, Zhang Z, He L, Wang X, Yin J, Wang X, You Y, Qian X, Ge X, Shi Z. SMYD2 induced PGC1α methylation promotes stemness maintenance of glioblastoma stem cells. Neuro Oncol 2024; 26:1587-1601. [PMID: 38721826 PMCID: PMC11376450 DOI: 10.1093/neuonc/noae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The high fatality rate of glioblastoma (GBM) is attributed to glioblastoma stem cells (GSCs), which exhibit heterogeneity and therapeutic resistance. Metabolic plasticity of mitochondria is the hallmark of GSCs. Targeting mitochondrial biogenesis of GSCs is crucial for improving clinical prognosis in GBM patients. METHODS SMYD2-induced PGC1α methylation and followed nuclear export are confirmed by co-immunoprecipitation, cellular fractionation, and immunofluorescence. The effects of SMYD2/PGC1α/CRM1 axis on GSCs mitochondrial biogenesis are validated by oxygen consumption rate, ECAR, and intracranial glioma model. RESULTS PGC1α methylation causes the disabled mitochondrial function to maintain the stemness, thereby enhancing the radio-resistance of GSCs. SMYD2 drives PGC1α K224 methylation (K224me), which is essential for promoting the stem-like characteristics of GSCs. PGC1α K224me is preferred binding with CRM1, accelerating PGC1α nuclear export and subsequent dysfunction. Targeting PGC1α methylation exhibits significant radiotherapeutic efficacy and prolongs patient survival. CONCLUSIONS These findings unveil a novel regulatory pathway involving mitochondria that govern stemness in GSCs, thereby emphasizing promising therapeutic strategies targeting PGC1α and mitochondria for the treatment of GBM.
Collapse
Affiliation(s)
- Mengdie Li
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhixiang Zhang
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Liuguijie He
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Jiangsu Key Lab of Cancer Biomarkers, Prevention, and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Castro-Pando S, Howell RM, Li L, Mascaro M, Faraoni EY, Le Roux O, Romanin D, Tahan V, Riquelme E, Zhang Y, Kolls JK, Allison JP, Lozano G, Moghaddam SJ, McAllister F. Pancreatic Epithelial IL17/IL17RA Signaling Drives B7-H4 Expression to Promote Tumorigenesis. Cancer Immunol Res 2024; 12:1170-1183. [PMID: 38842383 PMCID: PMC11369627 DOI: 10.1158/2326-6066.cir-23-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 02/16/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
IL17 is required for the initiation and progression of pancreatic cancer, particularly in the context of inflammation, as previously shown by genetic and pharmacological approaches. However, the cellular compartment and downstream molecular mediators of IL17-mediated pancreatic tumorigenesis have not been fully identified. This study examined the cellular compartment required by generating transgenic animals with IL17 receptor A (IL17RA), which was genetically deleted from either the pancreatic epithelial compartment or the hematopoietic compartment via generation of IL17RA-deficient (IL17-RA-/-) bone marrow chimeras, in the context of embryonically activated or inducible Kras. Deletion of IL17RA from the pancreatic epithelial compartment, but not from hematopoietic compartment, resulted in delayed initiation and progression of premalignant lesions and increased infiltration of CD8+ cytotoxic T cells to the tumor microenvironment. Absence of IL17RA in the pancreatic compartment affected transcriptional profiles of epithelial cells, modulating stemness, and immunological pathways. B7-H4, a known inhibitor of T-cell activation encoded by the gene Vtcn1, was the checkpoint molecule most upregulated via IL17 early during pancreatic tumorigenesis, and its genetic deletion delayed the development of pancreatic premalignant lesions and reduced immunosuppression. Thus, our data reveal that pancreatic epithelial IL17RA promotes pancreatic tumorigenesis by reprogramming the immune pancreatic landscape, which is partially orchestrated by regulation of B7-H4. Our findings provide the foundation of the mechanisms triggered by IL17 to mediate pancreatic tumorigenesis and reveal the avenues for early pancreatic cancer immune interception. See related Spotlight by Lee and Pasca di Magliano, p. 1130.
Collapse
Affiliation(s)
- Susana Castro-Pando
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rian M. Howell
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Le Li
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Marilina Mascaro
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- CONICET, Buenos Aires, Argentina.
| | - Erika Y. Faraoni
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Olivereen Le Roux
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - David Romanin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Virginia Tahan
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Erick Riquelme
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Zhang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay K. Kolls
- Department of Medicine and Pediatrics, Tulane School of Medicine, New Orleans, Louisiana.
| | - James P. Allison
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Guillermina Lozano
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seyed J. Moghaddam
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
13
|
Xu J, Li P, Wang Y, Li J, Xu B, Zhao J, Chen C, Gu S, Ding C, Liu P. The role of proliferating stem-like plasma cells in relapsed or refractory multiple myeloma: Insights from single-cell RNA sequencing and proteomic analysis. Br J Haematol 2024; 205:1031-1043. [PMID: 38671576 DOI: 10.1111/bjh.19486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The management and comprehension of relapsed or refractory multiple myeloma (RRMM) continues to pose a significant challenge. By integrating single-cell RNA sequencing (scRNA-seq) data of 15 patients with plasma cell disorders (PCDs) and proteomic data obtained from mass spectrometry-based analysis of CD138+ plasma cells (PCs) from 144 PCDs patients, we identified a state of malignant PCs characterized by high stemness score and increased proliferation originating from RRMM. This state has been designated as proliferating stem-like plasma cells (PSPCs). NUCKS1 was identified as the gene marker representing the stemness of PSPCs. Comparison of differentially expressed genes among various PC states revealed a significant elevation in LGALS1 expression in PSPCs. Survival analysis on the MMRF CoMMpass dataset and GSE24080 dataset established LGALS1 as a gene associated with unfavourable prognostic implications for multiple myeloma. Ultimately, we discovered three specific ligand-receptor pairs within the midkine (MDK) signalling pathway network that play distinct roles in facilitating efficient cellular communication between PSPCs and the surrounding microenvironment cells. These insights have the potential to contribute to the understanding of molecular mechanism and the development of therapeutic strategies involving the application of stem-like cells in RRMM treatment.
Collapse
Affiliation(s)
- Jiadai Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| | - Panpan Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yawen Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiangyan Zhao
- Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Chen
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shiyang Gu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ding
- Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian, China
| |
Collapse
|
14
|
Liu H, Zhang N, Jia Y, Wang J, Ye A, Yang S, Zhou H, Lv Y, Xu C, Wang S. ncStem: a comprehensive resource of curated and predicted ncRNAs in cancer stemness. Database (Oxford) 2024; 2024:baae081. [PMID: 39137906 PMCID: PMC11321241 DOI: 10.1093/database/baae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Cancer stemness plays an important role in cancer initiation and progression, and is the major cause of tumor invasion, metastasis, recurrence, and poor prognosis. Non-coding RNAs (ncRNAs) are a class of RNA transcripts that generally cannot encode proteins and have been demonstrated to play a critical role in regulating cancer stemness. Here, we developed the ncStem database to record manually curated and predicted ncRNAs associated with cancer stemness. In total, ncStem contains 645 experimentally verified entries, including 159 long non-coding RNAs (lncRNAs), 254 microRNAs (miRNAs), 39 circular RNAs (circRNAs), and 5 other ncRNAs. The detailed information of each entry includes the ncRNA name, ncRNA identifier, disease, reference, expression direction, tissue, species, and so on. In addition, ncStem also provides computationally predicted cancer stemness-associated ncRNAs for 33 TCGA cancers, which were prioritized using the random walk with restart (RWR) algorithm based on regulatory and co-expression networks. The total predicted cancer stemness-associated ncRNAs included 11 132 lncRNAs and 972 miRNAs. Moreover, ncStem provides tools for functional enrichment analysis, survival analysis, and cell location interrogation for cancer stemness-associated ncRNAs. In summary, ncStem provides a platform to retrieve cancer stemness-associated ncRNAs, which may facilitate research on cancer stemness and offer potential targets for cancer treatment. Database URL: http://www.nidmarker-db.cn/ncStem/index.html.
Collapse
Affiliation(s)
- Hui Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Nan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yijie Jia
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jun Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Aokun Ye
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Siru Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Honghan Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yingli Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shuyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
15
|
Niu W, Yu H, Fan X, Li S, Sun S, Gong M, Zhang S, Bi W, Chen X, Fang Z. Development of stemness-related signature to optimize prognosis prediction and identify XMD8-85 as a novel therapeutic compound for glioma. Cell Signal 2024; 120:111231. [PMID: 38768760 DOI: 10.1016/j.cellsig.2024.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Glioma is a highly invasive and aggressive type of brain cancer with poor treatment response. Stemness-related transcription factors form a regulatory network that sustains the malignant phenotype of gliomas. We conducted an integrated analysis of stemness-related transcription factors using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets, established the characteristics of stemness-related transcription factors, including Octamer-Binding Protein 4 (OCT4), Meis Homeobox 1 (MEIS1), E2F Transcription Factor 1 (E2F1), Transcription Factor CP2 Like 1 (TFCP2L1), and RUNX Family Transcription Factor 1 (RUNX1). The characteristic of stemness-related transcription factors was identified as an independent prognostic factor for glioma patients. Patients in the high-risk group have a worse prognosis than those in the low-risk group. The glioma microenvironment in the high-risk group exhibited a more active immune status. Single-cell level analysis revealed that stem cell-like cells exhibited stronger intercellular communication than glioma cells. Meanwhile, patients in different risk stratification exhibited varying sensitivities to immunotherapy and small molecule drug therapy. XMD8-85 was more effective in the high-risk group, and its antitumor effects were validated both in vivo and in vitro. Our results indicate that this prognostic feature will assist clinicians in predicting the prognosis of glioma patients, guiding immunotherapy and personalized treatment, as well as the potential clinical application of XMD8-85 in glioma treatment, and helping to develop effective treatment strategies.
Collapse
Affiliation(s)
- Wanxiang Niu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Huihan Yu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, Anhui, China
| | - Xiaoqing Fan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Shuyang Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, Anhui, China
| | - Suling Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Meiting Gong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Meishan Road, Hefei 230032, Anhui, China
| | - Siyu Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Wenxu Bi
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China
| | - Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China.
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Technology of China, No. 96, Jin Zhai Road, 230026 Hefei, Anhui, China.
| |
Collapse
|
16
|
Wang Y, Yao J, Zhang Z, Wei L, Wang S. Generation of novel lipid metabolism-based signatures to predict prognosis and immunotherapy response for colorectal adenocarcinoma. Sci Rep 2024; 14:17158. [PMID: 39060344 PMCID: PMC11282063 DOI: 10.1038/s41598-024-67549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid metabolism reprogramming involves in epithelial-mesenchymal transition (EMT), cancer stemness and immune checkpoints (ICs), which influence the metastasis of cancer. This study aimed to generate lipid metabolism-based signatures to predict prognosis, immunotherapy and chemotherapy response for colorectal adenocarcinoma (COAD). Transcriptome data and clinical information of COAD patients were collected from the cancer genome atlas (TCGA) database. The expression of EMT-, stem cell-, and IC-related genes were assessed between COAD and control samples. Modules and genes correlated EMT, ICs and stemness signatures were identified through weighted gene co-expression network analysis (WGCNA). Prognostic signatures were generated and then the distribution of risk genes was evaluated using single-cell RNA sequencing (scRNA-seq) data from GSE132465 dataset. COAD patients exhibited increased EMT score and stemness along with decreased ICs. Next, 12 hub genes (PIK3CG, ALOX5AP, PIK3R5, TNFAIP8L2, DPEP2, PIK3CD, PIK3R6, GGT5, ELOVL4, PTGIS, CYP7B1 and PRKD1) were found within green and yellow modules correlated with EMT, stemness and ICs. Lipid metabolism-based prognostic signatures were generated based on PIK3CG, GGT5 and PTGIS. Patients with high-risk group had poor prognosis, elevated ESTIMATEScore and StromalScore, 100% mutation rate and higher TIDE score. Samples in low-risk group had more immunogenicity on ICIs. Notably, PIK3CG was expressed in B cells, while GGT5 and PTGIS were expressed in stromal cells. This study generates lipid metabolism-based signatures correlated with EMT, stemness and ICs for predicting prognosis of COAD, and provides potential therapeutic targets for immunotherapy in COAD.
Collapse
Affiliation(s)
- Yi Wang
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215127, China
| | - Jun Yao
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Zhe Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Luxin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Sheng Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China.
| |
Collapse
|
17
|
Freitag T, Kaps P, Ramtke J, Bertels S, Zunke E, Schneider B, Becker AS, Koczan D, Dubinski D, Freiman TM, Wittig F, Hinz B, Westhoff MA, Strobel H, Meiners F, Wolter D, Engel N, Troschke-Meurer S, Bergmann-Ewert W, Staehlke S, Wolff A, Gessler F, Junghanss C, Maletzki C. Combined inhibition of EZH2 and CDK4/6 perturbs endoplasmic reticulum-mitochondrial homeostasis and increases antitumor activity against glioblastoma. NPJ Precis Oncol 2024; 8:156. [PMID: 39054369 PMCID: PMC11272933 DOI: 10.1038/s41698-024-00653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
He, we show that combined use of the EZH2 inhibitor GSK126 and the CDK4/6 inhibitor abemaciclib synergistically enhances antitumoral effects in preclinical GBM models. Dual blockade led to HIF1α upregulation and CalR translocation, accompanied by massive impairment of mitochondrial function. Basal oxygen consumption rate, ATP synthesis, and maximal mitochondrial respiration decreased, confirming disrupted endoplasmic reticulum-mitochondrial homeostasis. This was paralleled by mitochondrial depolarization and upregulation of the UPR sensors PERK, ATF6α, and IRE1α. Notably, dual EZH2/CDK4/6 blockade also reduced 3D-spheroid invasion, partially inhibited tumor growth in ovo, and led to impaired viability of patient-derived organoids. Mechanistically, this was due to transcriptional changes in genes involved in mitotic aberrations/spindle assembly (Rb, PLK1, RRM2, PRC1, CENPF, TPX2), histone modification (HIST1H1B, HIST1H3G), DNA damage/replication stress events (TOP2A, ATF4), immuno-oncology (DEPDC1), EMT-counterregulation (PCDH1) and a shift in the stemness profile towards a more differentiated state. We propose a dual EZH2/CDK4/6 blockade for further investigation.
Collapse
Affiliation(s)
- Thomas Freitag
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Philipp Kaps
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Justus Ramtke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Sarah Bertels
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Emily Zunke
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Björn Schneider
- Institute of Pathology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Anne-Sophie Becker
- Institute of Pathology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Dirk Koczan
- Department of Immunology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Thomas M Freiman
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Felix Wittig
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Franziska Meiners
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Daniel Wolter
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Nadja Engel
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting & Cell Analysis, Laboratory for Clinical Immunology, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Susanne Staehlke
- Institute for Cell Biology, University Medical Center Rostock, Rostock, Germany
| | - Annabell Wolff
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Florian Gessler
- Department of Neurosurgery, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III -Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, University of Rostock, Rostock, Germany.
| |
Collapse
|
18
|
Zhang J, Cui T, Xu J, Wang P, Lv C, Pan G. The potential of cancer stem cells for personalized risk assessment and therapeutic intervention in individuals with intrahepatic cholangiocarcinoma. Discov Oncol 2024; 15:306. [PMID: 39048806 PMCID: PMC11269542 DOI: 10.1007/s12672-024-01179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that intrahepatic cholangiocarcinoma (ICC) is a stem cell-based disease, but information on the biology of cancer stem cells (CSC) in ICC is very limited. METHODS ICC RNA-seq cohorts from three different public databases were integrated and the protein-coding genes were divided into different modules using "WGCNA" to screen the most relevant modules with CSC scores. Least Absolute Shrinkage and Selection Operator (LASSO) regression were introduced to construct prognostic classification models. In addition, the extent of immune cell infiltration in patients in different risk groups was assessed based on the ESTIMATE, CIBERSORT, MCP-Counter, and single sample gene set enrichment analysis (ssGSEA) algorithms. Finally, the correlation between different risk scores and common drugs was analyzed by pRRophetic package and Spearman method. RESULTS In the present study, we found that a high CSC score was associated with a poorer prognosis in patients with ICC. The yellow module obtained by WGCNA was significantly positively correlated with the CSCs score, in which 8 genes were served to build a prognostic classification model, and the obtained risk score was negatively correlated with CSCs score and prognosis. The low-risk score was more suitable for immunotherapy, and the high-risk score was more suitable for treatment with 11 antitumor drugs. CONCLUSION This study revealed the regulatory role of CSC-mediated EMT, angiogenesis, and immunomodulatory biological processes in ICC, and applied a prognostic classification model to highlight the great potential of CSC for personalized risk assessment, chemotherapy, and immunotherapy intervention in ICC individuals.
Collapse
Affiliation(s)
- Jian Zhang
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Tao Cui
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Jiaobang Xu
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Peng Wang
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Chongqing Lv
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China
| | - Guozheng Pan
- Hepatobiliary Surgery, Shengli Oilfield Central Hospital, Dongying, 257093, China.
| |
Collapse
|
19
|
Maciejewski K, Giers M, Oleksiewicz U, Czerwinska P. The Epigenetic Modifiers HDAC2 and HDAC7 Inversely Associate with Cancer Stemness and Immunity in Solid Tumors. Int J Mol Sci 2024; 25:7841. [PMID: 39063083 PMCID: PMC11277355 DOI: 10.3390/ijms25147841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Dysregulation of histone deacetylases (HDACs) is closely associated with cancer development and progression. Here, we comprehensively analyzed the association between all HDAC family members and several clinicopathological and molecular traits of solid tumors across 22 distinct tumor types, focusing primarily on cancer stemness and immunity. To this end, we used publicly available TCGA data and several bioinformatic tools (i.e., GEPIA2, TISIDB, GSCA, Enrichr, GSEA). Our analyses revealed that class I and class II HDAC proteins are associated with distinct cancer phenotypes. The transcriptomic profiling indicated that class I HDAC members, including HDAC2, are positively associated with cancer stemness, while class IIA HDAC proteins, represented by HDAC7, show a negative correlation to cancer stem cell-like phenotypes in solid tumors. In contrast to tumors with high amounts of HDAC7 proteins, the transcriptome signatures of HDAC2-overexpressing cancers are significantly enriched with biological terms previously determined as stemness-associated genes. Moreover, high HDAC2-expressing tumors are depleted with immune-related processes, and HDAC2 expression correlates with tumor immunosuppressive microenvironments. On the contrary, HDAC7 upregulation is significantly associated with enhanced immune responses, followed by enriched infiltration of CD4+ and CD8+ T cells. This is the first comprehensive report demonstrating robust and versatile associations between specific HDAC family members, cancer dedifferentiation, and anti-tumor immune statuses in solid tumors.
Collapse
Affiliation(s)
- Kacper Maciejewski
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.M.); (M.G.)
| | - Marek Giers
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.M.); (M.G.)
| | - Urszula Oleksiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Patrycja Czerwinska
- Undergraduate Research Group “Biobase”, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (K.M.); (M.G.)
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
20
|
Elahimanesh M, Shokri N, Shabani R, Rahimi M, Najafi M. Exploring the potential of predicted miRNAs on the genes involved in the expansion of hematopoietic stem cells. Sci Rep 2024; 14:15551. [PMID: 38969714 PMCID: PMC11226654 DOI: 10.1038/s41598-024-66614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
A major challenge in therapeutic approaches applying hematopoietic stem cells (HSCs) is the cell quantity. The primary objective of this study was to predict the miRNAs and anti-miRNAs using bioinformatics tools and investigate their effects on the expression levels of key genes predicted in the improvement of proliferation, and the inhibition of differentiation in HSCs isolated from Human umbilical cord blood (HUCB). A network including genes related to the differentiation and proliferation stages of HSCs was constructed by enriching data of text (PubMed) and StemChecker server with KEGG signaling pathways, and was improved using GEO datasets. Bioinformatics tools predicted a profile from miRNAs containing miR-20a-5p, miR-423-5p, and chimeric anti-miRNA constructed from 5'-miR-340/3'-miR-524 for the high-score genes (RB1, SMAD4, STAT1, CALML4, GNG13, and CDKN1A/CDKN1B genes) in the network. The miRNAs and anti-miRNA were transferred into HSCs using polyethylenimine (PEI). The gene expression levels were estimated using the RT-qPCR technique in the PEI + (miRNA/anti-miRNA)-contained cell groups (n = 6). Furthermore, CD markers (90, 16, and 45) were evaluated using flow cytometry. Strong relationships were found between the high-score genes, miRNAs, and chimeric anti-miRNA. The RB1, SMAD4, and STAT1 gene expression levels were decreased by miR-20a-5p (P < 0.05). Additionally, the anti-miRNA increased the gene expression level of GNG13 (P < 0.05), whereas the miR-423-5p decreased the CDKN1A gene expression level (P < 0.01). The cellular count also increased significantly (P < 0.05) but the CD45 differentiation marker did not change in the cell groups. The study revealed the predicted miRNA/anti-miRNA profile expands HSCs isolated from HUCB. While miR-20a-5p suppressed the RB1, SMAD4, and STAT1 genes involved in cellular differentiation, the anti-miRNA promoted the GNG13 gene related to the proliferation process. Notably, the mixed miRNA/anti-miRNA group exhibited the highest cellular expansion. This approach could hold promise for enhancing the cell quantity in HSC therapy.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Anatomy Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Rahimi
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Clinical Biochemistry Department, Faculty of Medical Sciences, Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Ye S, Yang B, Yang L, Wei W, Fu M, Yan Y, Wang B, Li X, Liang C, Zhao W. Stemness subtypes in lower-grade glioma with prognostic biomarkers, tumor microenvironment, and treatment response. Sci Rep 2024; 14:14758. [PMID: 38926605 PMCID: PMC11208487 DOI: 10.1038/s41598-024-65717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Our research endeavors are directed towards unraveling the stem cell characteristics of lower-grade glioma patients, with the ultimate goal of formulating personalized treatment strategies. We computed enrichment stemness scores and performed consensus clustering to categorize phenotypes. Subsequently, we constructed a prognostic risk model using weighted gene correlation network analysis (WGCNA), random survival forest regression analysis as well as full subset regression analysis. To validate the expression differences of key genes, we employed experimental methods such as quantitative Polymerase Chain Reaction (qPCR) and assessed cell line proliferation, migration, and invasion. Three subtypes were assigned to patients diagnosed with LGG. Notably, Cluster 2 (C2), exhibiting the poorest survival outcomes, manifested characteristics indicative of the subtype characterized by immunosuppression. This was marked by elevated levels of M1 macrophages, activated mast cells, along with higher immune and stromal scores. Four hub genes-CDCA8, ORC1, DLGAP5, and SMC4-were identified and validated through cell experiments and qPCR. Subsequently, these validated genes were utilized to construct a stemness risk signature. Which revealed that Lower-Grade Glioma (LGG) patients with lower scores were more inclined to demonstrate favorable responses to immune therapy. Our study illuminates the stemness characteristics of gliomas, which lays the foundation for developing therapeutic approaches targeting CSCs and enhancing the efficacy of current immunotherapies. By identifying the stemness subtype and its correlation with prognosis and TME patterns in glioma patients, we aim to advance the development of personalized treatments, enhancing the ability to predict and improve overall patient prognosis.
Collapse
Affiliation(s)
- Shengda Ye
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Neurosurgery, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingyue Fu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yan
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Hospital of Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Clinical Study Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, China.
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Abdelrahman Z, Abdelatty A, Luo J, McKnight AJ, Wang X. Stratification of glioma based on stemness scores in bulk and single-cell transcriptomes. Comput Biol Med 2024; 175:108304. [PMID: 38663352 DOI: 10.1016/j.compbiomed.2024.108304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 05/15/2024]
Abstract
BACKGROUND Brain tumours are known to have a high mortality and morbidity rate due to their localised and frequent invasive growth. The concept that glioma resistance could originate from the dissimilarity in the vulnerability of clonogenic glial stem cells to chemotherapeutic drugs and radiation has driven the scientific community to reexamine the comprehension of glioma growth and strategies that target these cells or modify their stemness. METHODS Based on the enrichment scores of 12 stemness signatures, we identified glioma subtypes in both tumour bulks and single cells by clustering analysis. Furthermore, we comprehensively compared molecular and clinical features among the glioma subtypes. RESULTS Consistently, in seven different datasets, hierarchical clustering uncovered three subtypes of glioma, termed Stem-H, Stem-M, and Stem-L, with high, medium, and low stemness signatures, respectively. Stem-H and Stem-L exhibited the most unfavorable and favourable overall and disease-free survival, respectively. Stem-H showed the highest enrichment scores of the EMT, invasion, proliferation, differentiation, and metastasis processes signatures, while Stem-L displayed the lowest. Stem-H harboured a greater proportion of late-stage tumours compared to Stem-L. Moreover, Stem-H manifested higher tumour mutation burden, DNA damage repair and cell cycle activity, intratumour heterogeneity, and a more frequent incidence of TP53 and EGFR mutations than Stem-L. In contrast, Stem-L had higher O6-Methylguanine-DNA Methyltransferase (MGMT) methylation levels. CONCLUSION The classification of glioma based on stemness may offer new insights into the biology of the tumour, as well as more accurate clinical management of the disease.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
| | - Alaa Abdelatty
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Jiangti Luo
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
23
|
Li Y, Li J, Zhou L, Wang Z, Jin L, Cao J, Xie H, Wang L. Aberrant activation of TGF-β/ROCK1 enhances stemness during prostatic stromal hyperplasia. Cell Commun Signal 2024; 22:257. [PMID: 38711089 PMCID: PMC11071275 DOI: 10.1186/s12964-024-01644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
Benign prostatic hyperplasia (BPH) is a multifactorial disease in which abnormal growth factor activation and embryonic reawakening are considered important factors. Here we demonstrated that the aberrant activation of transforming growth factor β (TGF-β)/Rho kinase 1 (ROCK1) increased the stemness of BPH tissue by recruiting mesenchymal stem cells (MSCs), indicating the important role of embryonic reawakening in BPH. When TGF-β/ROCK1 is abnormally activated, MSCs are recruited and differentiate into fibroblasts/myofibroblasts, leading to prostate stromal hyperplasia. Further research showed that inhibition of ROCK1 activation suppressed MSC migration and their potential for stromal differentiation. Collectively, our findings suggest that abnormal activation of TGF-β/ROCK1 regulates stem cell lineage specificity, and the small molecule inhibitor GSK269962A could target ROCK1 and may be a potential treatment for BPH.
Collapse
Affiliation(s)
- Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhenxing Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ling Jin
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jia Cao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hui Xie
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
24
|
Shi X, Hu Z, Bai S, Zong C, Xue H, Li Y, Li F, Chen L, Xuan J, Xia Y, Wei L, Shen F, Wang K. YBX1 promotes stemness and cisplatin insensitivity in intrahepatic cholangiocarcinoma via the AKT/β-catenin axis. J Gene Med 2024; 26:e3689. [PMID: 38676365 DOI: 10.1002/jgm.3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignancy characterized by a poor prognosis and closely linked to tumor stemness. However, the key molecules that regulate ICC stemness remain elusive. Although Y-box binding protein 1 (YBX1) negatively affects prognosis in various cancers by enhancing stemness and chemoresistance, its effect on stemness and cisplatin sensitivity in ICC remains unclear. METHODS Three bulk and single-cell RNA-seq datasets were analyzed to investigate YBX1 expression in ICC and its association with stemness. Clinical samples and colony/sphere formation assays validated the role of YBX1 in stemness and sensitivity to cisplatin. AZD5363 and KYA1979K explored the interaction of YBX1 with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) and WNT/β-catenin pathways. RESULTS YBX1 was significantly upregulated in ICC, correlated with worse overall survival and shorter postoperative recurrence time, and was higher in chemotherapy-non-responsive ICC tissues. The YBX1-high group exhibited significantly elevated stemness scores, and genes linked to YBX1 upregulation were enriched in multiple stemness-related pathways. Moreover, YBX1 expression is significantly correlated with several stemness-related genes (SOX9, OCT4, CD133, CD44 and EPCAM). Additionally, YBX1 overexpression significantly enhanced the colony- and spheroid-forming abilities of ICC cells, accelerated tumor growth in vivo and reduced their sensitivity to cisplatin. Conversely, the downregulation of YBX1 exerted the opposite effect. The transcriptomic analysis highlighted the link between YBX1 and the PI3K/AKT and WNT/β-catenin pathways. Further, AZD5363 and KYA1979K were used to clarify that YBX1 promoted ICC stemness through the regulation of the AKT/β-catenin axis. CONCLUSIONS YBX1 is upregulated in ICC and promotes stemness and cisplatin insensitivity via the AKT/β-catenin axis. Our study describes a novel potential therapeutic target for improving ICC prognosis.
Collapse
Affiliation(s)
- Xiaodong Shi
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhiliang Hu
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shilei Bai
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Hui Xue
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yao Li
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fengwei Li
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Liangrui Chen
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Jianbing Xuan
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- National Center for Liver Cancer, Shanghai, China
| | - Feng Shen
- Department of Hepatic Surgery IV, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery II, the Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
25
|
Jiang M, Zhu D, Zhao D, Liu Y, Li J, Zheng Z. Integrated Analysis of Clinical Outcome of Mesenchymal Stem Cell-related Genes in Pan-cancer. Curr Genomics 2024; 25:298-315. [PMID: 39156727 PMCID: PMC11327807 DOI: 10.2174/0113892029291247240422060811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 08/20/2024] Open
Abstract
Background Although the application of mesenchymal stem cells (MSCs) in engineered medicine, such as tissue regeneration, is well known, new evidence is emerging that shows that MSCs can also promote cancer progression, metastasis, and drug resistance. However, no large-scale cohort analysis of MSCs has been conducted to reveal their impact on the prognosis of cancer patients. Objectives We propose the MSC score as a novel surrogate for poor prognosis in pan-cancer. Methods We used single sample gene set enrichment analysis to quantify MSC-related genes into a signature score and identify the signature score as a potential independent prognostic marker for cancer using multivariate Cox regression analysis. TIDE algorithm and neural network were utilized to assess the predictive accuracy of MSC-related genes for immunotherapy. Results MSC-related gene expression significantly differed between normal and tumor samples across the 33 cancer types. Cox regression analysis suggested the MSC score as an independent prognostic marker for kidney renal papillary cell carcinoma, mesothelioma, glioma, and stomach adenocarcinoma. The abundance of fibroblasts was also more representative of the MSC score than the stromal score. Our findings supported the combined use of the TIDE algorithm and neural network to predict the accuracy of MSC-related genes for immunotherapy. Conclusion We comprehensively characterized the transcriptome, genome, and epigenetics of MSCs in pan-cancer and revealed the crosstalk of MSCs in the tumor microenvironment, especially with cancer-related fibroblasts. It is suggested that this may be one of the key sources of resistance to cancer immunotherapy.
Collapse
Affiliation(s)
- Mingzhe Jiang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yongye Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
26
|
Chaudhary P, Yadav K, Lee HJ, Kang KW, Mo J, Kim JA. siRNA treatment targeting integrin α11 overexpressed via EZH2-driven axis inhibits drug-resistant breast cancer progression. Breast Cancer Res 2024; 26:72. [PMID: 38664825 PMCID: PMC11046805 DOI: 10.1186/s13058-024-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Breast cancer, the most prevalent cancer in women worldwide, faces treatment challenges due to drug resistance, posing a serious threat to patient survival. The present study aimed to identify the key molecules that drive drug resistance and aggressiveness in breast cancer cells and validate them as therapeutic targets. METHODS Transcriptome microarray and analysis using PANTHER pathway and StemChecker were performed to identify the most significantly expressed genes in tamoxifen-resistant and adriamycin-resistant MCF-7 breast cancer cells. Clinical relevance of the key genes was determined using Kaplan-Meier survival analyses on The Cancer Genome Atlas dataset of breast cancer patients. Gene overexpression/knockdown, spheroid formation, flow cytometric analysis, chromatin immunoprecipitation, immunocytochemistry, wound healing/transwell migration assays, and cancer stem cell transcription factor activation profiling array were used to elucidate the regulatory mechanism of integrin α11 expression. Tumour-bearing xenograft models were used to demonstrate integrin α11 is a potential therapeutic target. RESULTS Integrin α11 was consistently upregulated in drug-resistant breast cancer cells, and its silencing inhibited cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) while restoring sensitivity to anticancer drugs. HIF1α, GLI-1, and EZH2 contributed the most to the regulation of integrin α11 and EZH2 expression, with EZH2 being more necessary for EZH2 autoinduction than HIF1α and GLI-1. Additionally, unlike HIF1α or EZH2, GLI-1 was the sole transcription factor activated by integrin-linked focal adhesion kinase, indicating GLI-1 as a key driver of the EZH2-integrin α11 axis operating for cancer stem cell survival and EMT. Kaplan-Meier survival analysis using The Cancer Genome Atlas (TCGA) dataset also revealed both EZH2 and integrin α11 could be strong prognostic factors of relapse-free and overall survival in breast cancer patients. However, the superior efficacy of integrin α11 siRNA therapy over EZH2 siRNA treatment was demonstrated by enhanced inhibition of tumour growth and prolonged survival in murine models bearing tumours. CONCLUSION Our findings elucidate that integrin α11 is upregulated by EZH2, forming a positive feedback circuit involving FAK-GLI-1 and contributing to drug resistance, cancer stem cell survival and EMT. Taken together, the results suggest integrin α11 as a promising prognostic marker and a powerful therapeutic target for drug-resistant breast cancer.
Collapse
Affiliation(s)
- Prakash Chaudhary
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kiran Yadav
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Ho Jin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jongseo Mo
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jung-Ae Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
27
|
Niu J, Chen Y, Chai HC, Sasidharan S. Exploring MiR-484 Regulation by Polyalthia longifolia: A Promising Biomarker and Therapeutic Target in Cervical Cancer through Integrated Bioinformatics and an In Vitro Analysis. Biomedicines 2024; 12:909. [PMID: 38672263 PMCID: PMC11047986 DOI: 10.3390/biomedicines12040909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND MiR-484, implicated in various carcinomas, holds promise as a prognostic marker, yet its relevance to cervical cancer (CC) remains unclear. Our prior study demonstrated the Polyalthia longifolia downregulation of miR-484, inhibiting HeLa cells. This study investigates miR-484's potential as a biomarker and therapeutic target in CC through integrated bioinformatics and an in vitro analysis. METHODS MiR-484 levels were analyzed across cancers, including CC, from The Cancer Genome Atlas. The limma R package identified differentially expressed genes (DEGs) between high- and low-miR-484 CC cohorts. We assessed biological functions, tumor microenvironment (TME), immunotherapy, stemness, hypoxia, RNA methylation, and chemosensitivity differences. Prognostic genes relevant to miR-484 were identified through Cox regression and Kaplan-Meier analyses, and a prognostic model was captured via multivariate Cox regression. Single-cell RNA sequencing determined cell populations related to prognostic genes. qRT-PCR validated key genes, and the miR-484 effect on CC proliferation was assessed via an MTT assay. RESULTS MiR-484 was upregulated in most tumors, including CC, with DEGs enriched in skin development, PI3K signaling, and immune processes. High miR-484 expression correlated with specific immune cell infiltration, hypoxia, and drug sensitivity. Prognostic genes identified were predominantly epidermal and stratified patients with CC into risk groups, with the low-risk group showing enhanced survival and immunotherapeutic responses. qRT-PCR confirmed FGFR3 upregulation in CC cells, and an miR-484 mimic reversed the P. longifolia inhibitory effect on HeLa proliferation. CONCLUSION MiR-484 plays a crucial role in the CC progression and prognosis, suggesting its potential as a biomarker for targeted therapy.
Collapse
Affiliation(s)
- Jiaojiao Niu
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
- School of Biological Engineering, Xinxiang University, Xinxiang 453003, China
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| |
Collapse
|
28
|
Wang J, Zhang J, Liu H, Meng L, Gao X, Zhao Y, Wang C, Gao X, Fan A, Cao T, Fan D, Zhao X, Lu Y. N6-methyladenosine reader hnRNPA2B1 recognizes and stabilizes NEAT1 to confer chemoresistance in gastric cancer. Cancer Commun (Lond) 2024; 44:469-490. [PMID: 38512764 PMCID: PMC11024687 DOI: 10.1002/cac2.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Chemoresistance is a major cause of treatment failure in gastric cancer (GC). Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an N6-methyladenosine (m6A)-binding protein involved in a variety of cancers. However, whether m6A modification and hnRNPA2B1 play a role in GC chemoresistance is largely unknown. In this study, we aimed to investigate the role of hnRNPA2B1 and the downstream mechanism in GC chemoresistance. METHODS The expression of hnRNPA2B1 among public datasets were analyzed and validated by quantitative PCR (qPCR), Western blotting, immunofluorescence, and immunohistochemical staining. The biological functions of hnRNPA2B1 in GC chemoresistance were investigated both in vitro and in vivo. RNA sequencing, methylated RNA immunoprecipitation, RNA immunoprecipitation, and RNA stability assay were performed to assess the association between hnRNPA2B1 and the binding RNA. The role of hnRNPA2B1 in maintenance of GC stemness was evaluated by bioinformatic analysis, qPCR, Western blotting, immunofluorescence, and sphere formation assays. The expression patterns of hnRNPA2B1 and downstream regulators in GC specimens from patients who received adjuvant chemotherapy were analyzed by RNAscope and multiplex immunohistochemistry. RESULTS Elevated expression of hnRNPA2B1 was found in GC cells and tissues, especially in multidrug-resistant (MDR) GC cell lines. The expression of hnRNPA2B1 was associated with poor outcomes of GC patients, especially in those who received 5-fluorouracil treatment. Silencing hnRNPA2B1 effectively sensitized GC cells to chemotherapy by inhibiting cell proliferation and inducing apoptosis both in vitro and in vivo. Mechanically, hnRNPA2B1 interacted with and stabilized long noncoding RNA NEAT1 in an m6A-dependent manner. Furthermore, hnRNPA2B1 and NEAT1 worked together to enhance the stemness properties of GC cells via Wnt/β-catenin signaling pathway. In clinical specimens from GC patients subjected to chemotherapy, the expression levels of hnRNPA2B1, NEAT1, CD133, and CD44 were markedly elevated in non-responders compared with responders. CONCLUSION Our findings indicated that hnRNPA2B1 interacts with and stabilizes lncRNA NEAT1, which contribute to the maintenance of stemness property via Wnt/β-catenin pathway and exacerbate chemoresistance in GC.
Collapse
Affiliation(s)
- Jiayao Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
- The Air Force Hospital of Southern Theater CommandGuangzhouGuangdongP. R. China
| | - Jiehao Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
- The Air Force Hospital of Southern Theater CommandGuangzhouGuangdongP. R. China
| | - Hao Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Lingnan Meng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Key Laboratory of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
| | - Xianchun Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Yihan Zhao
- Second Clinical CollegeShaanxi University of Traditional Chinese MedicineXianyangShaanxiP. R. China
| | - Chen Wang
- College of Life SciencesNorthwest UniversityXi'anShaanxiP. R. China
| | - Xiaoliang Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Ahui Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Tianyu Cao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive DiseasesXijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anShaanxiP. R. China
| |
Collapse
|
29
|
Ruan S, Wang H, Zhang Z, Yan Q, Chen Y, Cui J, Huang S, Zhou Q, Zhang C, Hou B. Identification and validation of stemness-based and ferroptosis-related molecular clusters in pancreatic ductal adenocarcinoma. Transl Oncol 2024; 41:101877. [PMID: 38262107 PMCID: PMC10832490 DOI: 10.1016/j.tranon.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an extremely poor prognosis. Cancer stem cells (CSCs) are considered to be responsible for the poor survival, recurrence and therapy resistance of PDAC. Ferroptosis plays a crucial role in the sustain and survival of CSCs. Here, we employed a rigorous evaluation of multiple datasets to identify a novel stemness-based and ferroptosis-related genes (SFRGs) signature to access the potential prognostic application. This work we retrieved RNA-sequencing and clinical annotation data from the TCGA, ICGC, GTEx and GEO database, and acquired 26 stem cell gene sets and 259 ferroptosis genes from StemChecker database and FerrDb database, respectively. Based on consensus clustering and ssGSEA analysis, we identified two expression patterns of CSCs traits (C1 and C2). Then, WGCNA analysis was implemented to screen out hub module genes correlated with stemness. Furthermore, differential expression analysis, Pearson correlation analysis, and the Least absolute shrinkage and selection operator (LASSO) and Cox regression were performed to identify the SFRGs and to construct model. In addition, the differences in prognosis, tumor microenvironment (TME) components and therapy responses were evaluated between two risk groups. Finally, we verified the most influential marker ARNTL2 experimentally by western blot, qRT-PCR, sphere formation assay, mitoscreen assay, intracellular iron concentration determination and MDA determination assays. In conclusion, we developed a stemness-based and ferroptosis-related prognostic model, which could help predict overall survival for PDAC patients. Targeting ferroptosis may be a promising therapeutic strategy to inhibit PDAC progression by suppressing CSCs.
Collapse
Affiliation(s)
- Shiye Ruan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hailiang Wang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Department of Hepatobiliary Surgery, Weihai Central Hospital Affiliated to Qingdao University, Weihai 264400, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Jinwei Cui
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China
| | - Shanzhou Huang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Qi Zhou
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China; Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Huizhou, Guangdong 516081, China.
| | - Chuanzhao Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Baohua Hou
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine South China University of Technology, Guangzhou 51000, China; Heyuan People's Hospital, Heyuan 517000, China.
| |
Collapse
|
30
|
Scott MT, Liu W, Mitchell R, Clarke CJ, Kinstrie R, Warren F, Almasoudi H, Stevens T, Dunn K, Pritchard J, Drotar ME, Michie AM, Jørgensen HG, Higgins B, Copland M, Vetrie D. Activating p53 abolishes self-renewal of quiescent leukaemic stem cells in residual CML disease. Nat Commun 2024; 15:651. [PMID: 38246924 PMCID: PMC10800356 DOI: 10.1038/s41467-024-44771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Whilst it is recognised that targeting self-renewal is an effective way to functionally impair the quiescent leukaemic stem cells (LSC) that persist as residual disease in chronic myeloid leukaemia (CML), developing therapeutic strategies to achieve this have proved challenging. We demonstrate that the regulatory programmes of quiescent LSC in chronic phase CML are similar to that of embryonic stem cells, pointing to a role for wild type p53 in LSC self-renewal. In support of this, increasing p53 activity in primitive CML cells using an MDM2 inhibitor in combination with a tyrosine kinase inhibitor resulted in reduced CFC outputs and engraftment potential, followed by loss of multilineage priming potential and LSC exhaustion when combination treatment was discontinued. Our work provides evidence that targeting LSC self-renewal is exploitable in the clinic to irreversibly impair quiescent LSC function in CML residual disease - with the potential to enable more CML patients to discontinue therapy and remain in therapy-free remission.
Collapse
Affiliation(s)
- Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wei Liu
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rebecca Mitchell
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ross Kinstrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Felix Warren
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hassan Almasoudi
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Thomas Stevens
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John Pritchard
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark E Drotar
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Heather G Jørgensen
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Vetrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
31
|
Han T, Liu Y, Zhou J, Guo J, Xing Y, Xie J, Bai Y, Wu J, Hu D. Development of an invasion score based on metastasis-related pathway activity profiles for identifying invasive molecular subtypes of lung adenocarcinoma. Sci Rep 2024; 14:1692. [PMID: 38243040 PMCID: PMC10799059 DOI: 10.1038/s41598-024-51681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
The invasive capacity of lung adenocarcinoma (LUAD) is an important factor influencing patients' metastatic status and survival outcomes. However, there is still a lack of suitable biomarkers to evaluate tumor invasiveness. LUAD molecular subtypes were identified by unsupervised consistent clustering of LUAD. The differences in prognosis, tumor microenvironment (TME), and mutation were assessed among different subtypes. After that, the invasion-related gene score (IRGS) was constructed by genetic differential analysis, WGCNA analysis, and LASSO analysis, then we evaluated the relationship between IRGS and invasive characteristics, TME, and prognosis. The predictive ability of the IRGS was verified by in vitro experiments. Next, the "oncoPredict" R package and CMap were used to assess the potential value of IRGS in drug therapy. The results showed that LUAD was clustered into two molecular subtypes. And the C1 subtype exhibited a worse prognosis, higher stemness enrichment activity, less immune infiltration, and higher mutation frequency. Subsequently, IRGS developed based on molecular subtypes demonstrated a strong association with malignant characteristics such as invasive features, higher stemness scores, less immune infiltration, and worse survival. In vitro experiments showed that the higher IRGS LUAD cell had a stronger invasive capacity than the lower IRGS LUAD cell. Predictive analysis based on the "oncoPredict" R package showed that the high IRGS group was more sensitive to docetaxel, erlotinib, paclitaxel, and gefitinib. Among them, in vitro experiments verified the greater killing effect of paclitaxel on high IRGS cell lines. In addition, CMap showed that purvalanol-a, angiogenesis-inhibitor, and masitinib have potential therapeutic effects in the high IRGS group. In summary we identified and analyzed the molecular subtypes associated with the invasiveness of LUAD and developed IRGS that can efficiently predict the prognosis and invasive ability of the tumor. IRGS may be able to facilitate the precision treatment of LUAD to some extent.
Collapse
Affiliation(s)
- Tao Han
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232035, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Jun Xie
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, 232035, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Chongren Building, No 168, Taifeng St, Huainan, 232001, China.
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, 232001, China.
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
32
|
Xu D, Li P, Zhang C, Shen Y, Cai J, Wei Q, Cao M, Xu Z, Wu D, Wang H, Bi X, Wang B, Li K. Development of an m6A-Related lncRNAs Signature Predicts Tumor Stemness and Prognosis for Low-Grade Glioma Patients. Stem Cells Int 2024; 2024:2062283. [PMID: 38229597 PMCID: PMC10791469 DOI: 10.1155/2024/2062283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
Background Growing evidence has revealed that m6A modification of long noncoding RNAs (lncRNAs) dynamically controls tumor stemness and tumorigenesis-related processes. However, the prognostic significance of m6A-related lncRNAs and their associations with stemness in low-grade glioma (LGG) remain to be clarified. Methods A multicenter transcriptome analysis of lncRNA expression in 1,247 LGG samples was performed in this study. The stemness landscape of LGG tumors was presented and associations with clinical features were revealed. The m6A-related lncRNAs were identified between stemness groups and were further prioritized via least absolute shrinkage and selection operator Cox regression analysis. A risk score model based on m6A-related lncRNAs was constructed and validated in external LGG datasets. Results Based on the expression of LINC02984, PFKP-DT, and CRNDE, a risk model and nomogram were constructed; they successfully predicted the survival of patients and were extended to external datasets. Significant correlations were observed between the risk score and tumor stemness. Moreover, patients in different risk groups exhibited distinct tumor immune microenvironments and immune signatures. We finally provided several potential compounds suitable for specific risk groups, which may aid in LGG treatment. Conclusions This novel signature presents noteworthy value in the prediction of prognosis and stemness status for LGG patients and will foster future research on the development of clinical regimens.
Collapse
Affiliation(s)
- Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Peihu Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Chunrui Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100020, China
| | - Yutong Shen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Jiale Cai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Qingchen Wei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Meng Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Bo Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| |
Collapse
|
33
|
He C, Ding Y, Yang Y, Che G, Teng F, Wang H, Zhang J, Zhou D, Chen Y, Zhou Z, Wang H, Teng L. Stem cell landscape aids in tumor microenvironment identification and selection of therapeutic agents in gastric cancer. Cell Signal 2024; 113:110965. [PMID: 37935339 DOI: 10.1016/j.cellsig.2023.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Gastric cancer stem cells (GCSCs) are strongly associated with the refractory characteristics of gastric cancer, including drug resistance, recurrence, and metastasis. The prognosis for advanced gastric cancer patients treated with multimodal therapy after surgery remains discouraging. GCSCs hold promise as therapeutic targets for GC patients. We obtained 26 sets of stem cell-related genes from the StemChecker database. The Consensus clustering algorithm was employed to discern three distinct stemness subtypes. Prognostic outcomes, components of the tumor microenvironment (TME), and responses to therapies were compared among these subtypes. Following this, a stemness-risk model was formulated using weighted gene correlation network analysis (WGCNA), alongside Cox regression and random survival forest analyses. The C2 subtype predominantly showed enrichment in negative prognostic CSC gene sets and demonstrated an immunosuppressive TME. This specific subtype exhibited minimal responsiveness to immunotherapies and demonstrated reduced sensitivity to drugs. Four pivotal genes were integrated into the construction of the stemness model. Gastric cancer patients with higher stemness-risk scores demonstrated poorer prognoses, a greater presence of immunosuppressive components in TME, and lower rates of treatment response. Subset analysis indicated that only the low-stemness risk subtype derives benefit from 5-fluorouracil-based adjuvant chemotherapy. The model's effectiveness in immunotherapeutic prediction was further validated in the PRJEB25780 cohort. Our study categorized gastric cancer patients into three stemness subtypes, each demonstrating distinct prognoses, components of TME infiltration, and varying sensitivity or resistance to standard chemotherapy or targeted therapy. We propose that the stemness risk model may help the development of well-grounded treatment recommendations and prognostic assessments.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gang Che
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fei Teng
- Zhejiang University, Hangzhou, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Zhang X, Huang Y, Li Q, Zhong Y, Zhang Y, Hu J, Liu R, Luo X. Senescence risk score: a multifaceted prognostic tool predicting outcomes, stemness, and immune responses in colorectal cancer. Front Immunol 2023; 14:1265911. [PMID: 37828981 PMCID: PMC10566297 DOI: 10.3389/fimmu.2023.1265911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Colorectal cancer (CRC) remains a primary cause of cancer mortality globally, necessitating precise prognostic indicators for effective clinical management. Our study introduces the Senescence Risk Score (SRRS), based on several senescence-related genes (SRGs), a potent prognostic tool designed to measure cellular senescence in CRC. The higher SRRS predicts a poorer prognosis, providing a novel and efficient approach to patient stratification. Notably, we found that SRRS correlates with methylation and mutation variations, and increased immune infiltration in the tumor microenvironment, thus revealing potential therapeutic targets. We also discovered an inverse relationship between SRRS and cell stemness, which could have significant implications for cancer treatment strategies. Utilizing bioinformatics resources and machine learning, we identified LIMK1 and WRN as key genes associated with SRRS, further enhancing its prognostic value. Importantly, the modulation of these genes significantly impacts cellular senescence, proliferation, and stemness in CRC cells. In summary, our development of SRRS offers a powerful tool for CRC prognosis and paves the way for novel therapeutic strategies, underscoring its potential in transforming CRC patient management.
Collapse
Affiliation(s)
- Xiaojun Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilan Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Qian Li
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiqing Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanzhou Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingying Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Lin J, Feng D, Liu J, Yang Y, Wei X, Lin W, Lin Q. Construction of stemness gene score by bulk and single-cell transcriptome to characterize the prognosis of breast cancer. Aging (Albany NY) 2023; 15:8185-8203. [PMID: 37602872 PMCID: PMC10496995 DOI: 10.18632/aging.204963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Breast cancer (BC) is a heterogeneous disease characterized by significant differences in prognosis and therapy response. Numerous prognostic tools have been developed for breast cancer. Usually these tools are based on bulk RNA-sequencing (RNA-Seq) and ignore tumor heterogeneity. Consequently, the goal of this study was to construct a single-cell level tool for predicting the prognosis of BC patients. In this study, we constructed a stemness-risk gene score (SGS) model based on single-sample gene set enrichment analysis (ssGSEA). Patients were divided into two groups based on the median SGS. Patients with a high SGS scores had a significantly worse prognosis than those with a low SGS, and these groups exhibited differences in several tumor characteristics, such as immune infiltration, gene mutations, and copy number variants. Our results indicate that the SGS is a reliable tool for predicting prognosis and response to immunotherapy in BC patients.
Collapse
Affiliation(s)
- Jun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Deyi Feng
- Xiamen University, Xiamen 361100, China
| | - Jie Liu
- Department of Endoscopy, Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Ye Yang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Xujin Wei
- The Graduate School of Fujian Medical University, Fuzhou 350001, China
| | - Wenqian Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
36
|
Zhang T, Li J, Dai J, Yuan F, Yuan G, Chen H, Zhu D, Mao X, Qin L, Liu N, Yang M. Identification of a novel stemness-related signature with appealing implications in discriminating the prognosis and therapy responses for prostate cancer. Cancer Genet 2023; 276-277:48-59. [PMID: 37487324 DOI: 10.1016/j.cancergen.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE Cancer stemness represents the tumor-initiation and self-renewal potentials of cancer stem cells. It is involved in prostate cancer progression and resistance to therapy. Herein, we aimed to unveil the stemness features, establish a novel prognostic model, and identify potential therapeutic targets. METHODS 26 stemness-related signatures were obtained from StemChecker. The expression profiles and clinical traits of TCGA-PRAD were obtained from TCGA and cBioPortal, respectively. GSE5446 and GSE70769 cohorts were acquired from GEO. PRAD_MSKCC cohort was also retrieved via the cBioPortal. The consensus clustering method was used for stemness subclusters classification. WGCNA was used to identify hub genes related to the stemness subcluster. The most important feature was explored in vitro. RESULTS Prostate cancer patients of TCGA-PRAD were divided into two subclusters (C1 and C2) based on the enrichment scores of the 26 stemness-related signatures. C1 was characterized by decreased survival, rich infiltrations of M0 macrophages and regulatory T cells, minimum sensitivity to chemotherapy, and a low response to immunotherapy. Hub genes of the red module with the highest correlation with C1 were subsequently identified by WGCNA and subjected to stemness-related risk model construction based on the machine-learning framework. Prostate cancer patients with high stemness scores had unfavorable prognosis, immunosuppressive tumor microenvironment, minimum sensitivity to chemotherapy, and a low response to immunotherapy. MXD3, the most important factor of the model, can regulate the stemness traits of prostate cancer cells. CONCLUSIONS Our study depicted the stemness landscapes of prostate cancer and characterized two subclusters with diverse prognoses and tumor immune microenvironments. A stemness-risk signature was developed and demonstrated prospective implications in predicting prognosis and precision medicine.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China.
| | - Jun Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China
| | - Junyong Dai
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China
| | - Fang Yuan
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China
| | - Gangjun Yuan
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China
| | - Han Chen
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China
| | - Dawei Zhu
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China
| | - Xin Mao
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China
| | - Lei Qin
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China
| | - Nan Liu
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital (Chongqing Cancer Institute & Chongqing Cancer Hospital), Han Yu Road 181, 400030 Chongqing, China.
| | - Mingzhen Yang
- Department of Clinical Biochemistry, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
37
|
Pan F, Iwasaki M, Wu W, Jiang Y, Yang X, Zhu L, Zhao Z, Cleary ML. Enhancer remodeling drives MLL oncogene-dependent transcriptional dysregulation in leukemia stem cells. Blood Adv 2023; 7:2504-2519. [PMID: 36705973 PMCID: PMC10248086 DOI: 10.1182/bloodadvances.2022008787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Acute myeloid leukemia (AML) with mixed-lineage leukemia (MLL) gene rearrangement (MLLr) comprises a cellular hierarchy in which a subpopulation of cells serves as functional leukemia stem cells (LSCs). They are maintained by a unique gene expression program and chromatin states, which are thought to reflect the actions of enhancers. Here, we delineate the active enhancer landscape and observe pervasive enhancer malfunction in LSCs. Reconstruction of regulatory networks revealed a master set of hematopoietic transcription factors. We show that EP300 is an essential transcriptional coregulator for maintaining LSC oncogenic potential because it controls essential gene expression through modulation of H3K27 acetylation and assessments of transcription factor dependencies. Moreover, the EP300 inhibitor A-485 affects LSC growth by targeting enhancer activity via histone acetyltransferase domain inhibition. Together, these data implicate a perturbed MLLr-specific enhancer accessibility landscape, suggesting the possibility for disruption of the LSC enhancer regulatory axis as a promising therapeutic strategy in AML.
Collapse
Affiliation(s)
- Feng Pan
- Department of Pathology, Stanford University, Stanford, CA
| | - Masayuki Iwasaki
- Department of Pathology, Stanford University, Stanford, CA
- Department of Advanced Health Science, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Wenqi Wu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Yanan Jiang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Xin Yang
- Department of Pathology, Stanford University, Stanford, CA
| | - Li Zhu
- Department of Pathology, Stanford University, Stanford, CA
| | - Zhigang Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | | |
Collapse
|
38
|
Luo Y. The characteristic of stem-related genes with pancreatic carcinoma cell after irradiation. Heliyon 2023; 9:e17074. [PMID: 37484310 PMCID: PMC10361223 DOI: 10.1016/j.heliyon.2023.e17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose To investigate stem-related differentially expressed genes (DEGs) and their potential mechanism in pancreatic cancer cells (MIAPaCa-2) exposed to x-ray and proton radiation, as well as how these factors affected the prognosis of patients with pancreatic adenocarcinoma (PADC). Methods The stem-related DEGs were screened using the online tool Stemchecker after protons and x-rays were used to irradiate MIAPaCa-2 cells. Analysis was done on the probable processes and prognostic significance of the DEGs in PAC patients. Results Four datasets containing 401 DEGs were filtered, and the stem-related DEGs for each irradiation type indicated a variety of radiobiological characteristics. In pancreatic cancer cells, a number of stem-related DEGs may serve as biomarkers of radiation effects. Patients with pancreatic cancer demonstrated predictive significance for GRB7, B2M, and PMAIP1. Conclusions MIAPaCa-2 cells exposed to x-rays and protons repeatedly displayed heterogeneous expression of stem-related DEGs involved in complex radiosensitivity, radio-resistance, and radio-induced mortality pathways. GRB7 and B2M were considered potential radiation sensitivity indicators for pancreatic cancer.
Collapse
|
39
|
Yang J, Liu K, Yang L, Ji J, Qin J, Deng H, Wang Z. Identification and validation of a novel cuproptosis-related stemness signature to predict prognosis and immune landscape in lung adenocarcinoma by integrating single-cell and bulk RNA-sequencing. Front Immunol 2023; 14:1174762. [PMID: 37287976 PMCID: PMC10242006 DOI: 10.3389/fimmu.2023.1174762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Cancer stem cells (CSCs) play vital roles in lung adenocarcinoma (LUAD) recurrence, metastasis, and drug resistance. Cuproptosis has provided a novel insight into the treatment of lung CSCs. However, there is a lack of knowledge regarding the cuproptosis-related genes combined with the stemness signature and their roles in the prognosis and immune landscape of LUAD. Methods Cuproptosis-related stemness genes (CRSGs) were identified by integrating single-cell and bulk RNA-sequencing data in LUAD patients. Subsequently, cuproptosis-related stemness subtypes were classified using consensus clustering analysis, and a prognostic signature was constructed by univariate and least absolute shrinkage operator (LASSO) Cox regression. The association between signature with immune infiltration, immunotherapy, and stemness features was also investigated. Finally, the expression of CRSGs and the functional roles of target gene were validated in vitro. Results We identified six CRSGs that were mainly expressed in epithelial and myeloid cells. Three distinct cuproptosis-related stemness subtypes were identified and associated with the immune infiltration and immunotherapy response. Furthermore, a prognostic signature was constructed to predict the overall survival (OS) of LUAD patients based on eight differently expressed genes (DEGs) with cuproptosis-related stemness signature (KLF4, SCGB3A1, COL1A1, SPP1, C4BPA, TSPAN7, CAV2, and CTHRC1) and confirmed in validation cohorts. We also developed an accurate nomogram to improve clinical applicability. Patients in the high-risk group showed worse OS with lower levels of immune cell infiltration and higher stemness features. Ultimately, further cellular experiments were performed to verify the expression of CRSGs and prognostic DEGs and demonstrate that SPP1 could affect the proliferation, migration, and stemness of LUAD cells. Conclusion This study developed a novel cuproptosis-related stemness signature that can be used to predict the prognosis and immune landscape of LUAD patients, and provided potential therapeutic targets for lung CSCs in the future.
Collapse
Affiliation(s)
- Jia Yang
- *Correspondence: Zhongqi Wang, ; Jia Yang,
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu R, Li T, Zhang G, Jia Y, Liu J, Pan L, Li Y, Jia C. Pancancer Analysis Revealed the Value of RAC2 in Immunotherapy and Cancer Stem Cell. Stem Cells Int 2023; 2023:8485726. [PMID: 37214785 PMCID: PMC10198763 DOI: 10.1155/2023/8485726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Objective To investigate the oncogenic effect and clinical significance of RAC2 in pancarcinoma from the perspective of tumor immunity and cancer stem cell. Methods After in-depth mining of TCGA, GEO, UCSC, and other databases, basic information of the RAC2 gene and its expression in tumor tissues as well as the relationship between RAC2 and tumor were analyzed based on survival, mutation, immune microenvironment, tumor stemness, and enrichment analysis on related pathways. Results RAC2 mRNA expression was increased in most tumor tissues and was associated with their prognosis. Compared to normal tissues, the RAC2 mutation rate was higher in patients with skin melanoma, uterine sarcoma, and endometrial cancer. RAC2 had a strong relation with immune cell infiltration, immunomodulators, immunotherapy markers, cancer stem cell of THYM, and immune-related pathways. Conclusions This study explored the potential importance of RAC2 in the prognosis, immunotherapy, and cancer stem cell of 33 cancers, laying the foundation for mechanistic experiments and its future application in clinical practice. However, the results using bioinformatics methods could be affected by the differences in patients across databases. Thus, the present results were preliminary and required further experimental validation.
Collapse
Affiliation(s)
- Ranran Liu
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Tianyu Li
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Guohong Zhang
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yejuan Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jingxuan Liu
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Lijia Pan
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yunfeng Li
- Hebei Key Laboratory of Chinese Medicine Research on Cardiocerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chunsheng Jia
- School of Acupuncture, Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
41
|
Barata T, Duarte I, Futschik ME. Integration of Stemness Gene Signatures Reveals Core Functional Modules of Stem Cells and Potential Novel Stemness Genes. Genes (Basel) 2023; 14:genes14030745. [PMID: 36981016 PMCID: PMC10048104 DOI: 10.3390/genes14030745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Stem cells encompass a variety of different cell types which converge on the dual capacity to self-renew and differentiate into one or more lineages. These characteristic features are key for the involvement of stem cells in crucial biological processes such as development and ageing. To decipher their underlying genetic substrate, it is important to identify so-called stemness genes that are common to different stem cell types and are consistently identified across different studies. In this meta-analysis, 21 individual stemness signatures for humans and another 21 for mice, obtained from a variety of stem cell types and experimental techniques, were compared. Although we observed biological and experimental variability, a highly significant overlap between gene signatures was identified. This enabled us to define integrated stemness signatures (ISSs) comprised of genes frequently occurring among individual stemness signatures. Such integrated signatures help to exclude false positives that can compromise individual studies and can provide a more robust basis for investigation. To gain further insights into the relevance of ISSs, their genes were functionally annotated and connected within a molecular interaction network. Most importantly, the present analysis points to the potential roles of several less well-studied genes in stemness and thus provides promising candidates for further experimental validation.
Collapse
Affiliation(s)
- Tânia Barata
- SysBioLab, Centre for Biomedical Research (CBMR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Isabel Duarte
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Matthias E Futschik
- SysBioLab, Centre for Biomedical Research (CBMR), Universidade do Algarve, 8005-139 Faro, Portugal
- School of Biomedical Sciences, Faculty of Health, Derriford Research Facility, University of Plymouth, Plymouth PL6 8BU, UK
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London W12 0NN, UK
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
42
|
Crosstalk between Mesenchymal Stem Cells and Cancer Stem Cells Reveals a Novel Stemness-Related Signature to Predict Prognosis and Immunotherapy Responses for Bladder Cancer Patients. Int J Mol Sci 2023; 24:ijms24054760. [PMID: 36902193 PMCID: PMC10003512 DOI: 10.3390/ijms24054760] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) and cancer stem cells (CSCs) maintain bladder cancer (BCa) stemness and facilitate the progression, metastasis, drug resistance, and prognosis. Therefore, we aimed to decipher the communication networks, develop a stemness-related signature (Stem. Sig.), and identify a potential therapeutic target. BCa single-cell RNA-seq datasets (GSE130001 and GSE146137) were used to identify MSCs and CSCs. Pseudotime analysis was performed by Monocle. Stem. Sig. was developed by analyzing the communication network and gene regulatory network (GRN) that were decoded by NicheNet and SCENIC, respectively. The molecular features of the Stem. Sig. were evaluated in TCGA-BLCA and two PD-(L)1 treated datasets (IMvigor210 and Rose2021UC). A prognostic model was constructed based on a 101 machine-learning framework. Functional assays were performed to evaluate the stem traits of the hub gene. Three subpopulations of MSCs and CSCs were first identified. Based on the communication network, the activated regulons were found by GRN and regarded as the Stem. Sig. Following unsupervised clustering, two molecular subclusters were identified and demonstrated distinct cancer stemness, prognosis, immunological TME, and response to immunotherapy. Two PD-(L)1 treated cohorts further validated the performance of Stem. Sig. in prognosis and immunotherapeutic response prediction. A prognostic model was then developed, and a high-risk score indicated a poor prognosis. Finally, the hub gene SLC2A3 was found exclusively upregulated in extracellular matrix-related CSCs, predicting prognosis, and shaping an immunosuppressive tumor microenvironment. Functional assays uncovered the stem traits of SLC2A3 in BCa by tumorsphere formation and western blotting. The Stem. Sig. derived from MSCs and CSCs can predict prognosis and response to immunotherapy for BCa. Besides, SLC2A3 may serve as a promising stemness target facilitating cancer effective management.
Collapse
|
43
|
Durand S, Bruelle M, Bourdelais F, Bennychen B, Blin-Gonthier J, Isaac C, Huyghe A, Martel S, Seyve A, Vanbelle C, Adrait A, Couté Y, Meyronet D, Catez F, Diaz JJ, Lavial F, Ricci EP, Ducray F, Gabut M. RSL24D1 sustains steady-state ribosome biogenesis and pluripotency translational programs in embryonic stem cells. Nat Commun 2023; 14:356. [PMID: 36690642 PMCID: PMC9870888 DOI: 10.1038/s41467-023-36037-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Embryonic stem cell (ESC) fate decisions are regulated by a complex circuitry that coordinates gene expression at multiple levels from chromatin to mRNA processing. Recently, ribosome biogenesis and translation have emerged as key pathways that efficiently control stem cell homeostasis, yet the underlying molecular mechanisms remain largely unknown. Here, we identified RSL24D1 as highly expressed in both mouse and human pluripotent stem cells. RSL24D1 is associated with nuclear pre-ribosomes and is required for the biogenesis of 60S subunits in mouse ESCs. Interestingly, RSL24D1 depletion significantly impairs global translation, particularly of key pluripotency factors and of components from the Polycomb Repressive Complex 2 (PRC2). While having a moderate impact on differentiation, RSL24D1 depletion significantly alters ESC self-renewal and lineage commitment choices. Altogether, these results demonstrate that RSL24D1-dependant ribosome biogenesis is both required to sustain the expression of pluripotent transcriptional programs and to silence PRC2-regulated developmental programs, which concertedly dictate ESC homeostasis.
Collapse
Affiliation(s)
- Sébastien Durand
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
| | - Marion Bruelle
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
| | - Fleur Bourdelais
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
- Inovarion, 75005, Paris, France
| | - Bigitha Bennychen
- Dept. of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Juliana Blin-Gonthier
- Laboratoire de Biologie et de Modélisation de la Cellule, ENS de Lyon, CNRS UMR 5239, Inserm U1293, Lyon, France
| | - Caroline Isaac
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
| | - Aurélia Huyghe
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
- Equipe labellisée la Ligue contre le cancer, Lyon, France
| | - Sylvie Martel
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
| | - Antoine Seyve
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Neuro-oncology department, Hospices Civils de Lyon, Lyon, France
| | - Christophe Vanbelle
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
| | - Annie Adrait
- University Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - Yohann Couté
- University Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, FR2048, 38000, Grenoble, France
| | - David Meyronet
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Institut de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Catez
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
| | - Jean-Jacques Diaz
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
| | - Fabrice Lavial
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Labex Dev2Can, Lyon, France
- Equipe labellisée la Ligue contre le cancer, Lyon, France
| | - Emiliano P Ricci
- Laboratoire de Biologie et de Modélisation de la Cellule, ENS de Lyon, CNRS UMR 5239, Inserm U1293, Lyon, France
| | - François Ducray
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France
- Institut Convergence Plascan, Lyon, France
- Neuro-oncology department, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Gabut
- Cancer Initiation and Tumoral Cell Identity (CITI) Department. Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Université Claude Bernard Lyon I, Centre Léon Bérard, Lyon, France.
- Institut Convergence Plascan, Lyon, France.
| |
Collapse
|
44
|
Identification of SALL4 Expressing Islet-1+ Cardiovascular Progenitor Cell Clones. Int J Mol Sci 2023; 24:ijms24021780. [PMID: 36675298 PMCID: PMC9863009 DOI: 10.3390/ijms24021780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
The utilization of cardiac progenitor cells (CPCs) has been shown to induce favorable regenerative effects. While there are various populations of endogenous CPCs in the heart, there is no consensus regarding which population is ideal for cell-based regenerative therapy. Early-stage progenitor cells can be differentiated into all cardiovascular lineages, including cardiomyocytes and endothelial cells. Identifying an Islet-1+ (Isl-1+) early-stage progenitor population with enhanced stemness, multipotency and differentiation potential would be beneficial for the development of novel regenerative therapies. Here, we investigated the transcriptome of human neonatal Isl-1+ CPCs. Isl-1+ human neonatal CPCs exhibit enhanced stemness properties and were found to express Spalt-like transcription factor 4 (SALL4). SALL4 plays a role in embryonic development as well as proliferation and expansion of hematopoietic progenitor cells. SALL4, SOX2, EpCAM and TBX5 are co-expressed in the majority of Isl-1+ clones isolated from neonatal patients. The pre-mesendodermal transcript TFAP2C was identified in select Isl-1, SALL4, SOX2, EpCAM and TBX5 expressing clones. The ability to isolate and expand pre-mesendodermal stage cells from human patients is a novel finding that holds potential value for applications in regenerative medicine.
Collapse
|
45
|
Chen H, Yang W, Xue X, Li Y, Jin Z, Ji Z. Integrated Analysis Revealed an Inflammatory Cancer-Associated Fibroblast-Based Subtypes with Promising Implications in Predicting the Prognosis and Immunotherapeutic Response of Bladder Cancer Patients. Int J Mol Sci 2022; 23:ijms232415970. [PMID: 36555612 PMCID: PMC9781727 DOI: 10.3390/ijms232415970] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory cancer-associated fibroblasts (iCAFs) are closely related to progression, anticancer therapeutic resistance, and poor prognosis of bladder cancer (BCa). However, the functional role of iCAFs in BCa has been poorly studied. In our study, two BCa scRNA-seq datasets (GSE130001 and GSE146137) were obtained and integrated by the Seurat pipeline. Based on reported markers (COL1A1 and PDGFRA), iCAFs were identified and the related signature of 278 markers was developed. Following unsupervised consensus clustering, two molecular subtypes of TCGA-BLCA were identified and characterized by distinct dysregulated cancer hallmarks, immunological tumor microenvironments, prognoses, responses to chemotherapy/immunotherapy, and stemness. Subsequently, the robustness of the signature-based clustering, in terms of prognosis and therapeutic response prediction, was validated in a GEO-meta cohort with seven independent GEO datasets of 519 BCa patients, and three immune checkpoint inhibitor (ICI)-treated cohorts. Considering the heterogeneity, re-clustering of iCAFs was performed and a subpopulation, named "LOXL2+ iCAFs", was identified. Co-culture CM derived from LOXL2 overexpression/silencing CAFs with T24 cells revealed that overexpression of LOXL2 in CAFs promoted while silencing LOXL2 inhibited the proliferation, migration, and invasion of T24 cells through IL32. Moreover, the positive correlation between LOXL2 and CD206, an M2 macrophage polarization marker, has been observed and validated. Collectively, integrated single-cell and bulk RNA sequencing analyses revealed an iCAF-related signature that can predict prognosis and response to immunotherapy for BCa. Additionally, the hub gene LOXL2 may serve as a promising target for BCa treatment.
Collapse
|
46
|
Thomas P, Srivastava S, Udayashankara AH, Damodaran S, Yadav L, Mathew B, Suresh SB, Mandal AK, Srikantia N. RhoC in association with TET2/WDR5 regulates cancer stem cells by epigenetically modifying the expression of pluripotency genes. Cell Mol Life Sci 2022; 80:1. [PMID: 36469134 PMCID: PMC11073244 DOI: 10.1007/s00018-022-04645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Emerging evidence illustrates that RhoC has divergent roles in cervical cancer progression where it controls epithelial to mesenchymal transition (EMT), migration, angiogenesis, invasion, tumor growth, and radiation response. Cancer stem cells (CSCs) are the primary cause of recurrence and metastasis and exhibit all of the above phenotypes. It, therefore, becomes imperative to understand if RhoC regulates CSCs in cervical cancer. In this study, cell lines and clinical specimen-based findings demonstrate that RhoC regulates tumor phenotypes such as clonogenicity and anoikis resistance. Accordingly, inhibition of RhoC abrogated these phenotypes. RNA-seq analysis revealed that RhoC over-expression resulted in up-regulation of 27% of the transcriptome. Further, the Infinium MethylationEPIC array showed that RhoC over-expressing cells had a demethylated genome. Studies divulged that RhoC via TET2 signaling regulated the demethylation of the genome. Further investigations comprising ChIP-seq, reporter assays, and mass spectrometry revealed that RhoC associates with WDR5 in the nucleus and regulates the expression of pluripotency genes such as Nanog. Interestingly, clinical specimen-based investigations revealed the existence of a subset of tumor cells marked by RhoC+/Nanog+ expression. Finally, combinatorial inhibition (in vitro) of RhoC and its partners (WDR5 and TET2) resulted in increased sensitization of clinical specimen-derived cells to radiation. These findings collectively reveal a novel role for nuclear RhoC in the epigenetic regulation of Nanog and identify RhoC as a regulator of CSCs. The study nominates RhoC and associated signaling pathways as therapeutic targets.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
- School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Medical College Hospital, Bangalore, 560034, India.
| | - Avinash H Udayashankara
- Department of Radiation Oncology, St John's Medical College Hospital, Bangalore, 560034, India
| | - Samyuktha Damodaran
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Lokendra Yadav
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Medical College Hospital, Bangalore, 560034, India
| | - Boby Mathew
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Srinag Bangalore Suresh
- Translational and Molecular Biology Laboratory (TMBL), Division of Molecular Biology and Genetics, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Amit Kumar Mandal
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute (SJRI), St. John's Medical College, Bangalore, 560034, India
| | - Nirmala Srikantia
- Department of Radiation Oncology, St John's Medical College Hospital, Bangalore, 560034, India
| |
Collapse
|
47
|
Liu Z, Weng S, Dang Q, Xu H, Ren Y, Guo C, Xing Z, Sun Z, Han X. Gene interaction perturbation network deciphers a high-resolution taxonomy in colorectal cancer. eLife 2022; 11:81114. [DOI: 10.7554/elife.81114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Molecular subtypes of colorectal cancer (CRC) are currently identified via the snapshot transcriptional profiles, largely ignoring the dynamic changes of gene expressions. Conversely, biological networks remain relatively stable irrespective of time and condition. Here, we introduce an individual-specific gene interaction perturbation network-based (GIN) approach and identify six GIN subtypes (GINS1-6) with distinguishing features: (i) GINS1 (proliferative, 24%~34%), elevated proliferative activity, high tumor purity, immune-desert, PIK3CA mutations, and immunotherapeutic resistance; (ii) GINS2 (stromal-rich, 14%~22%), abundant fibroblasts, immune-suppressed, stem-cell-like, SMAD4 mutations, unfavorable prognosis, high potential of recurrence and metastasis, immunotherapeutic resistance, and sensitive to fluorouracil-based chemotherapy; (iii) GINS3 (KRAS-inactivated, 13%~20%), high tumor purity, immune-desert, activation of EGFR and ephrin receptors, chromosomal instability (CIN), fewer KRAS mutations, SMOC1 methylation, immunotherapeutic resistance, and sensitive to cetuximab and bevacizumab; (iv) GINS4 (mixed, 10%~19%), moderate level of stromal and immune activities, transit-amplifying-like, and TMEM106A methylation; (v) GINS5 (immune-activated, 12%~24%), stronger immune activation, plentiful tumor mutation and neoantigen burden, microsatellite instability and high CpG island methylator phenotype, BRAF mutations, favorable prognosis, and sensitive to immunotherapy and PARP inhibitors; (vi) GINS6, (metabolic, 5%~8%), accumulated fatty acids, enterocyte-like, and BMP activity. Overall, the novel high-resolution taxonomy derived from an interactome perspective could facilitate more effective management of CRC patients.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University
- Interventional Institute of Zhengzhou University
- Interventional Treatment and Clinical Research Center of Henan Province
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University
- Interventional Institute of Zhengzhou University
- Interventional Treatment and Clinical Research Center of Henan Province
| |
Collapse
|
48
|
Mining Transcriptomic Data to Uncover the Association between CBX Family Members and Cancer Stemness. Int J Mol Sci 2022; 23:ijms232113083. [PMID: 36361869 PMCID: PMC9656300 DOI: 10.3390/ijms232113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Genetic and epigenetic changes might facilitate the acquisition of stem cell-like phenotypes of tumors, resulting in worse patients outcome. Although the role of chromobox (CBX) domain proteins, a family of epigenetic factors that recognize specific histone marks, in the pathogenesis of several tumor types is well documented, little is known about their association with cancer stemness. Here, we have characterized the relationship between the CBX family members' expression and cancer stemness in liver, lung, pancreatic, and uterine tumors using publicly available TCGA and GEO databases and harnessing several bioinformatic tools (i.e., Oncomine, GEPIA2, TISIDB, GSCA, UALCAN, R2 platform, Enrichr, GSEA). We demonstrated that significant upregulation of CBX3 and downregulation of CBX7 are consistently associated with enriched cancer stem-cell-like phenotype across distinct tumor types. High CBX3 expression is observed in higher-grade tumors that exhibit stem cell-like traits, and CBX3-associated gene expression profiles are robustly enriched with stemness markers and targets for c-Myc transcription factor regardless of the tumor type. Similar to high-stemness tumors, CBX3-overexpressing cancers manifest a higher mutation load. On the other hand, higher-grade tumors are characterized by the significant downregulation of CBX7, and CBX7-associated gene expression profiles are significantly depleted with stem cell markers. In contrast to high-stemness tumors, cancer with CBX7 upregulation exhibit a lower mutation burden. Our results clearly demonstrate yet unrecognized association of high CBX3 and low CBX7 expression with cancer stem cell-like phenotype of solid tumors.
Collapse
|
49
|
Zheng H, Liu H, Li H, Dou W, Wang J, Zhang J, Liu T, Wu Y, Liu Y, Wang X. Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Stem Cell Res Ther 2022; 13:244. [PMID: 35681225 PMCID: PMC9185878 DOI: 10.1186/s13287-022-02913-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/22/2022] [Indexed: 02/08/2023] Open
Abstract
Background It is generally accepted that colorectal cancer (CRC) originates from cancer stem cells (CSCs), which are responsible for CRC progression, metastasis and therapy resistance. The high heterogeneity of CSCs has precluded clinical application of CSC-targeting therapy. Here, we aimed to characterize the stemness landscapes and screen for certain patients more responsive to immunotherapy. Methods Twenty-six stem cell gene sets were acquired from StemChecker database. Consensus clustering algorithm was applied for stemness subtypes identification on 1,467 CRC samples from TCGA and GEO databases. The differences in prognosis, tumor microenvironment (TME) components, therapy responses were evaluated among subtypes. Then, the stemness-risk model was constructed by weighted gene correlation network analysis (WGCNA), Cox regression and random survival forest analyses, and the most important marker was experimentally verified. Results Based on single-sample gene set enrichment analysis (ssGSEA) enrichments scores, CRC patients were classified into three subtypes (C1, C2 and C3). C3 subtype exhibited the worst prognosis, highest macrophages M0 and M2 infiltrations, immune and stromal scores, and minimum sensitivity to immunotherapies, but was more sensitive to drugs like Bosutinib, Docetaxel, Elesclomol, Gefitinib, Lenalidomide, Methotrexate and Sunitinib. The turquoise module was identified by WGCNA that it was most positively correlated with C3 but most negatively with C2, and five hub genes in turquoise module were identified for stemness model construction. CRC patients with higher stemness scores exhibited worse prognosis, more immunosuppressive components in TME and lower immunotherapeutic responses. Additionally, the model’s immunotherapeutic prediction efficacy was further confirmed from two immunotherapy cohorts (anti-PD-L1 in IMvigor210 cohort and anti-PD-1 in GSE78220 cohort). Mechanistically, Gene Set Enrichment Analysis (GSEA) results revealed high stemness score group was enriched in interferon gamma response, interferon alpha response, P53 pathway, coagulation, apoptosis, KRAS signaling upregulation, complement, epithelial–mesenchymal transition (EMT) and IL6-mediated JAK-STAT signaling gene sets. Conclusions Our study characterized three stemness-related subtypes with distinct prognosis and TME patterns in CRC patients, and a 5-gene stemness-risk model was constructed by comprehensive bioinformatic analyses. We suggest our stemness model has prospective clinical implications for prognosis evaluation and might facilitate physicians selecting prospective responders for preferential use of current immune checkpoint inhibitors. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02913-0.
Collapse
Affiliation(s)
- Hang Zheng
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Heshu Liu
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huayu Li
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Weidong Dou
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Jingui Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Junling Zhang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Tao Liu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yingchao Wu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Yucun Liu
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China
| | - Xin Wang
- Department of General Surgery, Peking University First Hospital, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
50
|
Song D, Wei Y, Hu Y, Sun Y, Liu M, Ren Q, Hu Z, Guo Q, Wang Y, Zhou Y. Identification of immunophenotypes in esophageal squamous cell carcinoma based on immune gene sets. Clin Transl Oncol 2022; 24:1100-1114. [PMID: 35098447 DOI: 10.1007/s12094-021-02749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/06/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high heterogeneity. Research on molecular mechanisms involved in the process of tumor origination and progression is extremely limited to investigating mechanisms of molecular typing for ESCC. METHODS After comprehensively analyzing the gene expression profiles in The Cancer Genome Atlas and Gene Expression Omnibus databases, we identified four immunotypes of ESCC (referred to as C1-C4) based on the gene sets of 28 immune cell subpopulations. The discrepancies in prognostic value, clinical features, drug sensitivity, and tumor components between the immunotypes were individually analyzed. RESULTS The ranking of immune infiltration is C1 > C4 > C3 > C2. These subtypes are characterized by high and low expression of immune checkpoint proteins, enrichment and insufficiency of immune-related pathways, and differential distribution of immune cell subgroups. Poorer survival was observed in the C1 subtype, which we hypothesized could be caused by an immunosuppressive cell population. Fortunately, C1's susceptibility to anti-PD-1 therapy offers hope for patients with poor prognosis in advanced stages. On the other hand, C4 is sensitive to docetaxel, which may offer novel treatment strategies for ESCC in the future. It is worth noting that immunophenotyping is tightly bound to the abundance of stromal components and stem cells, which could explain the tumor immune escape to some extent. Ultimately, determination of hub genes based on the C1 subtypes provides a reference for the discovery of immunotarget drugs against ESCC. CONCLUSION The identification of immunophenotypes in our study provides new therapeutic strategies for patients with ESCC.
Collapse
Affiliation(s)
- Danlei Song
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yongjian Wei
- The First Department of Hepatobiliary and Pancreatic Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yuping Hu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Hospital of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yueting Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Min Liu
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Ren
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zenan Hu
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qinghong Guo
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yuping Wang
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yongning Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|