1
|
Guerra-Resendez RS, Lydon SL, Ma AJ, Bedford GC, Reed DR, Kim S, Terán ER, Nishiguchi T, Escobar M, DiNardo AR, Hilton IB. Characterization of Rationally Designed CRISPR/Cas9-Based DNA Methyltransferases with Distinct Methyltransferase and Gene Silencing Activities in Human Cell Lines and Primary Human T Cells. ACS Synth Biol 2025; 14:384-397. [PMID: 39898483 PMCID: PMC11854388 DOI: 10.1021/acssynbio.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Nuclease-deactivated Cas (dCas) proteins can be used to recruit epigenetic effectors, and this class of epigenetic editing technologies has revolutionized the ability to synthetically control the mammalian epigenome and transcriptome. DNA methylation is one of the most important and well-characterized epigenetic modifications in mammals, and while many different forms of dCas-based DNA methyltransferases (dCas-DNMTs) have been developed for programmable DNA methylation, these tools are frequently poorly tolerated and/or lowly expressed in mammalian cell types. Further, the use of dCas-DNMTs has largely been restricted to cell lines, which limits mechanistic insights in karyotypically normal contexts and hampers translational utility in the longer term. Here, we extend previous insights into the rational design of the catalytic core of the mammalian DNMT3A methyltransferase and test three dCas9-DNMT3A/3L variants across different human cell lines and in primary donor-derived human T cells. We find that mutations within the catalytic core of DNMT3A stabilize the expression of dCas9-DNMT3A/3L fusion proteins in Jurkat T cells without sacrificing DNA methylation or gene-silencing performance. We also show that these rationally engineered mutations in DNMT3A alter DNA methylation profiles at loci targeted with dCas9-DNMT3A/3L in cell lines and donor-derived human T cells. Finally, we leverage the transcriptionally repressive effects of dCas9-DNMT3A/3L variants to functionally link the expression of a key immunomodulatory transcription factor to cytokine secretion in donor-derived T cells. Overall, our work expands the synthetic biology toolkit for epigenetic editing and provides a roadmap for the use of engineered dCas-based DNMTs in primary mammalian cell types.
Collapse
Affiliation(s)
| | | | - Alex J. Ma
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Guy C. Bedford
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Daniel R. Reed
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Sunghwan Kim
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Erik R. Terán
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Tomoki Nishiguchi
- Global
Tuberculosis Program, Texas Children’s Hospital, Immigrant
and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mario Escobar
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Andrew R. DiNardo
- Global
Tuberculosis Program, Texas Children’s Hospital, Immigrant
and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Isaac B. Hilton
- Systems,
Synthetic, and Physical Biology Program, Rice University, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
3
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 PMCID: PMC11799355 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
McCutcheon SR, Rohm D, Iglesias N, Gersbach CA. Epigenome editing technologies for discovery and medicine. Nat Biotechnol 2024; 42:1199-1217. [PMID: 39075148 DOI: 10.1038/s41587-024-02320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/19/2024] [Indexed: 07/31/2024]
Abstract
Epigenome editing has rapidly evolved in recent years, with diverse applications that include elucidating gene regulation mechanisms, annotating coding and noncoding genome functions and programming cell state and lineage specification. Importantly, given the ubiquitous role of epigenetics in complex phenotypes, epigenome editing has unique potential to impact a broad spectrum of diseases. By leveraging powerful DNA-targeting technologies, such as CRISPR, epigenome editing exploits the heritable and reversible mechanisms of epigenetics to alter gene expression without introducing DNA breaks, inducing DNA damage or relying on DNA repair pathways.
Collapse
Affiliation(s)
- Sean R McCutcheon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Dahlia Rohm
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Yan B, Luo P, Qiu H, Wang J, Xiong Q, Hu W, Wang F, Liu G, Zhi Y, Fang Q, Shi C, Li W. PC4 promotes bladder cancer progression and stemness by directly interacting with Sp1 to transcriptionally activate the Wnt5a/β-catenin pathway. Pathol Res Pract 2024; 259:155369. [PMID: 38820928 DOI: 10.1016/j.prp.2024.155369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Bladder cancer is a common malignancy with a poor prognosis worldwide. Positive cofactor 4 (PC4) is widely reported to promote malignant phenotypes in various tumors. Nonetheless, the biological function and mechanism of PC4 in bladder cancer remain unclear. Here, for the first time, we report that PC4 is elevated in bladder cancer and is associated with patient survival. Moreover, PC4 deficiency obviously inhibited bladder cancer cell proliferation and metastasis by reducing the expression of genes related to cancer stemness (CD44, CD47, KLF4 and c-Myc). Through RNA-seq and experimental verification, we found that activation of the Wnt5a/β-catenin pathway is involved in the malignant function of PC4. Mechanistically, PC4 directly interacts with Sp1 to promote Wnt5a transcription. Thus, our study furthers our understanding of the role of PC4 in cancer stemness regulation and provides a promising strategy for bladder cancer therapy.
Collapse
Affiliation(s)
- Benhuang Yan
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Peng Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Heping Qiu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jianwu Wang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qin Xiong
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiwei Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fulong Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoyu Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chunmeng Shi
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Weibing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| |
Collapse
|
6
|
Zhou C, Wagner S, Liang FS. Induced proximity labeling and editing for epigenetic research. Cell Chem Biol 2024; 31:1118-1131. [PMID: 38866004 PMCID: PMC11193966 DOI: 10.1016/j.chembiol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Epigenetic regulation plays a pivotal role in various biological and disease processes. Two key lines of investigation have been pursued that aim to unravel endogenous epigenetic events at particular genes (probing) and artificially manipulate the epigenetic landscape (editing). The concept of induced proximity has inspired the development of powerful tools for epigenetic research. Induced proximity strategies involve bringing molecular effectors into spatial proximity with specific genomic regions to achieve the probing or manipulation of local epigenetic environments with increased proximity. In this review, we detail the development of induced proximity methods and applications in shedding light on the intricacies of epigenetic regulation.
Collapse
Affiliation(s)
- Chenwei Zhou
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Sarah Wagner
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA
| | - Fu-Sen Liang
- Department of Chemistry, Case Western Reserve University, 2080 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
7
|
Chen Y, Luo X, Kang R, Cui K, Ou J, Zhang X, Liang P. Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment. J Genet Genomics 2024; 51:159-183. [PMID: 37516348 DOI: 10.1016/j.jgg.2023.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.
Collapse
Affiliation(s)
- Yuxi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiao Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Rui Kang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Kaixin Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Ou
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiya Zhang
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
8
|
Fadul SM, Arshad A, Mehmood R. CRISPR-based epigenome editing: mechanisms and applications. Epigenomics 2023; 15:1137-1155. [PMID: 37990877 DOI: 10.2217/epi-2023-0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Epigenomic anomalies contribute significantly to the development of numerous human disorders. The development of epigenetic research tools is essential for understanding how epigenetic marks contribute to gene expression. A gene-editing technique known as CRISPR (clustered regularly interspaced short palindromic repeats) typically targets a particular DNA sequence using a guide RNA (gRNA). CRISPR/Cas9 technology has been remodeled for epigenome editing by generating a 'dead' Cas9 protein (dCas9) that lacks nuclease activity and juxtaposing it with an epigenetic effector domain. Based on fusion partners of dCas9, a specific epigenetic state can be achieved. CRISPR-based epigenome editing has widespread application in drug screening, cancer treatment and regenerative medicine. This paper discusses the tools developed for CRISPR-based epigenome editing and their applications.
Collapse
Affiliation(s)
- Shaima M Fadul
- Department of Life Sciences, College of Science & General Studies, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| | - Aleeza Arshad
- Medical Teaching Insitute, Ayub Teaching Hospital, Abbottabad, 22020, Pakistan
| | - Rashid Mehmood
- Department of Life Sciences, College of Science & General Studies, Alfaisal University, Riyadh, 11533, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Sun J, Li Y, Shi M, Tian H, Li J, Zhu K, Guo Y, Mu Y, Geng J, Li Z. A Positive Feedback Loop of lncRNA HOXD-AS2 and SMYD3 Facilitates Hepatocellular Carcinoma Progression via the MEK/ERK Pathway. J Hepatocell Carcinoma 2023; 10:1237-1256. [PMID: 37533602 PMCID: PMC10390764 DOI: 10.2147/jhc.s416946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose HOX cluster-embedded long noncoding RNAs (HOX-lncRNAs) have been shown to be tightly related to hepatocellular carcinoma (HCC). However, the potential biological roles and underlying molecular mechanism of HOX-lncRNAs in HCC largely remains to be elucidated. Methods The expression signature of eighteen HOX-lncRNAs in HCC cell lines were measured by qRT-PCR. HOXD-AS2 expression and its clinical significance in HCC was investigated by bioinformatics analysis utilizing the TCGA data. Subcellular localization of HOXD-AS2 in HCC cells was observed by RNA-FISH. Loss‑of‑function experiments in vitro and in vivo were conducted to probe the roles of HOXD-AS2 in HCC. Potential HOXD-AS2-controlled genes and signaling pathways were revealed by RNA-seq. Rescue experiments were performed to validate that SMYD3 mediates HOXD-AS2 promoting HCC progression. The positive feedback loop of HOXD-AS2 and SMYD3 was identified by luciferase reporter assay and ChIP-qPCR. Results HOXD-AS2 was dramatically elevated in HCC, and its up-regulation exhibited a positive association with aggressive clinical features (T stage, pathologic stage, histologic grade, AFP level, and vascular invasion) and unfavorable prognosis of HCC patients. HOXD-AS2 was distributed both in the nucleus and the cytoplasm of HCC cells. Knockdown of HOXD-AS2 restrained the proliferation, migration, invasion of HCC cells in vitro, as well as tumor growth in subcutaneous mouse model. Transcriptome analysis demonstrated that SMYD3 expression and activity of MEK/ERK pathway were impaired by silencing HOXD-AS2 in HCC cells. Rescue experiments revealed that SMYD3 as downstream target mediated oncogenic functions of HOXD-AS2 in HCC cells through altering the expression of cyclin B1, cyclin E1, MMP2 as well as the activity of MEK/ERK pathway. Additionally, HOXD-AS2 was uncovered to be positively regulated at transcriptional level by its downstream gene of SMYD3. Conclusion HOXD-AS2, a novel oncogenic HOX-lncRNA, facilitates HCC progression by forming a positive feedback loop with SMYD3 and activating the MEK/ERK pathway.
Collapse
Affiliation(s)
- Jin Sun
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yingnan Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Mengjiao Shi
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hongwei Tian
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jun Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Kai Zhu
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Guo
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yanhua Mu
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Geng
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Center for Tumor and Immunology, the Precision Medical Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- Department of Geriatric General Surgery, the Second Affiliated Hospital of Xi’ an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
10
|
Zhao J, Yang S, Xu Y, Qin S, Bie F, Chen L, Zhou F, Xie J, Liu X, Shu B, Qi S. Mechanical pressure-induced dedifferentiation of myofibroblasts inhibits scarring via SMYD3/ITGBL1 signaling. Dev Cell 2023:S1534-5807(23)00190-9. [PMID: 37192621 DOI: 10.1016/j.devcel.2023.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/21/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023]
Abstract
Pressure therapy (PT) is an effective intervention for reducing scarring, but its underlying mechanism remains largely unclear. Here, we demonstrate that human scar-derived myofibroblasts dedifferentiate into normal fibroblasts in response to PT, and we identify how SMYD3/ITGBL1 contributes to the nuclear relay of mechanical signals. In clinical specimens, reductions in SMYD3 and ITGBL1 expression levels are strongly associated with the anti-scarring effects of PT. The integrin β1/ILK pathway is inhibited in scar-derived myofibroblasts upon PT, leading to decreased TCF-4 and subsequently to reductions in SMYD3 expression, which reduces the levels of H3K4 trimethylation (H3K4me3) and further suppresses ITGBL1 expression, resulting the dedifferentiation of myofibroblasts into fibroblasts. In animal models, blocking SMYD3 expression results in reductions of scarring, mimicking the positive effects of PT. Our results show that SMYD3 and ITGBL1 act as sensors and mediators of mechanical pressure to inhibit the progression of fibrogenesis and provide therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
- Jingling Zhao
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuai Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| | - Yingbin Xu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shitian Qin
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fan Bie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Lei Chen
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Fei Zhou
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Julin Xie
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xusheng Liu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Bin Shu
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| | - Shaohai Qi
- Department of Burns, Wound Repair and Reconstruction, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
11
|
Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Front Cell Dev Biol 2023; 11:1181764. [PMID: 37228649 PMCID: PMC10203431 DOI: 10.3389/fcell.2023.1181764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
During the last decades, male urogenital cancers (including prostate, renal, bladder and testicular cancers) have become one of the most frequently encountered malignancies affecting all ages. While their great variety has promoted the development of various diagnosis, treatment and monitoring strategies, some aspects such as the common involvement of epigenetic mechanisms are still not elucidated. Epigenetic processes have come into the spotlight in the past years as important players in the initiation and progression of tumors, leading to a plethora of studies highlighting their potential as biomarkers for diagnosis, staging, prognosis, and even as therapeutic targets. Thus, fostering research on the various epigenetic mechanisms and their roles in cancer remains a priority for the scientific community. This review focuses on one of the main epigenetic mechanisms, namely, the methylation of the histone H3 at various sites and its involvement in male urogenital cancers. This histone modification presents a great interest due to its modulatory effect on gene expression, leading either to activation (e.g., H3K4me3, H3K36me3) or repression (e.g., H3K27me3, H3K9me3). In the last few years, growing evidence has demonstrated the aberrant expression of enzymes that methylate/demethylate histone H3 in cancer and inflammatory diseases, that might contribute to the initiation and progression of such disorders. We highlight how these particular epigenetic modifications are emerging as potential diagnostic and prognostic biomarkers or targets for the treatment of urogenital cancers.
Collapse
Affiliation(s)
| | | | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Amelia Petrescu
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Viorel Jinga
- Academy of Romanian Scientists, Bucharest, Romania
- University of Medicine and Pharmacy “Carol Davila”, Bucharest, Romania
- Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
12
|
Toward the Development of Epigenome Editing-Based Therapeutics: Potentials and Challenges. Int J Mol Sci 2023; 24:ijms24054778. [PMID: 36902207 PMCID: PMC10003136 DOI: 10.3390/ijms24054778] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The advancement in epigenetics research over the past several decades has led to the potential application of epigenome-editing technologies for the treatment of various diseases. In particular, epigenome editing is potentially useful in the treatment of genetic and other related diseases, including rare imprinted diseases, as it can regulate the expression of the epigenome of the target region, and thereby the causative gene, with minimal or no modification of the genomic DNA. Various efforts are underway to successfully apply epigenome editing in vivo, such as improving target specificity, enzymatic activity, and drug delivery for the development of reliable therapeutics. In this review, we introduce the latest findings, summarize the current limitations and future challenges in the practical application of epigenome editing for disease therapy, and introduce important factors to consider, such as chromatin plasticity, for a more effective epigenome editing-based therapy.
Collapse
|
13
|
Perera BPU, Morgan RK, Polemi KM, Sala-Hamrick KE, Svoboda LK, Dolinoy DC. PIWI-Interacting RNA (piRNA) and Epigenetic Editing in Environmental Health Sciences. Curr Environ Health Rep 2022; 9:650-660. [PMID: 35917009 DOI: 10.1007/s40572-022-00372-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW: The epigenome modulates gene expression in response to environmental stimuli. Modifications to the epigenome are potentially reversible, making them a promising therapeutic approach to mitigate environmental exposure effects on human health. This review details currently available genome and epigenome editing technologies and highlights ncRNA, including piRNA, as potential tools for targeted epigenome editing. RECENT FINDINGS: Zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR) associated nuclease (CRISPR/Cas) research has significantly advanced genome editing technology, with broad promise in genetic research and targeted therapies. Initial epigenome-directed therapies relied on global modification and suffered from limited specificity. Adapted from current genome editing tools, zinc finger protein (ZFP), TALE, and CRISPR/nuclease-deactivated Cas (dCas) systems now confer locus-specific epigenome editing, with promising applicability in the field of environmental health sciences. However, high incidence of off-target effects and time taken for screening limit their use. FUTURE DEVELOPMENT: ncRNA serve as a versatile biomarker with well-characterized regulatory mechanisms that can easily be adapted to edit the epigenome. For instance, the transposon silencing mechanism of germline PIWI-interacting RNAs (piRNA) could be engineered to specifically methylate a given gene, overcoming pitfalls of current global modifiers. Future developments in epigenome editing technologies will inform risk assessment through mechanistic investigation and serve as potential modes of intervention to mitigate environmentally induced adverse health outcomes later in life.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Rachel K Morgan
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Katelyn M Polemi
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Kimmie E Sala-Hamrick
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Laurie K Svoboda
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- School of Public Health, Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
- School of Public Health, Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
14
|
McGrail M, Sakuma T, Bleris L. Genome editing. Sci Rep 2022; 12:20497. [PMID: 36443399 PMCID: PMC9705536 DOI: 10.1038/s41598-022-24850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Maura McGrail
- grid.34421.300000 0004 1936 7312Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA USA
| | - Tetsushi Sakuma
- grid.257022.00000 0000 8711 3200Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Leonidas Bleris
- grid.267323.10000 0001 2151 7939Bioengineering Department, The University of Texas at Dallas, Dallas, TX USA
| |
Collapse
|
15
|
SMYD3 promotes aerobic glycolysis in diffuse large B-cell lymphoma via H3K4me3-mediated PKM2 transcription. Cell Death Dis 2022; 13:763. [PMID: 36057625 PMCID: PMC9440895 DOI: 10.1038/s41419-022-05208-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023]
Abstract
Genetic abnormalities in histone methyltransferases (HMTs) frequently occur in diffuse large B-cell lymphoma (DLBCL) and are related to its progression. SET and MYND domain containing 3 (SMYD3) is an HMT that is upregulated in various tumors and promotes their malignancy. However, to the best of our knowledge, the function of SMYD3 in DLBCL has not been investigated thus far. In the present study, 22 HMT genes related to cancer development were first selected according to current literature, and it was found that high SMYD3 expression was significantly associated with poor progression-free survival in patients with DLBCL. SMYD3 protein levels were upregulated and positively associated with poor prognosis and poor responsiveness to chemotherapy in patients with DLBCL. Functional examinations demonstrated that SMYD3 increased cell proliferation and the flux of aerobic glycolysis in DLBCL cells in vitro and in vivo and decreased cell sensitivity to doxorubicin in vitro. Moreover, SMYD3 could directly bind to specific sequences of Pyruvate Kinase M2 (PKM2) and promote DLBCL cell proliferation and aerobic glycolysis via H3K4me3-mediated PKM2 transcription. Clinically, SMYD3 expression positively correlated with that of PKM2, and high SMYD3 was significantly associated with high maximum standardized uptake value (SUVmax) detected by [(18)F]-fluorodeoxyglucose ((18)F-FDG) PET/computed tomography (PET/CT) in DLBCL samples. Concomitant expression of SMYD3 and PKM2 positively correlated with poor progression-free and overall survival in patients with DLBCL and may serve as novel biomarkers in DLBCL.
Collapse
|
16
|
Nishiga M, Liu C, Qi LS, Wu JC. The use of new CRISPR tools in cardiovascular research and medicine. Nat Rev Cardiol 2022; 19:505-521. [PMID: 35145236 PMCID: PMC10283450 DOI: 10.1038/s41569-021-00669-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
Many novel CRISPR-based genome-editing tools, with a wide variety of applications, have been developed in the past few years. The original CRISPR-Cas9 system was developed as a tool to alter genomic sequences in living organisms in a simple way. However, the functions of new CRISPR tools are not limited to conventional genome editing mediated by non-homologous end-joining or homology-directed repair but expand into gene-expression control, epigenome editing, single-nucleotide editing, RNA editing and live-cell imaging. Furthermore, genetic perturbation screening by multiplexing guide RNAs is gaining popularity as a method to identify causative genes and pathways in an unbiased manner. New CRISPR tools can also be applied to ex vivo or in vivo therapeutic genome editing for the treatment of conditions such as hyperlipidaemia. In this Review, we first provide an overview of the diverse new CRISPR tools that have been developed to date. Second, we summarize how these new CRISPR tools are being used to study biological processes and disease mechanisms in cardiovascular research and medicine. Finally, we discuss the prospect of therapeutic genome editing by CRISPR tools to cure genetic cardiovascular diseases.
Collapse
Affiliation(s)
- Masataka Nishiga
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical & Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Bock C, Datlinger P, Chardon F, Coelho MA, Dong MB, Lawson KA, Lu T, Maroc L, Norman TM, Song B, Stanley G, Chen S, Garnett M, Li W, Moffat J, Qi LS, Shapiro RS, Shendure J, Weissman JS, Zhuang X. High-content CRISPR screening. NATURE REVIEWS. METHODS PRIMERS 2022; 2:9. [PMID: 37214176 PMCID: PMC10200264 DOI: 10.1038/s43586-022-00098-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection. Subsequently, the perturbation-induced effects are evaluated by sequencing-based counting of the guide RNAs that specify each perturbation. The typical results of such screens are ranked lists of genes that confer sensitivity or resistance to the biological challenge of interest. Contributing to the broad utility of CRISPR screens, adaptations of the core CRISPR technology make it possible to activate, silence or otherwise manipulate the target genes. Moreover, high-content read-outs such as single-cell RNA sequencing and spatial imaging help characterize screened cells with unprecedented detail. Dedicated software tools facilitate bioinformatic analysis and enhance reproducibility. CRISPR screening has unravelled various molecular mechanisms in basic biology, medical genetics, cancer research, immunology, infectious diseases, microbiology and other fields. This Primer describes the basic and advanced concepts of CRISPR screening and its application as a flexible and reliable method for biological discovery, biomedical research and drug development - with a special emphasis on high-content methods that make it possible to obtain detailed biological insights directly as part of the screen.
Collapse
Affiliation(s)
- Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Florence Chardon
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Matthew B. Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Keith A. Lawson
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tian Lu
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Laetitia Maroc
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Thomas M. Norman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Geoff Stanley
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Mathew Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, USA
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Lei S. Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| |
Collapse
|
18
|
Banerjee R, Smith J, Eccles MR, Weeks RJ, Chatterjee A. Epigenetic basis and targeting of cancer metastasis. Trends Cancer 2021; 8:226-241. [DOI: 10.1016/j.trecan.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
|
19
|
Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers (Basel) 2021; 13:cancers13174427. [PMID: 34503239 PMCID: PMC8430692 DOI: 10.3390/cancers13174427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The activity of SMYD3 in promoting carcinogenesis is currently under debate. Growing evidence seems to confirm that SMYD3 overexpression correlates with poor prognosis, cancer growth and invasion, especially in gastrointestinal tumors. In this review, we dissect the emerging role played by SMYD3 in the regulation of cell cycle and DNA damage response by promoting homologous recombination (HR) repair and hence cancer cell genomic stability. Considering the crucial role of PARP1 in other DNA repair mechanisms, we also discuss a recently evaluated synthetic lethality approach based on the combined use of SMYD3 and PARP inhibitors. Interestingly, a significant proportion of HR-proficient gastrointestinal tumors expressing high levels of SMYD3 from the PanCanAtlas dataset seem to be eligible for this innovative strategy. This promising approach could be taken advantage of for therapeutic applications of SMYD3 inhibitors in cancer treatment. Abstract The SMYD3 methyltransferase has been found overexpressed in several types of cancers of the gastrointestinal (GI) tract. While high levels of SMYD3 have been positively correlated with cancer progression in cellular and advanced mice models, suggesting it as a potential risk and prognosis factor, its activity seems dispensable for autonomous in vitro cancer cell proliferation. Here, we present an in-depth analysis of SMYD3 functional role in the regulation of GI cancer progression. We first describe the oncogenic activity of SMYD3 as a transcriptional activator of genes involved in tumorigenesis, cancer development and transformation and as a co-regulator of key cancer-related pathways. Then, we dissect its role in orchestrating cell cycle regulation and DNA damage response (DDR) to genotoxic stress by promoting homologous recombination (HR) repair, thereby sustaining cancer cell genomic stability and tumor progression. Based on this evidence and on the involvement of PARP1 in other DDR mechanisms, we also outline a synthetic lethality approach consisting of the combined use of SMYD3 and PARP inhibitors, which recently showed promising therapeutic potential in HR-proficient GI tumors expressing high levels of SMYD3. Overall, these findings identify SMYD3 as a promising target for drug discovery.
Collapse
|
20
|
Pacheco MB, Camilo V, Henrique R, Jerónimo C. Epigenetic Editing in Prostate Cancer: Challenges and Opportunities. Epigenetics 2021; 17:564-588. [PMID: 34130596 DOI: 10.1080/15592294.2021.1939477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Epigenome editing consists of fusing a predesigned DNA recognition unit to the catalytic domain of a chromatin modifying enzyme leading to the introduction or removal of an epigenetic mark at a specific locus. These platforms enabled the study of the mechanisms and roles of epigenetic changes in several research domains such as those addressing pathogenesis and progression of cancer. Despite the continued efforts required to overcome some limitations, which include specificity, off-target effects, efficacy, and longevity, these tools have been rapidly progressing and improving.Since prostate cancer is characterized by multiple genetic and epigenetic alterations that affect different signalling pathways, epigenetic editing constitutes a promising strategy to hamper cancer progression. Therefore, by modulating chromatin structure through epigenome editing, its conformation might be better understood and events that drive prostate carcinogenesis might be further unveiled.This review describes the different epigenome engineering tools, their mechanisms concerning gene's expression and regulation, highlighting the challenges and opportunities concerning prostate cancer research.
Collapse
Affiliation(s)
- Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. DR. António Bernardino De Almeida, Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, Portugal
| |
Collapse
|
21
|
Goell JH, Hilton IB. CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility. Trends Biotechnol 2021; 39:678-691. [PMID: 33972106 DOI: 10.1016/j.tibtech.2020.10.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
The epigenome dynamically regulates gene expression and guides cellular differentiation throughout the lifespan of eukaryotic organisms. Recent advances in clustered regularly interspaced palindromic repeats (CRISPR)/Cas-based epigenome editing technologies have enabled researchers to site-specifically program epigenetic modifications to endogenous DNA and histones and to manipulate the architecture of native chromatin. As a result, epigenome editing has helped to uncover the causal relationships between epigenetic marks and gene expression. As epigenome editing tools have continued to develop, researchers have applied them in new ways to explore the function of the epigenome in human health and disease. In this review, we discuss the recent technical improvements in CRISPR/Cas-based epigenome editing that have advanced clinical research and examine how these technologies could be improved for greater future utility.
Collapse
Affiliation(s)
- Jacob H Goell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA; Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
22
|
Long F, Yang D, Wang J, Wang Q, Ni T, Wei G, Zhu Y, Liu X. SMYD3-PARP16 axis accelerates unfolded protein response and mediates neointima formation. Acta Pharm Sin B 2021; 11:1261-1273. [PMID: 34094832 PMCID: PMC8148056 DOI: 10.1016/j.apsb.2020.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Neointimal hyperplasia after vascular injury is a representative complication of restenosis. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) is involved in the pathogenesis of vascular intimal hyperplasia. PARP16, a member of the poly(ADP-ribose) polymerases family, is correlated with the nuclear envelope and the ER. Here, we found that PERK and IRE1α are ADP-ribosylated by PARP16, and this might promote proliferation and migration of smooth muscle cells (SMCs) during the platelet-derived growth factor (PDGF)-BB stimulating. Using chromatin immunoprecipitation coupled with deep sequencing (ChIP-seq) analysis, PARP16 was identified as a novel target gene for histone H3 lysine 4 (H3K4) methyltransferase SMYD3, and SMYD3 could bind to the promoter of Parp16 and increased H3K4me3 level to activate its host gene's transcription, which causes UPR activation and SMC proliferation. Moreover, knockdown either of PARP16 or SMYD3 impeded the ER stress and SMC proliferation. On the contrary, overexpression of PARP16 induced ER stress and SMC proliferation and migration. In vivo depletion of PARP16 attenuated injury-induced neointimal hyperplasia by mediating UPR activation and neointimal SMC proliferation. This study identified SMYD3-PARP16 is a novel signal axis in regulating UPR and neointimal hyperplasia, and targeting this axis has implications in preventing neointimal hyperplasia related diseases.
Collapse
Key Words
- ATF6, activating transcription factor 6
- BIP, immunoglobulin heavy-chain binding protein
- ChIP-seq, chromatin immunoprecipitation coupled with deep sequencing
- DAPI, 4′,6-diamidino-2-phenylindole
- ECM, extracellular matrix
- EGCG, epigallocatechin-3-gallate
- ER, endoplasmic reticulum
- Endoplasmic reticulum
- H3K4, histone H3 lysine 4
- IACUC, Institutional Animal Care and Use Committee
- IRE1, inositol-requiring enzyme 1
- MMP, matrix metal proteinase
- Neointimal hyperplasia
- PARP, poly(ADP-ribose) polymerases
- PARP16
- PCNA, proliferating cell nuclear antigen
- PDGF, platelet-derived growth factor
- PERK, protein kinase R (PKR)-like ER kinase
- SMCs, smooth muscle cells
- SMYD3
- SMYD3, SET and MYND domain containing 3
- UPR, unfolded protein response
- VCAM-1, vascular cell adhesion molecule-1
- VSMCs, vascular smooth muscle cells
- Vascular smooth muscle cell
- XBP-1, X-box binding protein-1
- p-PERK, phosphate-PKR-like ER kinase
- p-eIF2α, phosphate-eukaryotic initiation factor 2α
- siRNA, small interfering RNA
Collapse
|
23
|
Molinari E, Sayer JA. Gene and epigenetic editing in the treatment of primary ciliopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:353-401. [PMID: 34175048 DOI: 10.1016/bs.pmbts.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary ciliopathies are inherited human disorders that arise from mutations in ciliary genes. They represent a spectrum of severe, incurable phenotypes, differentially involving several organs, including the kidney and the eye. The development of gene-based therapies is opening up new avenues for the treatment of ciliopathies. Particularly attractive is the possibility of correcting in situ the causative genetic mutation, or pathological epigenetic changes, through the use of gene editing tools. Due to their versatility and efficacy, CRISPR/Cas-based systems represent the most promising gene editing toolkit for clinical applications. However, delivery and specificity issues have so far held back the translatability of CRISPR/Cas-based therapies into clinical practice, especially where systemic administration is required. The eye, with its characteristics of high accessibility and compartmentalization, represents an ideal target for in situ gene correction. Indeed, studies for the evaluation of a CRISPR/Cas-based therapy for in vivo gene correction to treat a retinal ciliopathy have reached the clinical stage. Further technological advances may be required for the development of in vivo CRISPR-based treatments for the kidney. We discuss here the possibilities and the challenges associated to the implementation of CRISPR/Cas-based therapies for the treatment of primary ciliopathies with renal and retinal phenotypes.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom; Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
24
|
Wang Q, Ma L, Chen L, Chen H, Luo M, Yang W, Liao F, Gong Q, Wang Y, Yang Z, Wu J, Zhang C, Zheng J, Han S, Leng Y, Luo P, Shi C. Knockdown of PC4 increases chemosensitivity of Oxaliplatin in triple negative breast cancer by suppressing mTOR pathway. Biochem Biophys Res Commun 2021; 544:65-72. [PMID: 33524870 DOI: 10.1016/j.bbrc.2021.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
As a multifunctional nuclear protein, the human positive cofactor 4 (PC4) is highly expressed in various tumors including breast cancer and has potential roles in cancer development and progression. However, the functional signatures and molecular mechanisms of PC4 in triple negative breast cancer (TNBC) progression and chemotherapeutic response are still unknown. In this study, we found that PC4 is significantly upregulated in TNBC cells compared with non-TNBC cells, implying its potential role in TNBC. Then, in vivo and in vitro studies revealed that knockdown of PC4 increased chemosensitivity of Oxaliplation (Oxa) in TNBC by suppressing mTOR pathway. Therefore, our findings demonstrated the signatures and molecular mechanisms of PC4 in TNBC chemotherapeutic response, and indicated that PC4 might be a promising therapeutic target for TNBC.
Collapse
Affiliation(s)
- Qing Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China; Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 40038, China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Hongdan Chen
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401121, China
| | - Min Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Wei Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Qiang Gong
- Department of Hematology, Southwest Hospital, Third Military Medical University, Chongqing, 40038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zeyu Yang
- Department of Breast and Thyroid Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 401121, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Can Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Jiancheng Zheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shiqian Han
- Institute of Tropical Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Yu Leng
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), Chongqing, 401120, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
25
|
Kazi TA, Biswas SR. CRISPR/dCas system as the modulator of gene expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:99-122. [PMID: 33685602 DOI: 10.1016/bs.pmbts.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CRISPR/Cas has been a very exciting field of research because of its multifaceted applications in biological science for editing genome. This tool can be programmed to target any region of DNA of choice by designing gRNA. The potential of gRNA to recruit a CRISPR-associated protein at a specific genomic site allowed scientists to engineer genome of diverse species for research and development. The application of Cas9 has been further expanded with a recently developed catalytically inactive protein (dead Cas9). CRISPR/dCas system is widely used as a programmable vector to deliver functional cargo (transcriptional effectors) to the desired sites at the genome for targeted transcriptional repression (CRISPR interference, CRISPRi) or activation (CRISPR activation, CRISPRa). It is now possible to regulate gene expression in cells without altering the DNA sequence. These CRISPRi/a toolboxes have explored many unsolved biological issues. Further research on CRISPR system could help diagnose and treat various human diseases.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
26
|
Sgro A, Blancafort P. Epigenome engineering: new technologies for precision medicine. Nucleic Acids Res 2021; 48:12453-12482. [PMID: 33196851 PMCID: PMC7736826 DOI: 10.1093/nar/gkaa1000] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Chromatin adopts different configurations that are regulated by reversible covalent modifications, referred to as epigenetic marks. Epigenetic inhibitors have been approved for clinical use to restore epigenetic aberrations that result in silencing of tumor-suppressor genes, oncogene addictions, and enhancement of immune responses. However, these drugs suffer from major limitations, such as a lack of locus selectivity and potential toxicities. Technological advances have opened a new era of precision molecular medicine to reprogram cellular physiology. The locus-specificity of CRISPR/dCas9/12a to manipulate the epigenome is rapidly becoming a highly promising strategy for personalized medicine. This review focuses on new state-of-the-art epigenome editing approaches to modify the epigenome of neoplasms and other disease models towards a more 'normal-like state', having characteristics of normal tissue counterparts. We highlight biomolecular engineering methodologies to assemble, regulate, and deliver multiple epigenetic effectors that maximize the longevity of the therapeutic effect, and we discuss limitations of the platforms such as targeting efficiency and intracellular delivery for future clinical applications.
Collapse
Affiliation(s)
- Agustin Sgro
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia.,School of Human Sciences, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia.,The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
27
|
Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol 2021; 23:11-22. [PMID: 33420494 DOI: 10.1038/s41556-020-00620-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.
Collapse
Affiliation(s)
- Muneaki Nakamura
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuchen Gao
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Cancer Biology Program, Stanford University, Stanford, CA, USA.,Mammoth Biosciences, South San Francisco, CA, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Sana Biotechnology, South San Francisco, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA. .,Stanford ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Su X, Yang Y, Ma L, Luo P, Shen K, Dai H, Jiang Y, Shuai L, Liu Z, You J, Min K, Shi C, Chen Z. Human Positive Coactivator 4 Affects the Progression and Prognosis of Pancreatic Ductal Adenocarcinoma via the mTOR/P70s6k Signaling Pathway. Onco Targets Ther 2020; 13:12213-12223. [PMID: 33273827 PMCID: PMC7705283 DOI: 10.2147/ott.s284219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Pancreatic cancer is one of the deadliest cancers in the world, and pancreatic ductal adenocarcinoma (PDAC) accounts for 90% of all cases. Human positive coactivator 4 (PC4) is a transcriptional coactivator that has been associated with the development and progression of several tumors. However, no studies investigated the potential role of PC4 in PDAC. Methods We investigated PC4 expression in 81 PDAC tissue samples using immunohistochemistry and studied the impact of PC4 expression and the molecular mechanisms of this altered expression on PDAC tumorigenesis and proliferation both in vitro and in vivo. Results PC4 overexpression was correlated with a poor outcome in PDAC patients. The RNAi-mediated knockdown of PC4 expression in CFPAC-1 and AsPC-1 cell lines reduced cell proliferation and tumor growth. The loss of PC4 in PDAC inhibits cell growth by inducing cell cycle arrest at the G1/S transition and suppressing the mTOR/p70s6k pathway. Discussion/Conclusion Our findings reveal for the first time that PC4 exerts oncogenic functions by activating mTOR/p70s6k signaling pathway-mediated cell proliferation, implying that PC4 is a promising therapeutic target for PDAC.
Collapse
Affiliation(s)
- Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yishi Yang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Kaicheng Shen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Yan Jiang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Ling Shuai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Zhipeng Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Jinshan You
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Ke Min
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| |
Collapse
|
29
|
Sanese P, Fasano C, Buscemi G, Bottino C, Corbetta S, Fabini E, Silvestri V, Valentini V, Disciglio V, Forte G, Lepore Signorile M, De Marco K, Bertora S, Grossi V, Guven U, Porta N, Di Maio V, Manoni E, Giannelli G, Bartolini M, Del Rio A, Caretti G, Ottini L, Simone C. Targeting SMYD3 to Sensitize Homologous Recombination-Proficient Tumors to PARP-Mediated Synthetic Lethality. iScience 2020; 23:101604. [PMID: 33205017 PMCID: PMC7648160 DOI: 10.1016/j.isci.2020.101604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/07/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
SMYD3 is frequently overexpressed in a wide variety of cancers. Indeed, its inactivation reduces tumor growth in preclinical in vivo animal models. However, extensive characterization in vitro failed to clarify SMYD3 function in cancer cells, although confirming its importance in carcinogenesis. Taking advantage of a SMYD3 mutant variant identified in a high-risk breast cancer family, here we show that SMYD3 phosphorylation by ATM enables the formation of a multiprotein complex including ATM, SMYD3, CHK2, and BRCA2, which is required for the final loading of RAD51 at DNA double-strand break sites and completion of homologous recombination (HR). Remarkably, SMYD3 pharmacological inhibition sensitizes HR-proficient cancer cells to PARP inhibitors, thereby extending the potential of the synthetic lethality approach in human tumors.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Giacomo Buscemi
- Institute of Molecular Genetics, IGM “Luigi Luca Cavalli-Sforza”, National Research Council (CNR), Pavia 27100, Italy
| | - Cinzia Bottino
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Silvia Corbetta
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Edoardo Fabini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
- BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Stefania Bertora
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Ummu Guven
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Natale Porta
- Department of Medical-Surgical Sciences and Biotechnology, Polo Pontino University of Roma "La Sapienza", Latina 04100, Italy
| | - Valeria Di Maio
- Department of Medical-Surgical Sciences and Biotechnology, Polo Pontino University of Roma "La Sapienza", Latina 04100, Italy
| | - Elisabetta Manoni
- BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy
| | - Gianluigi Giannelli
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna 40126, Italy
| | - Alberto Del Rio
- BioChemoInformatics Unit, Institute of Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Bologna 40129, Italy
- Innovamol Consulting Srl, Modena 41123, Italy
| | | | - Laura Ottini
- Department of Molecular Medicine, University of Roma "La Sapienza", Roma 00185, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Castellana Grotte, Bari 70013, Italy
- Department of Biomedical Sciences and Human Oncology (DIMO), Medical Genetics; University of Bari Aldo Moro, Bari 70124, Italy
| |
Collapse
|
30
|
Chandra P, Dixit R, Pratap A, Mishra S, Mishra R, Shukla VK. Analysis of SET and MYND Domain-Containing Protein 3 (SMYD3) Expression in Gallbladder Cancer: a Pilot Study. Indian J Surg Oncol 2020; 12:111-117. [PMID: 33994736 DOI: 10.1007/s13193-020-01168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
The Suvar, Enhancer of zeste, and Trithorax (SET) and myeloid-Nervy-DEAF-1 (MYND) domain-containing protein 3 (SMYD3) is a histone lysine methyltransferase and has been recently unveiled to play significant roles in the progression of human cancer via regulating various key cancer-associated genes and pathways. The role of SMYD3 in gallbladder cancer (GBC) still needs to be studied. In the present study, we examined the SMYD3 gene expression at mRNA and protein level to look its impact on risk for developing gallbladder carcinogenesis. SMYD3 expression was evaluated by immunohistochemistry and reverse transcriptase PCR (RT-PCR) from 30 cases each of GBC and cholelithiasis patients. The expression was compared with different clinicopathological parameters. The SMYD3 expression was found to be significantly upregulated in GBC than cholelithiasis group (p < 0.05). The SMYD3 with increased expression level was observed in 73.3% of the GBC cases (p < 0.05). Moreover, mRNA SMYD3 expression was observed in 73.3% of GBC and 10% of control (p < 0.05). Our results indicated that the overexpression of SMYD3 plays an important role in the GBC progression, and SMYD3 may represent useful biomarker for gallbladder cancer patients.
Collapse
Affiliation(s)
- Pushkar Chandra
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Arvind Pratap
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| | - Suman Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rajnikant Mishra
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005 India
| |
Collapse
|
31
|
Breunig CT, Köferle A, Neuner AM, Wiesbeck MF, Baumann V, Stricker SH. CRISPR Tools for Physiology and Cell State Changes: Potential of Transcriptional Engineering and Epigenome Editing. Physiol Rev 2020; 101:177-211. [PMID: 32525760 DOI: 10.1152/physrev.00034.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given the large amount of genome-wide data that have been collected during the last decades, a good understanding of how and why cells change during development, homeostasis, and disease might be expected. Unfortunately, the opposite is true; triggers that cause cellular state changes remain elusive, and the underlying molecular mechanisms are poorly understood. Although genes with the potential to influence cell states are known, the historic dependency on methods that manipulate gene expression outside the endogenous chromatin context has prevented us from understanding how cells organize, interpret, and protect cellular programs. Fortunately, recent methodological innovations are now providing options to answer these outstanding questions, by allowing to target and manipulate individual genomic and epigenomic loci. In particular, three experimental approaches are now feasible due to DNA targeting tools, namely, activation and/or repression of master transcription factors in their endogenous chromatin context; targeting transcription factors to endogenous, alternative, or inaccessible sites; and finally, functional manipulation of the chromatin context. In this article, we discuss the molecular basis of DNA targeting tools and review the potential of these new technologies before we summarize how these have already been used for the manipulation of cellular states and hypothesize about future applications.
Collapse
Affiliation(s)
- Christopher T Breunig
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Anna Köferle
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Andrea M Neuner
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Maximilian F Wiesbeck
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Valentin Baumann
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| | - Stefan H Stricker
- MCN Junior Research Group, Munich Center for Neurosciences, Ludwig-Maximilian- Universität, BioMedical Center, Planegg-Martinsried, Germany; and Epigenetic Engineering, Institute of Stem Cell Research, Helmholtz Zentrum, German Research Center for Environmental Health, BioMedical Center, Planegg-Martinsried, Germany
| |
Collapse
|
32
|
Xu X, Hulshoff MS, Tan X, Zeisberg M, Zeisberg EM. CRISPR/Cas Derivatives as Novel Gene Modulating Tools: Possibilities and In Vivo Applications. Int J Mol Sci 2020; 21:E3038. [PMID: 32344896 PMCID: PMC7246536 DOI: 10.3390/ijms21093038] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The field of genome editing started with the discovery of meganucleases (e.g., the LAGLIDADG family of homing endonucleases) in yeast. After the discovery of transcription activator-like effector nucleases and zinc finger nucleases, the recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated proteins (Cas) system has opened a new window of applications in the field of gene editing. Here, we review different Cas proteins and their corresponding features including advantages and disadvantages, and we provide an overview of the different endonuclease-deficient Cas protein (dCas) derivatives. These dCas derivatives consist of an endonuclease-deficient Cas9 which can be fused to different effector domains to perform distinct in vitro applications such as tracking, transcriptional activation and repression, as well as base editing. Finally, we review the in vivo applications of these dCas derivatives and discuss their potential to perform gene activation and repression in vivo, as well as their potential future use in human therapy.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
| | - Melanie S. Hulshoff
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Xiaoying Tan
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Michael Zeisberg
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Elisabeth M. Zeisberg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany; (X.X.); (M.S.H.)
- German Centre for Cardiovascular Research (DZHK), 37075 Göttingen, Germany; (X.T.); (M.Z.)
| |
Collapse
|
33
|
Liu C, Liu L, Wang K, Li XF, Ge LY, Ma RZ, Fan YD, Li LC, Liu ZF, Qiu M, Hao YC, Shi ZF, Xia CY, Strååt K, Huang Y, Ma LL, Xu D. VHL-HIF-2α axis-induced SMYD3 upregulation drives renal cell carcinoma progression via direct trans-activation of EGFR. Oncogene 2020; 39:4286-4298. [PMID: 32291411 DOI: 10.1038/s41388-020-1291-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022]
Abstract
It has been well established that the von Hippel-Lindau/hypoxia-inducible factor α (VHL-HIFα) axis and epidermal growth factor receptor (EGFR) signaling pathway play a critical role in the pathogenesis and progression of renal cell carcinoma (RCC). However, few studies have addressed the relationship between the two oncogenic drivers in RCC. SET and MYND domain-containing protein 3 (SMYD3) is a histone methyltransferase involved in gene transcription and oncogenesis, but its expression and function in RCC remain unclear. In the present study, we found that SMYD3 expression was significantly elevated in RCC tumors and correlated with advanced tumor stage, histological and nuclear grade, and shorter survival. Depletion of SMYD3 inhibited RCC cell proliferation, colony numbers, and xenograft tumor formation, while promoted apoptosis. Mechanistically, SMYD3 cooperates with SP1 to transcriptionally promote EGFR expression, amplifying its downstream signaling activity. TCGA data analyses revealed a significantly increased SMYD3 expression in primary RCC tumors carrying the loss-of-function VHL mutations. We further showed that HIF-2α can directly bind to the SMYD3 promoter and subsequently induced SMYD3 transcription and expression. Taken together, we identify the VHL/HIF-2α/SMYD3 signaling cascade-mediated EGFR hyperactivity through which SMYD3 promotes RCC progression. Our study suggests that SMYD3 is a potential therapeutic target and prognostic factor in RCC.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Urology, Peking University Third Hospital, Beijing, China.
| | - Li Liu
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Kun Wang
- Key Lab for Cancer Prevention and Therapy, National Clinical Research Centre for Cancer, Department of Urology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiao-Feng Li
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Li-Yuan Ge
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Urology, The People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang, China
| | - Run-Zhuo Ma
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Yi-Dong Fan
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Lu-Chao Li
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Zheng-Fang Liu
- Department of Urology, Shandong University Qilu Hospital, Jinan, China
| | - Min Qiu
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Yi-Chang Hao
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Zhen-Feng Shi
- Department of Urology, The People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang, China
| | - Chuan-You Xia
- Department of Medicine, Division of Hematology, Bioclinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Klas Strååt
- Department of Medicine, Division of Hematology, Bioclinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Yi Huang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Lu-Lin Ma
- Department of Urology, Peking University Third Hospital, Beijing, China.
| | - Dawei Xu
- Department of Medicine, Division of Hematology, Bioclinicum and Centre for Molecular Medicine, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden.,Karolinska Institute-Shandong University Collaborative Laboratory for Cancer and Stem Cell Research, Jinan, China
| |
Collapse
|
34
|
Su DS, Qu J, Schulz M, Blackledge CW, Yu H, Zeng J, Burgess J, Reif A, Stern M, Nagarajan R, Pappalardi MB, Wong K, Graves AP, Bonnette W, Wang L, Elkins P, Knapp-Reed B, Carson JD, McHugh C, Mohammad H, Kruger R, Luengo J, Heerding DA, Creasy CL. Discovery of Isoxazole Amides as Potent and Selective SMYD3 Inhibitors. ACS Med Chem Lett 2020; 11:133-140. [PMID: 32071679 DOI: 10.1021/acsmedchemlett.9b00493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 01/07/2023] Open
Abstract
We report herein the discovery of isoxazole amides as potent and selective SET and MYND Domain-Containing Protein 3 (SMYD3) inhibitors. Elucidation of the structure-activity relationship of the high-throughput screening (HTS) lead compound 1 provided potent and selective SMYD3 inhibitors. The SAR optimization, cocrystal structures of small molecules with SMYD3, and mode of inhibition (MOI) characterization of compounds are described. The synthesis and biological and pharmacokinetic profiles of compounds are also presented.
Collapse
|
35
|
Zhu CL, Huang Q. Overexpression of the SMYD3 Promotes Proliferation, Migration, and Invasion of Pancreatic Cancer. Dig Dis Sci 2020; 65:489-499. [PMID: 31441002 DOI: 10.1007/s10620-019-05797-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The Suvar, Enhancer of zeste, and Trithorax (SET), myeloid-Nervy-DEAF-1 (MYND) domain-containing protein 3 (SMYD3), was reported to be upregulated in various tumors. However, its role in pancreatic cancer progression remains unclear. AIMS To explore the role of SMYD3 in the pancreatic cancer. METHODS The expressions of SMYD3, caspase-3, and matrix metallopeptidase-2 (MMP-2) were detected in pancreatic cancer and non-tumor tissues by immunohistochemistry. The CCK-8 and transwell assays were performed to test proliferation, migration, and invasion ability in short hairpin RNA (shRNA-SMYD3) pancreatic cancer cell line SW1190. RT-PCR and Western blot were used to detect the expressions of SMYD3, caspase-3, and MMP-2 in SW1990 cell line and shRNA-SMYD3 SW1990 cell line. RESULTS The expressions of SMYD3, caspase-3, and MMP-2 were upregulated in pancreatic cancer. The SMYD3 was positively associated with caspase-3 and MMP-2 expressions in pancreatic cancer tissues. SMYD3, TNM stages, histological differentiation, and lymph node metastasis were identified as an independent prognostic factor. Moreover, interfered SMYD3 expression in SW1990 cell line significantly reduced the cell proliferation, migration, and invasion. RT-PCR and Western blot showed the expression of MMP-2 decreased in shRNA-SMYD3 SW1990 cell line, but no significant change was observed in the caspase-3 expression. CONCLUSIONS The overexpression of SMYD3 promoted proliferation, migration, and invasion of pancreatic cancer, and SMYD3 may affect the pancreatic cancer progression by regulating MMP-2 rather than caspase-3.
Collapse
Affiliation(s)
| | - Qiang Huang
- Department of General Surgery, Anhui Provincial Hospital, No. 17 Lujiang Road, Hefei, 230001, China.
| |
Collapse
|
36
|
SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways. Cancers (Basel) 2020; 12:cancers12010142. [PMID: 31935919 PMCID: PMC7017119 DOI: 10.3390/cancers12010142] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022] Open
Abstract
SMYD3 is a member of the SMYD lysine methylase family and plays an important role in the methylation of various histone and non-histone targets. Aberrant SMYD3 expression contributes to carcinogenesis and SMYD3 upregulation was proposed as a prognostic marker in various solid cancers. Here we summarize SMYD3-mediated regulatory mechanisms, which are implicated in the pathophysiology of cancer, as drivers of distinct oncogenic pathways. We describe SMYD3-dependent mechanisms affecting cancer progression, highlighting SMYD3 interplay with proteins and RNAs involved in the regulation of cancer cell proliferation, migration and invasion. We also address the effectiveness and mechanisms of action for the currently available SMYD3 inhibitors. The findings analyzed herein demonstrate that a complex network of SMYD3-mediated cytoplasmic and nuclear interactions promote oncogenesis across different cancer types. These evidences depict SMYD3 as a modulator of the transcriptional response and of key signaling pathways, orchestrating multiple oncogenic inputs and ultimately, promoting transcriptional reprogramming and tumor transformation. Further insights into the oncogenic role of SMYD3 and its targeting of different synergistic oncogenic signals may be beneficial for effective cancer treatment.
Collapse
|
37
|
Chen J, He Z, Yuan Y, Huang F, Luo B, Zhang J, Pan T, Zhang H, Zhang J. Host factor SMYD3 is recruited by Ebola virus nucleoprotein to facilitate viral mRNA transcription. Emerg Microbes Infect 2020; 8:1347-1360. [PMID: 31516086 PMCID: PMC6758638 DOI: 10.1080/22221751.2019.1662736] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polymerase complex of Ebola virus (EBOV) is the functional unit for transcription and replication of viral genome. Nucleoprotein (NP) is a multifunctional protein with high RNA binding affinity and recruits other viral proteins to form functional polymerase complex. In our study, we investigated host proteins associated with EBOV polymerase complex using NP as bait in a transcription and replication competent minigenome system by mass spectrometry analysis and identified SET and MYND domain-containing protein 3 (SMYD3) as a novel host protein which was required for the replication of EBOV. SMYD3 specifically interacted with NP and was recruited to EBOV inclusion bodies through NP. The depletion of SMYD3 dramatically suppressed EBOV mRNA production. A mimic of non-phosphorylated VP30, which is a transcription activator, could partially rescue the viral mRNA production downregulated by the depletion of SMYD3. In addition, SMYD3 promoted NP-VP30 interaction in a dose-dependent manner. These results revealed that SMYD3 was a novel host factor recruited by NP to supporting EBOV mRNA transcription through increasing the binding of VP30 to NP. Thus, our study provided a new understanding of mechanism underlying the transcription of EBOV genome, and a novel anti-EBOV drug design strategy by targeting SMYD3.
Collapse
Affiliation(s)
- Jingliang Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Zhangping He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Feng Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China.,Department of Respiration, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Baohong Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Jianhua Zhang
- CAS Key Laboratory for Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Junsong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| |
Collapse
|
38
|
Codato R, Perichon M, Divol A, Fung E, Sotiropoulos A, Bigot A, Weitzman JB, Medjkane S. The SMYD3 methyltransferase promotes myogenesis by activating the myogenin regulatory network. Sci Rep 2019; 9:17298. [PMID: 31754141 PMCID: PMC6872730 DOI: 10.1038/s41598-019-53577-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022] Open
Abstract
The coordinated expression of myogenic regulatory factors, including MyoD and myogenin, orchestrates the steps of skeletal muscle development, from myoblast proliferation and cell-cycle exit, to myoblast fusion and myotubes maturation. Yet, it remains unclear how key transcription factors and epigenetic enzymes cooperate to guide myogenic differentiation. Proteins of the SMYD (SET and MYND domain-containing) methyltransferase family participate in cardiac and skeletal myogenesis during development in zebrafish, Drosophila and mice. Here, we show that the mammalian SMYD3 methyltransferase coordinates skeletal muscle differentiation in vitro. Overexpression of SMYD3 in myoblasts promoted muscle differentiation and myoblasts fusion. Conversely, silencing of endogenous SMYD3 or its pharmacological inhibition impaired muscle differentiation. Genome-wide transcriptomic analysis of murine myoblasts, with silenced or overexpressed SMYD3, revealed that SMYD3 impacts skeletal muscle differentiation by targeting the key muscle regulatory factor myogenin. The role of SMYD3 in the regulation of skeletal muscle differentiation and myotube formation, partially via the myogenin transcriptional network, highlights the importance of methyltransferases in mammalian myogenesis.
Collapse
Affiliation(s)
- Roberta Codato
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Martine Perichon
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Arnaud Divol
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
- Atos, Paris, France
| | - Ella Fung
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
- Pfizer, Boston, MA, USA
| | | | - Anne Bigot
- Université de Paris, Institut de Myologie, INSERM, Paris, France
| | | | - Souhila Medjkane
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.
| |
Collapse
|
39
|
Johnston AD, Simões-Pires CA, Thompson TV, Suzuki M, Greally JM. Functional genetic variants can mediate their regulatory effects through alteration of transcription factor binding. Nat Commun 2019; 10:3472. [PMID: 31375681 PMCID: PMC6677801 DOI: 10.1038/s41467-019-11412-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/10/2019] [Indexed: 12/23/2022] Open
Abstract
Functional variants in the genome are usually identified by their association with local gene expression, DNA methylation or chromatin states. DNA sequence motif analysis and chromatin immunoprecipitation studies have provided indirect support for the hypothesis that functional variants alter transcription factor binding to exert their effects. In this study, we provide direct evidence that functional variants can alter transcription factor binding. We identify a multifunctional variant within the TBC1D4 gene encoding a canonical NFκB binding site, and edited it using CRISPR-Cas9 to remove this site. We show that this editing reduces TBC1D4 expression, local chromatin accessibility and binding of the p65 component of NFκB. We then used CRISPR without genomic editing to guide p65 back to the edited locus, demonstrating that this re-targeting, occurring ~182 kb from the gene promoter, is enough to restore the function of the locus, supporting the central role of transcription factors mediating the effects of functional variants.
Collapse
Affiliation(s)
- Andrew D Johnston
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Claudia A Simões-Pires
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Taylor V Thompson
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Masako Suzuki
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA
| | - John M Greally
- Center for Epigenomics and Department of Genetics (Division of Genomics), Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
40
|
Jiang Y, Lyu T, Che X, Jia N, Li Q, Feng W. Overexpression of SMYD3 in Ovarian Cancer is Associated with Ovarian Cancer Proliferation and Apoptosis via Methylating H3K4 and H4K20. J Cancer 2019; 10:4072-4084. [PMID: 31417652 PMCID: PMC6692630 DOI: 10.7150/jca.29861] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/05/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Epigenetic regulation has been verified as a key mechanism in tumorigenesis. SET and MYND domain-containing protein 3 (SMYD3), a histone methyltransferase, is a promising epigenetic therapeutic target and is overexpressed in numerous human tumors. SMYD3 can promote oncogenic progression by methylating lysines to integrate cytoplasmic kinase signaling cascades or by methylating histone lysines to regulate specific gene transcription. However, the exact role of SMYD3 in the progression of ovarian cancer is still unknown. Methods: Immunohistochemistry was employed to test SMYD3 expression in ovarian cancer tissues from clinical patients. CCK-8 assay, Real-time cell analysis (RTCA), colony formation assay, cell cycle and apoptosis tested by Flow cytometer were employed to test the effects of SMYD3 on cell proliferation and apoptosis in ovarian cancer cell lines. A PCR array was used to identify the downstream targets of SMYD3. And, PCR and Western blot were used to verify their expression. The binding of SMYD3 on the promoter of target genes were tested by ChIP assays. We also use nude mice subcutaneous tumor model and patient-derived xenograft (PDX) model to investigate the tumor promotive function of SMYD3 in vivo. Results: SMYD3 expression was higher in ovarian cancer tissues and cell lines than in normal ovarian epithelial tissue and human ovarian surface epithelial cells (HOSEpiC). After silencing SMYD3, the proliferation of ovarian cancer cells was significantly inhibited in vitro. In addition, the SMYD3-specific small-molecule inhibitor BCI-121 suppressed ovarian cancer cell proliferation. Downregulation of SMYD3 led to S phase arrest and increased the cell apoptosis rate. Furthermore, a PCR array revealed that SMYD3 knockdown caused the upregulation of the cyclin-dependent kinase (CDK) inhibitors CDKN2A (p16INK4), CDKN2B (p15INK4B), CDKN3 and CDC25A, which may be responsible for the S phase arrest. In addition, the upregulation of CD40LG and downregulation of BIRC3 may explain the increased cell apoptosis rate after silencing SMYD3. We also discovered that SMYD3 bound on the promoter of CDKN2A and down-regulated its expression by triple-methylating H4K20. In addition, SMYD3 bound on the promoter of BIRC3 and up-regulated its expression by triple-methylating H3K4. Finally, knocking down SMYD3 could inhibit ovarian cancer growth in nude mice subcutaneous tumor model and PDX model. Conclusion: Our results demonstrated that SMYD3 was overexpressed in ovarian cancer and contributes to the regulation of tumor proliferation and apoptosis via SMYD3-H4K20me3-CDKN2A pathway and SMYD3-H3K4me3-BIRC3 pathway. Thus, SMYD3 is a promising epigenetic therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yahui Jiang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China
| | - Tianjiao Lyu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Department of Gynecology and Obstetrics, Ruijin Hospital,Shanghai Jiaotong University , School of Medicine, 197 Ruijin Road, Shanghai, 200025, China
| | - Xiaoxia Che
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China
| | - Nan Jia
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China
| | - Qin Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Shanghai Key Laboratory of Female Reproductive Endocrine - Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China
| | - Weiwei Feng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fang Xie Road, Shanghai, 200011. China.,Department of Gynecology and Obstetrics, Ruijin Hospital,Shanghai Jiaotong University , School of Medicine, 197 Ruijin Road, Shanghai, 200025, China
| |
Collapse
|
41
|
Gomez JA, Beitnere U, Segal DJ. Live-Animal Epigenome Editing: Convergence of Novel Techniques. Trends Genet 2019; 35:527-541. [PMID: 31128888 DOI: 10.1016/j.tig.2019.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022]
Abstract
Epigenome editing refers to the generation of precise chromatin alterations and their effects on gene expression and cell biology. Until recently, much of the efforts in epigenome editing were limited to tissue culture models of disease. However, the convergence of techniques from different fields including mammalian genetics, virology, and CRISPR engineering is advancing epigenome editing into a new era. Researchers are increasingly embracing the use of multicellular model organisms to test the role of specific chromatin alterations in development and disease. The challenge of successful live-animal epigenomic editing will depend on a well-informed foundation of the current methodologies for cell-specific delivery and editing accuracy. Here we review the opportunities for basic research and therapeutic applications.
Collapse
Affiliation(s)
- J Antonio Gomez
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Ulrika Beitnere
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA
| | - David J Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
42
|
Martinez-Redondo P, Izpisua Belmonte JC. Tailored chromatin modulation to promote tissue regeneration. Semin Cell Dev Biol 2019; 97:3-15. [PMID: 31028854 DOI: 10.1016/j.semcdb.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic regulation of gene expression is fundamental in the maintenance of cellular identity and the regulation of cellular plasticity during tissue repair. In fact, epigenetic modulation is associated with the processes of cellular de-differentiation, proliferation, and re-differentiation that takes place during tissue regeneration. In here we explore the epigenetic events that coordinate tissue repair in lower vertebrates with high regenerative capacity, and in mammalian adult stem cells, which are responsible for the homeostasis maintenance of most of our tissues. Finally we summarize promising CRISPR-based editing technologies developed during the last years, which look as promising tools to not only study but also promote specific events during tissue regeneration.
Collapse
Affiliation(s)
- Paloma Martinez-Redondo
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, United States.
| |
Collapse
|
43
|
Luo P, Zhang C, Liao F, Chen L, Liu Z, Long L, Jiang Z, Wang Y, Wang Z, Liu Z, Miao H, Shi C. Transcriptional positive cofactor 4 promotes breast cancer proliferation and metastasis through c-Myc mediated Warburg effect. Cell Commun Signal 2019; 17:36. [PMID: 30992017 PMCID: PMC6469038 DOI: 10.1186/s12964-019-0348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/03/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The human positive cofactor 4 (PC4) is initially identified as a transcriptional cofactor and has an important role in embryonic development and malignant transformation. However, the clinical significance and the molecular mechanisms of PC4 in breast cancer development and progression are still unknown. METHODS We investigated PC4 expression in 114 cases of primary breast cancer and matched normal breast tissue specimens, and studied the impact of PC4 expression as well as the molecular mechanisms of this altered expression on breast cancer growth and metastasis both in vitro and in vivo. RESULTS PC4 was significantly upregulated in breast cancer and high PC4 expression was positively correlated with metastasis and poor prognosis of patients. Gene set enrichment analysis (GSEA) demonstrated that the gene sets of cell proliferation and Epithelial-Mesenchymal Transition (EMT) were positively correlated with elevated PC4 expression. Consistently, loss of PC4 markedly inhibited the growth and metastasis of breast cancer both in vitro and in vivo. Mechanistically, PC4 exerted its oncogenic functions by directly binding to c-Myc promoters and inducing Warburg effect. CONCLUSIONS Our study reveals for the first time that PC4 promotes breast cancer progression by directly regulating c-Myc transcription to promote Warburg effect, implying a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Fengying Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Long Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Zhenyu Liu
- Institute of Immunology, Third Military Medical University, Chongqing, 400038 China
| | - Lei Long
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Zujuan Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Hongming Miao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038 China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
44
|
Luo P, Jiang Q, Fang Q, Wang Y, Wang Z, Yang J, Tan X, Li W, Shi C. The human positive cofactor 4 promotes androgen-independent prostate cancer development and progression through HIF-1α/β-catenin pathway. Am J Cancer Res 2019; 9:682-698. [PMID: 31105996 PMCID: PMC6511634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023] Open
Abstract
Androgen-dependent prostate cancer (ADPC) eventually progresses to androgen-independent prostate cancer (AIPC), that has a poor prognosis owing to its unclear mechanism and lack of effective therapeutic targets. The human positive cofactor 4 (PC4) is a transcriptional cofactor, and plays a potential role in cancer development. However, the significance and mechanism of PC4 in AIPC progression are unclear. By analyzing the clinical data, we find that PC4 is overexpressed in prostate cancer and closely correlated with the progression, metastasis and prognosis of patients. Additionally, PC4 is significantly upregulated in AIPC cells compared with ADPC cells, implying its importance in the development and progression of AIPC. Then, in vivo and in vitro studies reveal that loss of PC4 inhibits cell growth by suppressing c-Myc/P21 pathway and inducing cell cycle arrest at G1/S phase transition in AIPC. PC4 knockdown also attenuates EMT-mediated metastasis in AIPC. Moreover, for the first time, we find that PC4 exerts its oncogenic functions by promoting the expression of HIF-1α and activating β-catenin signaling. Therefore, our findings determine the signatures and molecular mechanisms of PC4 in AIPC, and indicate that PC4 might be a promising therapeutic target for AIPC.
Collapse
Affiliation(s)
- Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing 400038, China
| | - Qingzhi Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing 400038, China
- Institute of Clinical Medicine, Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Qiang Fang
- Department of Urology and Nephrology, The Third Affiliated Hospital of Chongqing Medical UniversityChongqing 401120, China
| | - Yawei Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing 400038, China
| | - Ziwen Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing 400038, China
| | - Jing Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical UniversityChongqing 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing 400038, China
| | - Weibing Li
- Department of Urology and Nephrology, The Third Affiliated Hospital of Chongqing Medical UniversityChongqing 401120, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing 400038, China
| |
Collapse
|
45
|
Song J, Liu Y, Chen Q, Yang J, Jiang Z, Zhang H, Liu Z, Jin B. Expression patterns and the prognostic value of the SMYD family members in human breast carcinoma using integrative bioinformatics analysis. Oncol Lett 2019; 17:3851-3861. [PMID: 30930987 PMCID: PMC6425337 DOI: 10.3892/ol.2019.10054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
Suppressor of variegation, Enhancer of Zeste, Trithorax and Myeloid-Nervy-DEAF1 domain-containing (SMYD) proteins are a set of lysine methyltransferases involved in a range of diverse biological functions, including gene expression, and regulation of skeletal and cardiac-muscle development. These proteins may additionally serve roles in a number of different types of cancer. However, the roles of the five SMYD proteins, SMYD 1/2/3/4/5, their expression patterns and prognostic value remain unclear. In the present study, the transcriptional expression levels of the five SMYD proteins were compared with the survival data of patients with breast carcinoma (BC) from the ONCOMINE dataset, Breast Cancer Gene-Expression Miner v4.0, Kaplan-Meier Plotter, The Cancer Genome Atlas and cBioPortal. An increase in the SMYD2/3/5 mRNA expression levels and a decrease in SMYD1/4 mRNA expression levels in BC tissues compared with normal tissues were identified. Increased SMYD3 mRNA and decreased SMYD5 mRNA expression levels were associated with decreased levels of histological differentiation, according to the Scarff-Bloom-Richardson grading system. Kaplan-Meier curves demonstrated that the increased SMYD1/4 and decreased SMYD2/3 mRNA expression levels were associated with good relapse-free survival (RFS) in patients with BC. Furthermore, SMYD2 mRNA expression levels were associated with the RFS of patients with BC with metastatic relapse, and SMYD4 may serve as a tumor suppressor in patients with BC, as patients with increased SMYD4 mRNA expression levels had significantly better RFS compared with decreased SMYD4 mRNA expression levels. The present data suggested that SMYD2 and SMYD3 may be potential biomarkers for diagnosis of BC. Additionally, SMYD2 and SMYD4 may be potential prognostic indicators of patients with BC.
Collapse
Affiliation(s)
- Jianping Song
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Yanfeng Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Qian Chen
- Department of Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Jinhuan Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Zhengchen Jiang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Hao Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| | - Zhaojian Liu
- Institute of Cell Biology, Shandong University School of Basic Medicine, Jinan, Shandong 250012, P.R. China
| | - Bin Jin
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250112, P.R. China
| |
Collapse
|
46
|
Abstract
CRISPR technology has opened a new era of genome interrogation and genome engineering. Discovered in bacteria, where it protects against bacteriophage by cleaving foreign nucleic acid sequences, the CRISPR system has been repurposed as an adaptable tool for genome editing and multiple other applications. CRISPR's ease of use, precision, and versatility have led to its widespread adoption, accelerating biomedical research and discovery in human cells and model organisms. Here we review CRISPR-based tools and discuss how they are being applied to decode the genetic circuits that control immune function in health and disease. Genetic variation in immune cells can affect autoimmune disease risk, infectious disease pathogenesis, and cancer immunotherapies. CRISPR provides unprecedented opportunities for functional mechanistic studies of coding and noncoding genome sequence function in immunity. Finally, we discuss the potential of CRISPR technology to engineer synthetic cellular immunotherapies for a wide range of human diseases.
Collapse
Affiliation(s)
- Dimitre R Simeonov
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94143, USA.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA; .,Diabetes Center, University of California, San Francisco, California 94143, USA
| | - Alexander Marson
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA; .,Diabetes Center, University of California, San Francisco, California 94143, USA.,Innovative Genomics Institute, University of California, Berkeley, California 94720, USA.,Department of Medicine, University of California, San Francisco, California 94143, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158, USA
| |
Collapse
|
47
|
Xu X, Qi LS. A CRISPR–dCas Toolbox for Genetic Engineering and Synthetic Biology. J Mol Biol 2019; 431:34-47. [DOI: 10.1016/j.jmb.2018.06.037] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
|
48
|
MacroH2A1.2 inhibits prostate cancer-induced osteoclastogenesis through cooperation with HP1α and H1.2. Oncogene 2018; 37:5749-5765. [PMID: 29925860 PMCID: PMC6309402 DOI: 10.1038/s41388-018-0356-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 05/13/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
Osteoclasts are multinuclear bone-resorbing cells that differentiate from hematopoietic precursor cells. Prostate cancer cells frequently spread to bone and secrete soluble signaling factors to accelerate osteoclast differentiation and bone resorption. However, processes and mechanisms that govern the expression of osteoclastogenic soluble factors secreted by prostate cancer cells are largely unknown. MacroH2A (mH2A) is a histone variant that replaces canonical H2A at designated genomic loci and establishes functionally distinct chromatin regions. Here we report that mH2A1.2, one of the mH2A isoforms, attenuates prostate cancer-induced osteoclastogenesis by maintaining the inactive state of genes encoding soluble factors in prostate cancer cells. Our functional analyses of soluble factors identify lymphotoxin beta (LTβ) as a major stimulator of osteoclastogenesis and an essential mH2A1.2 target for its anti-osteoclastogenic activity. Mechanistically, mH2A1.2 directly interacts with HP1α and H1.2 and requires them to inactivate LTβ gene in prostate cancer cells. Consistently, HP1α and H1.2 have an intrinsic ability to inhibit osteoclast differentiation in a mH2A1.2-dependent manner. Together, our data uncover a new and specific role for mH2A1.2 in modulating osteoclastogenic potential of prostate cancer cells and demonstrate how this signaling pathway can be exploited to treat osteolytic bone metastases at the molecular level.
Collapse
|
49
|
Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D, Raya A. CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell 2018; 21:431-447. [PMID: 28985525 DOI: 10.1016/j.stem.2017.09.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Determining causal relationships between distinct chromatin features and gene expression, and ultimately cell behavior, remains a major challenge. Recent developments in targetable epigenome-editing tools enable us to assign direct transcriptional and functional consequences to locus-specific chromatin modifications. This Protocol Review discusses the unprecedented opportunity that CRISPR/Cas9 technology offers for investigating and manipulating the epigenome to facilitate further understanding of stem cell biology and engineering of stem cells for therapeutic applications. We also provide technical considerations for standardization and further improvement of the CRISPR/Cas9-based tools to engineer the epigenome.
Collapse
Affiliation(s)
- Julian Pulecio
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA; Weill Graduate School of Medical Sciences at Cornell University/The Rockefeller University/Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, 1300 York Avenue, New York, NY 10065, USA
| | - Eva Mejía-Ramírez
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| | - Angel Raya
- Center of Regenerative Medicine in Barcelona (CMRB), Hospital Duran i Reynals, 3rd floor, Avenue Gran Via 199-203, Hospitalet de Llobregat, 08908 Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
50
|
Li RD, Tang YH, Wang HL, Yang D, Sun LJ, Li W. The SMYD3 VNTR 3/3 polymorphism confers an increased risk and poor prognosis of hepatocellular carcinoma in a Chinese population. Pathol Res Pract 2018; 214:625-630. [PMID: 29691085 DOI: 10.1016/j.prp.2018.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the most lethal human malignancies in China, and the genetic link of hepatocarcinogenesis remains to be defined. Thus, we explored the role of SET and myeloid translocation protein 8, Nervy, and DEAF1 (MYND) domain containing protein 3 (SMYD3) gene polymorphism on risk and prognosis of HCC. METHODS A total of 236 patients with HCC who received treatment in Affiliated Hospital of Jining Medical University for the first time and 230 healthy individuals were enrolled in the study. After DNA extraction for all the subjects, polymerase chain reaction (PCR) was used to amplify and sequence variable numbers of tandem repeat (VNTR) loci of SMYD3 gene. SMYD3 gene was genotyped and its frequency distribution was calculated. Age, education level, income, smoking and drinking history, HCC family history, tumor node metastasis (TNM) staging, maximum tumor diameter, lymph node metastasis (LNM) etc. were investigated. Correlation of SMYD3 gene polymorphism and other risk factors with the occurrence and prognosis of HCC was analyzed. RESULTS The family history of HCC, drinking history, cirrhosis, and HBV or/and HCV infection, SMYD3 VNTR 3/3 were more frequently observed in subjects with HCC. Patients with SMYD3 VNTR 3/3 genotype, drinking-history, family history of HCC, cirrhosis and hepatitis B virus (HBV), TNM staging, maximum tumor diameter, LNM were more vulnerable to HCC. Besides, patients with SMYD3 VNTR 3/3 genotype had lower 2- and 3-year survival rate. The COX regression analysis revealed that drinking history, family history of HCC, SMYD3 VNTR 3/3 genotype, TNM staging, and LNM were all related to the prognosis of HCC. CONCLUSION This study indicates that drinking history, family history of HCC and SMYD3 VNTR 3/3, TNM staging, maximum tumor diameter, LNM might be risk factors for HCC, and SMYD3 VNTR 3/3 might contribute to a lower 2- and 3-year survival rate of patients with HCC.
Collapse
Affiliation(s)
- Rui-Dong Li
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining 272009, PR China
| | - Yan-Hua Tang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining 272009, PR China
| | - Hui-Li Wang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining 272009, PR China.
| | - Dong Yang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining 272009, PR China
| | - Li-Jun Sun
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining 272009, PR China
| | - Wei Li
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining 272009, PR China
| |
Collapse
|