1
|
Defelipe LA, Veith K, Burastero O, Kupriianova T, Bento I, Skruzny M, Kölbel K, Uetrecht C, Thuenauer R, García-Alai MM. Subtleties in Clathrin heavy chain binding boxes provide selectivity among adaptor proteins of budding yeast. Nat Commun 2024; 15:9655. [PMID: 39511183 PMCID: PMC11543927 DOI: 10.1038/s41467-024-54037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Clathrin forms a triskelion, or three-legged, network that regulates cellular processes by facilitating cargo internalization and trafficking in eukaryotes. Its N-terminal domain is crucial for interacting with adaptor proteins, which link clathrin to the membrane and engage with specific cargo. The N-terminal domain contains up to four adaptor-binding sites, though their role in preferential occupancy by adaptor proteins remains unclear. In this study, we examine the binding hierarchy of adaptors for clathrin, using integrative biophysical and structural approaches, along with in vivo functional experiments. We find that yeast epsin Ent5 has the highest affinity for clathrin, highlighting its key role in cellular trafficking. Epsins Ent1 and Ent2, crucial for endocytosis but thought to have redundant functions, show distinct binding patterns. Ent1 exhibits stronger interactions with clathrin than Ent2, suggesting a functional divergence toward actin binding. These results offer molecular insights into adaptor protein selectivity, suggesting they competitively bind clathrin while also targeting three different clathrin sites.
Collapse
Affiliation(s)
- Lucas A Defelipe
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Katharina Veith
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Osvaldo Burastero
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Tatiana Kupriianova
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany
| | - Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Carl Zeiss Microscopy GmbH, Jena, Germany
| | - Knut Kölbel
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
| | - Charlotte Uetrecht
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Deutsches Elektronen Synchrotron - DESY, Hamburg, Germany
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Roland Thuenauer
- Centre for Structural Systems Biology, Hamburg, Germany
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Technology Platform Light Microscopy (TPLM), Universität Hamburg (UHH), Hamburg, Germany
| | - Maria M García-Alai
- European Molecular Biology Laboratory - Hamburg Unit, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
| |
Collapse
|
2
|
Luebbert L, Hoang C, Kumar M, Pachter L. Fast and scalable querying of eukaryotic linear motifs with gget elm. Bioinformatics 2024; 40:btae095. [PMID: 38377393 PMCID: PMC10927331 DOI: 10.1093/bioinformatics/btae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
MOTIVATION Eukaryotic linear motifs (ELMs), or Short Linear Motifs, are protein interaction modules that play an essential role in cellular processes and signaling networks and are often involved in diseases like cancer. The ELM database is a collection of manually curated motif knowledge from scientific papers. It has become a crucial resource for investigating motif biology and recognizing candidate ELMs in novel amino acid sequences. Users can search amino acid sequences or UniProt Accessions on the ELM resource web interface. However, as with many web services, there are limitations in the swift processing of large-scale queries through the ELM web interface or API calls, and, therefore, integration into protein function analysis pipelines is limited. RESULTS To allow swift, large-scale motif analyses on protein sequences using ELMs curated in the ELM database, we have extended the gget suite of Python and command line tools with a new module, gget elm, which does not rely on the ELM server for efficiently finding candidate ELMs in user-submitted amino acid sequences and UniProt Accessions. gget elm increases accessibility to the information stored in the ELM database and allows scalable searches for motif-mediated interaction sites in the amino acid sequences. AVAILABILITY AND IMPLEMENTATION The manual and source code are available at https://github.com/pachterlab/gget.
Collapse
Affiliation(s)
- Laura Luebbert
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Chi Hoang
- California Institute of Technology, Pasadena, CA 91125, United States
| | - Manjeet Kumar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
3
|
Petraccione K, Ali MGH, Cyr N, Wahba HM, Stocker T, Akhrymuk M, Akhrymuk I, Panny L, Bracci N, Cafaro R, Sastre D, Silberfarb A, O’Maille P, Omichinski J, Kehn-Hall K. An LIR motif in the Rift Valley fever virus NSs protein is critical for the interaction with LC3 family members and inhibition of autophagy. PLoS Pathog 2024; 20:e1012093. [PMID: 38512999 PMCID: PMC10986958 DOI: 10.1371/journal.ppat.1012093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/02/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Rift Valley fever virus (RVFV) is a viral zoonosis that causes severe disease in ruminants and humans. The nonstructural small (NSs) protein is the primary virulence factor of RVFV that suppresses the host's antiviral innate immune response. Bioinformatic analysis and AlphaFold structural modeling identified four putative LC3-interacting regions (LIR) motifs (NSs 1-4) in the RVFV NSs protein, which suggest that NSs interacts with the host LC3-family proteins. Using, isothermal titration calorimetry, X-ray crystallography, co-immunoprecipitation, and co-localization experiments, the C-terminal LIR motif (NSs4) was confirmed to interact with all six human LC3 proteins. Phenylalanine at position 261 (F261) within NSs4 was found to be critical for the interaction of NSs with LC3, retention of LC3 in the nucleus, as well as the inhibition of autophagy in RVFV infected cells. These results provide mechanistic insights into the ability of RVFV to overcome antiviral autophagy through the interaction of NSs with LC3 proteins.
Collapse
Affiliation(s)
- Kaylee Petraccione
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mohamed G. H. Ali
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Haytham M. Wahba
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Timothy Stocker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Maryna Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ivan Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nicole Bracci
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Raphaël Cafaro
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Danuta Sastre
- Biosciences Division, SRI International, Menlo Park, California, United States of America
| | - Andrew Silberfarb
- Artificial Intelligence Center, SRI International, Menlo Park, California, United States of America
| | - Paul O’Maille
- Biosciences Division, SRI International, Menlo Park, California, United States of America
| | - James Omichinski
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
4
|
Idrees S, Paudel KR, Hansbro PM. Prediction of motif-mediated viral mimicry through the integration of host-pathogen interactions. Arch Microbiol 2024; 206:94. [PMID: 38334822 PMCID: PMC10858152 DOI: 10.1007/s00203-024-03832-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
One of the mechanisms viruses use in hijacking host cellular machinery is mimicking Short Linear Motifs (SLiMs) in host proteins to maintain their life cycle inside host cells. In the face of the escalating volume of virus-host protein-protein interactions (vhPPIs) documented in databases; the accurate prediction of molecular mimicry remains a formidable challenge due to the inherent degeneracy of SLiMs. Consequently, there is a pressing need for computational methodologies to predict new instances of viral mimicry. Our present study introduces a DMI-de-novo pipeline, revealing that vhPPIs catalogued in the VirHostNet3.0 database effectively capture domain-motif interactions (DMIs). Notably, both affinity purification coupled mass spectrometry and yeast two-hybrid assays emerged as good approaches for delineating DMIs. Furthermore, we have identified new vhPPIs mediated by SLiMs across different viruses. Importantly, the de-novo prediction strategy facilitated the recognition of several potential mimicry candidates implicated in the subversion of host cellular proteins. The insights gleaned from this research not only enhance our comprehension of the mechanisms by which viruses co-opt host cellular machinery but also pave the way for the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Sobia Idrees
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and the University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
5
|
Zeke A, Alexa A, Reményi A. Discovery and Characterization of Linear Motif Mediated Protein-Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:59-71. [PMID: 38507200 DOI: 10.1007/978-3-031-52193-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
There are myriads of protein-protein complexes that form within the cell. In addition to classical binding events between globular domains, many protein-protein interactions involve short disordered protein regions. The latter contain so-called linear motifs binding specifically to ordered protein domain surfaces. Linear binding motifs are classified based on their consensus sequence, where only a few amino acids are conserved. In this chapter we will review experimental and in silico techniques that can be used for the discovery and characterization of linear motif mediated protein-protein complexes involved in cellular signaling, protein level and gene expression regulation.
Collapse
Affiliation(s)
- András Zeke
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Anita Alexa
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
6
|
Xu B, Chen Y, Xue W. Computational Protein Design - Where it goes? Curr Med Chem 2024; 31:2841-2854. [PMID: 37272467 DOI: 10.2174/0929867330666230602143700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 06/06/2023]
Abstract
Proteins have been playing a critical role in the regulation of diverse biological processes related to human life. With the increasing demand, functional proteins are sparse in this immense sequence space. Therefore, protein design has become an important task in various fields, including medicine, food, energy, materials, etc. Directed evolution has recently led to significant achievements. Molecular modification of proteins through directed evolution technology has significantly advanced the fields of enzyme engineering, metabolic engineering, medicine, and beyond. However, it is impossible to identify desirable sequences from a large number of synthetic sequences alone. As a result, computational methods, including data-driven machine learning and physics-based molecular modeling, have been introduced to protein engineering to produce more functional proteins. This review focuses on recent advances in computational protein design, highlighting the applicability of different approaches as well as their limitations.
Collapse
Affiliation(s)
- Binbin Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yingjun Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
7
|
Postic G, Solarz J, Loubière C, Kandiah J, Sawmynaden J, Adam F, Vilaire M, Léger T, Camadro J, Victorino DB, Potier M, Bun E, Moroy G, Kauskot A, Christophe O, Janel N. Over-expression of Dyrk1A affects bleeding by modulating plasma fibronectin and fibrinogen level in mice. J Cell Mol Med 2023; 27:2228-2238. [PMID: 37415307 PMCID: PMC10399536 DOI: 10.1111/jcmm.17817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Down syndrome is the most common chromosomal abnormality in humans. Patients with Down syndrome have hematologic disorders, including mild to moderate thrombocytopenia. In case of Down syndrome, thrombocytopenia is not associated with bleeding, and it remains poorly characterized regarding molecular mechanisms. We investigated the effects of overexpression of Dyrk1A, an important factor contributing to some major Down syndrome phenotypes, on platelet number and bleeding in mice. Mice overexpressing Dyrk1A have a decrease in platelet number by 20%. However, bleeding time was found to be reduced by 50%. The thrombocytopenia and the decreased bleeding time observed were not associated to an abnormal platelet receptors expression, to a defect of platelet activation by ADP, thrombin or convulxin, to the presence of activated platelets in the circulation or to an abnormal half-life of the platelets. To propose molecular mechanisms explaining this discrepancy, we performed a network analysis of Dyrk1A interactome and demonstrated that Dyrk1A, fibronectin and fibrinogen interact indirectly through two distinct clusters of proteins. Moreover, in mice overexpressing Dyrk1A, increased plasma fibronectin and fibrinogen levels were found, linked to an increase of the hepatic fibrinogen production. Our results indicate that overexpression of Dyrk1A in mice induces decreased bleeding consistent with increased plasma fibronectin and fibrinogen levels, revealing a new role of Dyrk1A depending on its indirect interaction with these two proteins.
Collapse
Affiliation(s)
| | - Jean Solarz
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Cécile Loubière
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | | | | - Frederic Adam
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | | - Thibaut Léger
- Université Paris Cité, IJM, UMR 7592, CNRSParisFrance
- Toxicology of Contaminants Unit, Fougeres Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES)FougeresFrance
| | | | - Daniella Balduino Victorino
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié‐SalpêtrièreParisFrance
| | - Marie‐Claude Potier
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié‐SalpêtrièreParisFrance
| | - Eric Bun
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Gautier Moroy
- Université Paris Cité, BFA, UMR 8251, CNRS, ERLU1133ParisFrance
| | - Alexandre Kauskot
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Olivier Christophe
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | |
Collapse
|
8
|
Larsen ISB, Povolo L, Zhou L, Tian W, Mygind KJ, Hintze J, Jiang C, Hartill V, Prescott K, Johnson CA, Mullegama SV, McConkie-Rosell A, McDonald M, Hansen L, Vakhrushev SY, Schjoldager KT, Clausen H, Worzfeld T, Joshi HJ, Halim A. The SHDRA syndrome-associated gene TMEM260 encodes a protein-specific O-mannosyltransferase. Proc Natl Acad Sci U S A 2023; 120:e2302584120. [PMID: 37186866 PMCID: PMC10214176 DOI: 10.1073/pnas.2302584120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023] Open
Abstract
Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Ida Signe Bohse Larsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Lorenzo Povolo
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Luping Zhou
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Kasper Johansen Mygind
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Chen Jiang
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
| | - Verity Hartill
- Leeds Institute of Medical Research, University of Leeds, St James’ University Hospital, LeedsLS2 9JT, United Kingdom
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, LeedsLS7 4SA, United Kingdom
| | - Katrina Prescott
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, LeedsLS7 4SA, United Kingdom
| | - Colin A. Johnson
- Leeds Institute of Medical Research, University of Leeds, St James’ University Hospital, LeedsLS2 9JT, United Kingdom
| | | | - Allyn McConkie-Rosell
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Marie McDonald
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Katrine T. Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Thomas Worzfeld
- Faculty of Medicine, Institute of Pharmacology, University of Marburg, 35043Marburg, Germany
- Max-Planck-Institute for Heart and Lung Research, 61231Bad Nauheim, Germany
| | - Hiren J. Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Adnan Halim
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200Copenhagen N, Denmark
| |
Collapse
|
9
|
Pennacchietti V, Toto A. Different electrostatic forces drive the binding kinetics of SARS-CoV, SARS-CoV-2 and MERS-CoV Envelope proteins with the PDZ2 domain of ZO1. Sci Rep 2023; 13:7906. [PMID: 37193746 DOI: 10.1038/s41598-023-35079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
The Envelope protein (E) is a structural protein encoded by the genome of SARS-CoV, SARS-CoV-2 and MERS-CoV Coronaviruses. It is poorly present in the virus but highly expressed in the host cell, with prominent role in virus assembly and virulence. The E protein possesses a PDZ-binding motif (PBM) at its C terminus that allows it to interact with host PDZ domain containing proteins. ZO1 is a key protein in assembling the cytoplasmic plaque of epithelial and endothelial Tight Junctions (TJs) as well as in determining cell differentiation, proliferation and polarity. The PDZ2 domain of ZO1 is known to interact with the Coronaviruses Envelope proteins, however the molecular details of such interaction have not been established. In this paper we directly measured, through Fluorescence Resonance Energy Transfer and Stopped-Flow methodology, the binding kinetics of the PDZ2 domain of ZO1 with peptides mimicking the C-terminal portion of the Envelope protein from SARS-CoV, SARS-CoV-2 and MERS-CoV in different ionic strength conditions. Interestingly, the peptide mimicking the E protein from MERS-CoV display much higher microscopic association rate constant with PDZ2 compared to SARS-CoV and SARS-CoV-2 suggesting a stronger contribution of electrostatic forces in the early events of binding. A comparison of thermodynamic and kinetic data obtained at increasing ionic strengths put in evidence different contribution of electrostatics in the recognition and complex formation events for the three peptides. Our data are discussed under the light of available structural data of PDZ2 domain of ZO1 and of previous works about these protein systems.
Collapse
Affiliation(s)
- Valeria Pennacchietti
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Rao STRB, Turek I, Ratcliffe J, Beckham S, Cianciarulo C, Adil SSBMY, Kettle C, Whelan DR, Irving HR. 5-HT 3 Receptors on Mitochondria Influence Mitochondrial Function. Int J Mol Sci 2023; 24:ijms24098301. [PMID: 37176009 PMCID: PMC10179570 DOI: 10.3390/ijms24098301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
The 5-hydroxytryptamine 3 (5-HT3) receptor belongs to the pentameric ligand-gated cation channel superfamily. Humans have five different 5-HT3 receptor subunits: A to E. The 5-HT3 receptors are located on the cell membrane, but a previous study suggested that mitochondria could also contain A subunits. In this article, we explored the distribution of 5-HT3 receptor subunits in intracellular and cell-free mitochondria. Organelle prediction software supported the localization of the A and E subunits on the inner membrane of the mitochondria. We transiently transfected HEK293T cells that do not natively express the 5-HT3 receptor with an epitope and fluorescent protein-tagged 5HT3A and 5HT3E subunits. Fluorescence microscopy and cell fractionation indicated that both subunits, A and E, localized to the mitochondria, while transmission electron microscopy revealed the location of the subunits on the mitochondrial inner membrane, where they could form heteromeric complexes. Cell-free mitochondria isolated from cell culture media colocalized with the fluorescent signal for A subunits. The presence of A and E subunits influenced changes in the membrane potential and mitochondrial oxygen consumption rates upon exposure to serotonin; this was inhibited by pre-treatment with ondansetron. Therefore, it is likely that the 5-HT3 receptors present on mitochondria directly impact mitochondrial function and that this may have therapeutic implications.
Collapse
Affiliation(s)
- Santosh T R B Rao
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Ilona Turek
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Bio Imaging Platform, La Trobe University, Kingsbury Dr, Bundoora, VIC 3086, Australia
| | - Simone Beckham
- Regional Science Operations, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Cassandra Cianciarulo
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Siti S B M Y Adil
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Christine Kettle
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Helen R Irving
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| |
Collapse
|
11
|
Gorry R, Brennan K, Lavin PTM, Sheridan R, Mc Gee MM. Phosphorylation of the prolyl isomerase Cyclophilin A regulates its localisation and release from the centrosome during mitosis. Cell Cycle 2023; 22:951-966. [PMID: 36691345 PMCID: PMC10054169 DOI: 10.1080/15384101.2023.2167430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023] Open
Abstract
The centrosome acts as a protein platform from which proteins are deployed to function throughout the cell cycle. Previously, we have shown that the prolyl isomerase Cyclophilin A (CypA) localizes to the centrosome in interphase and re-localizes to the midbody during mitosis where it functions in cytokinesis. In this study, investigation of CypA by SDS-PAGE during the cell cycle reveals that it undergoes a mobility shift during mitosis, indicative of a post-translational modification, which may correlate with its subcellular re-localization. Due to the lack of a phospho-specific antibody, we used site-directed mutagenesis to demonstrate that the previously identified serine 77 phosphorylation site within CypA is important for control of CypA centrosome localization. Furthermore, CypA is shown to interact with the mitotic NIMA-related kinase 2 (Nek2) during interphase and mitosis, while also interacting with the Nek2-antagonist PP1 during interphase but not during mitosis, suggesting a potential role for the Nek2-PP1 complex in CypA phospho-regulation. In support of this, Nek2 is capable of phosphorylating CypA in vitro. Overall, this work reveals that phosphorylation of CypA at serine 77 is important for its release from the centrosome during mitosis and may be regulated by the activity of Nek2 and PP1 during the cell cycle.
Collapse
Affiliation(s)
- Rebecca Gorry
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Kieran Brennan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Paul TM Lavin
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Rebecca Sheridan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| | - Margaret M Mc Gee
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Ireland
| |
Collapse
|
12
|
Sandmann CL, Schulz JF, Ruiz-Orera J, Kirchner M, Ziehm M, Adami E, Marczenke M, Christ A, Liebe N, Greiner J, Schoenenberger A, Muecke MB, Liang N, Moritz RL, Sun Z, Deutsch EW, Gotthardt M, Mudge JM, Prensner JR, Willnow TE, Mertins P, van Heesch S, Hubner N. Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames. Mol Cell 2023; 83:994-1011.e18. [PMID: 36806354 PMCID: PMC10032668 DOI: 10.1016/j.molcel.2023.01.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.
Collapse
Affiliation(s)
- Clara-L Sandmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| | - Jana F Schulz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | - Eleonora Adami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Maike Marczenke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Annabel Christ
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Nina Liebe
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Johannes Greiner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Aaron Schoenenberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michael B Muecke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Ning Liang
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas E Willnow
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | | | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
13
|
Pittner NA, Solomon RN, Bui DC, McBride JW. Ehrlichia effector SLiM-icry: Artifice of cellular subversion. Front Cell Infect Microbiol 2023; 13:1150758. [PMID: 36960039 PMCID: PMC10028187 DOI: 10.3389/fcimb.2023.1150758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
As an obligately intracellular bacterial pathogen that selectively infects the mononuclear phagocyte, Ehrlichia chaffeensis has evolved sophisticated mechanisms to subvert innate immune defenses. While the bacterium accomplishes this through a variety of mechanisms, a rapidly expanding body of evidence has revealed that E. chaffeensis has evolved survival strategies that are directed by the versatile, intrinsically disordered, 120 kDa tandem repeat protein (TRP120) effector. E. chaffeensis establishes infection by manipulating multiple evolutionarily conserved cellular signaling pathways through effector-host interactions to subvert innate immune defenses. TRP120 activates these pathways using multiple functionally distinct, repetitive, eukaryote-mimicking short linear motifs (SLiMs) located within the tandem repeat domain that have evolved in nihilo. Functionally, the best characterized TRP120 SLiMs mimic eukaryotic ligands (SLiM-icry) to engage pathway-specific host receptors and activate cellular signaling, thereby repurposing these pathways to promote infection. Moreover, E. chaffeensis TRP120 contains SLiMs that are targets of post-translational modifications such as SUMOylation in addition to many other validated SLiMs that are curated in the eukaryotic linear motif (ELM) database. This review will explore the extracellular and intracellular roles TRP120 SLiM-icry plays during infection - mediated through a variety of SLiMs - that enable E. chaffeensis to subvert mononuclear phagocyte innate defenses.
Collapse
Affiliation(s)
- Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
14
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
15
|
Halpin JC, Whitney D, Rigoldi F, Sivaraman V, Singer A, Keating AE. Molecular determinants of TRAF6 binding specificity suggest that native interaction partners are not optimized for affinity. Protein Sci 2022; 31:e4429. [PMID: 36305766 PMCID: PMC9597381 DOI: 10.1002/pro.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
TRAF6 is an adaptor protein involved in signaling pathways that are essential for development and the immune system. It participates in many protein-protein interactions, some of which are mediated by the C-terminal MATH domain, which binds to short peptide segments containing the motif PxExx[FYWHDE], where x is any amino acid. Blocking MATH domain interactions is associated with favorable effects in various disease models. To better define TRAF6 MATH domain binding preferences, we screened a combinatorial library using bacterial cell-surface peptide display. We identified 236 of the best TRAF6-interacting peptides and a set of 1,200 peptides that match the sequence PxE but do not bind TRAF6 MATH. The peptides that were most enriched in the screen bound TRAF6 tighter than previously measured native peptides. To better understand the structural basis for TRAF6 interaction preferences, we built all-atom structural models of the MATH domain in complex with high-affinity binders and nonbinders identified in the screen. We identified favorable interactions for motif features in binders as well as negative design elements distributed across the motif that can disfavor or preclude binding. Searching the human proteome revealed that the most biologically relevant TRAF6 motif matches occupy a different sequence space from the best hits discovered in combinatorial library screening, suggesting that native interactions are not optimized for affinity. Our experimentally determined binding preferences and structural models support the design of peptide-based interaction inhibitors with higher affinities than endogenous TRAF6 ligands.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy E. Keating
- MIT Department of BiologyCambridgeMassachusettsUSA
- MIT Department of Biological EngineeringCambridgeMassachusettsUSA
- Koch Institute for Integrative Cancer ResearchCambridgeMassachusettsUSA
| |
Collapse
|
16
|
Handa T, Kundu D, Dubey VK. Perspectives on evolutionary and functional importance of intrinsically disordered proteins. Int J Biol Macromol 2022; 224:243-255. [DOI: 10.1016/j.ijbiomac.2022.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
17
|
Computational Analysis of Short Linear Motifs in the Spike Protein of SARS-CoV-2 Variants Provides Possible Clues into the Immune Hijack and Evasion Mechanisms of Omicron Variant. Int J Mol Sci 2022; 23:ijms23158822. [PMID: 35955954 PMCID: PMC9368778 DOI: 10.3390/ijms23158822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
Short linear motifs (SLiMs) are short linear sequences that can mediate protein–protein interaction. Mimicking eukaryotic SLiMs to compete with extra- or intracellular binding partners, or to sequester host proteins is the crucial strategy of viruses to pervert the host system. Evolved proteins in viruses facilitate minimal protein–protein interactions that significantly affect intracellular signaling networks. Unfortunately, very little information about SARS-CoV-2 SLiMs is known, especially across SARS-CoV-2 variants. Through the ELM database-based sequence analysis of spike proteins from all the major SARS-CoV-2 variants, we identified four overriding SLiMs in the SARS-CoV-2 Omicron variant, namely, LIG_TRFH_1, LIG_REV1ctd_RIR_1, LIG_CaM_NSCaTE_8, and MOD_LATS_1. These SLiMs are highly likely to interfere with various immune functions, interact with host intracellular proteins, regulate cellular pathways, and lubricate viral infection and transmission. These cellular interactions possibly serve as potential therapeutic targets for these variants, and this approach can be further exploited to combat emerging SARS-CoV-2 variants.
Collapse
|
18
|
Bezerra RP, Conniff AS, Uversky VN. Comparative study of structures and functional motifs in lectins from the commercially important photosynthetic microorganisms. Biochimie 2022; 201:63-74. [PMID: 35839918 DOI: 10.1016/j.biochi.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Photosynthetic microorganisms, specifically cyanobacteria and microalgae, can synthesize a vast array of biologically active molecules, such as lectins, that have great potential for various biotechnological and biomedical applications. However, since the structures of these proteins are not well established, likely due to the presence of intrinsically disordered regions, our ability to better understand their functionality is hampered. We embarked on a study of the carbohydrate recognition domain (CRD), intrinsically disordered regions (IDRs), amino acidic composition, as well as and functional motifs in lectins from cyanobacteria of the genus Arthrospira and microalgae Chlorella and Dunaliella genus using a combination of bioinformatics techniques. This search revealed the presence of five distinctive CRD types differently distributed between the genera. Most CRDs displayed a group-specific distribution, except to C. sorokiniana possessing distinctive CRD probably due to its specific lifestyle. We also found that all CRDs contain short IDRs. Bacterial lectin of Arthrospira prokarionte showed lower intrinsic disorder and proline content when compared to the lectins from the eukaryotic microalgae (Chlorella and Dunaliella). Among the important functions predicted in all lectins were several specific motifs, which directly interacts with proteins involved in the cell-cycle control and which may be used for pharmaceutical purposes. Since the aforementioned properties of each type of lectin were investigated in silico, they need experimental confirmation. The results of our study provide an overview of the distribution of CRD, IDRs, and functional motifs within lectin from the commercially important microalgae.
Collapse
Affiliation(s)
- Raquel P Bezerra
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco-UFRPE, Dom Manoel de Medeiros Ave, Recife, PE, 52171-900, Brazil.
| | - Amanda S Conniff
- Department of Medical Engineering, Morsani College of Medicine and College of Engineering, University of South Florida, Tampa, FL, 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
19
|
Guharoy M, Lazar T, Macossay-Castillo M, Tompa P. Degron masking outlines degronons, co-degrading functional modules in the proteome. Commun Biol 2022; 5:445. [PMID: 35545699 PMCID: PMC9095673 DOI: 10.1038/s42003-022-03391-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Effective organization of proteins into functional modules (networks, pathways) requires systems-level coordination between transcription, translation and degradation. Whereas the cooperation between transcription and translation was extensively studied, the cooperative degradation regulation of protein complexes and pathways has not been systematically assessed. Here we comprehensively analyzed degron masking, a major mechanism by which cellular systems coordinate degron recognition and protein degradation. For over 200 substrates with characterized degrons (E3 ligase targeting motifs, ubiquitination sites and disordered proteasomal entry sequences), we demonstrate that degrons extensively overlap with protein-protein interaction sites. Analysis of binding site information and protein abundance comparisons show that regulatory partners effectively outcompete E3 ligases, masking degrons from the ubiquitination machinery. Protein abundance variations between normal and cancer cells highlight the dynamics of degron masking components. Finally, integrative analysis of gene co-expression, half-life correlations and functional relationships between interacting proteins point towards higher-order, co-regulated degradation modules (‘degronons’) in the proteome. Systematic bioinformatics analysis of cooperative degradation of protein complexes indicates that degrons extensively overlap with protein-protein interaction sites, hiding degrons from ubiquitination machinery and suggesting the existence of co-degrading functional modules in the proteome.
Collapse
Affiliation(s)
- Mainak Guharoy
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium. .,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,VIB Bioinformatics Core, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
| | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mauricio Macossay-Castillo
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium. .,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
20
|
Dionne U, Percival LJ, Chartier FJM, Landry CR, Bisson N. SRC homology 3 domains: multifaceted binding modules. Trends Biochem Sci 2022; 47:772-784. [PMID: 35562294 DOI: 10.1016/j.tibs.2022.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022]
Abstract
The assembly of complexes following the detection of extracellular signals is often controlled by signaling proteins comprising multiple peptide binding modules. The SRC homology (SH)3 family represents the archetypical modular protein interaction module, with ~300 annotated SH3 domains in humans that regulate an impressive array of signaling processes. We review recent findings regarding the allosteric contributions of SH3 domains host protein context, their phosphoregulation, and their roles in phase separation that challenge the simple model in which SH3s are considered to be portable domains binding to specific proline-rich peptide motifs.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Lily J Percival
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Manchester, UK
| | - François J M Chartier
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada
| | - Christian R Landry
- Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Institute of Integrative and Systems Biology, Université Laval, Quebec, QC, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Quebec, QC, Canada; Department of Biology, Université Laval, Quebec, QC, Canada.
| | - Nicolas Bisson
- Centre de recherche sur le cancer et Centre de recherche du CHU de Québec - Université Laval, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), QC, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC, Canada.
| |
Collapse
|
21
|
Integrated analysis of microbe-host interactions in Crohn’s disease reveals potential mechanisms of microbial proteins on host gene expression. iScience 2022; 25:103963. [PMID: 35479407 PMCID: PMC9035720 DOI: 10.1016/j.isci.2022.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/11/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
|
22
|
Trothen SM, Zang RX, Lurie A, Dikeakos JD. PACS-1 contains distinct motifs for nuclear-cytoplasmic transport and interacts with the RNA-binding protein PTBP1 in the nucleus and cytosol. FEBS Lett 2022; 596:232-248. [PMID: 34822171 DOI: 10.1002/1873-3468.14243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Phosphofurin acidic cluster sorting protein 1 (PACS-1) is canonically a cytosolic trafficking protein, yet recent reports have described nuclear roles for PACS-1. Herein, we sought to define the nuclear transport mechanism of PACS-1. We demonstrate that PACS-1 nucleocytoplasmic trafficking is dependent on its interaction with the nuclear transport receptors importin alpha 5 and exportin 1. PACS-1 nuclear entry and exit are defined by a nuclear localization signal (NLS, residues 311-318) and nuclear export signal (NES3, residues 366-375). Mutation of the PACS-1 NLS and NES3 altered the localization of a complex formed between PACS-1 and an RNA-binding protein, polypyrimidine tract-binding protein 1. Overall, we identify the nuclear localization mechanism of PACS-1 and highlight a potential role for PACS-1 in RNA-binding protein trafficking.
Collapse
Affiliation(s)
- Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Rong Xuan Zang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Antony Lurie
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
23
|
Chen L, Yang Y, Zhang Y, Li K, Cai H, Wang H, Zhao Q. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies. Chembiochem 2021; 23:e202100534. [PMID: 34862721 DOI: 10.1002/cbic.202100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Indexed: 11/07/2022]
Abstract
Small open reading frames (sORFs) are an important class of genes with less than 100 codons. They were historically annotated as noncoding or even junk sequences. In recent years, accumulating evidence suggests that sORFs could encode a considerable number of polypeptides, many of which play important roles in both physiology and disease pathology. However, it has been technically challenging to directly detect sORF-encoded peptides (SEPs). Here, we discuss the latest advances in methodologies for identifying SEPs with mass spectrometry, as well as the progress on functional studies of SEPs.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Kecheng Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510623, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, P. R. China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
24
|
Dwyer ME, Hangarter RP. Light-dependent phosphorylation of THRUMIN1 regulates its association with actin filaments and 14-3-3 proteins. PLANT PHYSIOLOGY 2021; 187:1445-1461. [PMID: 34618069 PMCID: PMC8566215 DOI: 10.1093/plphys/kiab374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Light-dependent chloroplast movements in leaf cells contribute to the optimization of photosynthesis. Low-light conditions induce chloroplast accumulation along periclinal cell surfaces, providing greater access to available light, whereas high light induces movement of chloroplasts to anticlinal cell surfaces, providing photodamage protection and allowing more light to reach underlying cell layers. The THRUMIN1 protein is required for normal chloroplast movements in Arabidopsis (Arabidopsis thaliana) and has been shown to localize at the plasma membrane and to undergo rapid light-dependent interactions with actin filaments through the N-terminal intrinsically disordered region (IDR). A predicted WASP-Homology 2 domain was found in the IDR but mutations in this domain did not disrupt localization of THRUMIN1:YFP to actin filaments. A series of other protein truncations and site-directed mutations of known and putative phosphorylation sites indicated that a phosphomimetic mutation (serine to aspartic acid) at position 170 disrupted localization of THRUMIN1 to actin filaments. However, the phosphomimetic mutant rescued the thrumin1-2 mutant phenotype for chloroplast movement and raises questions about the role of THRUMIN1's interaction with actin. Mutation of serine 146 to aspartic acid also resulted in cytoplasmic localization of THRUMIN1:YFP in Nicotiana benthamiana. Mutations to a group of putative zinc-binding cysteine clusters implicate the C-terminus of THRUMIN1 in chloroplast movement. Phosphorylation-dependent association of THRUMIN1 with 14-3-3 KAPPA and OMEGA were also identified. Together, these studies provide insights into the mechanistic role of THRUMIN1 in light-dependent chloroplast movements.
Collapse
Affiliation(s)
- Matthew E Dwyer
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Roger P Hangarter
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
25
|
Yang JX, Chen X, Li YY, Song TY, Ge JQ. Isolation of a novel adomavirus from cultured American eels, Anguilla rostrata, with haemorrhagic gill necrosis disease. JOURNAL OF FISH DISEASES 2021; 44:1811-1818. [PMID: 34324718 DOI: 10.1111/jfd.13500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Recently, the culture of American eels (Anguilla rostrate) in China has been impacted by emergence of a disease with signs of haemorrhagic gill necrosis. The gills of diseased eels are covered with petecchia and they bleed when the operculum is pressed. In this study, a novel American eel adomavirus (AEAdoV) was isolated from the diseased eels using the eel ovary cell line (EO). The virus proliferated in the EO cells with a maximum TCID50 /ml of 106.29 ± 0.23 at 6 days post-infection. The virions were non-enveloped with a diameter of 75-85 nm and shown to be a DNA virus upon 5-iodo-2'-deoxyuridine (IDU) treatment. PCR assays showed that AEAdoV encodes a superfamily 3 helicases (S3H) replicase and shared high similarities with Anguilla marmorata adomavirus (MEAdoV). Although no clinical signs or mortality was observed among the eels injected with AEAdoV, the virus was reisolated from livers, kidneys and gills of injected eels at 35 days post-injection. Our results suggested that AEAdoV exhibited a latent infection in A. rostrata. The pathogenicity of the AEAdoV needs to be confirmed further.
Collapse
Affiliation(s)
- Jin-Xian Yang
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xi Chen
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Ying-Ying Li
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Tie-Ying Song
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jun-Qing Ge
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
26
|
Wang X, Tokheim C, Gu SS, Wang B, Tang Q, Li Y, Traugh N, Zeng Z, Zhang Y, Li Z, Zhang B, Fu J, Xiao T, Li W, Meyer CA, Chu J, Jiang P, Cejas P, Lim K, Long H, Brown M, Liu XS. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 2021; 184:5357-5374.e22. [PMID: 34582788 PMCID: PMC9136996 DOI: 10.1016/j.cell.2021.09.006] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/14/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
Despite remarkable clinical efficacy of immune checkpoint blockade (ICB) in cancer treatment, ICB benefits for triple-negative breast cancer (TNBC) remain limited. Through pooled in vivo CRISPR knockout (KO) screens in syngeneic TNBC mouse models, we found that deletion of the E3 ubiquitin ligase Cop1 in cancer cells decreases secretion of macrophage-associated chemokines, reduces tumor macrophage infiltration, enhances anti-tumor immunity, and strengthens ICB response. Transcriptomics, epigenomics, and proteomics analyses revealed that Cop1 functions through proteasomal degradation of the C/ebpδ protein. The Cop1 substrate Trib2 functions as a scaffold linking Cop1 and C/ebpδ, which leads to polyubiquitination of C/ebpδ. In addition, deletion of the E3 ubiquitin ligase Cop1 in cancer cells stabilizes C/ebpδ to suppress expression of macrophage chemoattractant genes. Our integrated approach implicates Cop1 as a target for improving cancer immunotherapy efficacy in TNBC by regulating chemokine secretion and macrophage infiltration in the tumor microenvironment.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shengqing Stan Gu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Binbin Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Qin Tang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yihao Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicole Traugh
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yi Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ziyi Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Boning Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingxin Fu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tengfei Xiao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wei Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Clifford A Meyer
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jun Chu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China
| | - Peng Jiang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
27
|
James SA, Ong HS, Hari R, Khan AM. A systematic bioinformatics approach for large-scale identification and characterization of host-pathogen shared sequences. BMC Genomics 2021; 22:700. [PMID: 34583643 PMCID: PMC8477458 DOI: 10.1186/s12864-021-07657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Biology has entered the era of big data with the advent of high-throughput omics technologies. Biological databases provide public access to petabytes of data and information facilitating knowledge discovery. Over the years, sequence data of pathogens has seen a large increase in the number of records, given the relatively small genome size and their important role as infectious and symbiotic agents. Humans are host to numerous pathogenic diseases, such as that by viruses, many of which are responsible for high mortality and morbidity. The interaction between pathogens and humans over the evolutionary history has resulted in sharing of sequences, with important biological and evolutionary implications. Results This study describes a large-scale, systematic bioinformatics approach for identification and characterization of shared sequences between the host and pathogen. An application of the approach is demonstrated through identification and characterization of the Flaviviridae-human share-ome. A total of 2430 nonamers represented the Flaviviridae-human share-ome with 100% identity. Although the share-ome represented a small fraction of the repertoire of Flaviviridae (~ 0.12%) and human (~ 0.013%) non-redundant nonamers, the 2430 shared nonamers mapped to 16,946 Flaviviridae and 7506 human non-redundant protein sequences. The shared nonamer sequences mapped to 125 species of Flaviviridae, including several with unclassified genus. The majority (~ 68%) of the shared sequences mapped to Hepacivirus C species; West Nile, dengue and Zika viruses of the Flavivirus genus accounted for ~ 11%, ~ 7%, and ~ 3%, respectively, of the Flaviviridae protein sequences (16,946) mapped by the share-ome. Further characterization of the share-ome provided important structural-functional insights to Flaviviridae-human interactions. Conclusion Mapping of the host-pathogen share-ome has important implications for the design of vaccines and drugs, diagnostics, disease surveillance and the discovery of unknown, potential host-pathogen interactions. The generic workflow presented herein is potentially applicable to a variety of pathogens, such as of viral, bacterial or parasitic origin. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07657-4.
Collapse
Affiliation(s)
- Stephen Among James
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia.,Department of Biochemistry, Faculty of Science, Kaduna State University, Kaduna, 800211, Nigeria
| | - Hui San Ong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Ranjeev Hari
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Damansara Heights, Kuala Lumpur, 50490, Malaysia. .,Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Beykoz, Istanbul, 34820, Turkey.
| |
Collapse
|
28
|
Delmonte OM, Bergerson JRE, Kawai T, Kuehn HS, McDermott DH, Cortese I, Zimmermann MT, Dobbs AK, Bosticardo M, Fink D, Majumdar S, Palterer B, Pala F, Dsouza NR, Pouzolles M, Taylor N, Calvo KR, Daley SR, Velez D, Agharahimi A, Myint-Hpu K, Dropulic LK, Lyons JJ, Holland SM, Freeman AF, Ghosh R, Similuk MB, Niemela JE, Stoddard J, Kuhns DB, Urrutia R, Rosenzweig SD, Walkiewicz MA, Murphy PM, Notarangelo LD. SASH3 variants cause a novel form of X-linked combined immunodeficiency with immune dysregulation. Blood 2021; 138:1019-1033. [PMID: 33876203 PMCID: PMC8462359 DOI: 10.1182/blood.2020008629] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif (SAM) and Src homology-3 (SH3) domain-containing 3 (SASH3), also called SH3-containing lymphocyte protein (SLY1), is a putative adaptor protein that is postulated to play an important role in the organization of signaling complexes and propagation of signal transduction cascades in lymphocytes. The SASH3 gene is located on the X-chromosome. Here, we identified 3 novel SASH3 deleterious variants in 4 unrelated male patients with a history of combined immunodeficiency and immune dysregulation that manifested as recurrent sinopulmonary, cutaneous, and mucosal infections and refractory autoimmune cytopenias. Patients exhibited CD4+ T-cell lymphopenia, decreased T-cell proliferation, cell cycle progression, and increased T-cell apoptosis in response to mitogens. In vitro T-cell differentiation of CD34+ cells and molecular signatures of rearrangements at the T-cell receptor α (TRA) locus were indicative of impaired thymocyte survival. These patients also manifested neutropenia and B-cell and natural killer (NK)-cell lymphopenia. Lentivirus-mediated transfer of the SASH3 complementary DNA-corrected protein expression, in vitro proliferation, and signaling in SASH3-deficient Jurkat and patient-derived T cells. These findings define a new type of X-linked combined immunodeficiency in humans that recapitulates many of the abnormalities reported in mice with Sly1-/- and Sly1Δ/Δ mutations, highlighting an important role of SASH3 in human lymphocyte function and survival.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/immunology
- Child, Preschool
- Chromosomes, Human, X/genetics
- Chromosomes, Human, X/immunology
- Genetic Loci
- Humans
- Jurkat Cells
- Killer Cells, Natural/immunology
- Lymphopenia/genetics
- Lymphopenia/immunology
- Male
- Mice
- Mice, Knockout
- Mutation
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- X-Linked Combined Immunodeficiency Diseases/genetics
- X-Linked Combined Immunodeficiency Diseases/immunology
Collapse
Affiliation(s)
- Ottavia M Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tomoki Kawai
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Hye Sun Kuehn
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Irene Cortese
- Neuroimmunology Clinic, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Michael T Zimmermann
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI
| | - A Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Danielle Fink
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Shamik Majumdar
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Boaz Palterer
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Nikita R Dsouza
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
| | - Marie Pouzolles
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Naomi Taylor
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Institut de Genetique Moleculaire de Montpellier, Centre National de la Recherche Scientifique Unité Mixte de Recherche (UMR) 5535, Universite de Montpellier, Montpellier, France
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Stephen R Daley
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Anahita Agharahimi
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Katherine Myint-Hpu
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | | | - Jonathan J Lyons
- Division of Intramural Research, Laboratory of Allergic Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD and
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rajarshi Ghosh
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Morgan B Similuk
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Julie E Niemela
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Jennifer Stoddard
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Douglas B Kuhns
- Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Raul Urrutia
- Division of Research, Genomics Sciences & Precision Medicine Center, Milwaukee, WI
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI
| | - Sergio D Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Magdalena A Walkiewicz
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
29
|
Dwivedy A, Mariadasse R, Ahmad M, Chakraborty S, Kar D, Tiwari S, Bhattacharyya S, Sonar S, Mani S, Tailor P, Majumdar T, Jeyakanthan J, Biswal BK. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol 2021; 17:e1009384. [PMID: 34516563 PMCID: PMC8478224 DOI: 10.1371/journal.pcbi.1009384] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 09/28/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2. The on-going coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is significantly affecting the world health. Unfortunately, over 180 million cases of COVID-19 resulting in nearly 4 million deaths have been reported till June, 2021. In this study, using a combination of bioinformatics, biochemical and mass spectrometry methods, we show that the Nidovirus RdRp associated Nucleotidyl transferase (NiRAN) domain of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 exhibits a kinase like activity. Additionally, we also show that few broad spectrum anti-cancer and anti-microbial drugs dampen this kinase like activity. Of note, Sorafenib, an FDA approved anti-cancer kinase inhibiting drug significantly reduces the SARS-CoV-2 load in cell lines. Our study suggests that NiRAN domain of the SARS-CoV-2 RdRp is indispensible for the successful viral life cycle and shows that abolishing this enzymatic function of RdRp by small molecule inhibitors may open novel avenues for COVID-19 therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sudipta Sonar
- Translational Health Science and Technology Institute, Faridabad, India
| | - Shailendra Mani
- Translational Health Science and Technology Institute, Faridabad, India
| | | | - Tanmay Majumdar
- National Institute of Immunology, New Delhi, India
- * E-mail: (TM); (JJ); (BKB)
| | - Jeyaraman Jeyakanthan
- Department of Bioinformatics, Alagappa University, Tamil Nadu, India
- * E-mail: (TM); (JJ); (BKB)
| | | |
Collapse
|
30
|
Dwivedy A, Mariadasse R, Ahmad M, Chakraborty S, Kar D, Tiwari S, Bhattacharyya S, Sonar S, Mani S, Tailor P, Majumdar T, Jeyakanthan J, Biswal BK. Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLoS Comput Biol 2021. [DOI: https://doi.org/10.1371/journal.pcbi.1009384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of RdRp from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, we predict that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds nucleoside triphosphates at its proposed active site. Additionally, using molecular docking we have predicted the binding of three widely used kinase inhibitors and five well characterized anti-microbial compounds at the NiRAN domain active site along with their drug-likeliness. For the first time ever, using basic biochemical tools, this study shows the presence of a kinase like activity exhibited by the SARS-CoV-2 RdRp. Interestingly, a well-known kinase inhibitor- Sorafenib showed a significant inhibition and dampened viral load in SARS-CoV-2 infected cells. In line with the current global COVID-19 pandemic urgency and the emergence of newer strains with significantly higher infectivity, this study provides a new anti-SARS-CoV-2 drug target and potential lead compounds for drug repurposing against SARS-CoV-2.
Collapse
|
31
|
Tajiri M. Phage Display Screening for Alba Superfamily Proteins from the Human Malaria Parasite, Plasmodium falciparum Reveals a High Level of Association with Protein Modification Pathways and Hints at New Drug Targets. Acta Parasitol 2021; 66:844-850. [PMID: 33559027 DOI: 10.1007/s11686-021-00339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE A 2016 study estimated that over 3 billion people are currently at risk of contracting malaria. Although a wide variety of medications are available to treat malaria, the parasites have started to exhibit resistance to many commonly used therapeutics necessitating a push for new investigations to identify novel drug targets. METHODS In this study, nucleic acid-binding Alba superfamily proteins of the human malaria parasite, Plasmodium falciparum were investigated to identify interacting protein motifs. A high-throughput molecular screening technique, phage display, coupled with next-generation sequencing was applied to assess large data sets. RESULTS Four P. falciparum Alba proteins were used for screening which appear to have distinct roles in parasite biology based on the results of this work. The majority of the peptide motifs identified from phage display were involved in post-translational modification pathways, thus suggesting that parasite-specific gene regulatory mechanisms are involved which could serve as drug targets for novel therapeutics. CONCLUSION This study found 18 peptide motifs which potentially have strong interactions with one or more of the Alba superfamily proteins from P. falciparum. Considering the large fraction of post-translational modification-related peptide motifs identified from this work, one or more of the protein modification pathways could serve as a good target for malaria treatment.
Collapse
Affiliation(s)
- Momoko Tajiri
- Department of Chemistry, Michigan Technological University, Houghton, MI, 49931-1295, USA.
| |
Collapse
|
32
|
Mangione MC, Chen JS, Gould KL. Cdk1 phosphorylation of fission yeast paxillin inhibits its cytokinetic ring localization. Mol Biol Cell 2021; 32:1534-1544. [PMID: 34133210 PMCID: PMC8351747 DOI: 10.1091/mbc.e20-12-0807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 11/11/2022] Open
Abstract
Divisions of the genetic material and cytoplasm are coordinated spatially and temporally to ensure genome integrity. This coordination is mediated in part by the major cell cycle regulator cyclin-dependent kinase (Cdk1). Cdk1 activity peaks during mitosis, but during mitotic exit/cytokinesis Cdk1 activity is reduced, and phosphorylation of its substrates is reversed by various phosphatases including Cdc14, PP1, PP2A, and PP2B. Cdk1 is known to phosphorylate several components of the actin- and myosin-based cytokinetic ring (CR) that mediates division of yeast and animal cells. Here we show that Cdk1 also phosphorylates the Schizosaccharomyces pombe CR component paxillin Pxl1. We determined that both the Cdc14 phosphatase Clp1 and the PP1 phosphatase Dis2 contribute to Pxl1 dephosphorylation at mitotic exit, but PP2B/calcineurin does not. Preventing Pxl1 phosphorylation by Cdk1 results in increased Pxl1 levels, precocious Pxl1 recruitment to the division site, and increased duration of CR constriction. In vitro Cdk1-mediated phosphorylation of Pxl1 inhibits its interaction with the F-BAR domain of the cytokinetic scaffold Cdc15, thereby disrupting a major mechanism of Pxl1 recruitment. Thus, Pxl1 is a novel substrate through which S. pombe Cdk1 and opposing phosphatases coordinate mitosis and cytokinesis.
Collapse
Affiliation(s)
- MariaSanta C. Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
33
|
Rosenberg A, Sibley LD. Toxoplasma gondii secreted effectors co-opt host repressor complexes to inhibit necroptosis. Cell Host Microbe 2021; 29:1186-1198.e8. [PMID: 34043960 PMCID: PMC8711274 DOI: 10.1016/j.chom.2021.04.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii translocates effector proteins into its host cell to subvert various host pathways. T. gondii effector TgIST blocks the transcription of interferon-stimulated genes to reduce immune defense. Interferons upregulate numerous genes, including protein kinase R (PKR), which induce necrosome formation to activate mixed-lineage-kinase-domain-like (MLKL) pseudokinase and induce necroptosis. Whether these interferon functions are targeted by Toxoplasma is unknown. Here, we examine secreted effectors that localize to the host cell nucleus and find that the chronic bradyzoite stage secretes effector TgNSM that targets the NCoR/SMRT complex, a repressor for various transcription factors, to inhibit interferon-regulated genes involved in cell death. TgNSM acts with TgIST to block IFN-driven expression of PKR and MLKL, thus preventing host cell necroptotic death and protecting the parasite's intracellular niche. The mechanism of action of TgNSM uncovers a role of NCoR/SMRT in necroptosis, assuring survival of intracellular cysts and chronic infection.
Collapse
Affiliation(s)
- Alex Rosenberg
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
34
|
Kassem N, Araya-Secchi R, Bugge K, Barclay A, Steinocher H, Khondker A, Wang Y, Lenard AJ, Bürck J, Sahin C, Ulrich AS, Landreh M, Pedersen MC, Rheinstädter MC, Pedersen PA, Lindorff-Larsen K, Arleth L, Kragelund BB. Order and disorder-An integrative structure of the full-length human growth hormone receptor. SCIENCE ADVANCES 2021; 7:7/27/eabh3805. [PMID: 34193419 PMCID: PMC8245047 DOI: 10.1126/sciadv.abh3805] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 05/13/2023]
Abstract
Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs. The hGHR domains reorient freely, resulting in a broad structural ensemble, emphasizing the need to take an ensemble view on signaling of relevance to disease states. The structure provides the first experimental model of any full-length cytokine receptor in a lipid membrane and exemplifies how integrating experimental data from several techniques computationally may access structures of membrane proteins with long, disordered regions, a widespread phenomenon in biology.
Collapse
Affiliation(s)
- Noah Kassem
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Raul Araya-Secchi
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Abigail Barclay
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Helena Steinocher
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Yong Wang
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Aneta J Lenard
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Jochen Bürck
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Cagla Sahin
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany
| | - Michael Landreh
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Martin Cramer Pedersen
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Per Amstrup Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| | - Lise Arleth
- X-ray and Neutron Science, The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark.
| |
Collapse
|
35
|
Sudhakar P, Machiels K, Verstockt B, Korcsmaros T, Vermeire S. Computational Biology and Machine Learning Approaches to Understand Mechanistic Microbiome-Host Interactions. Front Microbiol 2021; 12:618856. [PMID: 34046017 PMCID: PMC8148342 DOI: 10.3389/fmicb.2021.618856] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
The microbiome, by virtue of its interactions with the host, is implicated in various host functions including its influence on nutrition and homeostasis. Many chronic diseases such as diabetes, cancer, inflammatory bowel diseases are characterized by a disruption of microbial communities in at least one biological niche/organ system. Various molecular mechanisms between microbial and host components such as proteins, RNAs, metabolites have recently been identified, thus filling many gaps in our understanding of how the microbiome modulates host processes. Concurrently, high-throughput technologies have enabled the profiling of heterogeneous datasets capturing community level changes in the microbiome as well as the host responses. However, due to limitations in parallel sampling and analytical procedures, big gaps still exist in terms of how the microbiome mechanistically influences host functions at a system and community level. In the past decade, computational biology and machine learning methodologies have been developed with the aim of filling the existing gaps. Due to the agnostic nature of the tools, they have been applied in diverse disease contexts to analyze and infer the interactions between the microbiome and host molecular components. Some of these approaches allow the identification and analysis of affected downstream host processes. Most of the tools statistically or mechanistically integrate different types of -omic and meta -omic datasets followed by functional/biological interpretation. In this review, we provide an overview of the landscape of computational approaches for investigating mechanistic interactions between individual microbes/microbiome and the host and the opportunities for basic and clinical research. These could include but are not limited to the development of activity- and mechanism-based biomarkers, uncovering mechanisms for therapeutic interventions and generating integrated signatures to stratify patients.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Kathleen Machiels
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Tamas Korcsmaros
- Earlham Institute, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Evolutionarily related small viral fusogens hijack distinct but modular actin nucleation pathways to drive cell-cell fusion. Proc Natl Acad Sci U S A 2021; 118:2007526118. [PMID: 33443166 DOI: 10.1073/pnas.2007526118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fusion-associated small transmembrane (FAST) proteins are a diverse family of nonstructural viral proteins. Once expressed on the plasma membrane of infected cells, they drive fusion with neighboring cells, increasing viral spread and pathogenicity. Unlike viral fusogens with tall ectodomains that pull two membranes together through conformational changes, FAST proteins have short fusogenic ectodomains that cannot bridge the intermembrane gap between neighboring cells. One orthoreovirus FAST protein, p14, has been shown to hijack the actin cytoskeleton to drive cell-cell fusion, but the actin adaptor-binding motif identified in p14 is not found in any other FAST protein. Here, we report that an evolutionarily divergent FAST protein, p22 from aquareovirus, also hijacks the actin cytoskeleton but does so through different adaptor proteins, Intersectin-1 and Cdc42, that trigger N-WASP-mediated branched actin assembly. We show that despite using different pathways, the cytoplasmic tail of p22 can replace that of p14 to create a potent chimeric fusogen, suggesting they are modular and play similar functional roles. When we directly couple p22 with the parallel filament nucleator formin instead of the branched actin nucleation promoting factor N-WASP, its ability to drive fusion is maintained, suggesting that localized mechanical pressure on the plasma membrane coupled to a membrane-disruptive ectodomain is sufficient to drive cell-cell fusion. This work points to a common biophysical strategy used by FAST proteins to push rather than pull membranes together to drive fusion, one that may be harnessed by other short fusogens responsible for physiological cell-cell fusion.
Collapse
|
37
|
Targeted Quantification of Phosphorylation Sites Identifies STRIPAK-Dependent Phosphorylation of the Hippo Pathway-Related Kinase SmKIN3. mBio 2021; 12:mBio.00658-21. [PMID: 33947760 PMCID: PMC8262875 DOI: 10.1128/mbio.00658-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We showed recently that the germinal center kinase III (GCKIII) SmKIN3 from the fungus Sordaria macrospora is involved in sexual development and hyphal septation. Our recent extensive global proteome and phosphoproteome analysis revealed that SmKIN3 is a target of the striatin-interacting phosphatase and kinase (STRIPAK) multisubunit complex. Here, using protein samples from the wild type and three STRIPAK mutants, we applied absolute quantification by parallel-reaction monitoring (PRM) to analyze phosphorylation site occupancy in SmKIN3 and other septation initiation network (SIN) components, such as CDC7 and DBF2, as well as BUD4, acting downstream of SIN. For SmKIN3, we show that phosphorylation of S668 and S686 is decreased in mutants lacking distinct subunits of STRIPAK, while a third phosphorylation site, S589, was not affected. We constructed SmKIN3 mutants carrying phospho-mimetic and phospho-deficient codons for phosphorylation sites S589, S668, and S686. Investigation of hyphae in a ΔSmkin3 strain complemented by the S668 and S686 mutants showed a hyper-septation phenotype, which was absent in the wild type, the ΔSmkin3 strain complemented with the wild-type gene, and the S589 mutant. Furthermore, localization studies with SmKIN3 phosphorylation variants and STRIPAK mutants showed that SmKIN3 preferentially localizes at the terminal septa, which is distinctly different from the localization of the wild-type strains. We conclude that STRIPAK-dependent phosphorylation of SmKIN3 has an impact on controlled septum formation and on the time-dependent localization of SmKIN3 on septa at the hyphal tip. Thus, STRIPAK seems to regulate SmKIN3, as well as DBF2 and BUD4 phosphorylation, affecting septum formation.
Collapse
|
38
|
Inositol pyrophosphates promote MYC polyubiquitination by FBW7 to regulate cell survival. Biochem J 2021; 478:1647-1661. [PMID: 33821962 DOI: 10.1042/bcj20210081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022]
Abstract
The transcription factor MYC regulates cell survival and growth, and its level is tightly controlled in normal cells. We report that serine pyrophosphorylation - a posttranslational modification triggered by inositol pyrophosphate signaling molecules - controls MYC levels via regulated protein degradation. We find that endogenous MYC is stabilized and less polyubiquitinated in cells with reduced inositol pyrophosphates. We show that the inositol pyrophosphate 5-IP7 transfers its high-energy beta phosphate moiety to pre-phosphorylated serine residues in the central PEST domain of MYC. Loss of serine pyrophosphorylation in the PEST domain lowers the extent of MYC polyubiquitination and increases its stability. Fusion to the MYC PEST domain lowers the stability of GFP, but this effect is dependent on the extent of PEST domain pyrophosphorylation. The E3 ubiquitin ligase FBW7 can bind directly to the PEST domain of MYC, and this interaction is exclusively dependent on serine pyrophosphorylation. A stabilized, pyrophosphorylation-deficient form of MYC increases cell death during growth stress in untransformed cells. Splenocytes from mice lacking IP6K1, a kinase responsible for the synthesis of 5-IP7, have higher levels of MYC, and show increased cell proliferation in response to mitogens, compared with splenocytes from wild type mice. Thus, control of MYC stability through a novel pyro-phosphodegron provides unexpected insight into the regulation of cell survival in response to environmental cues.
Collapse
|
39
|
Lima I, Cino EA. Sequence similarity in 3D for comparison of protein families. J Mol Graph Model 2021; 106:107906. [PMID: 33848948 DOI: 10.1016/j.jmgm.2021.107906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022]
Abstract
Homologous proteins are often compared by pairwise sequence alignment, and structure superposition if the atomic coordinates are available. Unification of sequence and structure data is an important task in structural biology. Here, we present the Sequence Similarity 3D (SS3D) method of integrating sequence and structure information. SS3D is a distance and substitution matrix-based method for straightforward visualization of regions of similarity and difference between homologous proteins. This work details the SS3D approach, and demonstrates its utility through case studies comparing members of several protein families. The examples show that SS3D can effectively highlight biologically important regions of similarity and dissimilarity. We anticipate that the method will be useful for numerous structural biology applications, including, but not limited to, studies of binding specificity, structure-function relationships, and evolutionary pathways. SS3D is available with a manual and tutorial at https://github.com/0x462e41/SS3D/.
Collapse
Affiliation(s)
- Igor Lima
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Elio A Cino
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
40
|
Gruca A, Ziemska-Legiecka J, Jarnot P, Sarnowska E, Sarnowski TJ, Grynberg M. Common low complexity regions for SARS-CoV-2 and human proteomes as potential multidirectional risk factor in vaccine development. BMC Bioinformatics 2021; 22:182. [PMID: 33832440 PMCID: PMC8027979 DOI: 10.1186/s12859-021-04017-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The rapid spread of the COVID-19 demands immediate response from the scientific communities. Appropriate countermeasures mean thoughtful and educated choice of viral targets (epitopes). There are several articles that discuss such choices in the SARS-CoV-2 proteome, other focus on phylogenetic traits and history of the Coronaviridae genome/proteome. However none consider viral protein low complexity regions (LCRs). Recently we created the first methods that are able to compare such fragments. RESULTS We show that five low complexity regions (LCRs) in three proteins (nsp3, S and N) encoded by the SARS-CoV-2 genome are highly similar to regions from human proteome. As many as 21 predicted T-cell epitopes and 27 predicted B-cell epitopes overlap with the five SARS-CoV-2 LCRs similar to human proteins. Interestingly, replication proteins encoded in the central part of viral RNA are devoid of LCRs. CONCLUSIONS Similarity of SARS-CoV-2 LCRs to human proteins may have implications on the ability of the virus to counteract immune defenses. The vaccine targeted LCRs may potentially be ineffective or alternatively lead to autoimmune diseases development. These findings are crucial to the process of selection of new epitopes for drugs or vaccines which should omit such regions.
Collapse
Affiliation(s)
- Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | | | - Patryk Jarnot
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
41
|
Schreiber KJ, Lewis JD. Identification of a Putative DNA-Binding Protein in Arabidopsis That Acts as a Susceptibility Hub and Interacts With Multiple Pseudomonas syringae Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:410-425. [PMID: 33373263 DOI: 10.1094/mpmi-10-20-0291-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogens use secreted effector proteins to suppress host immunity and promote pathogen virulence, and there is increasing evidence that the host-pathogen interactome comprises a complex network. To identify novel interactors of the Pseudomonas syringae effector HopZ1a, we performed a yeast two-hybrid screen that identified a previously uncharacterized Arabidopsis protein that we designate HopZ1a interactor 1 (ZIN1). Additional analyses in yeast and in planta revealed that ZIN1 also interacts with several other P. syringae effectors. We show that an Arabidopsis loss-of-function zin1 mutant is less susceptible to infection by certain strains of P. syringae, while overexpression of ZIN1 results in enhanced susceptibility. Functionally, ZIN1 exhibits topoisomerase-like activity in vitro. Transcriptional profiling of wild-type and zin1 Arabidopsis plants inoculated with P. syringae indicated that while ZIN1 regulates a wide range of pathogen-responsive biological processes, the list of genes more highly expressed in zin1 versus wild-type plants is particularly enriched for ribosomal protein genes. Altogether, these data illuminate ZIN1 as a potential susceptibility hub that interacts with multiple effectors to influence the outcome of plant-microbe interactions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
- Plant Gene Expression Center, United States Department of Agriculture, Albany, CA 94710-1105, U.S.A
| |
Collapse
|
42
|
Rodrigues JA, Espley RV, Allan AC. Genomic analysis uncovers functional variation in the C-terminus of anthocyanin-activating MYB transcription factors. HORTICULTURE RESEARCH 2021; 8:77. [PMID: 33790254 PMCID: PMC8012628 DOI: 10.1038/s41438-021-00514-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 05/26/2023]
Abstract
MYB transcription factors regulate diverse aspects of plant development and secondary metabolism, often by partnering in transcriptional regulatory complexes. Here, we harness genomic resources to identify novel MYBs, thereby producing an updated eudicot MYB phylogeny with revised relationships among subgroups as well as new information on sequence variation in the disordered C-terminus of anthocyanin-activating MYBs. BLAST® and hidden Markov model scans of gene annotations identified a total of 714 MYB transcription factors across the genomes of four crops that span the eudicots: apple, grape, kiwifruit and tomato. Codon model-based phylogenetic inference identified novel members of previously defined subgroups, and the function of specific anthocyanin-activating subgroup 6 members was assayed transiently in tobacco leaves. Sequence conservation within subgroup 6 highlighted one previously described and two novel short linear motifs in the disordered C-terminal region. The novel motifs have a mix of hydrophobic and acidic residues and are predicted to be relatively ordered compared with flanking protein sequences. Comparison of motifs with the Eukaryotic Linear Motif database suggests roles in protein-protein interaction. Engineering of motifs and their flanking regions from strong anthocyanin activators into weak activators, and vice versa, affected function. We conclude that, although the MYB C-terminal sequence diverges greatly even within MYB clades, variation within the C-terminus at and near relatively ordered regions offers opportunities for exploring MYB function and developing superior alleles for plant breeding.
Collapse
Affiliation(s)
- Jessica A Rodrigues
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant and Food Research Limited, 120 Mount Albert Road, Sandringham, Auckland, 1025, New Zealand.
- School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland, 1010, New Zealand.
| |
Collapse
|
43
|
Ali M, Simonetti L, Ivarsson Y. Screening Intrinsically Disordered Regions for Short Linear Binding Motifs. Methods Mol Biol 2021; 2141:529-552. [PMID: 32696376 DOI: 10.1007/978-1-0716-0524-0_27] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The intrinsically disordered regions of the proteome are enriched in short linear motifs (SLiMs) that serve as binding sites for peptide binding proteins. These interactions are often of low-to-mid micromolar affinities and are challenging to screen for experimentally. However, a range of dedicated methods have been developed recently, which open for screening of SLiM-based interactions on large scale. A variant of phage display, termed proteomic peptide phage display (ProP-PD), has proven particularly useful for the purpose. Here, we describe a complete high-throughput ProP-PD protocol for screening intrinsically disordered regions for SLiMs. The protocol requires some basic bioinformatics skills for the design of the library and for data analysis but can be performed in a standard biochemistry lab. The protocol starts from the construction of a library, followed by the high-throughput expression and purification of bait proteins, the phage selection, and the analysis of the binding-enriched phage pools using next-generation sequencing. As the protocol generates rather large data sets, we also emphasize the importance of data management and storage.
Collapse
|
44
|
Schreiber KJ, Hassan JA, Lewis JD. Arabidopsis Abscisic Acid Repressor 1 is a susceptibility hub that interacts with multiple Pseudomonas syringae effectors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1274-1292. [PMID: 33289145 DOI: 10.1111/tpj.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Pathogens secrete effector proteins into host cells to suppress host immunity and promote pathogen virulence, although many features at the molecular interface of host-pathogen interactions remain to be characterized. In a yeast two-hybrid assay, we found that the Pseudomonas syringae effector HopZ1a interacts with the Arabidopsis transcriptional regulator Abscisic Acid Repressor 1 (ABR1). Further analysis revealed that ABR1 interacts with multiple P. syringae effectors, suggesting that it may be targeted as a susceptibility hub. Indeed, loss-of-function abr1 mutants exhibit reduced susceptibility to a number of P. syringae strains. The ABR1 protein comprises a conserved APETALA2 (AP2) domain flanked by long regions of predicted structural disorder. We verified the DNA-binding activity of the AP2 domain and demonstrated that the disordered domains act redundantly to enhance DNA binding and to facilitate transcriptional activation by ABR1. Finally, we compared gene expression profiles from wild-type and abr1 plants following inoculation with P. syringae, which suggested that the reduced susceptibility of abr1 mutants is due to the loss of a virulence target rather than an enhanced immune response. These data highlight ABR1 as a functionally important component at the host-pathogen interface.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
- United States Department of Agriculture, Plant Gene Expression Center, Albany, CA, USA
| |
Collapse
|
45
|
Negretti NM, Gourley CR, Talukdar PK, Clair G, Klappenbach CM, Lauritsen CJ, Adkins JN, Konkel ME. The Campylobacter jejuni CiaD effector co-opts the host cell protein IQGAP1 to promote cell entry. Nat Commun 2021; 12:1339. [PMID: 33637714 PMCID: PMC7910587 DOI: 10.1038/s41467-021-21579-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni is a foodborne pathogen that binds to and invades the epithelial cells lining the human intestinal tract. Maximal invasion of host cells by C. jejuni requires cell binding as well as delivery of the Cia proteins (Campylobacter invasion antigens) to the host cell cytosol via the flagellum. Here, we show that CiaD binds to the host cell protein IQGAP1 (a Ras GTPase-activating-like protein), thus displacing RacGAP1 from the IQGAP1 complex. This, in turn, leads to the unconstrained activity of the small GTPase Rac1, which is known to have roles in actin reorganization and internalization of C. jejuni. Our results represent the identification of a host cell protein targeted by a flagellar secreted effector protein and demonstrate that C. jejuni-stimulated Rac signaling is dependent on IQGAP1.
Collapse
Affiliation(s)
- Nicholas M Negretti
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Christopher R Gourley
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Prabhat K Talukdar
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Geremy Clair
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Courtney M Klappenbach
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Cody J Lauritsen
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Joshua N Adkins
- Integrative Omics, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Michael E Konkel
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
46
|
Schlesinger D, Elsässer SJ. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. FEBS J 2021; 289:53-74. [PMID: 33595896 DOI: 10.1111/febs.15769] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Short ORFs (sORFs), that is, occurrences of a start and stop codon within 100 codons or less, can be found in organisms of all domains of life, outnumbering annotated protein-coding ORFs by orders of magnitude. Even though functional proteins smaller than 100 amino acids are known, the coding potential of sORFs has often been overlooked, as it is not trivial to predict and test for functionality within the large number of sORFs. Recent advances in ribosome profiling and mass spectrometry approaches, together with refined bioinformatic predictions, have enabled a huge leap forward in this field and identified thousands of likely coding sORFs. A relatively low number of small proteins or microproteins produced from these sORFs have been characterized so far on the molecular, structural, and/or mechanistic level. These however display versatile and, in some cases, essential cellular functions, allowing for the exciting possibility that many more, previously unknown small proteins might be encoded in the genome, waiting to be discovered. This review will give an overview of the steadily growing microprotein field, focusing on eukaryotic small proteins. We will discuss emerging themes in the molecular action of microproteins, as well as advances and challenges in microprotein identification and characterization.
Collapse
Affiliation(s)
- Dörte Schlesinger
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Systematic characterization of mutations altering protein degradation in human cancers. Mol Cell 2021; 81:1292-1308.e11. [PMID: 33567269 PMCID: PMC9245451 DOI: 10.1016/j.molcel.2021.01.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023]
Abstract
The ubiquitin-proteasome system (UPS) is the primary route for selective protein degradation in human cells. The UPS is an attractive target for novel cancer therapies, but the precise UPS genes and substrates important for cancer growth are incompletely understood. Leveraging multi-omics data across more than 9,000 human tumors and 33 cancer types, we found that over 19% of all cancer driver genes affect UPS function. We implicate transcription factors as important substrates and show that c-Myc stability is modulated by CUL3. Moreover, we developed a deep learning model (deepDegron) to identify mutations that result in degron loss and experimentally validated the prediction that gain-of-function truncating mutations in GATA3 and PPM1D result in increased protein stability. Last, we identified UPS driver genes associated with prognosis and the tumor microenvironment. This study demonstrates the important role of UPS dysregulation in human cancer and underscores the potential therapeutic utility of targeting the UPS.
Collapse
|
48
|
Whole Exome Sequencing Reveals a Novel AUTS2 In-Frame Deletion in a Boy with Global Developmental Delay, Absent Speech, Dysmorphic Features, and Cerebral Anomalies. Genes (Basel) 2021; 12:genes12020229. [PMID: 33562463 PMCID: PMC7915150 DOI: 10.3390/genes12020229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of highly prevalent, clinically and genetically heterogeneous pediatric disorders comprising, according to the Diagnostic and Statistical Manual of Mental Disorders 5th edition (DSM-V), intellectual disability, developmental delay, autism spectrum disorders, and other neurological and cognitive disorders manifesting in the developmental age. To date, more than 1000 genes have been implicated in the etiopathogenesis of NNDs. Among them, AUTS2 (OMIM # 607270) encodes a protein involved in neural migration and neuritogenesis, and causes NNDs with different molecular mechanisms including copy number variations, single or multiple exonic deletion and single nucleotide variants. We describes a 9-year-old boy with global developmental delay, absent speech, minor craniofacial anomalies, hypoplasia of the cerebellar vermis and thinning of the corpus callosum, resulted carrier of the de novo AUTS2 c.1603_1626del deletion at whole exome sequencing (WES) predicted to cause the loss of eight amino acids [p.(His535_Thr542del)]. Notably, our patient is the first reported so far in medical literature carrying an in-frame deletion and the first in which absent language, hypoplasia of the cerebellar vermis and thinning of the corpus callosum has been observed thus useful to expand the molecular spectrum of AUTS2 pathogenic variants and to broaden our knowledge on the clinical phenotype associated.
Collapse
|
49
|
Starrett GJ, Tisza MJ, Welch NL, Belford AK, Peretti A, Pastrana DV, Buck CB. Adintoviruses: a proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evol 2021; 7:veaa055. [PMID: 34646575 PMCID: PMC8502044 DOI: 10.1093/ve/veaa055] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polintons (also known as Mavericks) were initially identified as a widespread class of eukaryotic transposons named for their hallmark type B DNA polymerase and retrovirus-like integrase genes. It has since been recognized that many polintons encode possible capsid proteins and viral genome-packaging ATPases similar to those of a diverse range of double-stranded DNA viruses. This supports the inference that at least some polintons are actually viruses capable of cell-to-cell spread. At present, there are no polinton-associated capsid protein genes annotated in public sequence databases. To rectify this deficiency, we used a data-mining approach to investigate the distribution and gene content of polinton-like elements and related DNA viruses in animal genomic and metagenomic sequence datasets. The results define a discrete family-like clade of viruses with two genus-level divisions. We propose the family name Adintoviridae, connoting similarities to adenovirus virion proteins and the presence of a retrovirus-like integrase gene. Although adintovirus-class PolB sequences were detected in datasets for fungi and various unicellular eukaryotes, sequences resembling adintovirus virion proteins and accessory genes appear to be restricted to animals. Degraded adintovirus sequences are endogenized into the germlines of a wide range of animals, including humans.
Collapse
Affiliation(s)
| | - Michael J Tisza
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Nicole L Welch
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Anna K Belford
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Alberto Peretti
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | - Diana V Pastrana
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
50
|
Palopoli N, Marchetti J, Monzon AM, Zea DJ, Tosatto SCE, Fornasari MS, Parisi G. Intrinsically Disordered Protein Ensembles Shape Evolutionary Rates Revealing Conformational Patterns. J Mol Biol 2020; 433:166751. [PMID: 33310020 DOI: 10.1016/j.jmb.2020.166751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack stable tertiary structure under physiological conditions. The unique composition and complex dynamical behaviour of IDPs make them a challenge for structural biology and molecular evolution studies. Using NMR ensembles, we found that IDPs evolve under a strong site-specific evolutionary rate heterogeneity, mainly originated by different constraints derived from their inter-residue contacts. Evolutionary rate profiles correlate with the experimentally observed conformational diversity of the protein, allowing the description of different conformational patterns possibly related to their structure-function relationships. The correlation between evolutionary rates and contact information improves when structural information is taken not from any individual conformer or the whole ensemble, but from combining a limited number of conformers. Our results suggest that residue contacts in disordered regions constrain evolutionary rates to conserve the dynamic behaviour of the ensemble and that evolutionary rates can be used as a proxy for the conformational diversity of IDPs.
Collapse
Affiliation(s)
- Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Julia Marchetti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | | | - Diego J Zea
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | | | - Maria S Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Bernal, Buenos Aires, Argentina.
| |
Collapse
|