1
|
Pham-Bui HA, Lee M. Germ granule-mediated mRNA storage and translational control. RNA Biol 2025; 22:1-11. [PMID: 39895378 PMCID: PMC11810088 DOI: 10.1080/15476286.2025.2462276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.
Collapse
Affiliation(s)
- Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| |
Collapse
|
2
|
Čapková Pavlíková Z, Miletínová P, Roithová A, Pospíšilová K, Záhonová K, Kachale A, Becker T, Durante IM, Lukeš J, Paris Z, Beznosková P, Valášek LS. Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough. Nat Struct Mol Biol 2025; 32:662-674. [PMID: 39806023 DOI: 10.1038/s41594-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/12/2024] [Indexed: 01/16/2025]
Abstract
Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue. However, not all near-cognate tRNAs promote efficient SC-RT. Here, with the help of Saccharomyces cerevisiae and Trypanosoma brucei, we demonstrate that those tRNAs that promote efficient SC-RT establish critical contacts between their anticodon stem (AS) and ribosomal proteins Rps30/eS30 and Rps25/eS25 forming the decoding site. Unexpectedly, the length and well-defined nature of the AS determine the strength of these contacts, which is reflected in organisms with reassigned stop codons. These findings open an unexplored direction in tRNA biology that should facilitate the design of artificial tRNAs with specifically altered decoding abilities.
Collapse
Affiliation(s)
- Zuzana Čapková Pavlíková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Miletínová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Roithová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kristína Záhonová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Ambar Kachale
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Thomas Becker
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Ignacio M Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Zdeněk Paris
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Mestre-Fos S, Ferguson L, Trinidad MI, Ingolia NT, Cate JHD. eIF3 engages with 3'-UTR termini of highly translated mRNAs. eLife 2025; 13:RP102977. [PMID: 39879133 PMCID: PMC11778930 DOI: 10.7554/elife.102977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3' untranslated region (3'-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3'-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3'-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3'-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.
Collapse
Affiliation(s)
- Santi Mestre-Fos
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Center for Computational Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marena I Trinidad
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
| | - Jamie HD Cate
- Innovative Genomics Institute, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
4
|
Koubek J, Kaur J, Bhandarkar S, Lewis CJT, Niederer RO, Stanciu A, Aitken CE, Gilbert WV. Cellular translational enhancer elements that recruit eukaryotic initiation factor 3. RNA (NEW YORK, N.Y.) 2025; 31:193-207. [PMID: 39626887 PMCID: PMC11789482 DOI: 10.1261/rna.080310.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Translation initiation is a highly regulated process that broadly affects eukaryotic gene expression. Eukaryotic initiation factor 3 (eIF3) is a central player in canonical and alternative pathways for ribosome recruitment. Here, we have investigated how direct binding of eIF3 contributes to the large and regulated differences in protein output conferred by different 5'-untranslated regions (5' UTRs) of cellular mRNAs. Using an unbiased high-throughput approach to determine the affinity of budding yeast eIF3 for native 5' UTRs from 4252 genes, we demonstrate that eIF3 binds specifically to a subset of 5' UTRs that contain a short unstructured binding motif, AMAYAA. eIF3-binding mRNAs have higher ribosome density in growing cells and are preferentially translated under certain stress conditions, supporting the functional relevance of this interaction. Our results reveal a new class of translational enhancers and suggest a mechanism by which changes in core initiation factor activity enact mRNA-specific translation programs.
Collapse
Affiliation(s)
- Jiří Koubek
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Jaswinder Kaur
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Shivani Bhandarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Cole J T Lewis
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Rachel O Niederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Andrei Stanciu
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Colin Echeverría Aitken
- Biology Department and Biochemistry Program, Vassar College, Poughkeepsie, New York 12604, USA
| | - Wendy V Gilbert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
5
|
Kahrizi Z, Michailidis C, Raabe K, Kumar V, Honys D, Hafidh S. The translation initiation factor eIF3M2 upregulates HEAT SHOCK PROTEIN 70 to maintain pollen tube membrane integrity during heat shock. PLANT PHYSIOLOGY 2024; 197:kiae643. [PMID: 39854649 DOI: 10.1093/plphys/kiae643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/09/2024] [Indexed: 01/26/2025]
Abstract
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds. Surprisingly, under HS at 37 °C, eif3m1 pollen germination outperformed wild-type Col-0, showing enhanced PT integrity. We established that the improved thermotolerance of the eif3m1 PT was due to increased expression of its putative paralog eIF3M2, which in turn upregulated Heat Shock protein 70 (HSP70) mRNA and protein levels. Indeed, eIF3M2 overexpression upregulated HSP70 expression, whereas eif3m2 knockdown showed reduced HSP70.1 promoter activity and increased in PT burst under HS conditions. Moreover, we show that eIF3M2 coimmunoprecipitates with HSP70 in PTs and directly interacts with cytoplasmic HSP70.1/2/4 and eIF4G in Nicotiana benthamiana pavement cells. Collectively, our data revealed that plants employ the eIF3M2-HSP70 module as a regulator of thermotolerance to maintain PT membrane integrity and improve fertilization and seed set adaptation under high temperatures.
Collapse
Affiliation(s)
- Zahra Kahrizi
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Christos Michailidis
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| | - Karel Raabe
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - Vinod Kumar
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Praha 2, Czech Republic
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| | - Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic
| |
Collapse
|
6
|
Nguyen TKH, Kang H. Reading m 6A marks in mRNA: A potent mechanism of gene regulation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2586-2599. [PMID: 39364713 PMCID: PMC11622538 DOI: 10.1111/jipb.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Modifications to RNA have recently been recognized as a pivotal regulator of gene expression in living organisms. More than 170 chemical modifications have been identified in RNAs, with N6-methyladenosine (m6A) being the most abundant modification in eukaryotic mRNAs. The addition and removal of m6A marks are catalyzed by methyltransferases (referred to as "writers") and demethylases (referred to as "erasers"), respectively. In addition, the m6A marks in mRNAs are recognized and interpreted by m6A-binding proteins (referred to as "readers"), which regulate the fate of mRNAs, including stability, splicing, transport, and translation. Therefore, exploring the mechanism underlying the m6A reader-mediated modulation of RNA metabolism is essential for a much deeper understanding of the epigenetic role of RNA modification in plants. Recent discoveries have improved our understanding of the functions of m6A readers in plant growth and development, stress response, and disease resistance. This review highlights the latest developments in m6A reader research, emphasizing the diverse RNA-binding domains crucial for m6A reader function and the biological and cellular roles of m6A readers in the plant response to developmental and environmental signals. Moreover, we propose and discuss the potential future research directions and challenges in identifying novel m6A readers and elucidating the cellular and mechanistic role of m6A readers in plants.
Collapse
Affiliation(s)
- Thi Kim Hang Nguyen
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju61186Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju61186Korea
| |
Collapse
|
7
|
Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, Valášek LS. Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways. eLife 2024; 13:RP95846. [PMID: 39495207 PMCID: PMC11534336 DOI: 10.7554/elife.95846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Jelínek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Farkas Kerényi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Kathleen Watt
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska InstitutetSolnaSweden
| | - Jan Brábek
- Lady Davis Institute, Laboratory of Cancer Cell Invasion, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology, Department of Biochemistry, Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
8
|
Villamayor-Belinchón L, Sharma P, Gordiyenko Y, Llácer J, Hussain T. Structural basis of AUC codon discrimination during translation initiation in yeast. Nucleic Acids Res 2024; 52:11317-11335. [PMID: 39193907 PMCID: PMC11472065 DOI: 10.1093/nar/gkae737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024] Open
Abstract
In eukaryotic translation initiation, the 48S preinitiation complex (PIC) scans the 5' untranslated region of mRNAs to search for the cognate start codon (AUG) with assistance from various eukaryotic initiation factors (eIFs). Cognate start codon recognition is precise, rejecting near-cognate codons with a single base difference. However, the structural basis of discrimination of near-cognate start codons was not known. We have captured multiple yeast 48S PICs with a near-cognate AUC codon at the P-site, revealing that the AUC codon induces instability in the codon-anticodon at the P-site, leading to a disordered N-terminal tail of eIF1A. Following eIF1 dissociation, the N-terminal domain of eIF5 fails to occupy the vacant eIF1 position, and eIF2β becomes flexible. Consequently, 48S with an AUC codon is less favourable for initiation. Furthermore, we observe hitherto unreported metastable states of the eIF2-GTP-Met-tRNAMet ternary complex, where the eIF2β helix-turn-helix domain may facilitate eIF5 association by preventing eIF1 rebinding to 48S PIC. Finally, a swivelled head conformation of 48S PIC appears crucial for discriminating incorrect and selection of the correct codon-anticodon pair during translation initiation.
Collapse
Affiliation(s)
| | - Prafful Sharma
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | | | - Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, 46010, Spain
- Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
9
|
Li C, Li S, Zhang G, Li Q, Song W, Wang X, Cook JA, van der Stoel M, Wright BW, Altamirano F, Niewold EL, Han J, Kimble G, Zhang P, Luo X, Urra H, May HI, Ferdous A, Sun XN, Deng Y, Ikonen E, Hetz C, Kaufman RJ, Zhang K, Gillette TG, Scherer PE, Hill JA, Chen J, Wang ZV. IRE1α Mediates the Hypertrophic Growth of Cardiomyocytes Through Facilitating the Formation of Initiation Complex to Promote the Translation of TOP-Motif Transcripts. Circulation 2024; 150:1010-1029. [PMID: 38836349 PMCID: PMC11427172 DOI: 10.1161/circulationaha.123.067606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Cardiomyocyte growth is coupled with active protein synthesis, which is one of the basic biological processes in living cells. However, it is unclear whether the unfolded protein response transducers and effectors directly take part in the control of protein synthesis. The connection between critical functions of the unfolded protein response in cellular physiology and requirements of multiple processes for cell growth prompted us to investigate the role of the unfolded protein response in cell growth and underlying molecular mechanisms. METHODS Cardiomyocyte-specific inositol-requiring enzyme 1α (IRE1α) knockout and overexpression mouse models were generated to explore its function in vivo. Neonatal rat ventricular myocytes were isolated and cultured to evaluate the role of IRE1α in cardiomyocyte growth in vitro. Mass spectrometry was conducted to identify novel interacting proteins of IRE1α. Ribosome sequencing and polysome profiling were performed to determine the molecular basis for the function of IRE1α in translational control. RESULTS We show that IRE1α is required for cell growth in neonatal rat ventricular myocytes under prohypertrophy treatment and in HEK293 cells in response to serum stimulation. At the molecular level, IRE1α directly interacts with eIF4G and eIF3, 2 critical components of the translation initiation complex. We demonstrate that IRE1α facilitates the formation of the translation initiation complex around the endoplasmic reticulum and preferentially initiates the translation of transcripts with 5' terminal oligopyrimidine motifs. We then reveal that IRE1α plays an important role in determining the selectivity and translation of these transcripts. We next show that IRE1α stimulates the translation of epidermal growth factor receptor through an unannotated terminal oligopyrimidine motif in its 5' untranslated region. We further demonstrate a physiological role of IRE1α-governed protein translation by showing that IRE1α is essential for cardiomyocyte growth and cardiac functional maintenance under hemodynamic stress in vivo. CONCLUSIONS These studies suggest a noncanonical, essential role of IRE1α in orchestrating protein synthesis, which may have important implications in cardiac hypertrophy in response to pressure overload and general cell growth under other physiological and pathological conditions.
Collapse
Affiliation(s)
- Chao Li
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qinfeng Li
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weidan Song
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jane A. Cook
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miesje van der Stoel
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Bradley W. Wright
- Laboratory of Functional Genomics and Translational Control, Cecil H. and Ida Green Center for Reproductive Biology Sciences, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, the University of Texas Southwestern Medical Center, TX 75390, USA
| | - Francisco Altamirano
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Erica L. Niewold
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsoo Han
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett Kimble
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pengfei Zhang
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiang Luo
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hery Urra
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Bellavista, Santiago, Chile
| | - Herman I. May
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anwarul Ferdous
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yingfeng Deng
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380453, Chile
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Thomas G. Gillette
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A. Hill
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Chen
- Laboratory of Functional Genomics and Translational Control, Cecil H. and Ida Green Center for Reproductive Biology Sciences, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, the University of Texas Southwestern Medical Center, TX 75390, USA
| | - Zhao V. Wang
- Division of Cardiology, Department of Internal Medicine, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
10
|
Biffo S, Ruggero D, Santoro MM. The crosstalk between metabolism and translation. Cell Metab 2024; 36:1945-1962. [PMID: 39232280 PMCID: PMC11586076 DOI: 10.1016/j.cmet.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Metabolism and mRNA translation represent critical steps involved in modulating gene expression and cellular physiology. Being the most energy-consuming process in the cell, mRNA translation is strictly linked to cellular metabolism and in synchrony with it. Indeed, several mRNAs for metabolic pathways are regulated at the translational level, resulting in translation being a coordinator of metabolism. On the other hand, there is a growing appreciation for how metabolism impacts several aspects of RNA biology. For example, metabolic pathways and metabolites directly control the selectivity and efficiency of the translational machinery, as well as post-transcriptional modifications of RNA to fine-tune protein synthesis. Consistently, alterations in the intricate interplay between translational control and cellular metabolism have emerged as a critical axis underlying human diseases. A better understanding of such events will foresee innovative therapeutic strategies in human disease states.
Collapse
Affiliation(s)
- Stefano Biffo
- National Institute of Molecular Genetics and Biosciences Department, University of Milan, Milan, Italy.
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Massimo Mattia Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, Department of Biology, University of Padua, Padua, Italy.
| |
Collapse
|
11
|
Ide NA, Gentry RC, Rudbach MA, Yoo K, Velez PK, Comunale VM, Hartwick EW, Kinz-Thompson CD, Gonzalez RL, Aitken CE. A dynamic compositional equilibrium governs mRNA recognition by eIF3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.581977. [PMID: 38712078 PMCID: PMC11071631 DOI: 10.1101/2024.04.25.581977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Eukaryotic translation initiation factor (eIF) 3 is a multi-subunit protein complex that binds both ribosomes and messenger RNAs (mRNAs) to drive a diverse set of mechanistic steps during translation of an mRNA into the protein it encodes. And yet, a unifying framework explaining how eIF3 performs these numerous activities is lacking. Using single-molecule light scattering microscopy, we demonstrate that Saccharomyces cerevisiae eIF3 is in dynamic exchange between the full complex, subcomplexes, and subunits. By extending our microscopy approach to an in vitro reconstituted eIF3 and complementing it with biochemical assays, we define the subspecies comprising this dynamic compositional equilibrium and show that mRNA binding by eIF3 is not driven by the full complex but instead by the eIF3a subunit within eIF3a-containing subcomplexes. Our findings provide a mechanistic model for the role of eIF3 in mRNA recruitment and establish a mechanistic framework for explaining and investigating the other activities of eIF3.
Collapse
Affiliation(s)
- Nicholas A. Ide
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Riley C. Gentry
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | - Kyungyoon Yoo
- Biochemistry Program, Vassar College, Poughkeepsie, NY, USA
- Current Address: Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Erik W. Hartwick
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Biochemistry Krios Electron Microscopy Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Colin D. Kinz-Thompson
- Department of Chemistry, Columbia University, New York, NY, USA
- Current Address: Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA
| | | | - Colin Echeverría Aitken
- Biochemistry Program, Vassar College, Poughkeepsie, NY, USA
- Biology Department, Vassar College, Poughkeepsie, NY, USA
| |
Collapse
|
12
|
Choi JH, Luo J, Hesketh GG, Guo S, Pistofidis A, Ladak RJ, An Y, Naeli P, Alain T, Schmeing TM, Gingras AC, Duchaine T, Zhang X, Sonenberg N, Jafarnejad SM. Repression of mRNA translation initiation by GIGYF1 via disrupting the eIF3-eIF4G1 interaction. SCIENCE ADVANCES 2024; 10:eadl5638. [PMID: 39018414 PMCID: PMC466957 DOI: 10.1126/sciadv.adl5638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Viruses can selectively repress the translation of mRNAs involved in the antiviral response. RNA viruses exploit the Grb10-interacting GYF (glycine-tyrosine-phenylalanine) proteins 2 (GIGYF2) and eukaryotic translation initiation factor 4E (eIF4E) homologous protein 4EHP to selectively repress the translation of transcripts such as Ifnb1, which encodes the antiviral cytokine interferon-β (IFN-β). Herein, we reveal that GIGYF1, a paralog of GIGYF2, robustly represses cellular mRNA translation through a distinct 4EHP-independent mechanism. Upon recruitment to a target mRNA, GIGYF1 binds to subunits of eukaryotic translation initiation factor 3 (eIF3) at the eIF3-eIF4G1 interaction interface. This interaction disrupts the eIF3 binding to eIF4G1, resulting in transcript-specific translational repression. Depletion of GIGYF1 induces a robust immune response by derepressing IFN-β production. Our study highlights a unique mechanism of translational regulation by GIGYF1 that involves sequestering eIF3 and abrogating its binding to eIF4G1. This mechanism has profound implications for the host response to viral infections.
Collapse
Affiliation(s)
- Jung-Hyun Choi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Jun Luo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Geoffrey G. Hesketh
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Shuyue Guo
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Angelos Pistofidis
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Reese Jalal Ladak
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Yuxin An
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anne-Claude Gingras
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Thomas Duchaine
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Xu Zhang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
13
|
Zhang R, Zhang W, Wang C, Wen CK. Arabidopsis Fhit-like tumor suppressor resumes early terminated constitutive triple response1-10 mRNA translation. PLANT PHYSIOLOGY 2024; 195:2073-2093. [PMID: 38563472 DOI: 10.1093/plphys/kiae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
The Arabidopsis (Arabidopsis thaliana) constitutive triple response1-10 (ctr1-10) mutant produces a reduced level of CTR1 protein and exhibits a weak ctr1 mutant phenotype. Sequence analysis revealed highly active translation of the upstream open reading frame (uORF) at the extended 5'-UTR of the ctr1-10 mRNA, resulting from T-DNA insertion. Enhancer screening for ctr1-10 isolated the fragile histidine triad-1 (fhit-1) mutation. The fhit-1 ctr1-10 mutant phenotypically resembled strong ctr1 mutants and barely produced CTR1, and the fhit-1 mutation reduced the translation efficiency of ctr1-10 but not that of CTR1 mRNA. The human (Homo sapiens) Fhit that involves tumorigenesis and genome instability has the in vitro dinucleotide 5',5'″-P1, P3-triphosphate hydrolase activity, and expression of the human HsFHIT or the hydrolase-defective HsFHITH96N transgene reversed the fhit-1 ctr1-10 mutant phenotype and restored CTR1 levels. Genetic editing that in situ disrupts individual upstream ATG codons proximal to the ctr1-10 mORF elevated CTR1 levels in ctr1-10 plants independent of FHIT. EUKARYOTIC INITIATION FACTOR3G (eIF3G), which is involved in translation and reinitiation, interacted with FHIT, and both were associated with the polysome. We propose that FHIT resumes early terminated ctr1-10 mORF translation in the face of active and complex uORF translation. Our study unveils a niche that may lead to investigations on the molecular mechanism of Fhit-like proteins in translation reinitiation. The biological significance of FHIT-regulated translation is discussed.
Collapse
Affiliation(s)
- Ranran Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenrunshu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
14
|
Eiler DR, Wimberly BT, Bilodeau DY, Taliaferro JM, Reigan P, Rissland OS, Kieft JS. The Giardia lamblia ribosome structure reveals divergence in several biological pathways and the mode of emetine function. Structure 2024; 32:400-410.e4. [PMID: 38242118 PMCID: PMC10997490 DOI: 10.1016/j.str.2023.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/23/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Giardia lamblia is a deeply branching protist and a human pathogen. Its unusual biology presents the opportunity to explore conserved and fundamental molecular mechanisms. We determined the structure of the G. lamblia 80S ribosome bound to tRNA, mRNA, and the antibiotic emetine by cryo-electron microscopy, to an overall resolution of 2.49 Å. The structure reveals rapidly evolving protein and nucleotide regions, differences in the peptide exit tunnel, and likely altered ribosome quality control pathways. Examination of translation initiation factor binding sites suggests these interactions are conserved despite a divergent initiation mechanism. Highlighting the potential of G. lamblia to resolve conserved biological principles; our structure reveals the interactions of the translation inhibitor emetine with the ribosome and mRNA, thus providing insight into the mechanism of action for this widely used antibiotic. Our work defines key questions in G. lamblia and motivates future experiments to explore the diversity of eukaryotic gene regulation.
Collapse
Affiliation(s)
- Daniel R Eiler
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brian T Wimberly
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Danielle Y Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - J Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Philip Reigan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
15
|
Brito Querido J, Díaz-López I, Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat Rev Mol Cell Biol 2024; 25:168-186. [PMID: 38052923 DOI: 10.1038/s41580-023-00624-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 12/07/2023]
Abstract
The regulation of gene expression is fundamental for life. Whereas the role of transcriptional regulation of gene expression has been studied for several decades, it has been clear over the past two decades that post-transcriptional regulation of gene expression, of which translation regulation is a major part, can be equally important. Translation can be divided into four main stages: initiation, elongation, termination and ribosome recycling. Translation is controlled mainly during its initiation, a process which culminates in a ribosome positioned with an initiator tRNA over the start codon and, thus, ready to begin elongation of the protein chain. mRNA translation has emerged as a powerful tool for the development of innovative therapies, yet the detailed mechanisms underlying the complex process of initiation remain unclear. Recent studies in yeast and mammals have started to shed light on some previously unclear aspects of this process. In this Review, we discuss the current state of knowledge on eukaryotic translation initiation and its regulation in health and disease. Specifically, we focus on recent advances in understanding the processes involved in assembling the 43S pre-initiation complex and its recruitment by the cap-binding complex eukaryotic translation initiation factor 4F (eIF4F) at the 5' end of mRNA. In addition, we discuss recent insights into ribosome scanning along the 5' untranslated region of mRNA and selection of the start codon, which culminates in joining of the 60S large subunit and formation of the 80S initiation complex.
Collapse
Affiliation(s)
- Jailson Brito Querido
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Irene Díaz-López
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
16
|
Zhang Q, Xian W, Li Z, Lu Q, Chen X, Ge J, Tang Z, Liu B, Chen Z, Gao X, Hottiger MO, Zhang P, Qiu J, Shao F, Liu X. Shigella induces stress granule formation by ADP-riboxanation of the eIF3 complex. Cell Rep 2024; 43:113789. [PMID: 38368608 DOI: 10.1016/j.celrep.2024.113789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Under stress conditions, translationally stalled mRNA and associated proteins undergo liquid-liquid phase separation and condense into cytoplasmic foci called stress granules (SGs). Many viruses hijack SGs for their pathogenesis; however, whether pathogenic bacteria also exploit this pathway remains unknown. Here, we report that members of the OspC family of Shigella flexneri induce SG formation in infected cells. Mechanistically, the OspC effectors target multiple subunits of the host translation initiation factor 3 complex by ADP-riboxanation. The modification of eIF3 leads to translational arrest and thus the formation of SGs. Furthermore, OspC-mediated SGs are beneficial for S. flexneri replication within infected host cells, and bacterial strains unable to induce SGs are attenuated for virulence in a murine model of infection. Our findings reveal a mechanism by which bacterial pathogens induce SG assembly by inactivating host translational machinery and promote bacterial proliferation in host cells.
Collapse
Affiliation(s)
- Qinxin Zhang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zilin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qian Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xindi Chen
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jinli Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhiheng Tang
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bohao Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, Qingdao 266000, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, Qingdao 266000, China
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Peipei Zhang
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Department of Biochemistry, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
17
|
Ciganda M, Sotelo-Silveira J, Dubey AP, Pandey P, Smith JT, Shen S, Qu J, Smircich P, Read LK. Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state. RNA (NEW YORK, N.Y.) 2023; 29:1881-1895. [PMID: 37730435 PMCID: PMC10653379 DOI: 10.1261/rna.079625.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. In kinetoplastid protozoa, including T. brucei, posttranscriptional control mechanisms are the primary means of gene regulation, and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that reportedly interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We validate the DRBD18 interaction with translating ribosomes and the translation initiation factor, eIF3a. We further show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, that is, changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. In DRBD18-depleted cells, a set of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. RNA immunoprecipitation/qRT-PCR indicates that DRBD18 associates with members of both repressed and enhanced cohorts. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.
Collapse
Affiliation(s)
- Martin Ciganda
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Ashutosh P Dubey
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Parul Pandey
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Joseph T Smith
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - Shichen Shen
- Department of Pharmaceutical Sciences, University at Buffalo and NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo and NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203, USA
| | - Pablo Smircich
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Laurie K Read
- Department of Microbiology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
18
|
Chang J, Shin MK, Park J, Hwang HJ, Locker N, Ahn J, Kim D, Baek D, Park Y, Lee Y, Boo SH, Kim HI, Kim YK. An interaction between eIF4A3 and eIF3g drives the internal initiation of translation. Nucleic Acids Res 2023; 51:10950-10969. [PMID: 37811880 PMCID: PMC10639049 DOI: 10.1093/nar/gkad763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
An RNA structure or modified RNA sequences can provide a platform for ribosome loading and internal translation initiation. The functional significance of internal translation has recently been highlighted by the discovery that a subset of circular RNAs (circRNAs) is internally translated. However, the molecular mechanisms underlying the internal initiation of translation in circRNAs remain unclear. Here, we identify eIF3g (a subunit of eIF3 complex) as a binding partner of eIF4A3, a core component of the exon-junction complex (EJC) that is deposited onto spliced mRNAs and plays multiple roles in the regulation of gene expression. The direct interaction between eIF4A3-eIF3g serves as a molecular linker between the eIF4A3 and eIF3 complex, thereby facilitating internal ribosomal entry. Protein synthesis from in vitro-synthesized circRNA demonstrates eIF4A3-driven internal translation, which relies on the eIF4A3-eIF3g interaction. Furthermore, our transcriptome-wide analysis shows that efficient polysomal association of endogenous circRNAs requires eIF4A3. Notably, a subset of endogenous circRNAs can express a full-length intact protein, such as β-catenin, in an eIF4A3-dependent manner. Collectively, our results expand the understanding of the protein-coding potential of the human transcriptome, including circRNAs.
Collapse
Affiliation(s)
- Jeeyoon Chang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Kyung Shin
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joori Park
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Nicolas Locker
- Department of Microbial and Cellular Sciences, University of Surrey, Guildford GU2 7HX, UK
| | - Junhak Ahn
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Doyeon Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Daehyun Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonkyoung Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yujin Lee
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ho Boo
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyeong-In Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Shin S, Han MJ, Jedrychowski MP, Zhang Z, Shokat KM, Plas DR, Dephoure N, Yoon SO. mTOR inhibition reprograms cellular proteostasis by regulating eIF3D-mediated selective mRNA translation and promotes cell phenotype switching. Cell Rep 2023; 42:112868. [PMID: 37494188 PMCID: PMC10528759 DOI: 10.1016/j.celrep.2023.112868] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Cells maintain and dynamically change their proteomes according to the environment and their needs. Mechanistic target of rapamycin (mTOR) is a key regulator of proteostasis, homeostasis of the proteome. Thus, dysregulation of mTOR leads to changes in proteostasis and the consequent progression of diseases, including cancer. Based on the physiological and clinical importance of mTOR signaling, we investigated mTOR feedback signaling, proteostasis, and cell fate. Here, we reveal that mTOR targeting inhibits eIF4E-mediated cap-dependent translation, but feedback signaling activates a translation initiation factor, eukaryotic translation initiation factor 3D (eIF3D), to sustain alternative non-canonical translation mechanisms. Importantly, eIF3D-mediated protein synthesis enables cell phenotype switching from proliferative to more migratory. eIF3D cooperates with mRNA-binding proteins such as heterogeneous nuclear ribonucleoprotein F (hnRNPF), heterogeneous nuclear ribonucleoprotein K (hnRNPK), and Sjogren syndrome antigen B (SSB) to support selective mRNA translation following mTOR inhibition, which upregulates and activates proteins involved in insulin receptor (INSR)/insulin-like growth factor 1 receptor (IGF1R)/insulin receptor substrate (IRS) and interleukin 6 signal transducer (IL-6ST)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling. Our study highlights the mechanisms by which cells establish the dynamic change of proteostasis and the resulting phenotype switch.
Collapse
Affiliation(s)
- Sejeong Shin
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Min-Joon Han
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Ziyang Zhang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Noah Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA
| | - Sang-Oh Yoon
- Department of Physiology and Biophysics, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
20
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
21
|
Bose P, Baron N, Pullaiahgari D, Ben-Zvi A, Shapira M. LeishIF3d is a non-canonical cap-binding protein in Leishmania. Front Mol Biosci 2023; 10:1191934. [PMID: 37325473 PMCID: PMC10266417 DOI: 10.3389/fmolb.2023.1191934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Translation of most cellular mRNAs in eukaryotes proceeds through a cap-dependent pathway, whereby the cap-binding complex, eIF4F, anchors the pre-initiation complex at the 5' end of mRNAs driving translation initiation. The genome of Leishmania encodes a large repertoire of cap-binding complexes that fulfill a variety of functions possibly involved in survival along the life cycle. However, most of these complexes function in the promastigote life form that resides in the sand fly vector and decrease their activity in amastigotes, the mammalian life form. Here we examined the possibility that LeishIF3d drives translation in Leishmania using alternative pathways. We describe a non-canonical cap-binding activity of LeishIF3d and examine its potential role in driving translation. LeishIF3d is required for translation, as reducing its expression by a hemizygous deletion reduces the translation activity of the LeishIF3d(+/-) mutant cells. Proteomic analysis of the mutant cells highlights the reduced expression of flagellar and cytoskeletal proteins, as reflected in the morphological changes observed in the mutant cells. Targeted mutations in two predicted alpha helices diminish the cap-binding activity of LeishIF3d. Overall, LeishIF3d could serve as a driving force for alternative translation pathways, although it does not seem to offer an alternative pathway for translation in amastigotes.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | - Anat Ben-Zvi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
22
|
Bukhari SIA, Truesdell SS, Datta C, Choudhury P, Wu KQ, Shrestha J, Maharjan R, Plotsker E, Elased R, Laisa S, Bhambhani V, Lin Y, Kreuzer J, Morris R, Koh SB, Ellisen LW, Haas W, Ly A, Vasudevan S. Regulation of RNA methylation by therapy treatment, promotes tumor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540602. [PMID: 37292633 PMCID: PMC10245743 DOI: 10.1101/2023.05.19.540602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.
Collapse
Affiliation(s)
- Syed IA Bukhari
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Pritha Choudhury
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Keith Q Wu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ruby Maharjan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ethan Plotsker
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ramzi Elased
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Sadia Laisa
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Vijeta Bhambhani
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Yue Lin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
23
|
Duan H, Zhang S, Zarai Y, Öllinger R, Wu Y, Sun L, Hu C, He Y, Tian G, Rad R, Kong X, Cheng Y, Tuller T, Wolf DA. eIF3 mRNA selectivity profiling reveals eIF3k as a cancer-relevant regulator of ribosome content. EMBO J 2023:e112362. [PMID: 37155573 DOI: 10.15252/embj.2022112362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/04/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
eIF3, whose subunits are frequently overexpressed in cancer, regulates mRNA translation from initiation to termination, but mRNA-selective functions of individual subunits remain poorly defined. Using multiomic profiling upon acute depletion of eIF3 subunits, we observed that while eIF3a, b, e, and f markedly differed in their impact on eIF3 holo-complex formation and translation, they were each required for cancer cell proliferation and tumor growth. Remarkably, eIF3k showed the opposite pattern with depletion promoting global translation, cell proliferation, tumor growth, and stress resistance through repressing the synthesis of ribosomal proteins, especially RPS15A. Whereas ectopic expression of RPS15A mimicked the anabolic effects of eIF3k depletion, disruption of eIF3 binding to the 5'-UTR of RSP15A mRNA negated them. eIF3k and eIF3l are selectively downregulated in response to endoplasmic reticulum and oxidative stress. Supported by mathematical modeling, our data uncover eIF3k-l as a mRNA-specific module which, through controlling RPS15A translation, serves as a rheostat of ribosome content, possibly to secure spare translational capacity that can be mobilized during stress.
Collapse
Affiliation(s)
- Haoran Duan
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Siqiong Zhang
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yoram Zarai
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics and Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Yanmeng Wu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Li Sun
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Cheng Hu
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yaohui He
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Guiyou Tian
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics and Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Xiangquan Kong
- Department of Radiation Oncology, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Yabin Cheng
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Dieter A Wolf
- State Key Laboratory of Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
24
|
Anisimova AS, Kolyupanova NM, Makarova NE, Egorov AA, Kulakovskiy IV, Dmitriev SE. Human Tissues Exhibit Diverse Composition of Translation Machinery. Int J Mol Sci 2023; 24:8361. [PMID: 37176068 PMCID: PMC10179197 DOI: 10.3390/ijms24098361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
While protein synthesis is vital for the majority of cell types of the human body, diversely differentiated cells require specific translation regulation. This suggests the specialization of translation machinery across tissues and organs. Using transcriptomic data from GTEx, FANTOM, and Gene Atlas, we systematically explored the abundance of transcripts encoding translation factors and aminoacyl-tRNA synthetases (ARSases) in human tissues. We revised a few known and identified several novel translation-related genes exhibiting strict tissue-specific expression. The proteins they encode include eEF1A1, eEF1A2, PABPC1L, PABPC3, eIF1B, eIF4E1B, eIF4ENIF1, and eIF5AL1. Furthermore, our analysis revealed a pervasive tissue-specific relative abundance of translation machinery components (e.g., PABP and eRF3 paralogs, eIF2B and eIF3 subunits, eIF5MPs, and some ARSases), suggesting presumptive variance in the composition of translation initiation, elongation, and termination complexes. These conclusions were largely confirmed by the analysis of proteomic data. Finally, we paid attention to sexual dimorphism in the repertoire of translation factors encoded in sex chromosomes (eIF1A, eIF2γ, and DDX3), and identified the testis and brain as organs with the most diverged expression of translation-associated genes.
Collapse
Affiliation(s)
- Aleksandra S. Anisimova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalia M. Kolyupanova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nadezhda E. Makarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artyom A. Egorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ivan V. Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia;
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
25
|
Zhang D, Zhu L, Wang F, Li P, Wang Y, Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int J Biol Macromol 2023; 242:124680. [PMID: 37141965 DOI: 10.1016/j.ijbiomac.2023.124680] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Converting genetic information into functional proteins is a complex, multi-step process, with each step being tightly regulated to ensure the accuracy of translation, which is critical to cellular health. In recent years, advances in modern biotechnology, especially the development of cryo-electron microscopy and single-molecule techniques, have enabled a clearer understanding of the mechanisms of protein translation fidelity. Although there are many studies on the regulation of protein translation in prokaryotes, and the basic elements of translation are highly conserved in prokaryotes and eukaryotes, there are still great differences in the specific regulatory mechanisms. This review describes how eukaryotic ribosomes and translation factors regulate protein translation and ensure translation accuracy. However, a certain frequency of translation errors does occur in translation, so we describe diseases that arise when the rate of translation errors reaches or exceeds a threshold of cellular tolerance.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
26
|
Ma S, Liu JY, Zhang JT. eIF3d: A driver of noncanonical cap-dependent translation of specific mRNAs and a trigger of biological/pathological processes. J Biol Chem 2023; 299:104658. [PMID: 36997088 PMCID: PMC10165153 DOI: 10.1016/j.jbc.2023.104658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Eukaryotic initiation factor 3d (eIF3d), a known RNA-binding subunit of the eIF3 complex, is a 66 to 68-kDa protein with an RNA-binding motif and a cap-binding domain. Compared with other eIF3 subunits, eIF3d is relatively understudied. However, recent progress in studying eIF3d has revealed a number of intriguing findings on its role in maintaining eIF3 complex integrity, global protein synthesis, and in biological and pathological processes. It has also been reported that eIF3d has noncanonical functions in regulating translation of a subset of mRNAs by binding to 5'-UTRs or interacting with other proteins independent of the eIF3 complex and additional functions in regulating protein stability. The noncanonical regulation of mRNA translation or protein stability may contribute to the role of eIF3d in biological processes such as metabolic stress adaptation and in disease onset and progression including severe acute respiratory syndrome coronavirus 2 infection, tumorigenesis, and acquired immune deficiency syndrome. In this review, we critically evaluate the recent studies on these aspects of eIF3d and assess prospects in understanding the function of eIF3d in regulating protein synthesis and in biological and pathological processes.
Collapse
Affiliation(s)
- Shijie Ma
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jing-Yuan Liu
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA.
| |
Collapse
|
27
|
Ciganda M, Sotelo-Silveira J, Smith JT, Shen S, Qu J, Smircich P, Read LK. Translational control by Trypanosoma brucei DRBD18 contributes to the maintenance of the procyclic state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527724. [PMID: 36798237 PMCID: PMC9934708 DOI: 10.1101/2023.02.08.527724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Trypanosoma brucei occupies distinct niches throughout its life cycle, within both the mammalian and tsetse fly hosts. The immunological and biochemical complexity and variability of each of these environments require a reshaping of the protein landscape of the parasite both to evade surveillance and face changing metabolic demands. Whereas most well-studied organisms rely on transcriptional control as the main regulator of gene expression, post-transcriptional control mechanisms are particularly important in T. brucei , and these are often mediated by RNA-binding proteins. DRBD18 is a T. brucei RNA-binding protein that interacts with ribosomal proteins and translation factors. Here, we tested a role for DRBD18 in translational control. We show that DRBD18 depletion by RNA interference leads to altered polysomal profiles with a specific depletion of heavy polysomes. Ribosome profiling analysis reveals that 101 transcripts change in translational efficiency (TE) upon DRBD18 depletion: 41 exhibit decreased TE and 60 exhibit increased TE. A further 66 transcripts are buffered, i.e . changes in transcript abundance are compensated by changes in TE such that the total translational output is expected not to change. Proteomic analysis validates these data. In DRBD18-depleted cells, a cohort of transcripts that codes for procyclic form-specific proteins is translationally repressed while, conversely, transcripts that code for bloodstream form- and metacyclic form-specific proteins are translationally enhanced. These data suggest that DRBD18 contributes to the maintenance of the procyclic state through both positive and negative translational control of specific mRNAs.
Collapse
|
28
|
Song Z, Lin J, Su R, Ji Y, Jia R, Li S, Shan G, Huang C. eIF3j inhibits translation of a subset of circular RNAs in eukaryotic cells. Nucleic Acids Res 2022; 50:11529-11549. [PMID: 36330957 PMCID: PMC9723666 DOI: 10.1093/nar/gkac980] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Increasing studies have revealed that a subset of circular RNAs (circRNAs) harbor an open reading frame and can act as protein-coding templates to generate functional proteins that are closely associated with multiple physiological and disease-relevant processes, and thus proper regulation of synthesis of these circRNA-derived proteins is a fundamental cellular process required for homeostasis maintenance. However, how circRNA translation initiation is coordinated by different trans-acting factors remains poorly understood. In particular, the impact of different eukaryotic translation initiation factors (eIFs) on circRNA translation and the physiological relevance of this distinct regulation have not yet been characterized. In this study, we screened all 43 Drosophila eIFs and revealed the conflicting functions of eIF3 subunits in the translational control of the translatable circRNA circSfl: eIF3 is indispensable for circSfl translation, while the eIF3-associated factor eIF3j is the most potent inhibitor. Mechanistically, the binding of eIF3j to circSfl promotes the disassociation of eIF3. The C-terminus of eIF3j and an RNA regulon within the circSfl untranslated region (UTR) are essential for the inhibitory effect of eIF3j. Moreover, we revealed the physiological relevance of eIF3j-mediated circSfl translation repression in response to heat shock. Finally, additional translatable circRNAs were identified to be similarly regulated in an eIF3j-dependent manner. Altogether, our study provides a significant insight into the field of cap-independent translational regulation and undiscovered functions of eIF3.
Collapse
Affiliation(s)
| | | | - Rui Su
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Ji
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- To whom correspondence should be addressed. Tel: +86 19956025374;
| |
Collapse
|
29
|
Shin S, Solorzano J, Liauzun M, Pyronnet S, Bousquet C, Martineau Y. Translational alterations in pancreatic cancer: a central role for the integrated stress response. NAR Cancer 2022; 4:zcac031. [PMID: 36325577 PMCID: PMC9615149 DOI: 10.1093/narcan/zcac031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
mRNA translation is a key mechanism for cancer cell proliferation and stress adaptation. Regulation of this machinery implicates upstream pathways such as PI3K/AKT/mTOR, RAS/MEK/ERK and the integrated stress response (ISR), principally coordinating the translation initiation step. During the last decade, dysregulation of the mRNA translation process in pancreatic cancer has been widely reported, and shown to critically impact on cancer initiation, development and survival. This includes translation dysregulation of mRNAs encoding oncogenes and tumor suppressors. Hence, cancer cells survive a stressful microenvironment through a flexible regulation of translation initiation for rapid adaptation. The ISR pathway has an important role in chemoresistance and shows high potential therapeutic interest. Despite the numerous translational alterations reported in pancreatic cancer, their consequences are greatly underestimated. In this review, we summarize the different translation dysregulations described in pancreatic cancer, which make it invulnerable, as well as the latest drug discoveries bringing a glimmer of hope.
Collapse
Affiliation(s)
- Sauyeun Shin
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Jacobo Solorzano
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Mehdi Liauzun
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Stéphane Pyronnet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | - Corinne Bousquet
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, Toulouse, France,Equipe labellisée Ligue Contre le Cancer
| | | |
Collapse
|
30
|
Hayek H, Eriani G, Allmang C. eIF3 Interacts with Selenoprotein mRNAs. Biomolecules 2022; 12:biom12091268. [PMID: 36139107 PMCID: PMC9496622 DOI: 10.3390/biom12091268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The synthesis of selenoproteins requires the co-translational recoding of an in-frame UGASec codon. Interactions between the Selenocysteine Insertion Sequence (SECIS) and the SECIS binding protein 2 (SBP2) in the 3'untranslated region (3'UTR) of selenoprotein mRNAs enable the recruitment of the selenocysteine insertion machinery. Several selenoprotein mRNAs undergo unusual cap hypermethylation and are not recognized by the translation initiation factor 4E (eIF4E) but nevertheless translated. The human eukaryotic translation initiation factor 3 (eIF3), composed of 13 subunits (a-m), can selectively recruit several cellular mRNAs and plays roles in specialized translation initiation. Here, we analyzed the ability of eIF3 to interact with selenoprotein mRNAs. By combining ribonucleoprotein immunoprecipitation (RNP IP) in vivo and in vitro with cross-linking experiments, we found interactions between eIF3 and a subgroup of selenoprotein mRNAs. We showed that eIF3 preferentially interacts with hypermethylated capped selenoprotein mRNAs rather than m7G-capped mRNAs. We identified direct contacts between GPx1 mRNA and eIF3 c, d, and e subunits and showed the existence of common interaction patterns for all hypermethylated capped selenoprotein mRNAs. Differential interactions of eIF3 with selenoprotein mRNAs may trigger specific translation pathways independent of eIF4E. eIF3 could represent a new player in the translation regulation and hierarchy of selenoprotein expression.
Collapse
Affiliation(s)
- Hassan Hayek
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Department of Microbiology, Immunology, and Inflammation, Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Gilbert Eriani
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
| | - Christine Allmang
- Architecture et Réactivité de l’ARN, Université de Strasbourg, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg, France
- Correspondence:
| |
Collapse
|
31
|
Bulygin KN, Malygin AA, Graifer DM, Karpova GG. The functional role of the eukaryote-specific motif YxxPKxYxK of the human ribosomal protein eS26 in translation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194842. [PMID: 35817369 DOI: 10.1016/j.bbagrm.2022.194842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
Abstract
The protein eS26 is a structural component of the eukaryotic small ribosomal subunit involved in the formation of the mRNA binding channel in the region of the exit site. By applying site-directed cross-linking to mammalian 80S ribosomes, it has been shown that the same mRNA nucleotide residues are implicated in the interaction with both eS26 and translation initiation factor 3 (eIF3) and that contacts of the protein with mRNAs are mediated by its eukaryote-specific motif YxxPKxYxK. To examine the role of eS26 in translation, we transfected HEK293T cells with plasmid constructs encoding the wild-type FLAG-labeled protein (wt-eS26FLAG) or its forms with either a single substitution of any conserved amino acid residue in the above motif, or a simultaneous replacement of all the five ones (5A). The western blot analysis of fractions of polysome profiles from the transfected cells revealed no effects of the single mutations in eS26, but showed that the replacement of the five conserved residues led to the increased share of the light polysome fraction compared to that detected with control, wt-eS26FLAG-producing cells. In addition, the above fraction exhibited the enhanced content of the eIF3e subunit that is known to promote selective translation. These findings, together with real-time PCR data on the relative contents of specific mRNAs in light and heavy polysomes from cells producing the mutant 5A compared to those from control cells, suggest a possible involvement of the YxxPKxYxK motif of eS26 in the fine regulation of translation to maintain the required balance of synthesized proteins.
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Alexey A Malygin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Dmitri M Graifer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Galina G Karpova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia.
| |
Collapse
|
32
|
Pimkova K, Jassinskaja M, Munita R, Ciesla M, Guzzi N, Cao Thi Ngoc P, Vajrychova M, Johansson E, Bellodi C, Hansson J. Quantitative analysis of redox proteome reveals oxidation-sensitive protein thiols acting in fundamental processes of developmental hematopoiesis. Redox Biol 2022; 53:102343. [PMID: 35640380 PMCID: PMC9157258 DOI: 10.1016/j.redox.2022.102343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Fetal and adult hematopoietic stem and progenitor cells (HSPCs) are characterized by distinct redox homeostasis that may influence their differential cellular behavior in normal and malignant hematopoiesis. In this work, we have applied a quantitative mass spectrometry-based redox proteomic approach to comprehensively describe reversible cysteine modifications in primary mouse fetal and adult HSPCs. We defined the redox state of 4,438 cysteines in fetal and adult HSPCs and demonstrated a higher susceptibility to oxidation of protein thiols in fetal HSPCs. Our data identified ontogenic changes to oxidation state of thiols in proteins with a pronounced role in metabolism and protein homeostasis. Additional redox proteomic analysis identified oxidation changes to thiols acting in mitochondrial respiration as well as protein homeostasis to be triggered during onset of MLL-ENL leukemogenesis in fetal HSPCs. Our data has demonstrated that redox signaling contributes to the regulation of fundamental processes of developmental hematopoiesis and has pinpointed potential targetable redox-sensitive proteins in in utero-initiated MLL-rearranged leukemia.
Collapse
Affiliation(s)
- K Pimkova
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden; BIOCEV, 1st Medical Faculty, Charles University, Vestec, Czech Republic.
| | - M Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - R Munita
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - M Ciesla
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - N Guzzi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - P Cao Thi Ngoc
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - M Vajrychova
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - E Johansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - C Bellodi
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| | - J Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
33
|
Friedrich D, Marintchev A, Arthanari H. The metaphorical swiss army knife: The multitude and diverse roles of HEAT domains in eukaryotic translation initiation. Nucleic Acids Res 2022; 50:5424-5442. [PMID: 35552740 PMCID: PMC9177959 DOI: 10.1093/nar/gkac342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Biomolecular associations forged by specific interaction among structural scaffolds are fundamental to the control and regulation of cell processes. One such structural architecture, characterized by HEAT repeats, is involved in a multitude of cellular processes, including intracellular transport, signaling, and protein synthesis. Here, we review the multitude and versatility of HEAT domains in the regulation of mRNA translation initiation. Structural and cellular biology approaches, as well as several biophysical studies, have revealed that a number of HEAT domain-mediated interactions with a host of protein factors and RNAs coordinate translation initiation. We describe the basic structural architecture of HEAT domains and briefly introduce examples of the cellular processes they dictate, including nuclear transport by importin and RNA degradation. We then focus on proteins in the translation initiation system featuring HEAT domains, specifically the HEAT domains of eIF4G, DAP5, eIF5, and eIF2Bϵ. Comparative analysis of their remarkably versatile interactions, including protein-protein and protein-RNA recognition, reveal the functional importance of flexible regions within these HEAT domains. Here we outline how HEAT domains orchestrate fundamental aspects of translation initiation and highlight open mechanistic questions in the area.
Collapse
Affiliation(s)
- Daniel Friedrich
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Yi SH, Petrychenko V, Schliep JE, Goyal A, Linden A, Chari A, Urlaub H, Stark H, Rodnina MV, Adio S, Fischer N. Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Nucleic Acids Res 2022; 50:5282-5298. [PMID: 35489072 PMCID: PMC9122606 DOI: 10.1093/nar/gkac283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023] Open
Abstract
Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2–GTP–Met-tRNAiMet and eIF3. The ‘open’ 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The ‘closed’ form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.
Collapse
Affiliation(s)
- Sung-Hui Yi
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Valentyn Petrychenko
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Jan Erik Schliep
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Akanksha Goyal
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Ashwin Chari
- Research Group Structural Biochemistry and Mechanisms, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectroscopy Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Holger Stark
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sarah Adio
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Georg-August University of Göttingen, Göttingen 37077, Germany
| | - Niels Fischer
- Department of Structural Dynamics, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| |
Collapse
|
35
|
Serganov AA, Udi Y, Stein ME, Patel V, Fridy PC, Rice CM, Saeed M, Jacobs EY, Chait BT, Rout MP. Proteomic elucidation of the targets and primary functions of the picornavirus 2A protease. J Biol Chem 2022; 298:101882. [PMID: 35367208 PMCID: PMC9168619 DOI: 10.1016/j.jbc.2022.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/19/2022] Open
Abstract
Picornaviruses are small RNA viruses that hijack host cell machinery to promote their replication. During infection, these viruses express two proteases, 2Apro and 3Cpro, which process viral proteins. They also subvert a number of host functions, including innate immune responses, host protein synthesis, and intracellular transport, by utilizing poorly understood mechanisms for rapidly and specifically targeting critical host proteins. Here, we used proteomic tools to characterize 2Apro interacting partners, functions, and targeting mechanisms. Our data indicate that, initially, 2Apro primarily targets just two cellular proteins: eukaryotic translation initiation factor eIF4G (a critical component of the protein synthesis machinery) and Nup98 (an essential component of the nuclear pore complex, responsible for nucleocytoplasmic transport). The protease appears to employ two different cleavage mechanisms; it likely interacts with eIF3L, utilizing the eIF3 complex to proteolytically access the eIF4G protein but also directly binds and degrades Nup98. This Nup98 cleavage results in only a marginal effect on nuclear import of proteins, while nuclear export of proteins and mRNAs were more strongly affected. Collectively, our data indicate that 2Apro selectively inhibits protein translation, key nuclear export pathways, and cellular mRNA localization early in infection to benefit viral replication at the expense of particular cell functions.
Collapse
Affiliation(s)
- Artem A Serganov
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Yael Udi
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Valay Patel
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York, USA; Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA; National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston University, Massachusetts, USA.
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA; Chemistry Department, St John's University, Queens, New York, USA.
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA.
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
36
|
Dynamic eIF3a O-GlcNAcylation controls translation reinitiation during nutrient stress. Nat Chem Biol 2022; 18:134-141. [PMID: 34887587 PMCID: PMC8810738 DOI: 10.1038/s41589-021-00913-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023]
Abstract
In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3-80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming.
Collapse
|
37
|
Song S, Liu J, Zhang M, Gao X, Sun W, Liu P, Wang Y, Li J. Eukaryotic translation initiation factor 3 subunit B could serve as a potential prognostic predictor for breast cancer. Bioengineered 2022; 13:2762-2776. [PMID: 35040374 PMCID: PMC8974155 DOI: 10.1080/21655979.2021.2017567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The EIF3 gene family is essential in controlling translation initiation during the cell cycle. The significance of the EIF3 subunits as prognostic markers and therapeutic targets in breast cancer is not yet clear. We analyzed the expression of EIF3 subunits in breast cancer on the GEPIA and Oncomine databases and compared their expression in breast cancer and normal tissues using BRCA data downloaded from TCGA. Then we performed clinical survival analysis on the Kaplan–Meier Plotter database and clinicopathologic analysis on the bc-genexMiner v4.1 database. And EIF3B was chosen for mutation analysis via the Cancer SEA online tool. Meanwhile, we performed the immunohistochemical assay, real-time RT-PCR, and Western blotting to analyze EIF3B expression levels in breast cancer. An EIF3B knockdown and a negative control cell line were conducted for MTT assay and cell cycle analysis to assess cell growth. Specifically, the results of TCGA and online databases demonstrated that upregulated EIF3B was associated with poorer overall and advanced tumor progression. We also confirmed that EIF3B was more highly expressed in breast cancer cells and tissues than normal and correlated with a worse outcome. And knockdown of EIF3B expression inhibited the cell cycle and proliferation. Furthermore, EIF3B was highly mutated in breast cancer. Collectively, our results suggested EIF3B as a potential prognostic marker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Shaoran Song
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Miao Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Xiaoqian Gao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,The Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi China
| |
Collapse
|
38
|
Stanciu A, Luo J, Funes L, Galbokke Hewage S, Kulkarni SD, Aitken CE. eIF3 and Its mRNA-Entry-Channel Arm Contribute to the Recruitment of mRNAs With Long 5′-Untranslated Regions. Front Mol Biosci 2022; 8:787664. [PMID: 35087868 PMCID: PMC8787345 DOI: 10.3389/fmolb.2021.787664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/13/2021] [Indexed: 01/21/2023] Open
Abstract
Translation initiation in eukaryotes is a multi-step pathway and the most regulated phase of translation. Eukaryotic initiation factor 3 (eIF3) is the largest and most complex of the translation initiation factors, and it contributes to events throughout the initiation pathway. In particular, eIF3 appears to play critical roles in mRNA recruitment. More recently, eIF3 has been implicated in driving the selective translation of specific classes of mRNAs. However, unraveling the mechanism of these diverse contributions—and disentangling the roles of the individual subunits of the eIF3 complex—remains challenging. We employed ribosome profiling of budding yeast cells expressing two distinct mutations targeting the eIF3 complex. These mutations either disrupt the entire complex or subunits positioned near the mRNA-entry channel of the ribosome and which appear to relocate during or in response to mRNA binding and start-codon recognition. Disruption of either the entire eIF3 complex or specific targeting of these subunits affects mRNAs with long 5′-untranslated regions and whose translation is more dependent on eIF4A, eIF4B, and Ded1 but less dependent on eIF4G, eIF4E, and PABP. Disruption of the entire eIF3 complex further affects mRNAs involved in mitochondrial processes and with structured 5′-untranslated regions. Comparison of the suite of mRNAs most sensitive to both mutations with those uniquely sensitive to disruption of the entire complex sheds new light on the specific roles of individual subunits of the eIF3 complex.
Collapse
Affiliation(s)
- Andrei Stanciu
- Computer Science Department, Vassar College, Poughkeepsie, NY, United States
| | - Juncheng Luo
- Biochemistry Program, Vassar College, Poughkeepsie, NY, United States
| | - Lucy Funes
- Biology Department, Vassar College, Poughkeepsie, NY, United States
| | | | - Shardul D. Kulkarni
- Department of Biochemistry and Molecular Biology, Penn State Eberly College of Medicine, University Park, PA, United States
| | - Colin Echeverría Aitken
- Biochemistry Program, Vassar College, Poughkeepsie, NY, United States
- Biology Department, Vassar College, Poughkeepsie, NY, United States
- *Correspondence: Colin Echeverría Aitken,
| |
Collapse
|
39
|
Jennifer S, Corinna R, Thomas D, Nils L, Diethard M, Brigitte G. Going beyond the limit: Increasing global translation activity leads to increased productivity of recombinant secreted proteins in Pichia pastoris. Metab Eng 2022; 70:181-195. [DOI: 10.1016/j.ymben.2022.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
|
40
|
Llácer JL, Hussain T, Dong J, Villamayor L, Gordiyenko Y, Hinnebusch AG. Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Res 2021; 49:11491-11511. [PMID: 34648019 PMCID: PMC8599844 DOI: 10.1093/nar/gkab908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic initiation factor 3 (eIF3) complex is involved in every step of translation initiation, but there is limited understanding of its molecular functions. Here, we present a single particle electron cryomicroscopy (cryo-EM) reconstruction of yeast 48S ribosomal preinitiation complex (PIC) in an open conformation conducive to scanning, with core subunit eIF3b bound on the 40S interface near the decoding center in contact with the ternary complex eIF2·GTP·initiator tRNA. eIF3b is relocated together with eIF3i from their solvent interface locations observed in other PIC structures, with eIF3i lacking 40S contacts. Re-processing of micrographs of our previous 48S PIC in a closed state also suggests relocation of the entire eIF3b-3i-3g-3a-Cter module during the course of initiation. Genetic analysis indicates that high fidelity initiation depends on eIF3b interactions at the 40S subunit interface that promote the closed PIC conformation, or facilitate the relocation of eIF3b/eIF3i to the solvent interface, on start codon selection.
Collapse
Affiliation(s)
- Jose L Llácer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain.,Centro para Investigación Biomédica en Red sobre Enfermedades Raras CIBERER-ISCIII, Valencia, Spain
| | - Tanweer Hussain
- Molecular Reproduction, Development and Genetics (MRDG), Biological Sciences Building, Indian Institute of Science, Bangalore 560012, India
| | - Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laura Villamayor
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
| | | | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
41
|
Ke F, Vasseur L, Yi H, Yang L, Wei X, Wang B, Kang M. Gene flow, linked selection, and divergent sorting of ancient polymorphism shape genomic divergence landscape in a group of edaphic specialists. Mol Ecol 2021; 31:104-118. [PMID: 34664755 DOI: 10.1111/mec.16226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
Interpreting the formation of genomic variation landscape, especially genomic regions with elevated differentiation (i.e. islands), is fundamental to a better understanding of the genomic consequences of adaptation and speciation. Edaphic islands provide excellent systems for understanding the interplay of gene flow and selection in driving population divergence and speciation. However, discerning the relative contribution of these factors that modify patterns of genomic variation remains difficult. We analysed 132 genomes from five recently divergent species in Primulina genus, with four species distributed in Karst limestone habitats and the fifth one growing in Danxia habitats. We demonstrated that both gene flow and linked selection have contributed to genome-wide variation landscape, where genomic regions with elevated differentiation (i.e., islands) were largely derived by divergent sorting of ancient polymorphism. Specifically, we identified several lineage-specific genomic islands that might have facilitated adaptation of P. suichuanensis to Danxia habitats. Our study is amongst the first cases disentangling evolutionary processes that shape genomic variation of plant specialists, and demonstrates the important role of ancient polymorphism in the formation of genomic islands that potentially mediate adaptation and speciation of endemic plants in special soil habitats.
Collapse
Affiliation(s)
- Fushi Ke
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Liette Vasseur
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Huiqin Yi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xiao Wei
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, China
| | - Baosheng Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
42
|
Andreev DE, Smirnova VV, Shatsky IN. Modifications of Ribosome Profiling that Provide New Data on the Translation Regulation. BIOCHEMISTRY (MOSCOW) 2021; 86:1095-1106. [PMID: 34565313 DOI: 10.1134/s0006297921090054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosome profiling (riboseq) has opened the possibilities for the genome-wide studies of translation in all living organisms. This method is based on deep sequencing of mRNA fragments protected by the ribosomes from hydrolysis by ribonucleases, the so-called ribosomal footprints (RFPs). Ribosomal profiling together with RNA sequencing allows not only to identify with a reasonable accuracy translated reading frames in the transcriptome, but also to track changes in gene expression in response to various stimuli. Notably, ribosomal profiling in its classical version has certain limitations. The size of the selected mRNA fragments is 25-35 nts, while RFPs of other sizes are usually omitted from analysis. Also, ribosomal profiling "averages" the data from all ribosomes and does not allow to study specific ribosomal complexes associated with particular translation factors. However, recently developed modifications of ribosomal profiling provide answers to a number of questions. Thus, it has become possible to analyze not only elongating, but also scanning and reinitiating ribosomes, to study events associated with the collision of ribosomes during mRNA translation, to discover new ways of cotranslational assembly of multisubunit protein complexes during translation, and to selectively isolate ribosomal complexes associated with certain protein factors. New data obtained using these modified approaches provide a better understanding of the mechanisms of translation regulation and the functional roles of translational apparatus components.
Collapse
Affiliation(s)
- Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Viktoriya V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
43
|
Ichihara K, Matsumoto A, Nishida H, Kito Y, Shimizu H, Shichino Y, Iwasaki S, Imami K, Ishihama Y, Nakayama KI. Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Res 2021; 49:7298-7317. [PMID: 34226921 PMCID: PMC8287933 DOI: 10.1093/nar/gkab549] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Although ribosome-profiling and translation initiation sequencing (TI-seq) analyses have identified many noncanonical initiation codons, the precise detection of translation initiation sites (TISs) remains a challenge, mainly because of experimental artifacts of such analyses. Here, we describe a new method, TISCA (TIS detection by translation Complex Analysis), for the accurate identification of TISs. TISCA proved to be more reliable for TIS detection compared with existing tools, and it identified a substantial number of near-cognate codons in Kozak-like sequence contexts. Analysis of proteomics data revealed the presence of methionine at the NH2-terminus of most proteins derived from near-cognate initiation codons. Although eukaryotic initiation factor 2 (eIF2), eIF2A and eIF2D have previously been shown to contribute to translation initiation at near-cognate codons, we found that most noncanonical initiation events are most probably dependent on eIF2, consistent with the initial amino acid being methionine. Comprehensive identification of TISs by TISCA should facilitate characterization of the mechanism of noncanonical initiation.
Collapse
Affiliation(s)
- Kazuya Ichihara
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hiroshi Nishida
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Kito
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Hideyuki Shimizu
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Wako, Saitama 351-0198, Japan
| | - Koshi Imami
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| |
Collapse
|
44
|
Blazie SM, Takayanagi-Kiya S, McCulloch KA, Jin Y. Eukaryotic initiation factor EIF-3.G augments mRNA translation efficiency to regulate neuronal activity. eLife 2021; 10:68336. [PMID: 34323215 PMCID: PMC8354637 DOI: 10.7554/elife.68336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
The translation initiation complex eIF3 imparts specialized functions to regulate protein expression. However, understanding of eIF3 activities in neurons remains limited despite widespread dysregulation of eIF3 subunits in neurological disorders. Here, we report a selective role of the C. elegans RNA-binding subunit EIF-3.G in shaping the neuronal protein landscape. We identify a missense mutation in the conserved Zinc-Finger (ZF) of EIF-3.G that acts in a gain-of-function manner to dampen neuronal hyperexcitation. Using neuron-type-specific seCLIP, we systematically mapped EIF-3.G-mRNA interactions and identified EIF-3.G occupancy on GC-rich 5′UTRs of a select set of mRNAs enriched in activity-dependent functions. We demonstrate that the ZF mutation in EIF-3.G alters translation in a 5′UTR-dependent manner. Our study reveals an in vivo mechanism for eIF3 in governing neuronal protein levels to control neuronal activity states and offers insights into how eIF3 dysregulation contributes to neurological disorders.
Collapse
Affiliation(s)
- Stephen M Blazie
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Seika Takayanagi-Kiya
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Katherine A McCulloch
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, United States
| |
Collapse
|
45
|
Skinnider MA, Scott NE, Prudova A, Kerr CH, Stoynov N, Stacey RG, Chan QWT, Rattray D, Gsponer J, Foster LJ. An atlas of protein-protein interactions across mouse tissues. Cell 2021; 184:4073-4089.e17. [PMID: 34214469 DOI: 10.1016/j.cell.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nichollas E Scott
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Peter Doherty Institute, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anna Prudova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Craig H Kerr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Queenie W T Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Rattray
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
46
|
Beznosková P, Bidou L, Namy O, Valášek LS. Increased expression of tryptophan and tyrosine tRNAs elevates stop codon readthrough of reporter systems in human cell lines. Nucleic Acids Res 2021; 49:5202-5215. [PMID: 34009360 PMCID: PMC8136774 DOI: 10.1093/nar/gkab315] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.
Collapse
Affiliation(s)
- Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Laure Bidou
- Sorbonne Universités, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Olivier Namy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| |
Collapse
|
47
|
Nwokoye EC, AlNaseem E, Crawford RA, Castelli LM, Jennings MD, Kershaw CJ, Pavitt GD. Overlapping regions of Caf20 mediate its interactions with the mRNA-5'cap-binding protein eIF4E and with ribosomes. Sci Rep 2021; 11:13467. [PMID: 34188131 PMCID: PMC8242001 DOI: 10.1038/s41598-021-92931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
By interacting with the mRNA 5' cap, the translation initiation factor eIF4E plays a critical role in selecting mRNAs for protein synthesis in eukaryotic cells. Caf20 is a member of the family of proteins found across eukaryotes termed 4E-BPs, which compete with eIF4G for interaction with eIF4E. Caf20 independently interacts with ribosomes. Thus, Caf20 modulates the mRNA selection process via poorly understood mechanisms. Here we performed unbiased mutagenesis across Caf20 to characterise which regions of Caf20 are important for interaction with eIF4E and with ribosomes. Caf20 binding to eIF4E is entirely dependent on a canonical motif shared with other 4E-BPs. However, binding to ribosomes is weakened by mutations throughout the protein, suggesting an extended binding interface that partially overlaps with the eIF4E-interaction region. By using chemical crosslinking, we identify a potential ribosome interaction region on the ribosome surface that spans both small and large subunits and is close to a known interaction site of eIF3. The function of ribosome binding by Caf20 remains unclear.
Collapse
Affiliation(s)
- Ebelechukwu C Nwokoye
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Department of Botany, Nnamdi Azikiwe University, Awka, Nigeria
| | - Eiman AlNaseem
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Lydia M Castelli
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
48
|
Huang Y, Zheng P, Liu X, Chen H, Tu J. OseIF3h Regulates Plant Growth and Pollen Development at Translational Level Presumably through Interaction with OsMTA2. PLANTS 2021; 10:plants10061101. [PMID: 34070794 PMCID: PMC8228589 DOI: 10.3390/plants10061101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/23/2022]
Abstract
The initiation stage of protein biosynthesis is a sophisticated process tightly regulated by numerous initiation factors and their associated components. However, the mechanism underlying translation initiation has not been completely understood in rice. Here, we showed knock-out mutation of the rice eukaryotic translation initiation factor 3 subunit h (OseIF3h) resulted in plant growth retardation and seed-setting rate reduction as compared to the wild type. Further investigation demonstrated an interaction between OseIF3h and OsMTA2 (mRNA adenosine methylase 2), a rice homolog of METTL3 (methyltransferase-like 3) in mammals, which provided new insight into how N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is engaged in the translation initiation process in monocot species. Moreover, the RIP-seq (RNA immunoprecipitation sequencing) data suggested that OseIF3h was involved in multiple biological processes, including photosynthesis, cellular metabolic process, precursor metabolites, and energy generation. Therefore, we infer that OseIF3h interacts with OsMTA2 to target a particular subset of genes at translational level, regulating plant growth and pollen development.
Collapse
|
49
|
Ramat A, Simonelig M. Functions of PIWI Proteins in Gene Regulation: New Arrows Added to the piRNA Quiver. Trends Genet 2021; 37:188-200. [DOI: 10.1016/j.tig.2020.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/05/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
|
50
|
Zheng W, Li Y, Su Z, Zhang J, Shi F, Liang W. EIF3H knockdown inhibits malignant melanoma through regulating cell proliferation, apoptosis and cell cycle. Exp Cell Res 2021; 402:112488. [PMID: 33508274 DOI: 10.1016/j.yexcr.2021.112488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/24/2022]
Abstract
Malignant melanoma (MM) causes 80% of skin cancer-related deaths and becomes the most lethal type of skin cancer. The molecular mechanism of MM is still not clear. This study aimed to reveal the relationship between MM and EIF3H. Clinical specimens were collected to preliminarily explore the role of EIF3H in MM. MM cell lines with EIF3H knockdown were constructed for investigating the effects of EIF3H on cell proliferation, apoptosis, cell cycle and cell motility. Mice xenograft model was constructed for verification in vivo. We found that EIF3H was obviously upregulated in MM tissues compared with normal skin tissues, which was correlated with tumor stage and risk of lymphatic metastasis. The in vitro results indicated that silencing EIF3H in MM cells could significantly suppress cell proliferation, promote cell apoptosis and induce cell cycle arrest. Moreover, EIF3H knockdown significantly restrained cell motility through regulating EMT-related proteins. The effects of EIF3H knockdown were also verified in mice xenograft model, which were represented by slower growth rate, smaller volume and lighter weight of tumors. Therefore, EIF3H was identified as a critical factor in the development and progression of MM which may be used as a novel therapeutic target in the treatment of MM.
Collapse
Affiliation(s)
- Wenjun Zheng
- Department of Dermatology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yong Li
- Department of Dermatology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zheng Su
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fen Shi
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weiqiang Liang
- Department of Plastic and Reconstructive Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|