1
|
Martin A, Zhang S, Williamson A, Tingley B, Pickus M, Zurakowski D, Nia HT, Shirihai O, Han X, Grinstaff MW. Universal high-throughput image quantification of subcellular structure dynamics and spatial distributions within cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608451. [PMID: 39229224 PMCID: PMC11370428 DOI: 10.1101/2024.08.18.608451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Image analysis of subcellular structures and biological processes relies on specific, context-dependent pipelines, which are labor-intensive, constrained by the intricacies of the specific biological system, and inaccessible to broader applications. Here we introduce the application of dispersion indices, a statistical tool traditionally employed by economists, to analyze the spatial distribution and heterogeneity of subcellular structures. This computationally efficient high-throughput approach, termed GRID (Generalized Readout of Image Dispersion), is highly generalizable, compatible with open-source image analysis software, and adaptable to diverse biological scenarios. GRID readily quantifies diverse structures and processes to include autophagic puncta, mitochondrial clustering, and microtubule dynamics. Further, GRID is versatile, applicable to both 2D cell cultures and 3D multicellular organoids, and suitable for high-throughput screening and performance metric measurements, such as half-maximal effective concentration (EC50) values. The approach enables mechanistic analysis of critical subcellular structure processes of relevance for diseases ranging from metabolic and neuronal diseases to cancer as well as a first-pass screening method for identifying biologically active agents for drug discovery.
Collapse
Affiliation(s)
- Andrew Martin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Sue Zhang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Amanda Williamson
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| | - Brett Tingley
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Mira Pickus
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | | | - Hadi T. Nia
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Orian Shirihai
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
| | - Mark W. Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States
- Department of Chemistry, Boston University, Boston, MA 02215, United States
| |
Collapse
|
2
|
Majer J, Alex A, Shi J, Chaney EJ, Mukherjee P, Spillman DR, Marjanovic M, Newman CF, Groseclose RM, Watson PD, Boppart SA, Hood SR. Multimodal imaging of a liver-on-a-chip model using labelled and label-free optical microscopy techniques. LAB ON A CHIP 2024; 24:4594-4608. [PMID: 39258913 PMCID: PMC12013482 DOI: 10.1039/d4lc00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A liver-on-a-chip model is an advanced complex in vitro model (CIVM) that incorporates different cell types and extracellular matrix to mimic the microenvironment of the human liver in a laboratory setting. Given the heterogenous and complex nature of liver-on-a-chip models, brightfield and fluorescence-based imaging techniques are widely utilized for assessing the changes occurring in these models with different treatment and environmental conditions. However, the utilization of optical microscopy techniques for structural and functional evaluation of the liver CIVMs have been limited by the reduced light penetration depth and lack of 3D information obtained using these imaging techniques. In this study, the potential of both labelled as well as label-free multimodal optical imaging techniques for visualization and characterization of the cellular and sub-cellular features of a liver-on-a-chip model was investigated. (1) Cellular uptake and distribution of Alexa 488 (A488)-labelled non-targeted and targeted antisense oligonucleotides (ASO and ASO-GalNAc) in the liver-on-a-chip model was determined using multiphoton microscopy. (2) Hyperspectral stimulated Raman scattering (SRS) microscopy of the C-H region was used to determine the heterogeneity of chemical composition of circular and cuboidal hepatocytes in the liver-on-a-chip model in a label-free manner. Additionally, the spatial overlap between the intracellular localization of ASO and lipid droplets was explored using simultaneous hyperspectral SRS and fluorescence microscopy. (3) The capability of light sheet fluorescence microscopy (LSFM) for full-depth 3D visualization of sub-cellular distribution of A488-ASO and cellular phenotypes in the liver-on-a-chip model was demonstrated. In summary, multimodal optical microscopy is a promising platform that can be utilized for visualization and quantification of 3D cellular organization, drug distribution and functional changes occurring in liver-on-a-chip models, and can provide valuable insights into liver biology and drug uptake mechanisms by enabling better characterization of these liver models.
Collapse
Affiliation(s)
- Jan Majer
- Pre-Clinical Sciences, Research Technologies, GSK, Stevenage, UK.
- School of Biosciences, Cardiff University, Cardiff, UK.
| | - Aneesh Alex
- Pre-Clinical Sciences, Research Technologies, GSK, Collegeville, PA, USA
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Carla F Newman
- Pre-Clinical Sciences, Research Technologies, GSK, Stevenage, UK.
| | - Reid M Groseclose
- Pre-Clinical Sciences, Research Technologies, GSK, Collegeville, PA, USA
| | | | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Steve R Hood
- Pre-Clinical Sciences, Research Technologies, GSK, Stevenage, UK.
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Hill AC, Becker JP, Slominski D, Halloy F, Søndergaard C, Ravn J, Hall J. Peptide Conjugates of a 2'- O-Methoxyethyl Phosphorothioate Splice-Switching Oligonucleotide Show Increased Entrapment in Endosomes. ACS OMEGA 2023; 8:40463-40481. [PMID: 37929104 PMCID: PMC10620785 DOI: 10.1021/acsomega.3c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Antisense oligonucleotides (ASOs) are short, single-stranded nucleic acid molecules that alter gene expression. However, their transport into appropriate cellular compartments is a limiting factor in their potency. Here, we synthesized splice-switching oligonucleotides (SSOs) previously developed to treat the rare disease erythropoietic protoporphyria. Using chemical ligation-quantitative polymerase chain reaction (CL-qPCR), we quantified the SSOs in cells and subcellular compartments following free uptake. To drive nuclear localization, we covalently conjugated nuclear localization signal (NLS) peptides to a lead 2'-O-methoxyethyl phosphorothioate SSO using thiol-maleimide chemistry. The conjugates and parent SSO displayed similar RNA target-binding affinities. CL-qPCR quantification of the conjugates in cells and subcellular compartments following free uptake revealed one conjugate with better nuclear accumulation relative to the parent SSO. However, compared to the parent SSO, which altered the splicing of the target pre-mRNA, the conjugates were inactive at splice correction under free uptake conditions in vitro. Splice-switching activity could be conferred on the conjugates by delivering them into cells via cationic lipid-mediated transfection or by treating the cells into which the conjugates had been freely taken up with chloroquine, an endosome-disrupting agent. Our results identify the major barrier to the activity of the peptide-oligonucleotide conjugates as endosomal entrapment.
Collapse
Affiliation(s)
- Alyssa C. Hill
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - J. Philipp Becker
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - Daria Slominski
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - François Halloy
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | | | - Jacob Ravn
- Roche
Innovation Center Copenhagen (RICC), Hørsholm 2970, Denmark
| | - Jonathan Hall
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| |
Collapse
|
4
|
Ma H, Xing F, Zhou Y, Yu P, Luo R, Xu J, Xiang Z, Rommens PM, Duan X, Ritz U. Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. J Mater Chem B 2023; 11:7873-7912. [PMID: 37551112 DOI: 10.1039/d3tb01008b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.
Collapse
Affiliation(s)
- Hong Ma
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Ludwigstraße 23, 35392 Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
5
|
Dowdy SF. Endosomal escape of RNA therapeutics: How do we solve this rate-limiting problem? RNA (NEW YORK, N.Y.) 2023; 29:396-401. [PMID: 36669888 PMCID: PMC10019367 DOI: 10.1261/rna.079507.122] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 05/15/2023]
Abstract
With over 15 FDA approved drugs on the market and numerous ongoing clinical trials, RNA therapeutics, such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs), have shown great potential to treat human disease. Their mechanism of action is based entirely on the sequence of validated disease-causing genes without the prerequisite knowledge of protein structure, activity or cellular location. In contrast to small molecule therapeutics that passively diffuse across the cell membrane's lipid bilayer, RNA therapeutics are too large, too charged, and/or too hydrophilic to passively diffuse across the cellular membrane and instead are taken up into cells by endocytosis. However, endosomes are also composed of a lipid bilayer barrier that results in endosomal capture and retention of 99% of RNA therapeutics with 1% or less entering the cytoplasm. Although this very low level of endosomal escape has proven sufficient for liver and some CNS disorders, it is insufficient for the vast majority of extra-hepatic diseases. Unfortunately, there are currently no acceptable solutions to the endosomal escape problem. Consequently, before RNA therapeutics can be used to treat widespread human disease, the rate-limiting delivery problem of endosomal escape must be solved in a nontoxic manner.
Collapse
Affiliation(s)
- Steven F Dowdy
- Department of Cellular and Molecular Medicine, UCSD School of Medicine, La Jolla, California 92093, USA
| |
Collapse
|
6
|
Hedlund H, Du Rietz H, Johansson JM, Eriksson HC, Zedan W, Huang L, Wallin J, Wittrup A. Single-cell quantification and dose-response of cytosolic siRNA delivery. Nat Commun 2023; 14:1075. [PMID: 36841822 PMCID: PMC9968291 DOI: 10.1038/s41467-023-36752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Endosomal escape and subsequent cytosolic delivery of small interfering RNA (siRNA) therapeutics is believed to be highly inefficient. Since it has not been possible to quantify cytosolic amounts of delivered siRNA at therapeutic doses, determining delivery bottlenecks and total efficiency has been difficult. Here, we present a confocal microscopy-based method to quantify cytosolic delivery of fluorescently labeled siRNA during lipid-mediated delivery. This method enables detection and quantification of sub-nanomolar cytosolic siRNA release amounts from individual release events with measures of quantitation confidence for each event. Single-cell kinetics of siRNA-mediated knockdown in cells expressing destabilized eGFP unveiled a dose-response relationship with respect to knockdown induction, depth and duration in the range from several hundred to thousands of cytosolic siRNA molecules. Accurate quantification of cytosolic siRNA, and the establishment of the intracellular dose-response relationships, will aid the development and characterization of novel delivery strategies for nucleic acid therapeutics.
Collapse
Affiliation(s)
- Hampus Hedlund
- Department of Clinical Sciences Lund, Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hampus Du Rietz
- Department of Clinical Sciences Lund, Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johanna M Johansson
- Department of Clinical Sciences Lund, Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hanna C Eriksson
- Department of Clinical Sciences Lund, Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Wahed Zedan
- Department of Clinical Sciences Lund, Oncology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Linfeng Huang
- Wang-Cai Biochemistry Lab, Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Jonas Wallin
- Department of Mathematical Statistics, Lund University, Lund, Sweden
| | - Anders Wittrup
- Department of Clinical Sciences Lund, Oncology, Faculty of Medicine, Lund University, Lund, Sweden. .,Skane University Hospital, Oncology, Lund, Sweden. .,Wallenberg Center for Molecular Medicine, Lund, Sweden.
| |
Collapse
|
7
|
Terada C, Kawamoto S, Yamayoshi A, Yamamoto T. Chemistry of Therapeutic Oligonucleotides That Drives Interactions with Biomolecules. Pharmaceutics 2022; 14:pharmaceutics14122647. [PMID: 36559141 PMCID: PMC9781680 DOI: 10.3390/pharmaceutics14122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Oligonucleotide therapeutics that can modulate gene expression have been gradually developed for clinical applications over several decades. However, rapid advances have been made in recent years. Artificial nucleic acid technology has overcome many challenges, such as (1) poor target affinity and selectivity, (2) low in vivo stability, and (3) classical side effects, such as immune responses; thus, its application in a wide range of disorders has been extensively examined. However, even highly optimized oligonucleotides exhibit side effects, which limits the general use of this class of agents. In this review, we discuss the physicochemical characteristics that aid interactions between drugs and molecules that belong to living organisms. By systematically organizing the related data, we hope to explore avenues for symbiotic engineering of oligonucleotide therapeutics that will result in more effective and safer drugs.
Collapse
|
8
|
Dowdy SF, Setten RL, Cui XS, Jadhav SG. Delivery of RNA Therapeutics: The Great Endosomal Escape! Nucleic Acid Ther 2022; 32:361-368. [PMID: 35612432 PMCID: PMC9595607 DOI: 10.1089/nat.2022.0004] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022] Open
Abstract
RNA therapeutics, including siRNAs, antisense oligonucleotides, and other oligonucleotides, have great potential to selectively treat a multitude of human diseases, from cancer to COVID to Parkinson's disease. RNA therapeutic activity is mechanistically driven by Watson-Crick base pairing to the target gene RNA without the requirement of prior knowledge of the protein structure, function, or cellular location. However, before widespread use of RNA therapeutics becomes a reality, we must overcome a billion years of evolutionary defenses designed to keep invading RNAs from entering cells. Unlike small-molecule therapeutics that are designed to passively diffuse across the cell membrane, macromolecular RNA therapeutics are too large, too charged, and/or too hydrophilic to passively diffuse across the cellular membrane and are instead taken up into cells by endocytosis. However, similar to the cell membrane, endosomes comprise a lipid bilayer that entraps 99% or more of RNA therapeutics, even in semipermissive tissues such as the liver, central nervous system, and muscle. Consequently, before RNA therapeutics can achieve their ultimate clinical potential to treat widespread human disease, the rate-limiting delivery problem of endosomal escape must be solved in a clinically acceptable manner.
Collapse
Affiliation(s)
- Steven F. Dowdy
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Ryan L. Setten
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Xian-Shu Cui
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| | - Satish G. Jadhav
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
Qian H, Zhou T, Fu Y, Guo M, Yang W, Zhang D, Fang W, Yao M, Shi H, Chai C, Cheng W, Ding S, Chen T. Self-assembled tetrahedral framework nucleic acid mediates tumor-associated macrophage reprogramming and restores antitumor immunity. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:763-773. [PMID: 35116188 PMCID: PMC8783116 DOI: 10.1016/j.omtn.2021.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/31/2021] [Indexed: 12/20/2022]
Abstract
There is increasing interest in depleting or repolarizing tumor-associated macrophages (TAMs) to generate a proinflammatory effect. However, TAMs usually display an immunosuppressive M2-like phenotype in the tumor microenvironment. Apparently, developing a macrophage-targeting delivery system with immunomodulatory agents is urgent. In this study, an efficient siRNA and CpG ODNs delivery system (CpG-siRNA-tFNA) was prepared with nucleic acid stepwise self-assembled. The tFNA composed of CpG ODNs and siRNA showed a higher stability and an enhanced cellular uptake efficiency. Moreover, the CpG-siRNA-tFNA effectively reprogrammed TAMs toward M1 phenotype polarization with increased proinflammatory cytokine secretion and NF-κB signal pathway activation, which triggers dramatic antitumor immune responses. Additionally, the CpG-siRNA-tFNA exhibited superior antitumor efficacy in a breast cancer xenograft mouse model without obvious systemic side effects. Taken together, CpG-siRNA-tFNA displayed greatly antitumor effect by facilitating TAM polarization toward M1 phenotypes in favor of immunotherapy. Hence, we have developed an efficient therapeutic strategy with immunomodulatory agents for clinical applications.
Collapse
Affiliation(s)
- Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yixin Fu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Minkang Guo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
10
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
11
|
Deprey K, Batistatou N, Debets MF, Godfrey J, VanderWall KB, Miles RR, Shehaj L, Guo J, Andreucci A, Kandasamy P, Lu G, Shimizu M, Vargeese C, Kritzer JA. Quantitative Measurement of Cytosolic and Nuclear Penetration of Oligonucleotide Therapeutics. ACS Chem Biol 2022; 17:348-360. [PMID: 35034446 PMCID: PMC9252293 DOI: 10.1021/acschembio.1c00830] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A major obstacle in the development of effective oligonucleotide therapeutics is a lack of understanding about their cytosolic and nuclear penetration. To address this problem, we have applied the chloroalkane penetration assay (CAPA) to oligonucleotide therapeutics. CAPA was used to quantitate cytosolic delivery of antisense oligonucleotides (ASOs) and siRNAs and to explore the effects of a wide variety of commonly used chemical modifications and their patterning. We evaluated potential artifacts by exploring the effects of serum, comparing activity data and CAPA data, and assessing the impact of the chloroalkane tag and its linker chemistry. We also used viral transduction to expand CAPA to the nuclear compartment in epithelial and neuronal cell lines. Using this enhanced method, we measured a 48-h time course of nuclear penetration for a panel of chemically diverse modified RNAs. Moving forward, CAPA will be a useful tool for deconvoluting the complex processes of endosomal uptake, escape into the cytosol, and subcellular trafficking of oligonucleotide therapeutics in therapeutically relevant cell types.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Marjoke F. Debets
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Jack Godfrey
- Wave Life Sciences, Cambridge, Massachusetts 02138, United States
| | - Kirstin B. VanderWall
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Rebecca R. Miles
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Livia Shehaj
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jiaxing Guo
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Amy Andreucci
- Wave Life Sciences, Cambridge, Massachusetts 02138, United States
| | | | - Genliang Lu
- Wave Life Sciences, Cambridge, Massachusetts 02138, United States
| | - Mamoru Shimizu
- Wave Life Sciences, Cambridge, Massachusetts 02138, United States
| | - Chandra Vargeese
- Wave Life Sciences, Cambridge, Massachusetts 02138, United States
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States,corresponding author:
| |
Collapse
|
12
|
Salim H, Pei D. Assessing the Cellular Uptake, Endosomal Escape, and Cytosolic Entry Efficiencies of Cyclic Peptides. Methods Mol Biol 2022; 2371:301-316. [PMID: 34596855 DOI: 10.1007/978-1-0716-1689-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Intracellular biologics such as cyclic peptides are an emerging class of macromolecular drugs that are either intrinsically cell permeable or can be effectively delivered into the cell interior to modulate the activity of previously intractable drug targets. They generally enter the mammalian cell by endocytosis mechanisms and are initially localized inside the endosomes. They subsequently escape from the endosomes (and/or lysosomes) into the cytosol with varying efficiencies. In this chapter, we provide the detailed protocol for a flow cytometry-based assay method to quantitate the overall cellular uptake, endosomal escape, and cytosolic entry efficiencies of biomolecules (e.g., linear and cyclic peptides, proteins, and nucleic acids), by using cell-penetrating peptides as an example. The scope of applicability, strengths, and weaknesses of this assay are also discussed.
Collapse
Affiliation(s)
- Heba Salim
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Liang XH, Nichols JG, Tejera D, Crooke ST. Perinuclear positioning of endosomes can affect PS-ASO activities. Nucleic Acids Res 2021; 49:12970-12985. [PMID: 34878127 PMCID: PMC8682747 DOI: 10.1093/nar/gkab1198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphorothioate (PS) modified antisense oligonucleotide (ASO) drugs that act on cellular RNAs must enter cells and be released from endocytic organelles to elicit antisense activity. It has been shown that PS-ASOs are mainly released by late endosomes. However, it is unclear how endosome movement in cells contributes to PS-ASO activity. Here, we show that PS-ASOs in early endosomes display Brownian type motion and migrate only short distances, whereas PS-ASOs in late endosomes (LEs) move linearly along microtubules with substantial distances. In cells with normal microtubules and LE movement, PS-ASO-loaded LEs tend to congregate perinuclearly. Disruption of perinuclear positioning of LEs by reduction of dynein 1 decreased PS-ASO activity, without affecting PS-ASO cellular uptake. Similarly, disruption of perinuclear positioning of PS-ASO-LE foci by reduction of ER tethering proteins RNF26, SQSTM1 and UBE2J1, or by overexpression of P50 all decreased PS-ASO activity. However, enhancing perinuclear positioning through reduction of USP15 or over-expression of RNF26 modestly increased PS-ASO activity, indicating that LE perinuclear positioning is required for ensuring efficient PS-ASO release. Together, these observations suggest that LE movement along microtubules and perinuclear positioning affect PS-ASO productive release.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Joshua G Nichols
- Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Dario Tejera
- Neurology, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| |
Collapse
|
14
|
Edelmann MR, Husser C, Duschmalé MB, Fischer G, Senn C, Koller E, Brink A. Tritium labeling of antisense oligonucleotides via different conjugation agents. AAPS OPEN 2021. [DOI: 10.1186/s41120-021-00040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractA novel approach to tritium-labeled antisense oligonucleotides (ASO) was established by conjugating N-succinimidyl propionate, as well as maleimide-derivatives, to the 3′-end of ASOs targeting metastasis-associated lung adenocarcinoma transcript 1 (Malat1) containing amino- or sulfhydryl-linkers. In vitro stability and Malat1 RNA reduction studies demonstrated that N-ethylmaleimide (NEM) could be used as a stable tag while maintaining the desired target interaction. The corresponding radioactive label conjugation using [3H]-NEM resulted in tritium-labeled ASOs with a high molar specific activity of up to 17 Ci/mmol. Single-dose in vivo studies in mice were carried out to compare [3H]-ASOs with their unlabeled counterpart ASOs, with and without conjugation to N-acetylgalactosamine (GalNAc), for tissue and plasma concentrations time profiles. Despite the structural modification of the labeled ASOs, in vitro target interaction and in vivo pharmacokinetic behaviors were similar to that of the unlabeled ASOs. In conclusion, this new method provides a powerful technique for fast and safe access to tritium-labeled oligonucleotides, e.g., for pharmacokinetic, mass balance, or autoradiography studies.
Graphical abstract
Collapse
|
15
|
Michel S, Klar R, Jaschinski F. Investigation of the Activity of Antisense Oligonucleotides Targeting Multiple Genes by RNA-Sequencing. Nucleic Acid Ther 2021; 31:427-435. [PMID: 34251864 DOI: 10.1089/nat.2020.0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Locked nucleic acid-modified antisense oligonucleotides (ASOs) can achieve strongly different degrees of target knockdown despite having similar biophysical properties and 100% homology with their target. The determinants for this observation remain largely unknown. We used multi-specific ASOs that have 100% sequence complementarity with a common target (IDO1) and a different number of diverse targets and investigated their effect on gene expression in a cell line by RNA-sequencing. We observed a significant higher chance for downregulation of long genes compared to short genes, of genes with high compared to lower expression, and of genes that have more than one binding site for the respective ASO. By investigating the expression of genes that have binding sites for more than one ASO we identified the individual binding site being an important determinant for activity. Under the selected experimental conditions we have not seen indications that availability of RNase H is a limiting factor as the number of degraded target RNA molecules correlated significantly with the number of predicted target RNA molecules. Taken together, by using multi-specific ASOs as tool compounds we identified determinants for ASO activity that can be taken into consideration to improve the selection process of highly potent and selective ASOs in the future.
Collapse
Affiliation(s)
- Sven Michel
- ISecarna Pharmaceuticals, GmbH & Co. KG, Planegg, Germany
| | - Richard Klar
- ISecarna Pharmaceuticals, GmbH & Co. KG, Planegg, Germany
| | | |
Collapse
|
16
|
Liang XH, Nichols JG, De Hoyos CL, Sun H, Zhang L, Crooke ST. Golgi-58K can re-localize to late endosomes upon cellular uptake of PS-ASOs and facilitates endosomal release of ASOs. Nucleic Acids Res 2021; 49:8277-8293. [PMID: 34244781 PMCID: PMC8373082 DOI: 10.1093/nar/gkab599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphorothioate (PS) modified antisense oligonucleotide (ASO) drugs can trigger RNase H1 cleavage of cellular target RNAs to modulate gene expression. Internalized PS-ASOs must be released from membraned endosomal organelles, a rate limiting step that is not well understood. Recently we found that M6PR transport between Golgi and late endosomes facilitates productive release of PS-ASOs, raising the possibility that Golgi-mediated transport may play important roles in PS-ASO activity. Here we further evaluated the involvement of Golgi in PS-ASO activity by examining additional Golgi proteins. Reduction of certain Golgi proteins, including Golgi-58K, GCC1 and TGN46, decreased PS-ASO activity, without substantial effects on Golgi integrity. Upon PS-ASO cellular uptake, Golgi-58K was recruited to late endosomes where it colocalized with PS-ASOs. Reduction of Golgi-58K caused slower PS-ASO release from late endosomes, decreased GCC2 late endosome relocalization, and led to slower retrograde transport of M6PR from late endosomes to trans-Golgi. Late endosome relocalization of Golgi-58K requires Hsc70, and is most likely mediated by PS-ASO-protein interactions. Together, these results suggest a novel function of Golgi-58K in mediating Golgi-endosome transport and indicate that the Golgi apparatus plays an important role in endosomal release of PS-ASO, ensuring antisense activity.
Collapse
Affiliation(s)
| | | | | | - Hong Sun
- Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Lingdi Zhang
- Core Antisense Research, Carlsbad, CA 92010, USA
| | | |
Collapse
|
17
|
Nilsson JR, Baladi T, Gallud A, Baždarević D, Lemurell M, Esbjörner EK, Wilhelmsson LM, Dahlén A. Fluorescent base analogues in gapmers enable stealth labeling of antisense oligonucleotide therapeutics. Sci Rep 2021; 11:11365. [PMID: 34059711 PMCID: PMC8166847 DOI: 10.1038/s41598-021-90629-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 01/28/2023] Open
Abstract
To expand the antisense oligonucleotide (ASO) fluorescence labeling toolbox beyond covalent conjugation of external dyes (e.g. ATTO-, Alexa Fluor-, or cyanine dyes), we herein explore fluorescent base analogues (FBAs) as a novel approach to endow fluorescent properties to ASOs. Both cytosine and adenine analogues (tC, tCO, 2CNqA, and pA) were incorporated into a 16mer ASO sequence with a 3-10-3 cEt-DNA-cEt (cEt = constrained ethyl) gapmer design. In addition to a comprehensive photophysical characterization, we assess the label-induced effects on the gapmers' RNA affinities, RNA-hybridized secondary structures, and knockdown efficiencies. Importantly, we find practically no perturbing effects for gapmers with single FBA incorporations in the biologically critical gap region and, except for pA, the FBAs do not affect the knockdown efficiencies. Incorporating two cytosine FBAs in the gap is equally well tolerated, while two adenine analogues give rise to slightly reduced knockdown efficiencies and what could be perturbed secondary structures. We furthermore show that the FBAs can be used to visualize gapmers inside live cells using fluorescence microscopy and flow cytometry, enabling comparative assessment of their uptake. This altogether shows that FBAs are functional ASO probes that provide a minimally perturbing in-sequence labeling option for this highly relevant drug modality.
Collapse
Affiliation(s)
- Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Tom Baladi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Audrey Gallud
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.,Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Dženita Baždarević
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
18
|
Hansen HF, Albaek N, Hansen BR, Shim I, Bohr H, Koch T. In vivo uptake of antisense oligonucleotide drugs predicted by ab initio quantum mechanical calculations. Sci Rep 2021; 11:6321. [PMID: 33737567 PMCID: PMC7973520 DOI: 10.1038/s41598-021-85453-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
Liver and kidney uptake and antisense activity is studied for a series of Locked Nucleic Acid (LNA) oligonucleotides with fully stereo-defined, internucleoside linkages. These stereo-specific phosphorothioates are made with a newly developed synthesis method and are being analyzed both theoretically and experimentally. Their structures are obtained theoretically by using many-body Schrödinger equations applied to a group of 11 stereo-defined LNA antisense oligonucleotides selected for biological experiments. The fully converged electronic structures were obtained from ab initio quantum calculations providing the specific electronic structures. One important result was the observation that the calculated electronic structure, represented by the iso-surface area of the electron density in Å2, correlated linearly with LNA oligonucleotide uptake in the liver and kidney. This study also shows that more complex biological phenomena, such as drug activity, will require more molecular and cellular identifiers than used here before a correlation can be found. Establishing biological correlations between quantum mechanical (QM) calculated structures and antisense oligonucleotides is novel, and this method may constitute new tools in drug discovery.
Collapse
Affiliation(s)
| | - Nanna Albaek
- Roche Innovation Center Copenhagen, Fremtidsvej 3, 2970, Hoersholm, Denmark
| | - Bo Rode Hansen
- Roche Innovation Center Copenhagen, Fremtidsvej 3, 2970, Hoersholm, Denmark
| | - Irene Shim
- Department of Chemistry, B-206-DTU, The Technical University of Denmark, 2800, Lyngby, Denmark
| | - Henrik Bohr
- Department of Chemical Engineering, B-229-DTU, The Technical University of Denmark, Lyngby, Denmark.
| | - Troels Koch
- Roche Innovation Center Copenhagen, Fremtidsvej 3, 2970, Hoersholm, Denmark
| |
Collapse
|
19
|
Liang XH, Nichols JG, Hsu CW, Crooke ST. Hsc70 Facilitates Mannose-6-Phosphate Receptor-Mediated Intracellular Trafficking and Enhances Endosomal Release of Phosphorothioate-Modified Antisense Oligonucleotides. Nucleic Acid Ther 2021; 31:284-297. [PMID: 33567234 DOI: 10.1089/nat.2020.0920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphorothioate-modified antisense oligonucleotide (PS-ASO) drugs are commonly used to modulate gene expression through RNase H1-mediated cleavage of target RNAs. Upon internalization through endocytic pathways into cells, PS-ASOs must be released from membraned endosomal organelles to act on target RNAs, a limiting step of PS-ASO activity. Here we report that Hsc70 protein mediates productive release of PS-ASOs from endosomes. Hsc70 protein was enriched in endosome fractions shortly after PS-ASO incubation with cells. Reduction of Hsc70 significantly decreased the activities of PS-ASOs in reducing target RNAs. PS-ASO uptake and transport from early endosomes to late endosomes (LEs) were not affected upon Hsc70 reduction; however, endosomal release of PS-ASOs was impaired. Reduction of Hsc70 led to more scattered mannose-6-phosphate receptor (M6PR) localization at LEs in the cytoplasm, in contrast to the perinuclear localization at trans-Golgi network (TGN) in control cells, suggesting that retrograde transport of M6PR from LEs to TGN was affected. Consistently, reduction of Hsc70 increased colocalization of M6PR and PS-ASOs at LEs, and also delayed M6PR antibody transport from LE to TGN. Together, these results suggest that Hsc70 protein is involved in M6PR vesicle escape from LEs and may thus enhance PS-ASO release from LEs.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Joshua G Nichols
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Chih-Wei Hsu
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| |
Collapse
|
20
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
21
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
22
|
Grossen P, Portmann M, Koller E, Duschmalé M, Minz T, Sewing S, Pandya NJ, van Geijtenbeek SK, Ducret A, Kusznir EA, Huber S, Berrera M, Lauer ME, Ringler P, Nordbo B, Jensen ML, Sladojevich F, Jagasia R, Alex R, Gamboni R, Keller M. Evaluation of bovine milk extracellular vesicles for the delivery of locked nucleic acid antisense oligonucleotides. Eur J Pharm Biopharm 2020; 158:198-210. [PMID: 33248268 DOI: 10.1016/j.ejpb.2020.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
The natural capacity of extracellular vesicles (EVs) to transport their payload to recipient cells has raised big interest to repurpose EVs as delivery vehicles for xenobiotics. In the present study, bovine milk-derived EVs (BMEVs) were investigated for their potential to shuttle locked nucleic acid-modified antisense oligonucleotides (LNA ASOs) into the systemic circulation after oral administration. To this end, a broad array of analytical methods including proteomics and lipidomics were used to thoroughly characterize BMEVs. We found that additional purification by density gradients efficiently reduced levels of non-EV associated proteins. The potential of BMEVs to functionally transfer LNA ASOs was tested using advanced in vitro systems (i.e. hPSC-derived neurons and primary human cells). A slight increase in cellular LNA ASO internalization and target gene reduction was observed when LNA ASOs were delivered using BMEVs. When dosed orally in mice, only a small fraction (about 1% of total administered dose) of LNA ASOs was recovered in the peripheral tissues liver and kidney, however, no significant reduction in target gene expression (i.e. functional knockdown) was observed.
Collapse
Affiliation(s)
- Philip Grossen
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michaela Portmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Erich Koller
- Roche Pharma Research and Early Development, DMPK, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Martina Duschmalé
- Roche Pharma Research and Early Development, iSafe, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tanja Minz
- Roche Pharma Research and Early Development, iSafe, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabine Sewing
- Roche Pharma Research and Early Development, iSafe, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Nikhil Janak Pandya
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland; Roche Pharma Research and Early Development, Neurology and Rare Diseases Disease Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabine Kux van Geijtenbeek
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Eric-André Kusznir
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Marco Berrera
- Roche Pharma Research and Early Development, Biomics and Pathology, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Matthias E Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), University of Basel, Basel, Switzerland
| | - Bettina Nordbo
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd, Fremtidsvej3, 2970 Hoersholm, Denmark
| | - Marianne Lerbech Jensen
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd, Fremtidsvej3, 2970 Hoersholm, Denmark
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neurology and Rare Diseases Disease Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rainer Alex
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Remo Gamboni
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael Keller
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| |
Collapse
|
23
|
Deprey K, Batistatou N, Kritzer JA. A critical analysis of methods used to investigate the cellular uptake and subcellular localization of RNA therapeutics. Nucleic Acids Res 2020; 48:7623-7639. [PMID: 32644123 PMCID: PMC7430645 DOI: 10.1093/nar/gkaa576] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022] Open
Abstract
RNA therapeutics are a promising strategy to treat genetic diseases caused by the overexpression or aberrant splicing of a specific protein. The field has seen major strides in the clinical efficacy of this class of molecules, largely due to chemical modifications and delivery strategies that improve nuclease resistance and enhance cell penetration. However, a major obstacle in the development of RNA therapeutics continues to be the imprecise, difficult, and often problematic nature of most methods used to measure cell penetration. Here, we review these methods and clearly distinguish between those that measure total cellular uptake of RNA therapeutics, which includes both productive and non-productive uptake, and those that measure cytosolic/nuclear penetration, which represents only productive uptake. We critically analyze the benefits and drawbacks of each method. Finally, we use key examples to illustrate how, despite rigorous experimentation and proper controls, our understanding of the mechanism of gymnotic uptake of RNA therapeutics remains limited by the methods commonly used to analyze RNA delivery.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, MA 02155, USA
| |
Collapse
|
24
|
Ly S, Echeverria D, Sousa J, Khvorova A. Single-Stranded Phosphorothioated Regions Enhance Cellular Uptake of Cholesterol-Conjugated siRNA but Not Silencing Efficacy. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:991-1005. [PMID: 32818923 PMCID: PMC7452107 DOI: 10.1016/j.omtn.2020.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Small interfering RNAs (siRNAs) have potential to silence virtually any disease-causing gene but require chemical modifications for delivery to the tissue and cell of interest. Previously, we demonstrated that asymmetric, phosphorothioate (PS)-modified, chemically stabilized, cholesterol-conjugated siRNAs, called hsiRNAs, support rapid cellular uptake and efficient mRNA silencing both in cultured cells and in vivo. Here, we systematically evaluated the impact of number, structure, and sequence context of PS-modified backbones on cellular uptake and RNAi-mediated silencing efficacy. We find that PS enhances cellular internalization in a sequence-dependent manner but only when present in a single-stranded but not double-stranded region. Furthermore, the observed increase in cellular internalization did not correlate with functional silencing improvement, indicating that PS-mediated uptake may drive compounds to non-productive sinks. Thus, the primary contributing factor of PS modifications to functional efficacy is likely stabilization rather than enhanced cellular uptake. A better understanding of the relative impact of different chemistries on productive versus non-productive uptake will assist in improved design of therapeutic RNAs.
Collapse
Affiliation(s)
- Socheata Ly
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
25
|
Liang XH, Sun H, Hsu CW, Nichols JG, Vickers TA, De Hoyos CL, Crooke ST. Golgi-endosome transport mediated by M6PR facilitates release of antisense oligonucleotides from endosomes. Nucleic Acids Res 2020; 48:1372-1391. [PMID: 31840180 PMCID: PMC7026651 DOI: 10.1093/nar/gkz1171] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Release of phosphorothioate antisense oligonucleotides (PS-ASOs) from late endosomes (LEs) is a rate-limiting step and a poorly defined process for productive intracellular ASO drug delivery. Here, we examined the role of Golgi-endosome transport, specifically M6PR shuttling mediated by GCC2, in PS-ASO trafficking and activity. We found that reduction in cellular levels of GCC2 or M6PR impaired PS-ASO release from endosomes and decreased PS-ASO activity in human cells. GCC2 relocated to LEs upon PS-ASO treatment, and M6PR also co-localized with PS-ASOs in LEs or on LE membranes. These proteins act through the same pathway to influence PS-ASO activity, with GCC2 action preceding that of M6PR. Our data indicate that M6PR binds PS-ASOs and facilitates their vesicular escape. The co-localization of M6PR and of GCC2 with ASOs is influenced by the PS modifications, which have been shown to enhance the affinity of ASOs for proteins, suggesting that localization of these proteins to LEs is mediated by ASO-protein interactions. Reduction of M6PR levels also decreased PS-ASO activity in mouse cells and in livers of mice treated subcutaneously with PS-ASO, indicating a conserved mechanism. Together, these results demonstrate that the transport machinery between LE and Golgi facilitates PS-ASO release.
Collapse
Affiliation(s)
- Xue-Hai Liang
- Core Antisense Research, Ionis Pharmaceuticals, Inc. Carlsbad, CA 92104, USA
| | - Hong Sun
- Core Antisense Research, Ionis Pharmaceuticals, Inc. Carlsbad, CA 92104, USA
| | - Chih-Wei Hsu
- Core Antisense Research, Ionis Pharmaceuticals, Inc. Carlsbad, CA 92104, USA
| | - Joshua G Nichols
- Core Antisense Research, Ionis Pharmaceuticals, Inc. Carlsbad, CA 92104, USA
| | - Timothy A Vickers
- Core Antisense Research, Ionis Pharmaceuticals, Inc. Carlsbad, CA 92104, USA
| | - Cheryl L De Hoyos
- Core Antisense Research, Ionis Pharmaceuticals, Inc. Carlsbad, CA 92104, USA
| | - Stanley T Crooke
- Core Antisense Research, Ionis Pharmaceuticals, Inc. Carlsbad, CA 92104, USA
| |
Collapse
|
26
|
Pendergraff H, Schmidt S, Vikeså J, Weile C, Øverup C, W. Lindholm M, Koch T. Nuclear and Cytoplasmatic Quantification of Unconjugated, Label-Free Locked Nucleic Acid Oligonucleotides. Nucleic Acid Ther 2020; 30:4-13. [PMID: 31618108 PMCID: PMC6987631 DOI: 10.1089/nat.2019.0810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Methods for the quantification of antisense oligonucleotides (AONs) provide insightful information on biodistribution and intracellular trafficking. However, the established methods have not provided information on the absolute number of molecules in subcellular compartments or about how many AONs are needed for target gene reduction for unconjugated AONs. We have developed a new method for nuclear AON quantification that enables us to determine the absolute number of AONs per nucleus without relying on AON conjugates such as fluorophores that may alter AON distribution. This study describes an alternative and label-free method using subcellular fractionation, nucleus counting, and locked nucleic acid (LNA) sandwich enzyme-linked immunosorbent assay to quantify absolute numbers of oligonucleotides in nuclei. Our findings show compound variability (diversity) by which 247,000-693,000 LNAs/nuclei results in similar target reduction for different compounds. This method can be applied to any antisense drug discovery platform providing information on specific and clinically relevant AONs. Finally, this method can directly compare nuclear entry of AON with target gene knockdown for any compound design and nucleobase sequence, gene target, and phosphorothioate stereochemistry.
Collapse
Affiliation(s)
- Hannah Pendergraff
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Steffen Schmidt
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Jonas Vikeså
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Christian Weile
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Charlotte Øverup
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marie W. Lindholm
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Troels Koch
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| |
Collapse
|
27
|
Directed RNase H Cleavage of Nascent Transcripts Causes Transcription Termination. Mol Cell 2020; 77:1032-1043.e4. [PMID: 31924447 DOI: 10.1016/j.molcel.2019.12.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
An attractive approach to reduce gene expression is via the use of antisense oligonucleotides (ASOs) that harness the RNase H1 mechanism. Here we show that RNase H ASOs targeted to introns or exons robustly reduce the level of spliced RNA associated with chromatin. Surprisingly, intron-targeted ASOs reduce the level of pre-mRNA associated with chromatin to a greater extent than exon-targeted ASOs. This indicates that exon-targeted ASOs achieve full activity after the pre-mRNA has undergone splicing, but before the mRNA is released from chromatin. Even though RNase H ASOs can reduce the level of RNA associated with chromatin, the effect of ASO-directed RNA degradation on transcription has never been documented. Here we show that intron-targeted ASOs and, to a lesser extent, exon-targeted ASOs cause RNA polymerase II (Pol II) transcription termination in cultured cells and mice. Furthermore, ASO-directed transcription termination is mediated by the nuclear exonuclease XRN2.
Collapse
|
28
|
Weidle UH, Schmid D, Birzele F, Brinkmann U. MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma: Target Candidates, Functionality and Efficacy in Animal Models and Prognostic Relevance. Cancer Genomics Proteomics 2020; 17:1-21. [PMID: 31882547 PMCID: PMC6937123 DOI: 10.21873/cgp.20163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is responsible for the second-leading cancer-related death toll worldwide. Although sorafenib and levantinib as frontline therapy and regorafenib, cabazantinib and ramicurimab have now been approved for second-line therapy, the therapeutic benefit is in the range of only a few months with respect to prolongation of survival. Aggressiveness of HCC is mediated by metastasis. Intrahepatic metastases and distant metastasis to the lungs, lymph nodes, bones, omentum, adrenal gland and brain have been observed. Therefore, the identification of metastasis-related new targets and treatment modalities is of paramount importance. In this review, we focus on metastasis-related microRNAs (miRs) as therapeutic targets for HCC. We describe miRs which mediate or repress HCC metastasis in mouse xenograft models. We discuss 18 metastasis-promoting miRs and 35 metastasis-inhibiting miRs according to the criteria as outlined. Six of the metastasis-promoting miRs (miR-29a, -219-5p, -331-3p, 425-5p, -487a and -1247-3p) are associated with unfavourable clinical prognosis. Another set of six down-regulated miRs (miR-101, -129-3p, -137, -149, -503, and -630) correlate with a worse clinical prognosis. We discuss the corresponding metastasis-related targets as well as their potential as therapeutic modalities for treatment of HCC-related metastasis. A subset of up-regulated miRs -29a, -219-5p and -425-5p and down-regulated miRs -129-3p and -630 were evaluated in orthotopic metastasis-related models which are suitable to mimic HCC-related metastasis. Those miRNAs may represent prioritized targets emerging from our survey.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Daniela Schmid
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Pharmaceutical Sciences, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
29
|
Pérez MG, Spiliotis M, Rego N, Macchiaroli N, Kamenetzky L, Holroyd N, Cucher MA, Brehm K, Rosenzvit MC. Deciphering the role of miR-71 in Echinococcus multilocularis early development in vitro. PLoS Negl Trop Dis 2019; 13:e0007932. [PMID: 31881019 PMCID: PMC6957206 DOI: 10.1371/journal.pntd.0007932] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/13/2020] [Accepted: 11/17/2019] [Indexed: 01/25/2023] Open
Abstract
Echinococcosis represents a major public health problem worldwide and is considered a neglected disease by the World Health Organization. The etiological agents are Echinococcus tapeworms, which display elaborate developmental traits that imply a complex control of gene expression. MicroRNAs (miRNAs), a class of small regulatory RNAs, are involved in the regulation of many biological processes such as development and metabolism. They act through the repression of messenger RNAs (mRNAs) usually by binding to the 3’ untranslated region (3’UTR). Previously, we described the miRNome of several Echinococcus species and found that miRNAs are highly expressed in all life cycle stages, suggesting an important role in gene expression regulation. However, studying the role of miRNAs in helminth biology remains a challenge. To develop methodology for functional analysis of miRNAs in tapeworms, we performed miRNA knockdown experiments in primary cell cultures of Echinococcus multilocularis, which mimic the development of metacestode vesicles from parasite stem cells in vitro. First, we analysed the miRNA repertoire of E. multilocularis primary cells by small RNA-seq and found that miR-71, a bilaterian miRNA absent in vertebrate hosts, is one of the top five most expressed miRNAs. Using genomic information and bioinformatic algorithms for miRNA binding prediction, we found a high number of potential miR-71 targets in E. multilocularis. Inhibition of miRNAs can be achieved by transfection of antisense oligonucleotides (anti-miRs) that block miRNA function. To this end, we evaluated a variety of chemically modified anti-miRs for miR-71 knockdown. Electroporation of primary cells with 2’-O-methyl modified anti-miR-71 led to significantly reduced miR-71 levels. Transcriptomic analyses showed that several predicted miR-71 targets were up-regulated in anti-miR-treated primary cells, including genes potentially involved in parasite development, host parasite interaction, and several genes of as yet unknown function. Notably, miR-71-silenced primary cell cultures showed a strikingly different phenotype from control cells and did not develop into fully mature metacestodes. These findings indicate an important function of miR-71 in Echinococcus development and provide, for the first time, methodology to functionally study miRNAs in a tapeworm. Echinococcosis, caused by the larval stages of tapeworms of the genus Echinococcus, is a neglected disease that affects millions of people world-wide. These parasites show elaborate developmental features that rely on a complex control of gene expression. microRNAs are small molecules which have been discovered in the last decades and control gene expression in animals, plants and viruses. microRNAs are highly expressed in several tapeworms but their biological function in these parasites is unknown. Assuming that microRNAs will be important for parasite development, we analysed the function of these molecules in Echinococcus multilocularis, employing an in vitro model that mimics the first developmental transitions which occur in the human host. By artificially decreasing the concentration of the highest expressed microRNA, we observed phenotypic alterations and inhibition of development. In addition, we identified possible mRNA molecules targeted by microRNAs and found that some of these are known for being involved in developmental processes in other organisms. This work provides novel methodology to study microRNA function in tapeworms. Furthermore, highly expressed parasite microRNAs that are absent in the host but fulfil an important role in parasite developmental processes can serve as selective drug targets against the underlying diseases.
Collapse
Affiliation(s)
- Matías Gastón Pérez
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Markus Spiliotis
- University of Würzburg, Institute for Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
| | - Natalia Rego
- Institut Pasteur de Montevideo, Unidad de Bioinformática, Montevideo, Uruguay
| | - Natalia Macchiaroli
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Laura Kamenetzky
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Marcela Alejandra Cucher
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | - Klaus Brehm
- University of Würzburg, Institute for Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
- * E-mail: (KB); (MCR)
| | - Mara Cecilia Rosenzvit
- Laboratorio Biología Molecular de Hidatidosis, Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
- * E-mail: (KB); (MCR)
| |
Collapse
|
30
|
van der Bent ML, Paulino da Silva Filho O, Willemse M, Hällbrink M, Wansink DG, Brock R. The nuclear concentration required for antisense oligonucleotide activity in myotonic dystrophy cells. FASEB J 2019; 33:11314-11325. [PMID: 31311315 DOI: 10.1096/fj.201900263r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antisense oligonucleotides (ASOs) are a promising class of therapeutics that are starting to emerge in the clinic. Determination of intracellular concentrations required for biologic effects and identification of effective delivery vehicles are crucial for understanding the mode of action and required dosing. Here, we investigated which nuclear oligonucleotide concentration is needed for a therapeutic effect for a triplet repeat-targeting ASO in a muscle cell model of myotonic dystrophy type 1 (DM1). For cellular delivery, ASOs were complexed into nanoparticles using the cationic cell-penetrating peptides nona-arginine and PepFect14 (PF14). Although both peptides facilitated uptake, only PF14 led to a dose-dependent correction of disease-typical abnormal splicing. In line with this observation, time-lapse confocal microscopy demonstrated that only PF14 mediated translocation of the ASOs to the nucleus, which is the main site of action. Through fluorescence lifetime imaging, we could distinguish intact oligonucleotide from free fluorophore, showing that PF14 also shielded the ASOs from degradation. Finally, we employed a combination of live-cell fluorescence correlation spectroscopy and immunofluorescence microscopy and demonstrated that intranuclear blocking-type oligonucleotide concentrations in the upper nanomolar range were required to dissolve nuclear muscleblind-like protein 1 foci, a hallmark of DM1. Our findings have important implications for the clinical use of ASOs in DM1 and provide a basis for further research on other types of ASOs.-Van der Bent, M. L., Paulino da Silva Filho, O., Willemse, M., Hällbrink, M., Wansink, D. G., Brock, R. The nuclear concentration required for antisense oligonucleotide activity in myotonic dystrophy cells.
Collapse
Affiliation(s)
- M Leontien van der Bent
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands.,Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Foundation, Ministry of Education of Brazil, Brasilia, Brazil
| | - Marieke Willemse
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mattias Hällbrink
- Department of Neurochemistry, Stockholm University, Stockholm, Sweden
| | - Derick G Wansink
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Killian T, Buntz A, Herlet T, Seul H, Mundigl O, Längst G, Brinkmann U. Antibody-targeted chromatin enables effective intracellular delivery and functionality of CRISPR/Cas9 expression plasmids. Nucleic Acids Res 2019; 47:e55. [PMID: 30809660 PMCID: PMC6547418 DOI: 10.1093/nar/gkz137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/21/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023] Open
Abstract
We report a novel system for efficient and specific targeted delivery of large nucleic acids to and into cells. Plasmid DNA and core histones were assembled to chromatin by salt gradient dialysis and subsequently connected to bispecific antibody derivatives (bsAbs) via a nucleic acid binding peptide bridge. The resulting reconstituted vehicles termed 'plasmid-chromatin' deliver packaged nucleic acids to and into cells expressing antigens that are recognized by the bsAb, enabling intracellular functionality without detectable cytotoxicity. High efficiency of intracellular nucleic acid delivery is revealed by intracellular expression of plasmid encoded genes in most (∼90%) target cells to which the vehicles were applied under normal growth/medium conditions in nanomolar concentrations. Specific targeting, uptake and transgene expression depends on antibody-mediated cell surface binding: plasmid chromatin of identical composition but with non-targeting bsAbs or without bsAbs is ineffective. Examples that demonstrate applicability, specificity and efficacy of antibody-targeted plasmid chromatin include reporter gene constructs as well as plasmids that enable CRISPR/Cas9 mediated genome editing of target cells.
Collapse
Affiliation(s)
- Tobias Killian
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Annette Buntz
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Teresa Herlet
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Heike Seul
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| | - Gernot Längst
- Biochemistry III; Biochemistry Centre Regensburg (BCR), University of Regensburg, Regensburg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Therapeutic Modalities - Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, D-82377 Penzberg, Germany
| |
Collapse
|
32
|
Wang S, Allen N, Prakash TP, Liang XH, Crooke ST. Lipid Conjugates Enhance Endosomal Release of Antisense Oligonucleotides Into Cells. Nucleic Acid Ther 2019; 29:245-255. [PMID: 31158063 DOI: 10.1089/nat.2019.0794] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides modified with phosphorothioate linkages (PS-ASOs) can enter cells via endocytic pathways and must escape from membraned organelles to reach target RNAs. We recently found that membrane destabilization induced by different lipid species contributes to PS-ASO release from late endosomes (LEs). In this study, we characterized intracellular uptake, trafficking, and activities of PS-ASOs conjugated with different lipid species. We found that palmitic acid-, tocopherol-, and cholesterol-conjugated PS-ASOs have increased protein binding and enhanced intracellular uptake compared to unconjugated PS-ASOs. Similar to the parental PS-ASO, the lipid-conjugated PS-ASOs traffic from early to LEs without incorporation into lipid droplets. Unlike parental PS-ASOs, the lipid-conjugated PS-ASOs tend to remain associated with plasma or endosomal membranes, and this appears to influence their release from endosomes. The lipid-conjugated PS-ASOs were released more rapidly than parental PS-ASO. These results suggest that lipid conjugation enhances the interactions of PS-ASOs with proteins or membranes, in turn facilitating intracellular trafficking and endosomal release.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Nickolas Allen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Thazha P Prakash
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California
| |
Collapse
|
33
|
Zhou H, Zhang S, Lv F, Sun W, Wang L, Fan C, Li J, Hu J. Citrate-assisted efficient local delivery of naked oligonucleotide into live mouse brain cells. Cell Prolif 2019; 52:e12622. [PMID: 31062905 PMCID: PMC6668962 DOI: 10.1111/cpr.12622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Objectives Synthetic oligonucleotides have shown promise in brain imaging. However, delivery of oligonucleotides into live brain cells remains challenging. In this study, we aim to develop a facile yet efficient strategy for local delivery of oligodeoxynucleotide (ODN) to neural cells in live adult mouse brain. Materials and methods A fluorescence‐labelled ODN was diluted with sodium citrate buffer (100 mmol/L, pH = 3). One microlitre of the mixture was injected into a live adult mouse brain. Six hours later, we sacrificed the mouse and prepared brain slices for microscopic imaging. Results We find that the use of sodium citrate buffer in the one‐shot local delivery can improve the diffusion and cell entry efficiency of the unmodified ODN for dozens of times. Only 1 pmol ODN leads to hundreds of positively transferred brain cells. We reason that this promotion is due to the local acidic condition created by the citrate buffer, which leads to the protonation of the ODN and some membrane proteins, thus reduces the Coulomb repulsion between the ODN and the cell membrane. Based on this strategy, we demonstrate fluorescent microscopic imaging of brain cells in different brain regions including striatum, cortex, hippocampus and midbrain. Conclusions The citrate buffer can be used as an adjuvant for facile and effective local injection delivery of ODNs, which may provide a new tool for brain imaging.
Collapse
Affiliation(s)
- Haibin Zhou
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shouhua Zhang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Fei Lv
- University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,iHuman Institute, ShanghaiTech University, Shanghai, China.,Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wenzhi Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,iHuman Institute, ShanghaiTech University, Shanghai, China.,Chinese Institute for Brain Research, Beijing, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Chunhai Fan
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|