1
|
Wang N, Song W, Ji J, Guo W, Du Q. Metal-organic framework nanomaterials alter cellular metabolism in bladder cancer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118292. [PMID: 40367611 DOI: 10.1016/j.ecoenv.2025.118292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/26/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
While nanomaterial-mediated metabolic reprogramming emerges as a promising anticancer strategy, the precise mechanisms remain elusive due to limited metabolomics investigations. The objective of this study is to design an aluminum (Al) based metal organic frameworks (Al-MOF) and investigate its cytotoxic effects on bladder cancer cells (T24), and elucidate the specific molecular mechanisms. Comprehensive characterization (scanning electron microscopy, particle size and potential analysis, infrared spectroscopy, powder X-ray diffraction, and N2 desorption/desorption experiment) confirmed the successful preparation of Al-MOF. Subsequently, in vitro assays demonstrated the selective cytotoxicity of Al-MOF, showing an inhibitory effect on the proliferation of T24 compared to human immortalized urothelial cells. At the same time, when the concentration of Al-MOF exceeded 100 μg/mL, it exhibited significant migration inhibition on T24. Then, the effect of Al-MOF on T24 metabolites was investigated using ultra-high performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry. After 24 h of incubation, we identified 38 key differential metabolites from expression patterns and metabolic pathways, predominantly in fatty acid synthesis. Research has found that Al-MOF reduced fatty acid biosynthesis by inhibiting FASN expression, thereby inhibiting the progression of T24. This work provides evidence of MOF-mediated intervention in cancer cell metabolism, offering valuable insights for the design of novel multifunctional nanotherapies.
Collapse
Affiliation(s)
- Ning Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China; Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinyu Ji
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wenjun Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Awoyomi OF, Gorospe CM, Das B, Mishra P, Sharma S, Diachenko O, Nilsson AK, Tran P, Wanrooij PH, Chabes A. RRM2B deficiency causes dATP and dGTP depletion through enhanced degradation and slower synthesis. Proc Natl Acad Sci U S A 2025; 122:e2503531122. [PMID: 40244665 PMCID: PMC12037051 DOI: 10.1073/pnas.2503531122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Mitochondrial DNA (mtDNA) replication requires a steady supply of deoxyribonucleotides (dNTPs), synthesized de novo by ribonucleotide reductase (RNR). In nondividing cells, RNR consists of RRM1 and RRM2B subunits. Mutations in RRM2B cause mtDNA depletion syndrome, linked to muscle weakness, neurological decline, and early mortality. The impact of RRM2B deficiency on dNTP pools in nondividing tissues remains unclear. Using a mouse knockout model, we demonstrate that RRM2B deficiency selectively depletes dATP and dGTP, while dCTP and dTTP levels remain stable or increase. This depletion pattern resembles the effects of hydroxyurea, an inhibitor that reduces overall RNR activity. Mechanistically, we propose that the depletion of dATP and dGTP arises from their preferred degradation by the dNTPase SAMHD1 and the lower production rate of dATP by RNR. Identifying dATP and dGTP depletion as a hallmark of RRM2B deficiency provides insights for developing nucleoside bypass therapies to alleviate the effects of RRM2B mutations.
Collapse
Affiliation(s)
| | - Choco Michael Gorospe
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| | - Biswajit Das
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| | - Pradeep Mishra
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| | - Olena Diachenko
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| | - Paulina H. Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, UmeåSE 90187, Sweden
| |
Collapse
|
3
|
Guo Y. Separation of nucleobases, nucleosides, nucleotides and oligonucleotides by hydrophilic interaction liquid chromatography (HILIC): A state-of-the-art review. J Chromatogr A 2024; 1738:465467. [PMID: 39486254 DOI: 10.1016/j.chroma.2024.465467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The polar nature of nucleobases, nucleosides and nucleotides makes hydrophilic interaction chromatography (HILIC) a good choice of technology for separation. Both naturally occurring and modified nucleosides and nucleotides have been successfully separated in HILIC. A wide range of stationary phases with different retention and selectivity are suitable for the separation of nucleobases, nucleosides and nucleotides; and a sufficient knowledge base is also available to guide method development. Although oligonucleotides are significantly different from nucleotides in terms of polarity and charges, HILIC has been shown to be a viable alternative to ion-pairing reversed-phase liquid chromatography (IP-RPLC). Only a few polar stationary phases have been shown to provide satisfactory performance; however, the requirements for the mobile phase composition including organic solvent, mobile phase pH and salt concentration are sufficiently understood. This review provides a comprehensive evaluation of the chromatographic conditions with a historical perspective on adopting and developing HILIC for the separation of nucleobases, nucleosides, nucleotides and oligonucleotides. The areas for more research and potential directions for future development activities are identified and discussed.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmacy and Health Sciences, Fairleigh Dickinson University, 230 Park Ave. Florham Park, New Jersey 07932, USA.
| |
Collapse
|
4
|
Popović I, Dončević L, Biba R, Košpić K, Barbalić M, Marinković M, Cindrić M. Advancements in Adenine Nucleotides Extraction and Quantification from a Single Drop of Human Blood. Molecules 2024; 29:5630. [PMID: 39683788 DOI: 10.3390/molecules29235630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Adenine nucleotides (ANs)-adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP), and adenosine 5'-monophosphate (AMP)-are essential for energy transfer and the supply of countless processes within cellular metabolism. Their concentrations can be expressed as adenylate energy charge (AEC), a measure of cellular metabolic energy that directly correlates with the homeostasis of the organism. AEC index has broad diagnostic potential, as reduced ATP levels are associated to various conditions, such as inflammatory diseases, metabolic disorders, and cancer. We introduce a novel methodology for rapid isolation, purification, and quantification of ANs from a single drop of capillary blood. Of all the stationary phases tested, activated carbon proved to be the most efficient for the purification of adenine nucleotides, using an automated micro-solid phase extraction (µ-SPE) platform. An optimized µ-SPE method, coupled with RP-HPLC and a run time of 30 min, provides a reliable analytical framework for adenine nucleotide analysis of diverse biological samples. AN concentrations measured in capillary blood samples were 1393.1 µM, 254.8 µM, and 76.9 µM for ATP, ADP, and AMP molecules aligning with values reported in the literature. Overall, this study presents a streamlined and precise approach for analyzing ANs from microliters of blood, offering promising applications in clinical diagnostics.
Collapse
Affiliation(s)
- Ivana Popović
- Doctoral Study of Biophysics, Faculty of Science, University of Split, 21000 Split, Croatia
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Lucija Dončević
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Renata Biba
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Karla Košpić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Barbalić
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Mija Marinković
- Faculty of Science, University of Split, 21000 Split, Croatia
| | - Mario Cindrić
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Tran P, Mishra P, Williams L, Moskalenko R, Sharma S, Nilsson A, Watt D, Andersson P, Bergh A, Pursell Z, Chabes A. Altered dNTP pools accelerate tumor formation in mice. Nucleic Acids Res 2024; 52:12475-12486. [PMID: 39360631 PMCID: PMC11551754 DOI: 10.1093/nar/gkae843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Alterations in deoxyribonucleoside triphosphate (dNTP) pools have been linked to increased mutation rates and genome instability in unicellular organisms and cell cultures. However, the role of dNTP pool changes in tumor development in mammals remains unclear. In this study, we present a mouse model with a point mutation at the allosteric specificity site of ribonucleotide reductase, RRM1-Y285A. This mutation reduced ribonucleotide reductase activity, impairing the synthesis of deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP). Heterozygous Rrm1+/Y285A mice exhibited distinct alterations in dNTP pools across various organs, shorter lifespans and earlier tumor onset compared with wild-type controls. Mutational spectrum analysis of tumors revealed two distinct signatures, one resembling a signature extracted from a human cancer harboring a mutation of the same amino acid residue in ribonucleotide reductase, RRM1Y285C. Our findings suggest that mutations in enzymes involved in dNTP metabolism can serve as drivers of cancer development.
Collapse
Affiliation(s)
- Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| | - Pradeep Mishra
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| | - Leonard G Williams
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Roman Moskalenko
- Department of Pathology, Sumy State University, Kharkivska st. 116, Sumy 40007, Ukraine
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| | - Danielle L Watt
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
- School of Medicine and School of Dental Medicine, UConn Health, 300 UConn Health Blvd, Farmington, CT 06030, USA
| | - Pernilla Andersson
- Pathology Unit, Department of Medical Biosciences, Umeå University, Daniel Naezéns väg 6M, Umeå, SE 90737, Sweden
| | - Anders Bergh
- Pathology Unit, Department of Medical Biosciences, Umeå University, Daniel Naezéns väg 6M, Umeå, SE 90737, Sweden
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Linnaeus väg 6, Umeå, SE 90736, Sweden
| |
Collapse
|
6
|
Reynolds KE, Napier M, Fei F, Green K, Scott AL. Dysregulated Purinergic Signalling in Fragile X Syndrome Cortical Astrocytes. Neuromolecular Med 2024; 26:36. [PMID: 39254908 DOI: 10.1007/s12017-024-08802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The symptoms of fragile X syndrome (FXS), caused by a single gene mutation to Fmr1, have been increasingly linked to disordered astrocyte signalling within the cerebral cortex. We have recently demonstrated that the purinergic signalling pathway, which utilizes nucleoside triphosphates and their metabolites to facilitate bidirectional glial and glial-neuronal interactions, is upregulated in cortical astrocytes derived from the Fmr1 knockout (KO) mouse model of FXS. Heightened Fmr1 KO P2Y purinergic receptor levels were correlated with prolonged intracellular calcium release, elevated synaptogenic protein secretion, and hyperactivity of developing circuits. However, due to the relative lack of sensitive and reproducible quantification methods available for measuring purines and pyrimidines, determining the abundance of these factors in Fmr1 KO astrocytes was limited. We therefore developed a hydrophilic interaction liquid chromatography protocol coupled with mass spectrometry to compare the abundance of intracellular and extracellular purinergic molecules between wildtype and Fmr1 KO mouse astrocytes. Significant differences in the concentrations of UDP, ATP, AMP, and adenosine intracellular stores were found within Fmr1 KO astrocytes relative to WT. The extracellular level of adenosine was also significantly elevated in Fmr1 KO astrocyte-conditioned media in comparison to media collected from WT astrocytes. Glycosylation of the astrocyte membrane-bound CD39 ectonucleotidase, which facilitates ligand breakdown following synaptic release, was also elevated in Fmr1 KO astrocyte cultures. Together, these differences demonstrated further dysregulation of the purinergic signalling system within Fmr1 KO cortical astrocytes, potentially leading to significant alterations in FXS purinergic receptor activation and cellular pathology.
Collapse
Affiliation(s)
- Kathryn E Reynolds
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew Napier
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St., Guelph, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Fan Fei
- McMaster Regional Centre for Mass Spectrometry, McMaster University, Hamilton, ON, Canada
- Moderna Inc., Norwood, MA, USA
| | - Kirk Green
- McMaster Regional Centre for Mass Spectrometry, McMaster University, Hamilton, ON, Canada
| | - Angela L Scott
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon St., Guelph, ON, Canada.
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
7
|
Liu YM, Wang S, Dickenson A, Mao J, Bai X, Liao X. An on-line SPE-LC-MS/MS method for quantification of nucleobases and nucleosides present in biological fluids. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2505-2512. [PMID: 38584507 PMCID: PMC11151739 DOI: 10.1039/d4ay00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Solid phase extraction (SPE) and liquid chromatographic (LC) separation of nucleobases and nucleosides are challenging due to the high hydrophilicity of these compounds. Herein we report a novel on-line SPE-LC-MS/MS method for their quantification after pre-column derivatization with chloroacetaldehyde (CAA). The method proposed is selective and sensitive with limits of detection at the nano-molar level. Analysis of urine and saliva samples by using this method is demonstrated. Adenine, guanine, cytosine, adenosine, guanosine, and cytidine were found in the range from 0.19 (guanosine) to 1.83 μM (cytidine) in urine and from 0.015 (guanosine) to 0.79 μM (adenine) in saliva. Interestingly, methylation of cytidine was found to be significantly different in urine from that in saliva. While 5-hydroxymethylcytidine was detected at a very low level (<0.05 μM) in saliva, it was found to be the most prominent methylated cytidine in urine at a high level of 3.33 μM. Since on-line SPE is deployed, the proposed LC-MS/MS quantitative assay is convenient to carry out and offers good assay accuracy and repeatability.
Collapse
Affiliation(s)
- Yi-Ming Liu
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Shuguan Wang
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Amani Dickenson
- Department of Chemistry, Physics, and Atmospheric Science, Jackson State University, Jackson, MS 39217, USA.
| | - Jinghe Mao
- Department of Biology, Tougaloo College, Tougaloo, MS 39174, USA
| | - Xiaolin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
8
|
Purhonen J, Hofer A, Kallijärvi J. Quantification of all 12 canonical ribonucleotides by real-time fluorogenic in vitro transcription. Nucleic Acids Res 2024; 52:e6. [PMID: 38008466 PMCID: PMC10783517 DOI: 10.1093/nar/gkad1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023] Open
Abstract
Enzymatic methods to quantify deoxyribonucleoside triphosphates have existed for decades. In contrast, no general enzymatic method to quantify ribonucleoside triphosphates (rNTPs), which drive almost all cellular processes and serve as precursors of RNA, exists to date. ATP can be measured with an enzymatic luminometric method employing firefly luciferase, but the quantification of other ribonucleoside mono-, di-, and triphosphates is still a challenge for a non-specialized laboratory and practically impossible without chromatography equipment. To allow feasible quantification of ribonucleoside phosphates in any laboratory with typical molecular biology and biochemistry tools, we developed a robust microplate assay based on real-time detection of the Broccoli RNA aptamer during in vitro transcription. The assay employs the bacteriophage T7 and SP6 RNA polymerases, two oligonucleotide templates encoding the 49-nucleotide Broccoli aptamer, and a high-affinity fluorogenic aptamer-binding dye to quantify each of the four canonical rNTPs. The inclusion of nucleoside mono- and diphosphate kinases in the assay reactions enabled the quantification of the mono- and diphosphate counterparts. The assay is inherently specific and tolerates concentrated tissue and cell extracts. In summary, we describe the first chromatography-free method to quantify ATP, ADP, AMP, GTP, GDP, GMP, UTP, UDP, UMP, CTP, CDP and CMP in biological samples.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
9
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
10
|
Surányi ÉV, Perey-Simon V, Hirmondó R, Trombitás T, Kazzazy L, Varga M, Vértessy BG, Tóth J. Using Selective Enzymes to Measure Noncanonical DNA Building Blocks: dUTP, 5-Methyl-dCTP, and 5-Hydroxymethyl-dCTP. Biomolecules 2023; 13:1801. [PMID: 38136671 PMCID: PMC10742078 DOI: 10.3390/biom13121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cells maintain a fine-tuned balance of deoxyribonucleoside 5'-triphosphates (dNTPs), a crucial factor in preserving genomic integrity. Any alterations in the nucleotide pool's composition or chemical modifications to nucleotides before their incorporation into DNA can lead to increased mutation frequency and DNA damage. In addition to the chemical modification of canonical dNTPs, the cellular de novo dNTP metabolism pathways also produce noncanonical dNTPs. To keep their levels low and prevent them from incorporating into the DNA, these noncanonical dNTPs are removed from the dNTP pool by sanitizing enzymes. In this study, we introduce innovative protocols for the high-throughput fluorescence-based quantification of dUTP, 5-methyl-dCTP, and 5-hydroxymethyl-dCTP. To distinguish between noncanonical dNTPs and their canonical counterparts, specific enzymes capable of hydrolyzing either the canonical or noncanonical dNTP analogs are employed. This approach provides a more precise understanding of the composition and noncanonical constituents of dNTP pools, facilitating a deeper comprehension of DNA metabolism and repair. It is also crucial for accurately interpreting mutational patterns generated through the next-generation sequencing of biological samples.
Collapse
Affiliation(s)
- Éva Viola Surányi
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Viktória Perey-Simon
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
| | - Tamás Trombitás
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Latifa Kazzazy
- Department of Genetics, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary (M.V.)
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary (M.V.)
| | - Beáta G. Vértessy
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (V.P.-S.); (R.H.)
- Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| |
Collapse
|
11
|
Saez-Ayala M, Hoffer L, Abel S, Ben Yaala K, Sicard B, Andrieu GP, Latiri M, Davison EK, Ciufolini MA, Brémond P, Rebuffet E, Roche P, Derviaux C, Voisset E, Montersino C, Castellano R, Collette Y, Asnafi V, Betzi S, Dubreuil P, Combes S, Morelli X. From a drug repositioning to a structure-based drug design approach to tackle acute lymphoblastic leukemia. Nat Commun 2023; 14:3079. [PMID: 37248212 DOI: 10.1038/s41467-023-38668-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer cells utilize the main de novo pathway and the alternative salvage pathway for deoxyribonucleotide biosynthesis to achieve adequate nucleotide pools. Deoxycytidine kinase is the rate-limiting enzyme of the salvage pathway and it has recently emerged as a target for anti-proliferative therapies for cancers where it is essential. Here, we present the development of a potent inhibitor applying an iterative multidisciplinary approach, which relies on computational design coupled with experimental evaluations. This strategy allows an acceleration of the hit-to-lead process by gradually implementing key chemical modifications to increase affinity and activity. Our lead compound, OR0642, is more than 1000 times more potent than its initial parent compound, masitinib, previously identified from a drug repositioning approach. OR0642 in combination with a physiological inhibitor of the de novo pathway doubled the survival rate in a human T-cell acute lymphoblastic leukemia patient-derived xenograft mouse model, demonstrating the proof-of-concept of this drug design strategy.
Collapse
Affiliation(s)
- Magali Saez-Ayala
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France.
| | - Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
- Drug Discovery Program, Ontario Institute for Cancer Research (OICR), Toronto, ON, Canada
| | - Sébastien Abel
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Khaoula Ben Yaala
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Benoit Sicard
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Guillaume P Andrieu
- Institut Necker Enfants Malades (INEM), INSERM, Hôpital Necker Enfants-Malades, Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Mehdi Latiri
- Institut Necker Enfants Malades (INEM), INSERM, Hôpital Necker Enfants-Malades, Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Emma K Davison
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Marco A Ciufolini
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Paul Brémond
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Etienne Rebuffet
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Carine Derviaux
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Edwige Voisset
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Camille Montersino
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Remy Castellano
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Yves Collette
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Vahid Asnafi
- Institut Necker Enfants Malades (INEM), INSERM, Hôpital Necker Enfants-Malades, Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France
| | - Patrice Dubreuil
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France.
| | - Sébastien Combes
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France.
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, INSERM, Aix-Marseille Univ, Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
12
|
Hu M, Wen C, Liu J, Cai P, Meng N, Qin X, Xu P, Li Z, Lin XC. Mechanism of Cytotoxic Action of Gold Nanorods Photothermal Therapy for A549 Cell. ACS APPLIED BIO MATERIALS 2023; 6:1886-1895. [PMID: 37079717 DOI: 10.1021/acsabm.3c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Photothermal therapy has developed into an important field of tumor treatment research, and numerous studies have focused on the preparation of photothermal therapeutic agents, tumor targeting, diagnosis, and treatment integration. However, there are few studies on the mechanism of photothermal therapy acting on cancer cells. Here we investigated the metabolomics of lung cancer cell A549 during gold nanorod (GNR) photothermal treatment by high-resolution LC/MS, and several differential metabolites and corresponding metabolic pathways during photothermal therapy were found. The main differential metabolites contained 18-hydroxyoleate, beta-alanopine and cis-9,10-epoxystearic acid, and phosphorylcholine. Pathway analysis also showed metabolic changes involving cutin, suberine, and wax biosynthesis, pyruvate and glutamic acid synthesis, and choline metabolism. Analysis also showed that the photothermal process of GNRs may induce cytotoxicity by affecting pyruvate and glutamate synthesis, normal choline metabolism, and ultimately apoptosis.
Collapse
Affiliation(s)
- Miaomiao Hu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Changchun Wen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jian Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ping Cai
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Nianqi Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xue Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin 541004, China
| | - Peijing Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zhilang Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiang-Cheng Lin
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
13
|
Liu S, Lai Z, Zhang M, Tian H, Zhou J, Li Z. Facile synthesis of amino-functionalized magnetic materials for efficient enrichment of anionic metabolites from biological samples. Anal Chim Acta 2023; 1250:340977. [PMID: 36898822 DOI: 10.1016/j.aca.2023.340977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
The analysis of biological samples is often affected by the background matrix. Proper sample preparation is a critical step in the analytical procedure for complex samples. In this study, a simple and efficient enrichment strategy based on Amino-functionalized Polymer-Magnetic MicroParticles (NH2-PMMPs) with coral-like porous structures was developed to enable the detection of 320 anionic metabolites, providing detailed coverage of phosphorylation metabolism. Among them, 102 polar phosphate metabolites including nucleotides, cyclic nucleotides, sugar nucleotides, phosphate sugars, and phosphates, were enriched and identified from serum, tissues, and cells. Furthermore, the detection of 34 previously unknown polar phosphate metabolites in serum samples demonstrates the advantages of this efficient enrichment method for mass spectrometric analysis. The limit of detections (LODs) were between 0.02 and 4 nmol/L for most anionic metabolites and its high sensitivity enabled the detection of 36 polar anion metabolites from 10 cell equivalent samples. This study has provided a promising tool for the efficient enrichment and analysis of anionic metabolites in biological samples with high sensitivity and broad coverage, facilitating the knowledge of the phosphorylation processes of life.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Jiang Zhou
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Beijing, 100871, China.
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
14
|
Sharma S, Kong Z, Jia S, Tran P, Nilsson AK, Chabes A. Quantitative Analysis of Nucleoside Triphosphate Pools in Mouse Muscle Using Hydrophilic Interaction Liquid Chromatography Coupled with Tandem Mass Spectrometry Detection. Methods Mol Biol 2023; 2615:267-280. [PMID: 36807798 DOI: 10.1007/978-1-0716-2922-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Defects in deoxyribonucleoside triphosphate (dNTP) metabolism are associated with a number of mitochondrial DNA (mtDNA) depletion syndromes (MDS). These disorders affect the muscles, liver, and brain, and the concentrations of dNTPs in these tissues are already normally low and are, therefore, difficult to measure. Thus, information about the concentrations of dNTPs in tissues of healthy animals and animals with MDS are important for mechanistic studies of mtDNA replication, analysis of disease progression, and the development of therapeutic interventions. Here, we present a sensitive method for the simultaneous analysis of all four dNTPs as well as all four ribonucleoside triphosphates (NTPs) in mouse muscles using hydrophilic interaction liquid chromatography coupled with triple quadrupole mass spectrometry. The simultaneous detection of NTPs allows them to be used as internal standards for the normalization of dNTP concentrations. The method can be applied for measuring dNTP and NTP pools in other tissues and organisms.
Collapse
Affiliation(s)
- Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ziqing Kong
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Shaodong Jia
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| |
Collapse
|
15
|
Williams HM, Thorkelsson SR, Vogel D, Milewski M, Busch C, Cusack S, Grünewald K, Quemin EJ, Rosenthal M. Structural insights into viral genome replication by the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Res 2023; 51:1424-1442. [PMID: 36651274 PMCID: PMC9943659 DOI: 10.1093/nar/gkac1249] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a phenuivirus that has rapidly become endemic in several East Asian countries. The large (L) protein of SFTSV, which includes the RNA-dependent RNA polymerase (RdRp), is responsible for catalysing viral genome replication and transcription. Here, we present 5 cryo-electron microscopy (cryo-EM) structures of the L protein in several states of the genome replication process, from pre-initiation to late-stage elongation, at a resolution of up to 2.6 Å. We identify how the L protein binds the 5' viral RNA in a hook-like conformation and show how the distal 5' and 3' RNA ends form a duplex positioning the 3' RNA terminus in the RdRp active site ready for initiation. We also observe the L protein stalled in the early and late stages of elongation with the RdRp core accommodating a 10-bp product-template duplex. This duplex ultimately splits with the template binding to a designated 3' secondary binding site. The structural data and observations are complemented by in vitro biochemical and cell-based mini-replicon assays. Altogether, our data provide novel key insights into the mechanism of viral genome replication by the SFTSV L protein and will aid drug development against segmented negative-strand RNA viruses.
Collapse
Affiliation(s)
| | | | - Dominik Vogel
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Morlin Milewski
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Carola Busch
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | | | - Kay Grünewald
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany,University of Hamburg, Hamburg, Germany
| | - Emmanuelle R J Quemin
- Centre for Structural Systems Biology, Leibniz Institute of Virology, Hamburg, Germany
| | - Maria Rosenthal
- To whom correspondence should be addressed. Tel: +49 40 285380 930;
| |
Collapse
|
16
|
Liu S, Zhang M, Lai Z, Tian H, Qiu Y, Li Z. Coral-like Magnetic Particles for Chemoselective Extraction of Anionic Metabolites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32890-32900. [PMID: 35819264 DOI: 10.1021/acsami.2c06922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To date, advanced chemical biology tools for chemoselective extraction of metabolites are limited. In this study, unique coral-like polymer particles were synthesized via high concentrations of 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS), which are usually used as condensation agents. The polymers can wrap or adhere Fe3O4 nanoparticles (Fe3O4-NPs) to form polymer magnetic microparticles (PMMPs). With abundant NHS-activated moieties on their surface, the coral-like PMMPs could be modified by cystamine for the chemoselective extraction of phosphate/carboxylate anion metabolites from complex biological samples. Finally, 97 metabolites including nucleotides, phosphates, phosphate sugars, carboxylate sugars, and organic acids were extracted and identified from serum, tissues, and cells. These metabolites are involved in four major metabolic pathways including glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway, and nucleotide metabolism. This study has provided a cost-effective and easy-to-implement preparation of PMMPs with a robust chemoselective extraction ability and versatile applications.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Mo Zhang
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhizhen Lai
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Hongtao Tian
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Yuming Qiu
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, 5 Dongdan San Tiao, Beijing 100005, China
| |
Collapse
|
17
|
Metabolomic signature and mitochondrial dynamics outline the difference between vulnerability and resilience to chronic stress. Transl Psychiatry 2022; 12:87. [PMID: 35228511 PMCID: PMC8885712 DOI: 10.1038/s41398-022-01856-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Stress is the foremost environmental factor involved in the pathophysiology of major depressive disorder (MDD). However, individual differences among people are critical as some people exhibit vulnerability while other are resilient to repeated exposure to stress. Among the others, a recent theory postulates that alterations of energy metabolism might contribute to the development of psychopathologies. Here we show that the bioenergetic status in the ventral hippocampus (vHip), a brain subregion tightly involved in the regulation of MDD, defined the development of vulnerability or resilience following two weeks of chronic mild stress. Among the different metabolomic signatures observed, the glycolysis and tricarboxylic acid cycle may be specifically involved in defining vulnerability, revealing a previously unappreciated mechanism of sensitivity to stress. These findings point to mitochondrial morphology and recycling as critical in the ability to cope with stress. We show that vulnerable rats favor mitochondrial fusion to counteract the overproduction of reactive oxidative species whereas resilient rats activate fission to guarantee metabolic efficiency. Our results indicate that the modulation of the energetic metabolite profile in vHip under chronic stress exposure may represent a mechanism to explain the difference between vulnerable and resilient rats, unraveling novel and promising targets for specific therapeutic interventions.
Collapse
|
18
|
Williams JS, Kunkel TA. Ribonucleotide Incorporation by Eukaryotic B-family Replicases and Its Implications for Genome Stability. Annu Rev Biochem 2022; 91:133-155. [PMID: 35287470 DOI: 10.1146/annurev-biochem-032620-110354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our current view of how DNA-based genomes are efficiently and accurately replicated continues to evolve as new details emerge on the presence of ribonucleotides in DNA. Ribonucleotides are incorporated during eukaryotic DNA replication at rates that make them the most common noncanonical nucleotide placed into the nuclear genome, they are efficiently repaired, and their removal impacts genome integrity. This review focuses on three aspects of this subject: the incorporation of ribonucleotides into the eukaryotic nuclear genome during replication by B-family DNA replicases, how these ribonucleotides are removed, and the consequences of their presence or removal for genome stability and disease. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jessica S Williams
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA;
| |
Collapse
|
19
|
Zhang H, Li Y, Li Z, Lam CWK, Zhu P, Wang C, Zhou H, Zhang W. MTBSTFA derivatization-LC-MS/MS approach for the quantitative analysis of endogenous nucleotides in human colorectal carcinoma cells. J Pharm Anal 2022; 12:77-86. [PMID: 35573880 PMCID: PMC9073140 DOI: 10.1016/j.jpha.2021.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/28/2020] [Accepted: 01/14/2021] [Indexed: 11/28/2022] Open
Abstract
Endogenous ribonucleotides (RNs) and deoxyribonucleotides (dRNs) are important metabolites related to the pathogenesis of many diseases. In light of their physiological and pathological significances, a novel and sensitive pre-column derivatization method with N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) was developed to determine RNs and dRNs in human cells using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). A one-step extraction of cells with 85% methanol followed by a simple derivatization reaction within 5 min at room temperature contributed to shortened analysis time. The derivatives of 22 nucleoside mono-, di- and triphosphates were retained on the typical C18 column and eluted by ammonium acetate and acetonitrile in 9 min. Under these optimal conditions, good linearity was achieved in the tested calibration ranges. The lower limit of quantitation (LLOQ) was determined to be 0.1-0.4 μM for the tested RNs and 0.001-0.1 μM for dRNs. In addition, the precision (CV) was <15% and the RSD of stability was lower than 10.4%. Furthermore, this method was applied to quantify the endogenous nucleotides in human colorectal carcinoma cell lines HCT 116 exposed to 10-hydroxycamptothecin. In conclusion, our method has proven to be simple, rapid, sensitive, and reliable. It may be used for specific expanded studies on intracellular pharmacology in vitro.
Collapse
Affiliation(s)
| | | | - Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Christopher Wai-Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Peng Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
20
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
21
|
Ranjbarian F, Sharma S, Falappa G, Taruschio W, Chabes A, Hofer A. Isocratic HPLC analysis for the simultaneous determination of dNTPs, rNTPs and ADP in biological samples. Nucleic Acids Res 2021; 50:e18. [PMID: 34850106 PMCID: PMC8860589 DOI: 10.1093/nar/gkab1117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Information about the cellular concentrations of deoxyribonucleoside triphosphates (dNTPs) is instrumental for mechanistic studies of DNA replication and for understanding diseases caused by defects in dNTP metabolism. The dNTPs are measured by methods based on either HPLC or DNA polymerization. An advantage with the HPLC-based techniques is that the parallel analysis of ribonucleoside triphosphates (rNTPs) can serve as an internal quality control of nucleotide integrity and extraction efficiency. We have developed a Freon-free trichloroacetic acid-based method to extract cellular nucleotides and an isocratic reverse phase HPLC-based technique that is able to separate dNTPs, rNTPs and ADP in a single run. The ability to measure the ADP levels improves the control of nucleotide integrity, and the use of an isocratic elution overcomes the shifting baseline problems in previously developed gradient-based reversed phase protocols for simultaneously measuring dNTPs and rNTPs. An optional DNA-polymerase-dependent step is used for confirmation that the dNTP peaks do not overlap with other components of the extracts, further increasing the reliability of the analysis. The method is compatible with a wide range of biological samples and has a sensitivity better than other UV-based HPLC protocols, closely matching that of mass spectrometry-based detection.
Collapse
Affiliation(s)
- Farahnaz Ranjbarian
- Dept. Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Sushma Sharma
- Dept. Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Giulia Falappa
- Dept. Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Walter Taruschio
- Dept. Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Andrei Chabes
- Dept. Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anders Hofer
- Dept. Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
22
|
Wang HY, Hsin P, Huang CY, Chang ZF. A Convenient and Sensitive Method for Deoxynucleoside Triphosphate Quantification by the Combination of Rolling Circle Amplification and Quantitative Polymerase Chain Reaction. Anal Chem 2021; 93:14247-14255. [PMID: 34633808 DOI: 10.1021/acs.analchem.1c03236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Measurement of four dNTP pools is important for investigating metabolism, genome stability, and drug action. In this report, we developed a two-step method for quantitating dNTPs by the combination of rolling circle amplification (RCA) and quantitative polymerase chain reaction (qPCR). We used CircLigase to generate a single-strand DNA in circular monomeric configuration, which was then used for the first step of RCA reaction that contained three dNTPs in excess for quantification of one dNTP at limiting levels. The second step is the amplification of RCA products by qPCR, in which one primer was designed to be completely annealed with the polymeric ssDNA product but not the monomeric template DNA. Using 1 amol of the template in the assay, each dNTP from 0.02 to 2.5 pmol gave a linearity with r2 > 0.99, and the quantification was not affected by the presence of rNTPs. We further found that the preparation of biological samples for the RCA reaction required methanol and chloroform extraction. The method was so sensitive that 1 × 104 cells were sufficient for dNTP quantification with the results similar to those determined by a radio-isotope method using 2 × 105 cells. Thus, the RCA/qPCR method is convenient, cost-effective, and highly sensitive for dNTP quantification.
Collapse
Affiliation(s)
- Hsin-Yen Wang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, R.O.C.,Center of Precision Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, R.O.C
| | - Peng Hsin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, R.O.C.,Center of Precision Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, R.O.C
| | - Chang-Yu Huang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, R.O.C.,Center of Precision Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, R.O.C
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, R.O.C.,Center of Precision Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan, R.O.C
| |
Collapse
|
23
|
Pancsa R, Fichó E, Molnár D, Surányi ÉV, Trombitás T, Füzesi D, Lóczi H, Szijjártó P, Hirmondó R, Szabó JE, Tóth J. dNTPpoolDB: a manually curated database of experimentally determined dNTP pools and pool changes in biological samples. Nucleic Acids Res 2021; 50:D1508-D1514. [PMID: 34643700 PMCID: PMC8728230 DOI: 10.1093/nar/gkab910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
Stimulated by the growing interest in the role of dNTP pools in physiological and malignant processes, we established dNTPpoolDB, the database that offers access to quantitative data on dNTP pools from a wide range of species, experimental and developmental conditions (https://dntppool.org/). The database includes measured absolute or relative cellular levels of the four canonical building blocks of DNA and of exotic dNTPs, as well. In addition to the measured quantity, dNTPpoolDB contains ample information on sample source, dNTP quantitation methods and experimental conditions including any treatments and genetic manipulations. Functions such as the advanced search offering multiple choices from custom-built controlled vocabularies in 15 categories in parallel, the pairwise comparison of any chosen pools, and control-treatment correlations provide users with the possibility to quickly recognize and graphically analyse changes in the dNTP pools in function of a chosen parameter. Unbalanced dNTP pools, as well as the balanced accumulation or depletion of all four dNTPs result in genomic instability. Accordingly, key roles of dNTP pool homeostasis have been demonstrated in cancer progression, development, ageing and viral infections among others. dNTPpoolDB is designated to promote research in these fields and fills a longstanding gap in genome metabolism research.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Erzsébet Fichó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.,Cytocast Kft., Vecsés, Hungary
| | - Dániel Molnár
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Éva Viola Surányi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Tamás Trombitás
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Dóra Füzesi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Hanna Lóczi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Péter Szijjártó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Rita Hirmondó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit E Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest, H-1111, Hungary
| |
Collapse
|
24
|
Straube H, Niehaus M, Zwittian S, Witte CP, Herde M. Enhanced nucleotide analysis enables the quantification of deoxynucleotides in plants and algae revealing connections between nucleoside and deoxynucleoside metabolism. THE PLANT CELL 2021; 33:270-289. [PMID: 33793855 PMCID: PMC8136904 DOI: 10.1093/plcell/koaa028] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/12/2020] [Indexed: 05/02/2023]
Abstract
Detecting and quantifying low-abundance (deoxy)ribonucleotides and (deoxy)ribonucleosides in plants remains difficult; this is a major roadblock for the investigation of plant nucleotide (NT) metabolism. Here, we present a method that overcomes this limitation, allowing the detection of all deoxy- and ribonucleotides as well as the corresponding nucleosides from the same plant sample. The method is characterized by high sensitivity and robustness enabling the reproducible detection and absolute quantification of these metabolites even if they are of low abundance. Employing the new method, we analyzed Arabidopsis thaliana null mutants of CYTIDINE DEAMINASE, GUANOSINE DEAMINASE, and NUCLEOSIDE HYDROLASE 1, demonstrating that the deoxyribonucleotide (dNT) metabolism is intricately interwoven with the catabolism of ribonucleosides (rNs). In addition, we discovered a function of rN catabolic enzymes in the degradation of deoxyribonucleosides in vivo. We also determined the concentrations of dNTs in several mono- and dicotyledonous plants, a bryophyte, and three algae, revealing a correlation of GC to AT dNT ratios with genomic GC contents. This suggests a link between the genome and the metabolome previously discussed but not experimentally addressed. Together, these findings demonstrate the potential of this new method to provide insight into plant NT metabolism.
Collapse
Affiliation(s)
- Henryk Straube
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Markus Niehaus
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Sarah Zwittian
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, Hannover 30419, Germany
- Author for correspondence:
| |
Collapse
|
25
|
Straube H, Witte CP, Herde M. Analysis of Nucleosides and Nucleotides in Plants: An Update on Sample Preparation and LC-MS Techniques. Cells 2021; 10:689. [PMID: 33804650 PMCID: PMC8003640 DOI: 10.3390/cells10030689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleotides fulfill many essential functions in plants. Compared to non-plant systems, these hydrophilic metabolites have not been adequately investigated in plants, especially the less abundant nucleotide species such as deoxyribonucleotides and modified or damaged nucleotides. Until recently, this was mainly due to a lack of adequate methods for in-depth analysis of nucleotides and nucleosides in plants. In this review, we focus on the current state-of-the-art of nucleotide analysis in plants with liquid chromatography coupled to mass spectrometry and describe recent major advances. Tissue disruption, quenching, liquid-liquid and solid-phase extraction, chromatographic strategies, and peculiarities of nucleotides and nucleosides in mass spectrometry are covered. We describe how the different steps of the analytical workflow influence each other, highlight the specific challenges of nucleotide analysis, and outline promising future developments. The metabolite matrix of plants is particularly complex. Therefore, it is likely that nucleotide analysis methods that work for plants can be applied to other organisms as well. Although this review focuses on plants, we also discuss advances in nucleotide analysis from non-plant systems to provide an overview of the analytical techniques available for this challenging class of metabolites.
Collapse
Affiliation(s)
| | - Claus-Peter Witte
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, 30419 Hannover, Germany;
| | - Marco Herde
- Department of Molecular Nutrition and Biochemistry of Plants, Leibniz Universität Hannover, 30419 Hannover, Germany;
| |
Collapse
|
26
|
Kasho K, Stojkovič G, Velázquez-Ruiz C, Martínez-Jiménez MI, Doimo M, Laurent T, Berner A, Pérez-Rivera AE, Jenninger L, Blanco L, Wanrooij S. A unique arginine cluster in PolDIP2 enhances nucleotide binding and DNA synthesis by PrimPol. Nucleic Acids Res 2021; 49:2179-2191. [PMID: 33533925 PMCID: PMC7913696 DOI: 10.1093/nar/gkab049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
Replication forks often stall at damaged DNA. To overcome these obstructions and complete the DNA duplication in a timely fashion, replication can be restarted downstream of the DNA lesion. In mammalian cells, this repriming of replication can be achieved through the activities of primase and polymerase PrimPol. PrimPol is stimulated in DNA synthesis through interaction with PolDIP2, however the exact mechanism of this PolDIP2-dependent stimulation is still unclear. Here, we show that PrimPol uses a flexible loop to interact with the C-terminal ApaG-like domain of PolDIP2, and that this contact is essential for PrimPol's enhanced processivity. PolDIP2 increases primer-template and dNTP binding affinities of PrimPol, which concomitantly enhances its nucleotide incorporation efficiency. This stimulation is dependent on a unique arginine cluster in PolDIP2. Since the polymerase activity of PrimPol alone is very limited, this mechanism, where the affinity for dNTPs gets increased by PolDIP2 binding, might be critical for the in vivo function of PrimPol in tolerating DNA lesions at physiological nucleotide concentrations.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Gorazd Stojkovič
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | | | | - Mara Doimo
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Timothée Laurent
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Andreas Berner
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | | | - Louise Jenninger
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Luis Blanco
- Centro de Biologia Molecular Severo Ochoa, E-28049 Madrid, Spain
| | - Sjoerd Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
27
|
Darin N, Siibak T, Peter B, Hedberg-Oldfors C, Kollberg G, Kalbin V, Moslemi AR, Macao B, Oldfors A, Falkenberg M. Functional analysis of a novel POLγA mutation associated with a severe perinatal mitochondrial encephalomyopathy. Neuromuscul Disord 2021; 31:348-358. [PMID: 33579567 DOI: 10.1016/j.nmd.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Mutations in the mitochondrial DNA polymerase gamma catalytic subunit (POLγA) compromise the stability of mitochondrial DNA (mtDNA) by leading to mutations, deletions and depletions in mtDNA. Patients with mutations in POLγA often differ remarkably in disease severity and age of onset. In this work we have studied the functional consequence of POLγA mutations in a patient with an uncommon and a very severe disease phenotype characterized by prenatal onset with intrauterine growth restriction, lactic acidosis from birth, encephalopathy, hepatopathy, myopathy, and early death. Muscle biopsy identified scattered COX-deficient muscle fibers, respiratory chain dysfunction and mtDNA depletion. We identified a novel POLγA mutation (p.His1134Tyr) in trans with the previously identified p.Thr251Ile/Pro587Leu double mutant. Biochemical characterization of the purified recombinant POLγA variants showed that the p.His1134Tyr mutation caused severe polymerase dysfunction. The p.Thr251Ile/Pro587Leu mutation caused reduced polymerase function in conditions of low dNTP concentration that mimic postmitotic tissues. Critically, when p.His1134Tyr and p.Thr251Ile/Pro587Leu were combined under these conditions, mtDNA replication was severely diminished and featured prominent stalling. Our data provide a molecular explanation for the patient´s mtDNA depletion and clinical features, particularly in tissues such as brain and muscle that have low dNTP concentration.
Collapse
Affiliation(s)
- Niklas Darin
- Department of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Triinu Siibak
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Bradley Peter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Carola Hedberg-Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gittan Kollberg
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Vassili Kalbin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Ali-Reza Moslemi
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Bertil Macao
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden.
| |
Collapse
|
28
|
Purhonen J, Banerjee R, McDonald AE, Fellman V, Kallijärvi J. A sensitive assay for dNTPs based on long synthetic oligonucleotides, EvaGreen dye and inhibitor-resistant high-fidelity DNA polymerase. Nucleic Acids Res 2020; 48:e87. [PMID: 32573728 PMCID: PMC7470940 DOI: 10.1093/nar/gkaa516] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Deoxyribonucleoside triphosphates (dNTPs) are vital for the biosynthesis and repair of DNA. Their cellular concentration peaks during the S phase of the cell cycle. In non-proliferating cells, dNTP concentrations are low, making their reliable quantification from tissue samples of heterogeneous cellular composition challenging. Partly because of this, the current knowledge related to the regulation of and disturbances in cellular dNTP concentrations derive mostly from cell culture experiments with little corroboration at the tissue or organismal level. Here, we fill the methodological gap by presenting a simple non-radioactive microplate assay for the quantification of dNTPs with a minimum requirement of 4-12 mg of biopsy material. In contrast to published assays, this assay is based on long synthetic single-stranded DNA templates (50-200 nucleotides), an inhibitor-resistant high-fidelity DNA polymerase, and the double-stranded-DNA-binding EvaGreen dye. The assay quantified reliably less than 50 fmol of each of the four dNTPs and discriminated well against ribonucleotides. Additionally, thermostable RNAse HII-mediated nicking of the reaction products and a subsequent shift in their melting temperature allowed near-complete elimination of the interfering ribonucleotide signal, if present. Importantly, the assay allowed measurement of minute dNTP concentrations in mouse liver, heart and skeletal muscle.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Rishi Banerjee
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| | | | - Vineta Fellman
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland.,Department of Clinical Sciences, Lund, Pediatrics, Lund University, Sweden.,Children's Hospital, Helsinki University Hospital, Finland
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
29
|
Sharma S, Koolmeister C, Tran P, Nilsson AK, Larsson NG, Chabes A. Proofreading deficiency in mitochondrial DNA polymerase does not affect total dNTP pools in mouse embryos. Nat Metab 2020; 2:673-675. [PMID: 32778836 DOI: 10.1038/s42255-020-0264-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| |
Collapse
|
30
|
Szabó JE, Surányi ÉV, Mébold BS, Trombitás T, Cserepes M, Tóth J. A user-friendly, high-throughput tool for the precise fluorescent quantification of deoxyribonucleoside triphosphates from biological samples. Nucleic Acids Res 2020; 48:e45. [PMID: 32103262 PMCID: PMC7192609 DOI: 10.1093/nar/gkaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cells maintain a fine-tuned, dynamic concentration balance in the pool of deoxyribonucleoside 5′-triphosphates (dNTPs). This balance is essential for physiological processes including cell cycle control or antiviral defense. Its perturbation results in increased mutation frequencies, replication arrest and may promote cancer development. An easily accessible and relatively high-throughput method would greatly accelerate the exploration of the diversified consequences of dNTP imbalances. The dNTP incorporation based, fluorescent TaqMan-like assay published by Wilson et al. has the aforementioned advantages over mass spectrometry, radioactive or chromatography based dNTP quantification methods. Nevertheless, the assay failed to produce reliable data in several biological samples. Therefore, we applied enzyme kinetics analysis on the fluorescent dNTP incorporation curves and found that the Taq polymerase exhibits a dNTP independent exonuclease activity that decouples signal generation from dNTP incorporation. Furthermore, we found that both polymerization and exonuclease activities are unpredictably inhibited by the sample matrix. To resolve these issues, we established a kinetics based data analysis method which identifies the signal generated by dNTP incorporation. We automated the analysis process in the nucleoTIDY software which enables even the inexperienced user to calculate the final and accurate dNTP amounts in a 96-well-plate setup within minutes.
Collapse
Affiliation(s)
- Judit Eszter Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Éva Viola Surányi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Bence Sándor Mébold
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| | - Tamás Trombitás
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Applied Biotechnology and Food Sciences, Budapest University of Technology and Economics, Budapest 1111, Hungary
| | - Mihály Cserepes
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary.,Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary
| | - Judit Tóth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117, Hungary
| |
Collapse
|
31
|
Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, Navarrete C, Feldberg AL, Watt DL, Nilsson AK, Engqvist MKM, Clausen AR, Chabes A. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci U S A 2020; 117:14306-14313. [PMID: 32513727 PMCID: PMC7322039 DOI: 10.1073/pnas.1916851117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotides (rNMPs) incorporated in the nuclear genome are a well-established threat to genome stability and can result in DNA strand breaks when not removed in a timely manner. However, the presence of a certain level of rNMPs is tolerated in mitochondrial DNA (mtDNA) although aberrant mtDNA rNMP content has been identified in disease models. We investigated the effect of incorporated rNMPs on mtDNA stability over the mouse life span and found that the mtDNA rNMP content increased during early life. The rNMP content of mtDNA varied greatly across different tissues and was defined by the rNTP/dNTP ratio of the tissue. Accordingly, mtDNA rNMPs were nearly absent in SAMHD1-/- mice that have increased dNTP pools. The near absence of rNMPs did not, however, appreciably affect mtDNA copy number or the levels of mtDNA molecules with deletions or strand breaks in aged animals near the end of their life span. The physiological rNMP load therefore does not contribute to the progressive loss of mtDNA quality that occurs as mice age.
Collapse
Affiliation(s)
- Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden;
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Liam J Thompson
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gustavo Carvalho
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Katrin Kreisel
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Clara Navarrete
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna-Lena Feldberg
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Danielle L Watt
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Martin K M Engqvist
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anders R Clausen
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden;
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
32
|
Davenne T, Klintman J, Sharma S, Rigby RE, Blest HTW, Cursi C, Bridgeman A, Dadonaite B, De Keersmaecker K, Hillmen P, Chabes A, Schuh A, Rehwinkel J. SAMHD1 Limits the Efficacy of Forodesine in Leukemia by Protecting Cells against the Cytotoxicity of dGTP. Cell Rep 2020; 31:107640. [PMID: 32402273 PMCID: PMC7225753 DOI: 10.1016/j.celrep.2020.107640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-leukemia agent forodesine causes cytotoxic overload of intracellular deoxyguanosine triphosphate (dGTP) but is efficacious only in a subset of patients. We report that SAMHD1, a phosphohydrolase degrading deoxyribonucleoside triphosphate (dNTP), protects cells against the effects of dNTP imbalances. SAMHD1-deficient cells induce intrinsic apoptosis upon provision of deoxyribonucleosides, particularly deoxyguanosine (dG). Moreover, dG and forodesine act synergistically to kill cells lacking SAMHD1. Using mass cytometry, we find that these compounds kill SAMHD1-deficient malignant cells in patients with chronic lymphocytic leukemia (CLL). Normal cells and CLL cells from patients without SAMHD1 mutation are unaffected. We therefore propose to use forodesine as a precision medicine for leukemia, stratifying patients by SAMHD1 genotype or expression.
Collapse
Affiliation(s)
- Tamara Davenne
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Jenny Klintman
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Rachel E Rigby
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Henry T W Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chiara Cursi
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Bernadeta Dadonaite
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Peter Hillmen
- St James' Institute of Oncology, St James' University Hospital, Leeds LS9 7TF, UK
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Anna Schuh
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Department of Haematology, Oxford University Hospitals NHS Trust, Oxford OX3 7JL, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
33
|
Schmidt TT, Sharma S, Reyes GX, Kolodziejczak A, Wagner T, Luke B, Hofer A, Chabes A, Hombauer H. Inactivation of folylpolyglutamate synthetase Met7 results in genome instability driven by an increased dUTP/dTTP ratio. Nucleic Acids Res 2020; 48:264-277. [PMID: 31647103 PMCID: PMC7145683 DOI: 10.1093/nar/gkz1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022] Open
Abstract
The accumulation of mutations is frequently associated with alterations in gene function leading to the onset of diseases, including cancer. Aiming to find novel genes that contribute to the stability of the genome, we screened the Saccharomyces cerevisiae deletion collection for increased mutator phenotypes. Among the identified genes, we discovered MET7, which encodes folylpolyglutamate synthetase (FPGS), an enzyme that facilitates several folate-dependent reactions including the synthesis of purines, thymidylate (dTMP) and DNA methylation. Here, we found that Met7-deficient strains show elevated mutation rates, but also increased levels of endogenous DNA damage resulting in gross chromosomal rearrangements (GCRs). Quantification of deoxyribonucleotide (dNTP) pools in cell extracts from met7Δ mutant revealed reductions in dTTP and dGTP that cause a constitutively active DNA damage checkpoint. In addition, we found that the absence of Met7 leads to dUTP accumulation, at levels that allowed its detection in yeast extracts for the first time. Consequently, a high dUTP/dTTP ratio promotes uracil incorporation into DNA, followed by futile repair cycles that compromise both mitochondrial and nuclear DNA integrity. In summary, this work highlights the importance of folate polyglutamylation in the maintenance of nucleotide homeostasis and genome stability.
Collapse
Affiliation(s)
- Tobias T Schmidt
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Gloria X Reyes
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Anna Kolodziejczak
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Tina Wagner
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - Brian Luke
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg Universität, 55128 Mainz, Germany.,Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
34
|
Niehaus M, Straube H, Künzler P, Rugen N, Hegermann J, Giavalisco P, Eubel H, Witte CP, Herde M. Rapid Affinity Purification of Tagged Plant Mitochondria (Mito-AP) for Metabolome and Proteome Analyses. PLANT PHYSIOLOGY 2020; 182:1194-1210. [PMID: 31911558 PMCID: PMC7054873 DOI: 10.1104/pp.19.00736] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/16/2019] [Indexed: 05/07/2023]
Abstract
The isolation of organelles facilitates the focused analysis of subcellular protein and metabolite pools. Here we present a technique for the affinity purification of plant mitochondria (Mito-AP). The stable ectopic expression of a mitochondrial outer membrane protein fused to a GFP:Strep tag in Arabidopsis (Arabidopsis thaliana) exclusively decorates mitochondria, enabling their selective affinity purification using magnetic beads coated with Strep-Tactin. With Mito-AP, intact mitochondria from 0.5 g plant material were highly enriched in 30-60 min, considerably faster than with conventional gradient centrifugation. Combining gradient centrifugation and Mito-AP techniques resulted in high purity of >90% mitochondrial proteins in the lysate. Mito-AP supports mitochondrial proteome analysis by shotgun proteomics. The relative abundances of proteins from distinct mitochondrial isolation methods were correlated. A cluster of 619 proteins was consistently enriched by all methods. Among these were several proteins that lack subcellular localization data or that are currently assigned to other compartments. Mito-AP is also compatible with mitochondrial metabolome analysis by triple-quadrupole and orbitrap mass spectrometry. Mito-AP preparations showed a strong enrichment with typical mitochondrial lipids like cardiolipins and demonstrated the presence of several ubiquinones in Arabidopsis mitochondria. Affinity purification of organelles is a powerful tool for reaching higher spatial and temporal resolution for the analysis of metabolomic and proteomic dynamics within subcellular compartments. Mito-AP is small scale, rapid, economic, and potentially applicable to any organelle or to organelle subpopulations.
Collapse
Affiliation(s)
- Markus Niehaus
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Henryk Straube
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Patrick Künzler
- Leibniz Universität Hannover, Institute of Plant Genetics, 30419 Hannover, Germany
| | - Nils Rugen
- Leibniz Universität Hannover, Institute of Plant Genetics, 30419 Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | | | - Holger Eubel
- Leibniz Universität Hannover, Institute of Plant Genetics, 30419 Hannover, Germany
| | - Claus-Peter Witte
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| | - Marco Herde
- Leibniz Universität Hannover, Department of Molecular Nutrition and Biochemistry of Plants, 30419 Hannover, Germany
| |
Collapse
|
35
|
Huang CY, Yagüe-Capilla M, González-Pacanowska D, Chang ZF. Quantitation of deoxynucleoside triphosphates by click reactions. Sci Rep 2020; 10:611. [PMID: 31953472 PMCID: PMC6969045 DOI: 10.1038/s41598-020-57463-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
The levels of the four deoxynucleoside triphosphates (dNTPs) are under strict control in the cell, as improper or imbalanced dNTP pools may lead to growth defects and oncogenesis. Upon treatment of cancer cells with therapeutic agents, changes in the canonical dNTPs levels may provide critical information for evaluating drug response and mode of action. The radioisotope-labeling enzymatic assay has been commonly used for quantitation of cellular dNTP levels. However, the disadvantage of this method is the handling of biohazard materials. Here, we described the use of click chemistry to replace radioisotope-labeling in template-dependent DNA polymerization for quantitation of the four canonical dNTPs. Specific oligomers were designed for dCTP, dTTP, dATP and dGTP measurement, and the incorporation of 5-ethynyl-dUTP or C8-alkyne-dCTP during the polymerization reaction allowed for fluorophore conjugation on immobilized oligonucleotides. The four reactions gave a linear correlation coefficient >0.99 in the range of the concentration of dNTPs present in 106 cells, with little interference of cellular rNTPs. We present evidence indicating that data generated by this methodology is comparable to radioisotope-labeling data. Furthermore, the design and utilization of a robust microplate assay based on this technology evidenced the modulation of dNTPs in response to different chemotherapeutic agents in cancer cells.
Collapse
Affiliation(s)
- Chang-Yu Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec. 2, Linong Street, Taipei, 112, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 100, Taiwan, ROC
| | - Miriam Yagüe-Capilla
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), Consejo Superior de Investigaciones Científicas. Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec. 2, Linong Street, Taipei, 112, Taiwan. .,Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei, 100, Taiwan, ROC. .,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
36
|
Schmidt TT, Sharma S, Reyes GX, Gries K, Gross M, Zhao B, Yuan JH, Wade R, Chabes A, Hombauer H. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance. Nucleic Acids Res 2019; 47:237-252. [PMID: 30462295 PMCID: PMC6326808 DOI: 10.1093/nar/gky1154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The balance and the overall concentration of intracellular deoxyribonucleoside triphosphates (dNTPs) are important determinants of faithful DNA replication. Despite the established fact that changes in dNTP pools negatively influence DNA replication fidelity, it is not clear why certain dNTP pool alterations are more mutagenic than others. As intracellular dNTP pools are mainly controlled by ribonucleotide reductase (RNR), and given the limited number of eukaryotic RNR mutations characterized so far, we screened for RNR1 mutations causing mutator phenotypes in Saccharomyces cerevisiae. We identified 24 rnr1 mutant alleles resulting in diverse mutator phenotypes linked in most cases to imbalanced dNTPs. Among the identified rnr1 alleles the strongest mutators presented a dNTP imbalance in which three out of the four dNTPs were elevated (dCTP, dTTP and dGTP), particularly if dGTP levels were highly increased. These rnr1 alleles caused growth defects/lethality in DNA replication fidelity-compromised backgrounds, and caused strong mutator phenotypes even in the presence of functional DNA polymerases and mismatch repair. In summary, this study pinpoints key residues that contribute to allosteric regulation of RNR’s overall activity or substrate specificity. We propose a model that distinguishes between different dNTP pool alterations and provides a mechanistic explanation why certain dNTP imbalances are particularly detrimental.
Collapse
Affiliation(s)
- Tobias T Schmidt
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Gloria X Reyes
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Kerstin Gries
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Maike Gross
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Boyu Zhao
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Jui-Hung Yuan
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany
| | - Rebecca Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg D-69120, Germany.,Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg D-69120, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå SE-901 87, Sweden
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
37
|
Cohen R, Milo S, Sharma S, Savidor A, Covo S. Ribonucleotide reductase from Fusarium oxysporum does not Respond to DNA replication stress. DNA Repair (Amst) 2019; 83:102674. [PMID: 31375409 DOI: 10.1016/j.dnarep.2019.102674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the rate limiting step in dNTP biosynthesis and is tightly regulated at the transcription and activity levels. One of the best characterized responses of yeast to DNA damage is up-regulation of RNR transcription and activity and consequently, elevation of the dNTP pools. Hydroxyurea is a universal inhibitor of RNR that causes S phase arrest. It is used in the clinic to treat certain types of cancers. Here we studied the response of the fungal plant pathogen Fusarium oxysporum to hydroxyurea in order to generate hypotheses that can be used in the future in development of a new class of pesticides. F. oxysporum causes severe damage to more than 100 agricultural crops and specifically threatens banana cultivation world-wide. Although the recovery of F. oxysporum from transient hydroxyurea exposure was similar to the one of Saccharomyces cerevisiae, colony formation was strongly inhibited in F. oxysporum in comparison with S. cerevisiae. As expected, genomic and phosphoproteomic analyses of F. oxysporum conidia (spores) exposed to hydroxyurea showed hallmarks of DNA replication perturbation and activation of recombination. Unexpectedly and strikingly, RNR was not induced by either hydroxyurea or the DNA-damaging agent methyl methanesulfonate as determined at the RNA and protein levels. Consequently, dNTP concentrations were significantly reduced, even in response to a low dose of hydroxyurea. Methyl methanesulfonate treatment did not induce dNTP pools in F. oxysporum, in contrast to the response of RNR and dNTP pools to DNA damage and hydroxyurea in several tested organisms. Our results are important because the lack of a feedback mechanism to increase RNR expression in F. oxysporum is expected to sensitize the pathogen to a fungal-specific ribonucleotide inhibitor. The potential impact of our observations on F. oxysporum genome stability and genome evolution is discussed.
Collapse
Affiliation(s)
- Rotem Cohen
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Shira Milo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Alon Savidor
- de Botton Institute for Protein Profiling, the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Shay Covo
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, 76100, Israel.
| |
Collapse
|
38
|
Tran P, Wanrooij PH, Lorenzon P, Sharma S, Thelander L, Nilsson AK, Olofsson AK, Medini P, von Hofsten J, Stål P, Chabes A. De novo dNTP production is essential for normal postnatal murine heart development. J Biol Chem 2019; 294:15889-15897. [PMID: 31300555 DOI: 10.1074/jbc.ra119.009492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/26/2019] [Indexed: 11/06/2022] Open
Abstract
The building blocks of DNA, dNTPs, can be produced de novo or can be salvaged from deoxyribonucleosides. However, to what extent the absence of de novo dNTP production can be compensated for by the salvage pathway is unknown. Here, we eliminated de novo dNTP synthesis in the mouse heart and skeletal muscle by inactivating ribonucleotide reductase (RNR), a key enzyme for the de novo production of dNTPs, at embryonic day 13. All other tissues had normal de novo dNTP synthesis and theoretically could supply heart and skeletal muscle with deoxyribonucleosides needed for dNTP production by salvage. We observed that the dNTP and NTP pools in WT postnatal hearts are unexpectedly asymmetric, with unusually high dGTP and GTP levels compared with those in whole mouse embryos or murine cell cultures. We found that RNR inactivation in heart led to strongly decreased dGTP and increased dCTP, dTTP, and dATP pools; aberrant DNA replication; defective expression of muscle-specific proteins; progressive heart abnormalities; disturbance of the cardiac conduction system; and lethality between the second and fourth weeks after birth. We conclude that dNTP salvage cannot substitute for de novo dNTP synthesis in the heart and that cardiomyocytes and myocytes initiate DNA replication despite an inadequate dNTP supply. We discuss the possible reasons for the observed asymmetry in dNTP and NTP pools in WT hearts.
Collapse
Affiliation(s)
- Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Paolo Lorenzon
- Department of Integrative Medical Biology (IMB), Umeå University, 901 87 Umeå, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Lars Thelander
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Anna-Karin Olofsson
- Department of Integrative Medical Biology (IMB), Umeå University, 901 87 Umeå, Sweden
| | - Paolo Medini
- Department of Integrative Medical Biology (IMB), Umeå University, 901 87 Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology (IMB), Umeå University, 901 87 Umeå, Sweden.,Umeå Centre for Molecular Medicine (UCMM), Umeå University, 901 87 Umeå, Sweden
| | - Per Stål
- Department of Integrative Medical Biology (IMB), Umeå University, 901 87 Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden .,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
39
|
Wang J, Bing T, Zhang N, Shen L, He J, Liu X, Wang L, Shangguan D. The Mechanism of the Selective Antiproliferation Effect of Guanine-Based Biomolecules and Its Compensation. ACS Chem Biol 2019; 14:1164-1173. [PMID: 31083967 DOI: 10.1021/acschembio.9b00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As endogenous biomolecules, guanine, guanine-based nucleosides, and nucleotides are essential for cellular DNA/RNA synthesis, energy metabolism, and signal transduction. However, these biomolecules have been found to have a cell-specific antiproliferation effect at higher concentrations, and the mechanism is unclear. In this study, we demonstrate that guanine deaminase (GDA) is a major factor in determining the cell-type selectivity to the antiproliferation effect of guanine-based biomolecules. GDA catalyzes the deamination of guanine to xanthine, which is an essential part of the guanine degradation pathway. GDA deficient cells could not efficiently remove the excess guanine-based biomolecules. These excess molecules disturb the metabolism of adenine-, cytosine-, and thymine-based nucleotides; subsequently inhibit the DNA synthesis and cell growth; and eventually result in the apoptosis/death of GDA deficient cells. The inhibition of DNA synthesis could be relieved by simultaneous addition of adenine- and cytosine-based nucleosides, and the inhibited DNA synthesis could be restarted by post addition of them, which subsequently reduces the antiproliferation effect of guanine-based biomolecules or even totally restores the cell proliferation. These results provide important information for the development of guanine-based drugs or guanine-rich oligonucleotide drugs, as well as for the safety evaluation of food with a high level of guanine-based compounds.
Collapse
Affiliation(s)
- Junyan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junqing He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Linlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Li Z, Zhang HX, Li Y, Lam CWK, Wang CY, Zhang WJ, Wong VKW, Pang SS, Yao MC, Zhang W. Method for Quantification of Ribonucleotides and Deoxyribonucleotides in Human Cells Using (Trimethylsilyl)diazomethane Derivatization Followed by Liquid Chromatography-Tandem Mass Spectrometry. Anal Chem 2018; 91:1019-1026. [PMID: 30525455 DOI: 10.1021/acs.analchem.8b04281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Investigation into intracellular ribonucleotides (RNs) and deoxyribonucleotides (dRNs) is important for studies of the mechanism of many biological processes, such as RNA and DNA synthesis and DNA repair, as well as metabolic and therapeutic efficacy of nucleoside analogues. However, current methods are still unsatisfactory for determination of nucleotides in complex matrixes. Here we describe a novel method for the determination of RN and dRN pools in cells based on fast derivatization with (trimethylsilyl)diazomethane (TMSD) followed by quantification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Derivatization was accomplished in 3 min, and each derivatized nucleotide not only had a sufficient retention on reversed-phase column by introduction of methyl groups but also exhibited a unique ion transition which consequently eliminated mutual interference in LC-MS/MS. Chromatographic separation was performed on a C18 column with a simple acetonitrile-water gradient elution system, which avoided contamination and ion suppression caused by ion-pairing reagents. The developed method was fully validated and applied to the analysis of RNs and dRNs in cell samples. Moreover, results demonstrated that the applicability of this method could be extended to nucleoside analogues and their metabolites and could facilitate many applications in future studies.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau , China
| | - Hui-Xia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau , China
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau , China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau , China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau , China
| | - Wei-Jia Zhang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guang Zhou 510275 , China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau , China
| | - Su-Seng Pang
- Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Mei-Cun Yao
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guang Zhou 510275 , China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health , Macau University of Science and Technology , Taipa , Macau , China
| |
Collapse
|
41
|
Lemor M, Kong Z, Henry E, Brizard R, Laurent S, Bossé A, Henneke G. Differential Activities of DNA Polymerases in Processing Ribonucleotides during DNA Synthesis in Archaea. J Mol Biol 2018; 430:4908-4924. [PMID: 30342933 DOI: 10.1016/j.jmb.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/09/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
Consistent with the fact that ribonucleotides (rNTPs) are in excess over deoxyribonucleotides (dNTPs) in vivo, recent findings indicate that replicative DNA polymerases (DNA Pols) are able to insert ribonucleotides (rNMPs) during DNA synthesis, raising crucial questions about the fidelity of DNA replication in both Bacteria and Eukarya. Here, we report that the level of rNTPs is 20-fold higher than that of dNTPs in Pyrococcus abyssi cells. Using dNTP and rNTP concentrations present in vivo, we recorded rNMP incorporation in a template-specific manner during in vitro synthesis, with the family-D DNA Pol (PolD) having the highest propensity compared with the family-B DNA Pol and the p41/p46 complex. We also showed that ribonucleotides accumulate at a relatively high frequency in the genome of wild-type Thermococcales cells, and this frequency significantly increases upon deletion of RNase HII, the major enzyme responsible for the removal of RNA from DNA. Because ribonucleotides remain in genomic DNA, we then analyzed the effects on polymerization activities by the three DNA Pols. Depending on the identity of the base and the sequence context, all three DNA Pols bypass rNMP-containing DNA templates with variable efficiency and nucleotide (mis)incorporation ability. Unexpectedly, we found that PolD correctly base-paired a single ribonucleotide opposite rNMP-containing DNA templates. An evolutionary scenario is discussed concerning rNMP incorporation into DNA and genome stability.
Collapse
Affiliation(s)
- Mélanie Lemor
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Ziqing Kong
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Etienne Henry
- CNRS, Ifremer, Univ Brest, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280, Plouzané, France
| | - Raphaël Brizard
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Audrey Bossé
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France.
| |
Collapse
|