1
|
Li T, Chen H, Ma N, Jiang D, Wu J, Zhang X, Li H, Su J, Chen P, Liu Q, Guan Y, Zhu X, Lin J, Zhang J, Wang Q, Guo H, Zhu F. Specificity landscapes of 40 R2R3-MYBs reveal how paralogs target different cis-elements by homodimeric binding. IMETA 2025; 4:e70009. [PMID: 40236784 PMCID: PMC11995187 DOI: 10.1002/imt2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 04/17/2025]
Abstract
Paralogous transcription factors (TFs) frequently recognize highly similar DNA motifs. Homodimerization can help distinguish them according to their different dimeric configurations. Here, by studying R2R3-MYB TFs, we show that homodimerization can also directly change the recognized DNA motifs to distinguish between similar TFs. By high-throughput SELEX, we profiled the specificity landscape for 40 R2R3-MYBs of subfamily VIII and curated 833 motif models. The dimeric models show that homodimeric binding has evoked specificity changes for AtMYBs. Focusing on AtMYB2 as an example, we show that homodimerization has modified its specificity and allowed it to recognize additional cis-regulatory sequences that are different from the closely related CCWAA-box AtMYBs and are unique among all AtMYBs. Genomic sites described by the modified dimeric specificities of AtMYB2 are conserved in evolution and involved in AtMYB2-specific transcriptional activation. Collectively, this study provides rich data on sequence preferences of VIII R2R3-MYBs and suggests an alternative mechanism that guides closely related TFs to respective cis-regulatory sites.
Collapse
Affiliation(s)
- Tian Li
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Chen
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Nana Ma
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dingkun Jiang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiacheng Wu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xinfeng Zhang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hao Li
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaqing Su
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Piaojuan Chen
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Yuefeng Guan
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xiaoyue Zhu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Juncheng Lin
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jilin Zhang
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
- Tung Biomedical Sciences CentreCity University of Hong KongHong KongChina
- Department of Precision Diagnostic and Therapeutic TechnologyThe City University of Hong Kong Shenzhen Futian Research InstituteShenzhenChina
| | - Qin Wang
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Honghong Guo
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fangjie Zhu
- Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, College of JUNCAO Science and Ecology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
2
|
Wu H, Wang L, Zhao S, Gao M, Cao J, Hao Y, Yu L, Zhao T, Wang S, Han J, Zhu Y, Zhao Y, Li J, Nie K, Lu K, Ding L, Zhang Z, Zhang T, Guan X. GhLPF1 Associated Network Is Involved with Cotton Lint Percentage Regulation Revealed by the Integrative Analysis of Spatial Transcriptome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414175. [PMID: 39932435 PMCID: PMC11967919 DOI: 10.1002/advs.202414175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/24/2025] [Indexed: 04/05/2025]
Abstract
Cotton fibers, derived from the epidermis of the ovule, provide a sustainable natural fiber source for the textile industry. Traits related to fiber yield are predominantly determined by molecular regulations in the epidermis of the outer integument (OI) region of the cotton ovule. Here, we identify an R2R3 MYB transcription factor coding gene GhLPF1 within the QTL-LP-ChrA06 locus for lint percentage (LP, percentage of lint to seed cotton) through constructing the 1-Day Post Anthesis Cotton Ovule Spatial Transcriptome Atlas. GhLPF1 is subjected as a downstream target of miR828 during fiber development. The direct downstream genes (DDGs) of GhLPF1 are biased to increased expression in GhLPF1-CR, and are preferentially expressed in OI, so that GhLPF1 is primarily a transcriptional repressor to its DDGs. Population-wide transcriptome analysis confirms that expression variation of GhLPF1-DDGs is significantly biased to negative correlation with LP, among which a type I homeobox protein-coding gene GhHB6 is further validated to be the directly downstream gene of GhLPF1. Given these data, it is demonstrated that GhLPF1 mediates a regulation network in LP as a transcriptional repressor, which makes it a valuable functional marker for fiber-trait improvement application from QTL-LP-ChrA06.
Collapse
Affiliation(s)
- Hongyu Wu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Luyao Wang
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Shengjun Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Mengtao Gao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
- Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze RiverMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
| | - Junfeng Cao
- School of Life SciencesCentre for Cell & Developmental Biology and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongShatinHong Kong999077China
| | - Yupeng Hao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Li Yu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Siyuan Wang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Yumeng Zhu
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Yongyan Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
| | - Jie Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
| | - Ke Nie
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Kening Lu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
| | - Linyun Ding
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationMinistry of AgricultureNanjing Agricultural UniversityNanjing210095China
- Institute of Leisure AgricultureJiangsu Academy of Agricultural SciencesNanjing210014China
| | - Zhiyuan Zhang
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
- Seed Production and Quality Control Research CenterHainan Seed Industry LaboratorySanyaHainanChina
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic ResourcesInstitute of Crop SciencePlant Precision Breeding AcademyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhou300058China
- Yazhou Bay Science and Technology CityHainan Institute of Zhejiang UniversityBuilding 11, Yongyou Industrial Park, Yazhou DistrictSanyaHainan572025China
| |
Collapse
|
3
|
Zhou SD, Zhou Q, Cui YD, Zhong X, Chen X, Lin XR, Yang ZN, Zhu J. Identification of Nuclear Localization Sequence (NLS) Sites in R2R3-MYB Transcription Factor Involved in Anther Development. Cells 2025; 14:470. [PMID: 40214424 PMCID: PMC11987959 DOI: 10.3390/cells14070470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
The R2R3-MYB family of transcription factors (TFs) plays a crucial role in cell specification and secondary metabolism regulation during plant development. In Arabidopsis, MS188, a typical R2R3-MYB protein, is essential for tapetal development and pollen wall formation. However, the nuclear localization sequence (NLS) responsible for directing MS188 into the nucleus has not been fully elucidated. In this study, the subcellular localization of the NLS-containing proteins was determined by GFP tagging in tobacco leaves, and three NLS regions within MS188 were identified: two located at the N-terminus of R2-MYB and one at the C-terminus of R3-MYB. We further narrowed the NLSs located at amino acids (AAs) 12-15, 18-22, and 96-107 via point mutation analysis. Combined with the cytoplasmic protein FBA6, these NLSs fusion proteins could localize in the nucleus. Importantly, the proteins with mutations in AAs 18-22 exhibited completely cytoplasmic signals, whereas other mutated sites partially abolished the nuclear signals. These findings suggest that the NLS at AAs 18-22 is sufficient for nuclear localization. To confirm the NLS functions in vivo, we constructed the vectors including the MS188 gene without the NLS sites, which failed to complement the male sterile phenotype of ms188. We also searched the highly conserved NLSs in other R2R3-MYB TFs and showed they are required for nuclear localization. Collectively, these findings revealed the specific NLS regions within R2R3-MYB transcription factors and highlighted their critical role for subcellular localization in plant developmental regulation.
Collapse
Affiliation(s)
- Si-Da Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Que Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yan-Dan Cui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiang Zhong
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xing Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Rong Lin
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (S.-D.Z.); (Q.Z.); (Y.-D.C.); (X.Z.)
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Si J, Zhou X, Chen X, Ming H, Liu H, Hui M. Identification and characterization of a key gene controlling purple leaf coloration in non-heading Chinese cabbage (Brassica rapa). PLANTA 2025; 261:80. [PMID: 40048003 DOI: 10.1007/s00425-025-04630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/18/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION Chalcone isomerase (BraCHI, BraA03g059660.3C) is the candidate gene controlling purple leaf coloration in non-heading Chinese cabbage. A 10-bp deletion in its promoter enhances gene expression in purple plants, likely by disrupting MYB transcription factor binding, leading to anthocyanin accumulation. Leaf color is a critical trait influencing the commercial and nutritional value of leafy vegetables, with purple-leafed varieties prized for their high anthocyanin content. In this study, we investigated the genetic basis of purple leaf coloration in non-heading Chinese cabbage (Brassica rapa). Using a recombinant inbred line (RIL) population derived from a cross between purple-leafed S45P and green-leafed S45G lines, bulked segregant analysis sequencing (BSA-seq) and fine mapping were performed. The analysis identified BraP2, a locus on chromosome A03 associated with purple leaf coloration. Within the 65.31 kb candidate region, BraA03g059660.3C, encoding chalcone isomerase (CHI), was identified as the strongest candidate gene. Quantitative real-time PCR (qRT-PCR) revealed significantly higher expression of BraA03g059660.3C in purple-leafed S45P plants compared to green-leafed S45G plants. Further sequence analysis uncovered a 10-bp deletion in the promoter region of BraA03g059660.3C in S45P plants. This deletion likely disrupts a MYB transcription factor binding site, enhancing gene expression and promoting anthocyanin accumulation. Our findings demonstrate that BraA03g059660.3C plays a pivotal role in controlling purple leaf coloration in non-heading Chinese cabbage. This discovery advances the understanding of anthocyanin biosynthesis regulation and provides valuable genetic resources for breeding Brassica crops with improved esthetic and nutritional qualities.
Collapse
Affiliation(s)
- Jia Si
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiaoqing Zhou
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xinyu Chen
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huilin Ming
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanqiang Liu
- Vegetables Engineering and Technology Research Center of Shaanxi Province, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Maixia Hui
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, No. 3 Taicheng Road, Yangling Demonstration Zone, Xianyang, Shaanxi, China.
| |
Collapse
|
5
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Liao R, Yao J, Zhang Y, Liu Y, Pan H, Han B, Song C. MYB transcription factors in Peucedanum Praeruptorum Dunn: the diverse roles of the R2R3-MYB subfamily in mediating coumarin biosynthesis. BMC PLANT BIOLOGY 2024; 24:1135. [PMID: 39604839 PMCID: PMC11604020 DOI: 10.1186/s12870-024-05864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The MYB superfamily (v-myb avian myeloblastosis viral oncogene homolog) plays a role in plant growth and development, environmental stress defense, and synthesis of secondary metabolites. Little is known about the regulatory function of MYB genes in Peucedanum praeruptorum Dunn, although many MYB family members, especially R2R3-MYB genes, have been extensively studied in model plants. RESULTS A total of 157 R2R3-MYB transcription factors from P. praeruptorum were identified using bioinformatics analysis. Comprehensive analyses including chromosome location, microsynteny, gene structure, conserved motif, phylogenetic tree, and conserved domain were further performed. The length of the 157 transcription factors ranged from 120 to 1,688 amino acids (molecular weight between 14.21 and 182.69 kDa). All proteins were hydrophilic. Subcellular localization predictions showed that 155 PpMYB proteins were localized in the nucleus, with PpMYB12 and PpMYB157 localized in the chloroplasts and mitochondria, respectively. Ten conserved motifs were identified in the PpMYBs, all of which contained typical MYB domains. Transcriptome analysis identified 47,902 unigenes. Kyoto Encyclopedia of Genes and Genomes analysis revealed 136 pathways, of which 524 genes were associated with the phenylpropanoid pathway. Differential expressed genes (DEGs) before and after bolting showed that 11 genes were enriched in the phenylpropanoid pathway. Moreover, the expression patterns of transcription genes were further verified by qRT-PCR. With high-performance liquid chromatography (HPLC), 8 coumarins were quantified from the root, stem, and leaf tissue samples of P. praeruptorum at different stages. Praeruptorin A was found in both roots and leaves before bolting, whereas praeruptorin B was mainly concentrated in the roots, and the content of both decreased in the roots and stems after bolting. Praeruptorin E content was highest in the leaves and increased with plant growth. The correlation analysis between transcription factors and coumarin content showed that the expression patterns of PpMYB3 and PpMYB103 in roots align with the accumulation trends of praeruptorin A, praeruptorin B, praeruptorin E, scopoletin, and isoscopoletin, which declined in content after bolting, suggesting that these genes may positively regulate the biosynthesis of coumarins. Eleven distinct metabolites and 48 DEGs were identified. Correlation analysis revealed that the expression of all DEGs were significantly related to the accumulation of coumarin metabolites, indicating that these genes are involved in the regulation of coumarin biosynthesis. CONCLUSIONS R2R3-MYB transcription factors may be involved in the synthesis of coumarin. Our findings provide basic data and a rationale for future an in-depth studies on the role of R2R3-MYB transcription factors in the growth and regulation of coumarin synthesis.
Collapse
Affiliation(s)
- Ranran Liao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Jinzhuo Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yingyu Zhang
- The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yuxian Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Bangxing Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
7
|
Phukela B, Leonard H, Sapir Y. In silico analysis of R2R3-MYB transcription factors in the basal eudicot model, Aquilegia coerulea. 3 Biotech 2024; 14:284. [PMID: 39479299 PMCID: PMC11522220 DOI: 10.1007/s13205-024-04119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024] Open
Abstract
R2R3-MYBs are an important group of transcription factors that regulate crucial developmental processes across the plant kingdom; yet no comprehensive analysis of the R2R3-MYBs in the early-diverging eudicot clade of Ranunculaceae has been conducted so far. In the present study, Aquilegia coerulea is chosen to understand the extent of conservation and divergence of R2R3-MYBs as a representative of the family by analysing the genomic distribution, organization, gene structure, physiochemical properties, protein architecture, evolution and possible mode of expansion. Genome-wide analysis showed the presence of 82 putative homologues classified into 21 subgroups, based on phylogenetic analysis of full-length protein sequences. The domain has remained largely conserved across all homologues with few differences from the characterized Arabidopsis thaliana R2R3-MYBs. The topology of the phylogenetic tree remains the same when full-length protein sequences are used, indicating that the evolution of R2R3-MYBs is driven by the domain region only. This is supported by the presence of similar structures of exon-intron and conserved motifs within the same subgroup. Furthermore, comparisons of the AqcoeR2R3-MYB members with monocots and core-eudicots revealed the evolutionary expansion of a few functional clades, such as A. thaliana R2R3-MYB subgroup 6 (SG6), the upstream regulatory factors of floral pigment biosynthesis and floral color. The reconstructed evolutionary history of SG6-like genes across angiosperms highlights the occurrence of independent duplication events in the genus Aquilegia. AqcoeR2R3-MYB genes are present in all seven chromosomes of A. coerulea, most of which result from local and segmental duplications. Selection analysis of these duplicated gene pairs indicates purifying selection except one, and the physiochemical analyses of R2R3-MYBs reveal differences among the MYBs signifying their functional diversification. This study paves the way for further investigation of paralogous copies and their probable role in the evolution of different floral traits in A. coerulea. It lays the foundation for functional genomic studies of R2R3-MYBs in the basal eudicots and facilitates comparative studies among angiosperms. The work also provides a framework for deciphering novel genetic regulatory pathways that govern the diversity of floral morphology. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04119-y.
Collapse
Affiliation(s)
- Banisha Phukela
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Leonard
- Department of Botany, Miami University, Oxford, OH 45056 USA
| | - Yuval Sapir
- The Botanical Garden, School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
McClean PE, Roy J, Colbert CL, Osborne C, Lee R, Miklas PN, Osorno JM. T and Z, partial seed coat patterning genes in common bean, provide insight into the structure and protein interactions of a plant MBW complex. G3 (BETHESDA, MD.) 2024; 14:jkae184. [PMID: 39167608 PMCID: PMC11457125 DOI: 10.1093/g3journal/jkae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Flavonoids are secondary metabolites associated with plant seed coat and flower color. These compounds provide health benefits to humans as anti-inflammatory and antioxidant compounds. The expression of the late biosynthetic genes in the flavonoid pathway is controlled by a ternary MBW protein complex consisting of interfacing MYB, beta-helix-loop-helix (bHLH), and WD40 Repeat (WDR) proteins. P, the master regulator gene of the flavonoid expression in common bean (Phaseolus vulgaris L.), was recently determined to encode a bHLH protein. The T and Z genes control the distribution of color in bean seeds and flowers and have historically been considered regulators of the flavonoid gene expression. T and Z candidates were identified using reverse genetics based on genetic mapping, phylogenetic analysis, and mutant analysis. Domain and AlphaFold2 structure analyses determined that T encodes a seven-bladed β-propeller WDR protein, while Z encodes a R2R3 MYB protein. Deletions and SNPs in T and Z mutants, respectively, altered the 3D structure of these proteins. Modeling of the Z MYB/P bHLH/T WDR MBW complex identified interfacing sequence domains and motifs in all three genes that are conserved in dicots. One Z MYB motif is a possible beta-molecular recognition feature (β-MoRF) that only appears in a structured state when Z MYB is modeled as a component of a MBW complex. Complexes containing mutant T and Z proteins changed the interaction of members of the complex in ways that would alter their role in regulating the expression of genes in the flavonoid pathway.
Collapse
Affiliation(s)
- Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA 58108
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA 58108
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA 58108
| | - Christopher L Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA 58108
| | - Caroline Osborne
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA 58108
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, USA 58108
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA 58108
| | - Phillip N Miklas
- Legume Genetics and Physiology Research Unit, USDA-ARS, 24106 N. Bunn Rd., Prosser, Washington, USA 99350
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA 58108
| |
Collapse
|
9
|
Zhao G, Le Y, Sun M, Xu J, Qin Y, Men S, Ye Z, Tan H, Hu H, You J, Li J, Jin S, Wang M, Zhang X, Lin Z, Tu L. A dominant negative mutation of GhMYB25-like alters cotton fiber initiation, reducing lint and fuzz. THE PLANT CELL 2024; 36:2759-2777. [PMID: 38447960 PMCID: PMC11289660 DOI: 10.1093/plcell/koae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 03/08/2024]
Abstract
Cotton (Gossypium hirsutum) fibers, vital natural textile materials, are single-cell trichomes that differentiate from the ovule epidermis. These fibers are categorized as lint (longer fibers useful for spinning) or fuzz (shorter, less useful fibers). Currently, developing cotton varieties with high lint yield but without fuzz remains challenging due to our limited knowledge of the molecular mechanisms underlying fiber initiation. This study presents the identification and characterization of a naturally occurring dominant negative mutation GhMYB25-like_AthapT, which results in a reduced lint and fuzzless phenotype. The GhMYB25-like_AthapT protein exerts its dominant negative effect by suppressing the activity of GhMYB25-like during lint and fuzz initiation. Intriguingly, the negative effect of GhMYB25-like_AthapT could be alleviated by high expression levels of GhMYB25-like. We also uncovered the role of GhMYB25-like in regulating the expression of key genes such as GhPDF2 (PROTODERMAL FACTOR 2), CYCD3; 1 (CYCLIN D3; 1), and PLD (Phospholipase D), establishing its significance as a pivotal transcription factor in fiber initiation. We identified other genes within this regulatory network, expanding our understanding of the determinants of fiber cell fate. These findings offer valuable insights for cotton breeding and contribute to our fundamental understanding of fiber development.
Collapse
Affiliation(s)
- Guannan Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yu Le
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mengling Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Jiawen Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuan Qin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - She Men
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zhengxiu Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Haozhe Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
10
|
Vo NNT, Yang A, Leesutthiphonchai W, Liu Y, Hughes TR, Judelson HS. Transcription factor binding specificities of the oomycete Phytophthora infestans reflect conserved and divergent evolutionary patterns and predict function. BMC Genomics 2024; 25:710. [PMID: 39044130 PMCID: PMC11267843 DOI: 10.1186/s12864-024-10630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.
Collapse
Affiliation(s)
- Nguyen N T Vo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Ally Yang
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wiphawee Leesutthiphonchai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
- Current address: Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Yulong Liu
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
11
|
Yuan Y, Zeng L, Kong D, Mao Y, Xu Y, Wang M, Zhao Y, Jiang CZ, Zhang Y, Sun D. Abscisic acid-induced transcription factor PsMYB306 negatively regulates tree peony bud dormancy release. PLANT PHYSIOLOGY 2024; 194:2449-2471. [PMID: 38206196 PMCID: PMC10980420 DOI: 10.1093/plphys/kiae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024]
Abstract
Bud dormancy is a crucial strategy for perennial plants to withstand adverse winter conditions. However, the regulatory mechanism of bud dormancy in tree peony (Paeonia suffruticosa) remains largely unknown. Here, we observed dramatically reduced and increased accumulation of abscisic acid (ABA) and bioactive gibberellins (GAs) GA1 and GA3, respectively, during bud endodormancy release of tree peony under prolonged chilling treatment. An Illumina RNA sequencing study was performed to identify potential genes involved in the bud endodormancy regulation in tree peony. Correlation matrix, principal component, and interaction network analyses identified a downregulated MYB transcription factor gene, PsMYB306, the expression of which positively correlated with 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (PsNCED3) expression. Protein modeling analysis revealed 4 residues within the R2R3 domain of PsMYB306 to possess DNA binding capability. Transcription of PsMYB306 was increased by ABA treatment. Overexpression of PsMYB306 in petunia (Petunia hybrida) inhibited seed germination and plant growth, concomitant with elevated ABA and decreased GA contents. Silencing of PsMYB306 accelerated cold-triggered tree peony bud burst and influenced the production of ABA and GAs and the expression of their biosynthetic genes. ABA application reduced bud dormancy release and transcription of ENT-KAURENOIC ACID OXIDASE 1 (PsKAO1), GA20-OXIDASE 1 (PsGA20ox1), and GA3-OXIDASE 1 (PsGA3ox1) associated with GA biosynthesis in PsMYB306-silenced buds. In vivo and in vitro binding assays confirmed that PsMYB306 specifically transactivated the promoter of PsNCED3. Silencing of PsNCED3 also promoted bud break and growth. Altogether, our findings suggest that PsMYB306 negatively modulates cold-induced bud endodormancy release by regulating ABA production.
Collapse
Affiliation(s)
- Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingling Zeng
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Derong Kong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanxiang Mao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingru Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Zhao H, Ma J, Tang Y, Ma X, Li J, Li H, Liu Z. Genome-wide DNA N6-methyladenosine in Aeromonas veronii and Helicobacter pylori. BMC Genomics 2024; 25:161. [PMID: 38331763 PMCID: PMC10854192 DOI: 10.1186/s12864-024-10074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND DNA N6-methyladenosine (6mA), as an important epigenetic modification, widely exists in bacterial genomes and participates in the regulation of toxicity, antibiotic resistance, and antioxidant. With the continuous development of sequencing technology, more 6mA sites have been identified in bacterial genomes, but few studies have focused on the distribution characteristics of 6mA at the whole-genome level and its association with gene expression and function. RESULTS This study conducted an in-depth analysis of the 6mA in the genomes of two pathogenic bacteria, Aeromonas veronii and Helicobacter pylori. The results showed that the 6mA was widely distributed in both strains. In A. veronii, 6mA sites were enriched at 3' end of protein-coding genes, exhibiting a certain inhibitory effect on gene expression. Genes with low 6mA density were associated with cell motility. While in H. pylori, 6mA sites were enriched at 5' end of protein-coding genes, potentially enhancing gene expression. Genes with low 6mA density were closely related to defense mechanism. CONCLUSIONS This study elucidated the distribution characteristics of 6mA in A. veronii and H. pylori, highlighting the effects of 6mA on gene expression and function. These findings provide valuable insights into the epigenetic regulation and functional characteristics of A. veronii and H. pylori.
Collapse
Affiliation(s)
- Honghao Zhao
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Jiayue Ma
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Hong Li
- School of Life and Health Sciences, Hainan University, Haikou, China.
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou, China.
| |
Collapse
|
13
|
Chen W, Wang J, Wang Z, Zhu T, Zheng Y, Hawar A, Chang Y, Wang X, Li D, Wang G, Yang W, Zhao Y, Chen D, Yuan YA, Sun B. Capture of regulatory factors via CRISPR-dCas9 for mechanistic analysis of fine-tuned SERRATE expression in Arabidopsis. NATURE PLANTS 2024; 10:86-99. [PMID: 38168608 DOI: 10.1038/s41477-023-01575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/29/2023] [Indexed: 01/05/2024]
Abstract
SERRATE (SE) plays an important role in many biological processes and under biotic stress resistance. However, little about the control of SE has been clarified. Here we present a method named native chromatin-associated proteome affinity by CRISPR-dCas9 (CASPA-dCas9) to holistically capture native regulators of the SE locus. Several key regulatory factors including PHYTOCHROME RAPIDLY REGULATED 2 (PAR2), WRKY DNA-binding protein 19 (WRKY19) and the MYB-family protein MYB27 of SE are identified. MYB27 recruits the long non-coding RNA-PRC2 (SEAIR-PRC2) complex for H3K27me3 deposition on exon 1 of SE and subsequently represses SE expression, while PAR2-MYB27 interaction inhibits both the binding of MYB27 on the SE promoter and the recruitment of SEAIR-PRC2 by MYB27. The interaction between PAR2 and MYB27 fine-tunes the SE expression level at different developmental stages. In addition, PAR2 and WRKY19 synergistically promote SE expression for pathogen resistance. Collectively, our results demonstrate an efficient method to capture key regulators of target genes and uncover the precise regulatory mechanism for SE.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Jingyi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Zijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuchen Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Amangul Hawar
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yongsheng Chang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dongbao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guangling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wen Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanjie Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuren Adam Yuan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Bo Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Zhang L, Duan Z, Ma S, Sun S, Sun M, Xiao Y, Ni N, Irfan M, Chen L, Sun Y. SlMYB7, an AtMYB4-Like R2R3-MYB Transcription Factor, Inhibits Anthocyanin Accumulation in Solanum lycopersicum Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18758-18768. [PMID: 38012529 DOI: 10.1021/acs.jafc.3c05185] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Tomato is a horticultural crop with an incomplete flavonoid metabolic pathway that does not typically accumulate anthocyanins in the fruit. In recent years, intensive studies of the loci Anthocyanin fruit (Aft) and atroviolacium (atv) have clarified the functions of positive regulators (R2R3-MYBs) and a negative regulator (CPC-MYB) in anthocyanin biosynthesis in the fruits. However, little is known about the R2R3-MYB repressors. Here, we used transient overexpression analysis to show that SlMYB7, a subgroup 4 AtMYB4-like R2R3-MYB, inhibited anthocyanin accumulation and reduced expression of anthocyanin synthase genes in the 'black pearl' tomato fruits, which usually accumulate high concentrations of anthocyanins. These findings revealed that SlMYB7 served as a repressor of anthocyanin production. Furthermore, SlMYB7 actively repressed SlANS expression by binding its promoter and passively inhibited anthocyanin synthesis by interacting with the basic helix-loop-helix (bHLH) proteins SlJAF13 and SlAN1, which are involved in the formation of MBW complexes. Thus, SlMYB7 and the MBW complex may coregulate the anthocyanin content of 'black pearl' tomato fruits via a negative feedback loop. These findings provide a theoretical basis for the future enhancement of tomato anthocyanin contents through genetic manipulation of the biosynthetic regulatory network.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Zedi Duan
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Shuang Ma
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
- College of Life Engineering, Shenyang Institute of Technology, Liaoning 110866, China
| | - Shaokun Sun
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Minghui Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Yunhong Xiao
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Na Ni
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha 40100, Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| | - Yibo Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Liaoning 110161, China
| |
Collapse
|
15
|
An Y, Li Y, Ma L, Li D, Zhang W, Feng Y, Liu Z, Wang X, Wen X, Zhang X. Transcriptomic response of Pinus massoniana to infection stress from the pine wood nematode Bursaphelenchus xylophilus. STRESS BIOLOGY 2023; 3:50. [PMID: 37991550 PMCID: PMC10665292 DOI: 10.1007/s44154-023-00131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
The pinewood nematode (PWN) Bursaphelenchus xylophilus is a forestry quarantine pest and causes an extremely dangerous forest disease that is spreading worldwide. Due to the complex pathogenic factors of pine wood nematode disease, the pathogenesis is still unknown. B. xylophilus ultimately invades a host and causes death. However, little is known about the defence-regulating process of host pine after infection by B. xylophilus at the molecular level. Therefore, we wanted to understand how Pinus massoniana regulates its response to invasion by B. xylophilus. P. massoniana were artificially inoculated with B. xylophilus solution, while those without B. xylophilus solution were used as controls. P. massoniana inoculated with B. xylophilus solution for 0 h, 6 h, 24 h, and 120 h was subjected to high-throughput sequencing to obtain transcriptome data. At various time points (0 h, 6 h, 24 h, 120 h), gene transcription was measured in P. massoniana inoculated with PWN. At different time points, P. massoniana gene transcription differed significantly, with a response to early invasion by PWN. According to Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, P. massoniana response to PWN invasion involves a wide range of genes, including plant hormone signal transformation, flavonoid biosynthesis, amino sugar and nucleoside sugar metabolism, and MAPK signalling pathways. Among them, inoculation for 120 hours had the greatest impact on differential genes. Subsequently, weighted gene coexpression network analysis (WGCNA) was used to analyse transcriptional regulation of P. massoniana after PWN infection. The results showed that the core gene module of P. massoniana responding to PWN was "MEmagenta", enriched in oxidative phosphorylation, amino sugar and nucleotide sugar metabolism, and the MAPK signalling pathway. MYB family transcription factors with the highest number of changes between infected and healthy pine trees accounted for 20.4% of the total differentially expressed transcription factors. To conclude, this study contributes to our understanding of the molecular mechanism of initial PWN infection of P. massoniana. Moreover, it provides some important background information on PWN pathogenic mechanisms.
Collapse
Affiliation(s)
- Yibo An
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Chongqing Forestry Investment and Development Co., Ltd., National Forestry and Grassland National Reserve Forest Engineering Technology Research Center, Chongqing, 401120, China
- Northeast Forestry University, College of Forestry, Harbin, 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Ling Ma
- Northeast Forestry University, College of Forestry, Harbin, 150040, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, l00091, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
16
|
Li J, Xu S, Mei Y, Gu Y, Sun M, Zhang W, Wang J. Genomic-wide identification and expression analysis of R2R3-MYB transcription factors related to flavonol biosynthesis in Morinda officinalis. BMC PLANT BIOLOGY 2023; 23:381. [PMID: 37550611 PMCID: PMC10405574 DOI: 10.1186/s12870-023-04394-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The R2R3-MYB transcription factors are a crucial and extensive gene family in plants, which participate in diverse processes, including development, metabolism, defense, differentiation, and stress response. In the Lingnan region of China, Morinda officinalis is extensively grown and is renowned for its use as both a medicinal herb and food source. However, there are relatively few reports on the R2R3-MYB transcription factor family in M.officinalis. RESULTS In this study, we identified 97 R2R3-MYB genes in the genome of Morinda officinalis and classified them into 32 subgroups based on phylogenetic comparison with Arabidopsis thaliana. The lack of recent whole-genome duplication events in M.officinalis may be the reason for the relatively few members of the R2R3-MYB family. We also further analyzed the physical and chemical characteristics, conserved motifs, gene structure, and chromosomal location. Gene duplication events found 21 fragment duplication pairs and five tandem duplication event R2R3-MYB genes in M.officinalis may also affect gene family expansion. Based on phylogenetic analysis, cis-element analysis, co-expression analysis and RT-qPCR, we concluded that MoMYB33 might modulate flavonol levels by regulating the expression of 4-coumarate-CoA ligase Mo4CL2, chalcone isomerase MoCHI3, and flavonol synthase MoFLS4/11/12. MoMYB33 and AtMYB111 showed the highest similarity of 79% and may be involved in flavonol synthase networks by the STRING database. Moreover, we also identified MoMYB genes that respond to methyl Jasmonate (MeJA) and abscisic acid (ABA) stress by RT-qPCR. CONCLUSIONS This study offers a thorough comprehension of R2R3-MYB in M.officinalis, which lays the foundation for the regulation of flavonol synthesis and the response of MoMYB genes to phytohormones in M.officinalis.
Collapse
Affiliation(s)
- Jingyu Li
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Shiqiang Xu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yu Mei
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Yan Gu
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Mingyang Sun
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crop Research Institute, Guangdong Academy of Agriculture Sciences, Guangzhou, 510640, China.
- Guangdong Provincial Engineering and Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Li G, Cheng L, Li Z, Zhao Y, Wang Y. Over-expression of CcMYB24, encoding a R2R3-MYB transcription factor from a high-leaf-number mutant of Cymbidium, increases the number of leaves in Arabidopsis. PeerJ 2023; 11:e15490. [PMID: 37273531 PMCID: PMC10239231 DOI: 10.7717/peerj.15490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Ornamental foliage plants have long been cultivated for their attractive leaves. Variation in leaf traits of ornamental foliage plants is one of the goals in breeding. MYB transcription factors regulate many aspects of leaf development, and thus influence morphological traits of leaves. However, little is known about the function of MYB transcription factors in leaf development of Cymbidium, one of the most economically important ornamental plants in the world. In the present study, a MYB transcription factor, CcMYB24, was identified and the corresponding gene cloned from a new orchid mutant, TRIR-2, which produces more leaves than control plants. The CcMYB24 showed a higher expression level in 'TRIR-2' than in control plants, and the protein was located in the nucleus. The sequence of CcMYB24 showed a high similarity with RAX2-like genes which belong to the R2R3-MYB gene family in other Cymbidium plants. Overexpression of CcMYB24 resulted in a phenotype with an increased number of leaves, elevated chlorophyll content, and decreased contents of carotenoids and flavonoids in Arabidopsis. These results provide functional evidence for the role of CcMYB24 in promoting the production of leaves in 'TRIR-2'. Understanding the role of CcMYB24 in Cymbidium will be beneficial for the molecular breeding of ornamental foliage plants.
Collapse
|
18
|
Cao Y, Fan T, Wang L, Zhang L, Li Y. Large-scale analysis of putative Euphorbiaceae R2R3-MYB transcription factors identifies a MYB involved in seed oil biosynthesis. BMC PLANT BIOLOGY 2023; 23:145. [PMID: 36927311 PMCID: PMC10022305 DOI: 10.1186/s12870-023-04163-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND MYB transcription factors are widely distributed in the plant kingdom and play key roles in regulatory networks governing plant metabolism and biochemical and physiological processes. RESULTS Here, we first determined the R2R3-MYB genes in five Euphorbiaceae genomes. The three Trp (W) residues from the first MYB domain (R2) were absolutely conserved, whereas the first W residue from the second MYB domain (R3) was preferentially mutated. The R2R3-MYBs were clustered into 48 functional subfamilies, of which 34 had both R2R3-MYBs of Euphorbiaceae species and AtMYBs, and four contained only Euphorbiaceae R2R3-MYBs. The whole-genome duplication (WGD) and/or segmental duplication (SD) played key roles in the expansion of the R2R3-MYB family. Unlike paralogous R2R3-MYB family members, orthologous R2R3-MYB members contained a higher selective pressure and were subject to a constrained evolutionary rate. VfMYB36 was specifically expressed in fruit, and its trend was consistent with the change in oil content, indicating that it might be involved in oil biosynthesis. Overexpression experiments showed that VfMYB36 could significantly provide linolenic acid (C18:3) content, which eventually led to a significant increase in oil content. CONCLUSION Our study first provides insight into understanding the evolution and expression of R2R3-MYBs in Euphorbiaceae species, and also provides a target for the production of biomass diesel and a convenient way for breeding germplasm resources with high linolenic acid content in the future.
Collapse
Affiliation(s)
- Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, 430074 Wuhan, China
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Tingting Fan
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 056009 Handan, China
| | - Lin Zhang
- School of Health and Nursing, Wuchang University of Technology, Wuhan, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, 430065 Wuhan, China
| | - Yanli Li
- Forestry College, Central South University of Forestry and Technology, 410004 Changsha, Hunan China
| |
Collapse
|
19
|
Pratyusha DS, Sarada DVL. MYB transcription factors-master regulators of phenylpropanoid biosynthesis and diverse developmental and stress responses. PLANT CELL REPORTS 2022; 41:2245-2260. [PMID: 36171500 DOI: 10.1007/s00299-022-02927-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Phenylpropanoids, the largest class of natural products including flavonoids, anthocyanins, monolignols and tannins perform multiple functions ranging from photosynthesis, nutrient uptake, regulating growth, cell division, maintenance of redox homeostasis and biotic and abiotic stress responses. Being sedentary life forms, plants possess several regulatory modules that increase their performance in varying environments by facilitating activation of several signaling cascades upon perception of developmental and stress signals. Of the various regulatory modules, those involving MYB transcription factors are one of the extensive groups involved in regulating the phenylpropanoid metabolic enzymes in addition to other genes. R2R3 MYB transcription factors are a class of plant-specific transcription factors that regulate the expression of structural genes involved in anthocyanin, flavonoid and monolignol biosynthesis which are indispensable to several developmental pathways and stress responses. The aim of this review is to present the regulation of the phenylpropanoid pathway by MYB transcription factors via Phospholipase D/phosphatidic acid signaling, downstream activation of the structural genes, leading to developmental and/or stress responses. Specific MYB transcription factors inducing or repressing specific structural genes of anthocyanin, flavonoid and lignin biosynthetic pathways are discussed. Further the roles of MYB in activating biotic and abiotic stress responses are delineated. While several articles have reported the role of MYB's in stress responses, they are restricted to two or three specific MYB factors. This review is a consolidation of the diverse roles of different MYB transcription factors involved both in induction and repression of anthocyanin, flavonoid, and lignin biosynthesis.
Collapse
Affiliation(s)
- Durvasula Sumana Pratyusha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - Dronamraju V L Sarada
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
20
|
Wang B, Luo Q, Li Y, Du K, Wu Z, Li T, Shen WH, Huang CH, Gan J, Dong A. Structural insights into partner selection for MYB and bHLH transcription factor complexes. NATURE PLANTS 2022; 8:1108-1117. [PMID: 35995835 DOI: 10.1038/s41477-022-01223-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
MYB and basic helix-loop-helix (bHLH) transcription factors form complexes to regulate diverse metabolic and developmental processes in plants. However, the molecular mechanisms responsible for MYB-bHLH interaction and partner selection remain unclear. Here, we report the crystal structures of three MYB-bHLH complexes (WER-EGL3, CPC-EGL3 and MYB29-MYC3), uncovering two MYB-bHLH interaction modes. WER and CPC are R2R3- and R3-type MYBs, respectively, but interact with EGL3 through their N-terminal R3 domain in a similar mode. A single amino acid of CPC, Met49, is crucial for competition with WER to interact with EGL3. MYB29, a R2R3-type MYB transcription factor, interacts with MYC3 by its C-terminal MYC-interaction motif. The WER-EGL3 and MYB29-MYC3 binding modes are widely applied among MYB-bHLH complexes in Arabidopsis and evolve independently in plants.
Collapse
Affiliation(s)
- Baihui Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Yingping Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Kangxi Du
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Tianyang Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Institute of Plant Biology, Fudan University, Shanghai, P.R. China.
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, Fudan University, Shanghai, P.R. China.
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry and Biophysics, Institute of Plant Biology, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
21
|
Li H, Zhang N, Wang Y, Xia S, Zhu Y, Xing C, Tian X, Du Y. DNA N6-Methyladenine Modification in Eukaryotic Genome. Front Genet 2022; 13:914404. [PMID: 35812743 PMCID: PMC9263368 DOI: 10.3389/fgene.2022.914404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is treated as an important epigenetic mark in various biological activities. In the past, a large number of articles focused on 5 mC while lacking attention to N6-methyladenine (6 mA). The presence of 6 mA modification was previously discovered only in prokaryotes. Recently, with the development of detection technologies, 6 mA has been found in several eukaryotes, including protozoans, metazoans, plants, and fungi. The importance of 6 mA in prokaryotes and single-celled eukaryotes has been widely accepted. However, due to the incredibly low density of 6 mA and restrictions on detection technologies, the prevalence of 6 mA and its role in biological processes in eukaryotic organisms are highly debated. In this review, we first summarize the advantages and disadvantages of 6 mA detection methods. Then, we conclude existing reports on the prevalence of 6 mA in eukaryotic organisms. Next, we highlight possible methyltransferases, demethylases, and the recognition proteins of 6 mA. In addition, we summarize the functions of 6 mA in eukaryotes. Last but not least, we summarize our point of view and put forward the problems that need further research.
Collapse
Affiliation(s)
- Hao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
- First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuechen Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Siyuan Xia
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yating Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chen Xing
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xuefeng Tian
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du,
| |
Collapse
|
22
|
Ortiz-García P, Pérez-Alonso MM, González Ortega-Villaizán A, Sánchez-Parra B, Ludwig-Müller J, Wilkinson MD, Pollmann S. The Indole-3-Acetamide-Induced Arabidopsis Transcription Factor MYB74 Decreases Plant Growth and Contributes to the Control of Osmotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:928386. [PMID: 35812959 PMCID: PMC9257185 DOI: 10.3389/fpls.2022.928386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/10/2022] [Indexed: 05/27/2023]
Abstract
The accumulation of the auxin precursor indole-3-acetamide (IAM) in the ami1 mutant has recently been reported to reduce plant growth and to trigger abiotic stress responses in Arabidopsis thaliana. The observed response includes the induction of abscisic acid (ABA) biosynthesis through the promotion of NCED3 expression. The mechanism by which plant growth is limited, however, remained largely unclear. Here, we investigated the transcriptional responses evoked by the exogenous application of IAM using comprehensive RNA-sequencing (RNA-seq) and reverse genetics approaches. The RNA-seq results highlighted the induction of a small number of genes, including the R2R3 MYB transcription factor genes MYB74 and MYB102. The two MYB factors are known to respond to various stress cues and to ABA. Consistent with a role as negative plant growth regulator, conditional MYB74 overexpressor lines showed a considerable growth reduction. RNA-seq analysis of MYB74 mutants indicated an association of MYB74 with responses to osmotic stress, water deprivation, and seed development, which further linked MYB74 with the observed ami1 osmotic stress and seed phenotype. Collectively, our findings point toward a role for MYB74 in plant growth control and in responses to abiotic stress stimuli.
Collapse
Affiliation(s)
- Paloma Ortiz-García
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
| | - Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
- Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Adrián González Ortega-Villaizán
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
| | - Beatriz Sánchez-Parra
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
- Institute of Biology, University of Graz, Graz, Austria
| | | | - Mark D. Wilkinson
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas,Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA /CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
23
|
Liu L, Chao N, Yidilisi K, Kang X, Cao X. Comprehensive analysis of the MYB transcription factor gene family in Morus alba. BMC PLANT BIOLOGY 2022; 22:281. [PMID: 35676625 PMCID: PMC9175366 DOI: 10.1186/s12870-022-03626-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The V-myb myeloblastosis viral oncogene homolog (MYB) family of proteins is large, containing functionally diverse transcription factors. However, MYBs in Morus are still poorly annotated and a comprehensive functional analysis of these transcription factors is lacking. RESULTS In the present study, a genome-wide identification of MYBs in Morus alba was performed. In total 166 MaMYBs were identified, including 103 R2R3-MYBs and four 3R-MaMYBs. Comprehensive analyses, including the phylogenetic analysis with putative functional annotation, motif and structure analysis, gene structure organization, promoter analysis, chromosomal localization, and syntenic relationships of R2R3-MaMYBs and 3R-MaMYBs, provided primary characterization for these MaMYBs. R2R3-MaMYBs covered the subgroups reported for R2R3-MYBs in Arabidopsis and Populus, and had two Morus-specific subgroups, indicating the high retention of MYBs in Morus. Motif analysis revealed high conservative residues at the start and end of each helix and residues consisting of the third helix in R2 and R3 repeats. Thirteen intron/exon patterns (a-m) were summarized, and the intron/exon pattern of two introns with phase numbers of 0 and 2 was the prevalent pattern for R2R3-MaMYBs. Various cis-elements in promoter regions were identified, and were mainly related to light response, development, phytohormone response, and abiotic and biotic stress response and secondary metabolite production. Expression patterns of R2R3-MaMYBs in different organs showed that MaMYBs involved in secondary cell wall components and stress responsiveness were preferentially expressed in roots or stems. R2R3-MaMYBs involved in flavonoid biosynthesis and anthocyanin accumulation were identified and characterized based on functional annotation and correlation of their expression levels with anthocyanin contents. CONCLUSION Based on a comprehensive analysis, this work provided functional annotation for R2R3-MYBs and an informative reference for further functional dissection of MYBs in Morus.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China.
| | - Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Keermula Yidilisi
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Xu Cao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| |
Collapse
|
24
|
Bewg WP, Harding SA, Engle NL, Vaidya BN, Zhou R, Reeves J, Horn TW, Joshee N, Jenkins JW, Shu S, Barry KW, Yoshinaga Y, Grimwood J, Schmitz RJ, Schmutz J, Tschaplinski TJ, Tsai CJ. Multiplex knockout of trichome-regulating MYB duplicates in hybrid poplar using a single gRNA. PLANT PHYSIOLOGY 2022; 189:516-526. [PMID: 35298644 PMCID: PMC9157173 DOI: 10.1093/plphys/kiac128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 05/13/2023]
Abstract
As the focus for CRISPR/Cas-edited plants moves from proof-of-concept to real-world applications, precise gene manipulation will increasingly require concurrent multiplex editing for polygenic traits. A common approach for editing across multiple sites is to design one guide RNA (gRNA) per target; however, this complicates construct assembly and increases the possibility of off-target mutations. In this study, we utilized one gRNA to target MYB186, a known positive trichome regulator, as well as its paralogs MYB138 and MYB38 at a consensus site for mutagenesis in hybrid poplar (Populus tremula × P. alba INRA 717-1B4). Unexpected duplications of MYB186 and MYB138 resulted in eight alleles for the three targeted genes in the hybrid poplar. Deep sequencing and polymerase chain reaction analyses confirmed editing across all eight targets in nearly all of the resultant glabrous mutants, ranging from small indels to large genomic dropouts, with no off-target activity detected at four potential sites. This highlights the effectiveness of a single gRNA targeting conserved exonic regions for multiplex editing. Additionally, cuticular wax and whole-leaf analyses showed a complete absence of triterpenes in the trichomeless mutants, hinting at a previously undescribed role for the nonglandular trichomes of poplar.
Collapse
Affiliation(s)
- William P Bewg
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Nancy L Engle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Brajesh N Vaidya
- Department of Plant Science, Fort Valley State University, Georgia, 31030, USA
| | - Ran Zhou
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Jacob Reeves
- Department of Computer Science, University of Georgia, Athens, Georgia 30602, USA
| | - Thomas W Horn
- Department of Computer Science, University of Georgia, Athens, Georgia 30602, USA
| | - Nirmal Joshee
- Department of Plant Science, Fort Valley State University, Georgia, 31030, USA
| | - Jerry W Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Shengqiang Shu
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Yuko Yoshinaga
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, California 94720, USA
| | | | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, Georgia 30602, USA
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
25
|
Lal M, Bhardwaj E, Chahar N, Yadav S, Das S. Comprehensive analysis of 1R- and 2R-MYBs reveals novel genic and protein features, complex organisation, selective expansion and insights into evolutionary tendencies. Funct Integr Genomics 2022; 22:371-405. [PMID: 35260976 DOI: 10.1007/s10142-022-00836-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Myeloblastosis (MYB) family, the largest plant transcription factor family, has been subcategorised based on the number and type of repeats in the MYB domain. In spite of several reports, evolution of MYB genes and repeats remains enigmatic. Brassicaceae members are endowed with complex genomes, including dysploidy because of its unique history with multiple rounds of polyploidisation, genomic fractionations and rearrangements. The present study is an attempt to gain insights into the complexities of MYB family diversity, understand impacts of genome evolution on gene families and develop an evolutionary framework to understand the origin of various subcategories of MYB gene family. We identified and analysed 1129 MYBs that included 1R-, 2R-, 3R- and atypical-MYBs across sixteen species representing protists, fungi, animals and plants and exclude MYB identified from Brassicaceae except Arabidopsis thaliana; in addition, a total of 1137 2R-MYB genes from six Brassicaceae species were also analysed. Comparative analysis revealed predominance of 1R-MYBs in protists, fungi, animals and lower plants. Phylogenetic reconstruction and analysis of selection pressure suggested ancestral nature of R1-type repeat containing 1R-MYBs that might have undergone intragenic duplication to form multi-repeat MYBs. Distinct differences in gene structure between 1R-MYB and 2R-MYBs were observed regarding intron number, the ratio of gene length to coding DNA sequence (CDS) length and the length of exons encoding the MYB domain. Conserved as well as novel and lineage-specific intron phases were identified. Analyses of physicochemical properties revealed drastic differences indicating functional diversification in MYBs. Phylogenetic reconstruction of 1R- and 2R-MYB genes revealed a shared structure-function relationship in clades which was supported when transcriptome data was analysed in silico. Comparative genomics to study distribution pattern and mapping of 2R-MYBs revealed congruency and greater degree of synteny and collinearity among closely related species. Micro-synteny analysis of genomic segments revealed high conservation of genes that are immediately flanking the surrounding tandemly organised 2R-MYBs along with instances of local duplication, reorganisations and genome fractionation. In summary, polyploidy, dysploidy, reshuffling and genome fractionation were found to cause loss or gain of 2R-MYB genes. The findings need to be supported with functional validation to understand gene structure-function relationship along the evolutionary lineage and adaptive strategies based on comparative functional genomics in plants.
Collapse
Affiliation(s)
- Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Nishu Chahar
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Shobha Yadav
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
26
|
Wu Y, Wen J, Xia Y, Zhang L, Du H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. HORTICULTURE RESEARCH 2022; 9:uhac058. [PMID: 35591925 PMCID: PMC9113232 DOI: 10.1093/hr/uhac058] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 05/31/2023]
Abstract
R2R3-MYB genes (R2R3-MYBs) form one of the largest transcription factor gene families in the plant kingdom, with substantial structural and functional diversity. However, the evolutionary processes leading to this amazing functional diversity have not yet been clearly established. Recently developed genomic and classical molecular technologies have provided detailed insights into the evolutionary relationships and functions of plant R2R3-MYBs. Here, we review recent genome-level and functional analyses of plant R2R3-MYBs, with an emphasis on their evolution and functional diversification. In land plants, this gene family underwent a large expansion by whole genome duplications and small-scale duplications. Along with this population explosion, a series of functionally conserved or lineage-specific subfamilies/groups arose with roles in three major plant-specific biological processes: development and cell differentiation, specialized metabolism, and biotic and abiotic stresses. The rapid expansion and functional diversification of plant R2R3-MYBs are highly consistent with the increasing complexity of angiosperms. In particular, recently derived R2R3-MYBs with three highly homologous intron patterns (a, b, and c) are disproportionately related to specialized metabolism and have become the predominant subfamilies in land plant genomes. The evolution of plant R2R3-MYBs is an active area of research, and further studies are expected to improve our understanding of the evolution and functional diversification of this gene family.
Collapse
Affiliation(s)
- Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
27
|
Szymczyk P, Szymańska G, Kuźma Ł, Jeleń A, Balcerczak E. Methyl Jasmonate Activates the 2C Methyl-D-erithrytol 2,4-cyclodiphosphate Synthase Gene and Stimulates Tanshinone Accumulation in Salvia miltiorrhiza Solid Callus Cultures. Molecules 2022; 27:molecules27061772. [PMID: 35335134 PMCID: PMC8950807 DOI: 10.3390/molecules27061772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 01/25/2023] Open
Abstract
The present study characterizes the 5′ regulatory region of the SmMEC gene. The isolated fragment is 1559 bp long and consists of a promoter, 5′UTR and 31 nucleotide 5′ fragments of the CDS region. In silico bioinformatic analysis found that the promoter region contains repetitions of many potential cis-active elements. Cis-active elements associated with the response to methyl jasmonate (MeJa) were identified in the SmMEC gene promoter. Co-expression studies combined with earlier transcriptomic research suggest the significant role of MeJa in SmMEC gene regulation. These findings were in line with the results of the RT-PCR test showing SmMEC gene expression induction after 72 h of MeJa treatment. Biphasic total tanshinone accumulation was observed following treatment of S. miltiorrhiza solid callus cultures with 50–500 μM methyl jasmonate, with peaks observed after 10–20 and 50–60 days. An early peak of total tanshinone concentration (0.08%) occurred after 20 days of 100 μM MeJa induction, and a second, much lower one, was observed after 50 days of 50 μM MeJa stimulation (0.04%). The dominant tanshinones were cryptotanshinone (CT) and dihydrotanshinone (DHT). To better understand the inducing effect of MeJa treatment on tanshinone biosynthesis, a search was performed for methyl jasmonate-responsive cis-active motifs in the available sequences of gene proximal promoters associated with terpenoid precursor biosynthesis. The results indicate that MeJa has the potential to induce a significant proportion of the presented genes, which is in line with available transcriptomic and RT-PCR data.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
- Correspondence:
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland; (A.J.); (E.B.)
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland; (A.J.); (E.B.)
| |
Collapse
|
28
|
Genome-Wide Prediction of Transcription Start Sites in Conifers. Int J Mol Sci 2022; 23:ijms23031735. [PMID: 35163661 PMCID: PMC8836283 DOI: 10.3390/ijms23031735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The identification of promoters is an essential step in the genome annotation process, providing a framework for gene regulatory networks and their role in transcription regulation. Despite considerable advances in the high-throughput determination of transcription start sites (TSSs) and transcription factor binding sites (TFBSs), experimental methods are still time-consuming and expensive. Instead, several computational approaches have been developed to provide fast and reliable means for predicting the location of TSSs and regulatory motifs on a genome-wide scale. Numerous studies have been carried out on the regulatory elements of mammalian genomes, but plant promoters, especially in gymnosperms, have been left out of the limelight and, therefore, have been poorly investigated. The aim of this study was to enhance and expand the existing genome annotations using computational approaches for genome-wide prediction of TSSs in the four conifer species: loblolly pine, white spruce, Norway spruce, and Siberian larch. Our pipeline will be useful for TSS predictions in other genomes, especially for draft assemblies, where reliable TSS predictions are not usually available. We also explored some of the features of the nucleotide composition of the predicted promoters and compared the GC properties of conifer genes with model monocot and dicot plants. Here, we demonstrate that even incomplete genome assemblies and partial annotations can be a reliable starting point for TSS annotation. The results of the TSS prediction in four conifer species have been deposited in the Persephone genome browser, which allows smooth visualization and is optimized for large data sets. This work provides the initial basis for future experimental validation and the study of the regulatory regions to understand gene regulation in gymnosperms.
Collapse
|
29
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
30
|
Zhou LJ, Geng Z, Wang Y, Wang Y, Liu S, Chen C, Song A, Jiang J, Chen S, Chen F. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in chrysanthemum. HORTICULTURE RESEARCH 2021; 8:248. [PMID: 34848687 PMCID: PMC8633327 DOI: 10.1038/s41438-021-00675-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 05/27/2023]
Abstract
Flavones are among the major colorless pigments synthesized through branches of the flavonoid pathway in plants. However, due to the absence of a gene encoding flavone synthase (FNS) in the model plant Arabidopsis thaliana species, the regulatory mechanism of FNS-catalyzed flavone biosynthesis has rarely been studied in plants. Here, it was found that flavones play a predominant role in the elimination of excess reactive oxygen species (ROS) at high temperatures in colorless plant organs. A novel atypical subgroup 7 (SG7) R2R3-MYB transcription factor, CmMYB012, was found to be induced in response to prolonged high temperatures and to inhibit flavone biosynthesis by directly regulating CmFNS. Moreover, CmMYB012 was also found to inhibit anthocyanin biosynthesis by suppressing the expression of CmCHS, CmDFR, CmANS, and CmUFGT. CmMYB012 overexpression exerted a negative influence on plant fitness and pink flower color formation, while CmMYB012 suppression had the opposite effect in response to high temperatures. Our findings provide new insights into the mechanisms by which high temperatures regulate the metabolism of flavones and anthocyanins to affect plant fitness and flower color formation.
Collapse
Affiliation(s)
- Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shenhui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chuwen Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
31
|
Lee S, Völz R, Song H, Harris W, Lee YH. Characterization of the MYB Genes Reveals Insights Into Their Evolutionary Conservation, Structural Diversity, and Functional Roles in Magnaporthe oryzae. Front Microbiol 2021; 12:721530. [PMID: 34899620 PMCID: PMC8660761 DOI: 10.3389/fmicb.2021.721530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
The myeloblastosis (MYB) transcription factor family is evolutionarily conserved among plants, animals, and fungi, and contributes to their growth and development. We identified and analyzed 10 putative MYB genes in Magnaporthe oryzae (MoMYB) and determined their phylogenetic relationships, revealing high divergence and variability. Although MYB domains are generally defined by three tandem repeats, MoMYBs contain one or two weakly conserved repeats embedded in extensive disordered regions. We characterized the secondary domain organization, disordered segments, and functional contributions of each MoMYB. During infection, MoMYBs are distinctively expressed and can be subdivided into two clades of being either up- or down-regulated. Among these, MoMYB1 and MoMYB8 are up-regulated during infection and vegetative growth, respectively. We found MoMYB1 localized predominantly to the cytosol during the formation of infection structures. ΔMomyb1 exhibited reduced virulence on intact rice leaves corresponding to the diminished ability to form hypha-driven appressorium (HDA). We discovered that MoMYB1 regulates HDA formation on hard, hydrophobic surfaces, whereas host surfaces partially restored HDA formation in ΔMomyb1. Lipid droplet accumulation in hyphal tips and expression of HDA-associated genes were strongly perturbed in ΔMomyb1 indicating genetic interaction of MoMYB1 with downstream components critical to HDA formation. We also found that MoMYB8 is necessary for fungal growth, dark-induced melanization of hyphae, and involved in higher abiotic stress tolerance. Taken together, we revealed a multifaceted picture of the MoMYB family, wherein a low degree of conservation has led to the development of distinct structures and functions, ranging from fungal growth to virulence.
Collapse
Affiliation(s)
- Sehee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Völz
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Islam MQ, Hasan MN, Hoque H, Jewel NA, Bhuiyan MFH, Prodhan SH. Characterization of transcription factor MYB59 and expression profiling in response to low K + and NO 3- in indica rice (Oryza sativa L.). J Genet Eng Biotechnol 2021; 19:167. [PMID: 34704216 PMCID: PMC8548439 DOI: 10.1186/s43141-021-00248-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/18/2021] [Indexed: 11/11/2022]
Abstract
Background Nitrogen and potassium are crucial supplements for plant development and growth. Plants can detect potassium and nitrate ions in soils and in like way, they modify root-to-shoot transport of these ions to adjust the conveyance among roots and shoots. Transcription factor MYB59 plays essential roles in numerous physiological processes inclusive of hormone response, abiotic stress tolerance, plant development, and metabolic regulation. In this study, we retrieved 56 MYB59 proteins from different plant species. Multiple sequence alignment, phylogenetic tree, conserved motif, chromosomal localization, and cis-regulatory elements of the retrieved sequences were analyzed. Gene structure, protein 3D structure, and DNA binding of OsMYB59 indica were also predicted. Finally, we characterized OsMYB59 and its function under low K+/NO3− conditions in Oryza sativa subsp. indica. Results Data analysis showed that MYB59s from various groups separated in terms of conserved functional domains and gene structure, where members of genus Oryza clustered together. Plants showed reduced height and yellowish appearance when grown on K+ and NO3− deficient medium. Quantitative real-time PCR uncovered that the OsMYB59 reacted to abiotic stresses where its expression was increased in BRRI dhan56 but decreased in other varieties on K+ deficient medium. In addition, OsMYB59 transcript level increased on NO3− deficient medium. Conclusions Our results can help to explain the biological functions of indica rice MYB59 protein and gave a theoretical premise to additionally describe its biological roles in response to abiotic stresses particularly drought. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00248-6.
Collapse
Affiliation(s)
- Md Qamrul Islam
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Hammadul Hoque
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Nurnabi Azad Jewel
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Fahmid Hossain Bhuiyan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
33
|
Islam K, Rawoof A, Ahmad I, Dubey M, Momo J, Ramchiary N. Capsicum chinense MYB Transcription Factor Genes: Identification, Expression Analysis, and Their Conservation and Diversification With Other Solanaceae Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:721265. [PMID: 34721453 PMCID: PMC8548648 DOI: 10.3389/fpls.2021.721265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 05/27/2023]
Abstract
Myeloblastosis (MYB) genes are important transcriptional regulators of plant growth, development, and secondary metabolic biosynthesis pathways, such as capsaicinoid biosynthesis in Capsicum. Although MYB genes have been identified in Capsicum annuum, no comprehensive study has been conducted on other Capsicum species. We identified a total of 251 and 240 MYB encoding genes in Capsicum chinense MYBs (CcMYBs) and Capsicum baccatum MYBs (CbMYBs). The observation of twenty tandem and 41 segmental duplication events indicated expansion of the MYB gene family in the C. chinense genome. Five CcMYB genes, i.e., CcMYB101, CcMYB46, CcMYB6, CcPHR8, and CcRVE5, and two CaMYBs, i.e., CaMYB3 and CaHHO1, were found within the previously reported capsaicinoid biosynthesis quantitative trait loci. Based on phylogenetic analysis with tomato MYB proteins, the Capsicum MYBs were classified into 24 subgroups supported by conserved amino acid motifs and gene structures. Also, a total of 241 CcMYBs were homologous with 225 C. annuum, 213 C. baccatum, 125 potato, 79 tomato, and 23 Arabidopsis MYBs. Synteny analysis showed that all 251 CcMYBs were collinear with C. annuum, C. baccatum, tomato, potato, and Arabidopsis MYBs spanning over 717 conserved syntenic segments. Using transcriptome data from three fruit developmental stages, a total of 54 CcMYBs and 81 CaMYBs showed significant differential expression patterns. Furthermore, the expression of 24 CcMYBs from the transcriptome data was validated by quantitative real-time (qRT) PCR analysis. Eight out of the 24 CcMYBs validated by the qRT-PCR were highly expressed in fiery hot C. chinense than in the lowly pungent C. annuum. Furthermore, the co-expression analysis revealed several MYB genes clustered with genes from the capsaicinoid, anthocyanin, phenylpropanoid, carotenoid, and flavonoids biosynthesis pathways, and related to determining fruit shape and size. The homology modeling of 126 R2R3 CcMYBs showed high similarity with that of the Arabidopsis R2R3 MYB domain template, suggesting their potential functional similarity at the proteome level. Furthermore, we have identified simple sequence repeat (SSR) motifs in the CcMYB genes, which could be used in Capsicum breeding programs. The functional roles of the identified CcMYBs could be studied further so that they can be manipulated for Capsicum trait improvement.
Collapse
Affiliation(s)
- Khushbu Islam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abdul Rawoof
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilyas Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Meenakshi Dubey
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - John Momo
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
34
|
Jiu S, Guan L, Leng X, Zhang K, Haider MS, Yu X, Zhu X, Zheng T, Ge M, Wang C, Jia H, Shangguan L, Zhang C, Tang X, Abdullah M, Javed HU, Han J, Dong Z, Fang J. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1216-1239. [PMID: 33440072 PMCID: PMC8196647 DOI: 10.1111/pbi.13543] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 05/23/2023]
Abstract
In grape, MYBA1 and MYBA2 at the colour locus are the major genetic determinants of grape skin colour, and the mutation of two functional genes (VvMYBA1 and VvMYBA2) from these loci leads to white skin colour. This study aimed to elucidate the regulation of grape berry coloration by isolating and characterizing VvMYBA2w and VvMYBA2r alleles. The overexpression of VvMYBA2r up-regulated the expression of anthocyanin biosynthetic genes and resulted in higher anthocyanin accumulation in transgenic tobacco than wild-type (WT) plants, especially in flowers. However, the ectopic expression of VvMYBA2w inactivated the expression of anthocyanin biosynthetic genes and could not cause obvious phenotypic modulation in transgenic tobacco. Unlike in VvMYBA2r, CA dinucleotide deletion shortened the C-terminal transactivation region and disrupted the transcriptional activation activity of VvMYBA2w. The results indicated that VvMYBA2r positively regulated anthocyanin biosynthesis by forming the VvMYBA2r-VvMYCA1-VvWDR1 complex, and VvWDR1 enhanced anthocyanin accumulation by interacting with the VvMYBA2r-VvMYCA1 complex; however, R44 L substitution abolished the interaction of VvMYBA2w with VvMYCA1. Meanwhile, both R44 L substitution and CA dinucleotide deletion seriously affected the efficacy of VvMYBA2w to regulate anthocyanin biosynthesis, and the two non-synonymous mutations were additive in their effects. Investigation of the colour density and MYB haplotypes of 213 grape germplasms revealed that dark-skinned varieties tended to contain HapC-N and HapE2, whereas red-skinned varieties contained high frequencies of HapB and HapC-Rs. Regarding ploidy, the higher the number of functional alleles present in a variety, the darker was the skin colour. In summary, this study provides insight into the roles of VvMYBA2r and VvMYBA2w alleles and lays the foundation for the molecular breeding of grape varieties with different skin colour.
Collapse
Affiliation(s)
- Songtao Jiu
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Le Guan
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xiangpeng Leng
- College of HorticultureQingdao Agricultural UniversityQingdaoShandong ProvinceChina
| | - Kekun Zhang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xiang Yu
- School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xudong Zhu
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Ting Zheng
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Mengqing Ge
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Chen Wang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Lingfei Shangguan
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Caixi Zhang
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoping Tang
- Shanxi Academy of Agricultural Sciences Pomology InstituteTaiguShanxi ProvinceChina
| | - Muhammad Abdullah
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hafiz Umer Javed
- Department of Plant ScienceSchool of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Jian Han
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Zhigang Dong
- Shanxi Academy of Agricultural Sciences Pomology InstituteTaiguShanxi ProvinceChina
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit developmentCollege of HorticultureNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
35
|
Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci 2021; 22:ijms22115662. [PMID: 34073446 PMCID: PMC8199153 DOI: 10.3390/ijms22115662] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
Collapse
|
36
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
37
|
Wang L, Dossou SSK, Wei X, Zhang Y, Li D, Yu J, Zhang X. Transcriptome Dynamics during Black and White Sesame ( Sesamum indicum L.) Seed Development and Identification of Candidate Genes Associated with Black Pigmentation. Genes (Basel) 2020; 11:genes11121399. [PMID: 33255784 PMCID: PMC7768470 DOI: 10.3390/genes11121399] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022] Open
Abstract
Seed coat color is a crucial agronomic trait in sesame (Sesamum indicum L.) since it is strongly linked to seed oil, proteins, and lignans contents, and also influences consumer preferences. In East Asia, black sesame seed is used in the treatment and the prevention of various diseases. However, in sesame, little is known about the establishment of the seed coat color, and only one gene has been reported to control black pigmentation. This study provides an overview of developing seeds transcriptome of two varieties of sesame "Zhongfengzhi No.1" (white seed) and "Zhongzhi No.33" (black seed) and shed light on genes involving in black seed formation. Until eight days post-anthesis (DPA), both the seeds of the two varieties were white. The black sesame seed turned to yellow between 9 and 11 DPA and then black between 12 and 14 DPA. The black and white sesame showed similar trend-expressed genes with the numbers increased at the early stages of seed development. The differentially expressed genes (DEGs) number increased with seed development in the two sesame varieties. We examined the DEGs and uncovered that more were up-regulated at the early stages. The DEGs between the black and white sesame were mainly enriched in 37 metabolic pathways, among which the flavonoid biosynthesis and biosynthesis of secondary metabolites were dominants. Furthermore, we identified 20 candidate genes associated with pigment biosynthesis in black sesame seed, among which 10 were flavonoid biosynthesis and regulatory genes. These genes also include isochorismate and polyphenol oxidase genes. By comparing the phenotypes and genes expressions of the black and white sesame seed at different development stages, this work revealed the important role of 8-14 DPA in black pigment biosynthesis and accumulation. Moreover, it unfolded candidate genes associated with black pigmentation in sesame. These findings provide a vast transcriptome dataset and list of genes that will be targeted for functional studies related to the molecular mechanism involved in biosynthesis and regulation of seed coat color in sesame.
Collapse
Affiliation(s)
- Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Senouwa Segla Koffi Dossou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Xin Wei
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (L.W.); (S.S.K.D.); (Y.Z.); (D.L.); (J.Y.)
- Correspondence:
| |
Collapse
|