1
|
Quintero-Ruiz N, Corradi C, Moreno NC, de Souza TA, Menck CFM. UVA-light-induced mutagenesis in the exome of human nucleotide excision repair-deficient cells. Photochem Photobiol Sci 2025; 24:429-449. [PMID: 40063310 DOI: 10.1007/s43630-025-00697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025]
Abstract
Skin cancer is associated with genetic mutations caused by sunlight exposure, primarily through ultraviolet (UV) radiation that damages DNA. While UVA is less energetic, it is the predominant solar UV component reaching the Earth's surface. However, the mechanisms of UVA-induced mutagenesis and its role in skin cancer development remain poorly understood. This study employed whole exome sequencing of clones from human XP-C cells, which lack nucleotide excision repair (NER), to characterize somatic mutations induced by UVA exposure. DNA sequence analysis of UVA-irradiated XP-C cells revealed a marked increase in mutation frequency across nearly all types of base substitutions, with particular enrichment in C > T transitions within the CCN and TCN trinucleotide context-potential sites for pyrimidine dimer formation. The C > T mutation primarily occurred at the 3' base of the 5'TC dimer, and an enrichment of CC > TT tandem mutations. We also identified the SBS7b COSMIC mutational signature within irradiated cells, which has been associated with tumors in sun-exposed skin. C > A transversions, often linked to oxidized guanine, were the second most frequently induced mutation, although a specific context for this base substitution was not identified. Moreover, C > T mutations were significantly increased in unirradiated XP-C compared to NER-proficient cells, which may be caused by unrepaired spontaneous DNA damage. Thus, this study indicates that pyrimidine dimers are the primary lesions contributing to UVA-induced mutagenesis in NER-deficient human cells and demonstrates that UVA generates mutational signatures similar to those of UVB irradiation.
Collapse
Affiliation(s)
- Nathalia Quintero-Ruiz
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Faculty of Applied Science, Campinas University, Limeira, SP, Brazil
| | - Camila Corradi
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Natália Cestari Moreno
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Tiago Antonio de Souza
- Institute of Biomedical Sciences (Department of Microbiology), University of Sao Paulo, Sao Paulo, SP, Brazil
- Tau GC Bioinformatics, São Paulo, SP, Brazil
| | | |
Collapse
|
2
|
Leong S, Nasser H, Ikeda T. APOBEC3-Related Editing and Non-Editing Determinants of HIV-1 and HTLV-1 Restriction. Int J Mol Sci 2025; 26:1561. [PMID: 40004025 PMCID: PMC11855278 DOI: 10.3390/ijms26041561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3/A3) family of cytosine deaminases serves as a key innate immune barrier against invading retroviruses and endogenous retroelements. The A3 family's restriction activity against these parasites primarily arises from their ability to catalyze cytosine-to-uracil conversions, resulting in genome editing and the accumulation of lethal mutations in viral genomes. Additionally, non-editing mechanisms, including deaminase-independent pathways, such as blocking viral reverse transcription, have been proposed as antiviral strategies employed by A3 family proteins. Although viral factors can influence infection progression, the determinants that govern A3-mediated restriction are critical in shaping retroviral infection outcomes. This review examines the interactions between retroviruses, specifically human immunodeficiency virus type 1 and human T-cell leukemia virus type 1, and A3 proteins to better understand how editing and non-editing activities contribute to the trajectory of these retroviral infections.
Collapse
Affiliation(s)
- Sharee Leong
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
3
|
Chelico L, Adolph MB. Purification of enzymatically active APOBEC proteins from an insect cell expression system. Methods Enzymol 2024; 713:31-68. [PMID: 40250960 DOI: 10.1016/bs.mie.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The APOBEC cytidine/deoxycytidine deaminase family of enzymes has 11 members in humans. These enzymes carry out essential developmental, metabolic, and immunological functions through the deamination of cytosine to form uracil in RNA or single-stranded DNA. The known physiological functions relate to lipid absorption (APOBEC1), immunoglobulin gene diversification (AID), virus restriction (APOBEC3A-H, excluding E), and muscle differentiation (APOBEC2). The ability to characterize in vitro how APOBEC enzymes interact with and catalyze cytidine/deoxycytidine deamination of their substrate has provided key insights and understanding of their physiological functions. Having the most highly active and soluble enzyme to carry out in vitro experiments is essential. For APOBEC enzymes this requires purification from a mammalian or insect cell system. Since mammalian cell expression is lower than robustly engineered recombinant systems such as the Spodoptera frugiperda 9 (Sf9) and baculovirus systems, we have developed recombinant baculovirus expression and purification methods for APOBEC enzymes from Sf9 cells. The yield for all family members is suitable for biochemical assays, with some enzymes yielding milligram amounts (suitable for structural studies). Here we describe the expression and purification of APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3F, APOBEC3G, APOBEC3H (Haplotypes II, V, VII), and APOBEC1 using existing molecular biology reagents. We also describe how to clone a novel gene into the system for expression and purification. Due to different expression levels and solubility, three purification methods are detailed that enable high, medium, and low expressing APOBECs to be purified.
Collapse
Affiliation(s)
- Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Madison B Adolph
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
4
|
Yang H, Pacheco J, Kim K, Bokani A, Ito F, Ebrahimi D, Chen XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain. Nat Commun 2024; 15:8773. [PMID: 39389938 PMCID: PMC11467180 DOI: 10.1038/s41467-024-52671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
APOBEC3G, part of the AID/APOBEC cytidine deaminase family, is crucial for antiviral immunity. It has two zinc-coordinated cytidine-deaminase domains. The non-catalytic N-terminal domain strongly binds to nucleic acids, whereas the C-terminal domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains is not fully understood. Here, we show that DNA editing function of rhesus macaque APOBEC3G on linear and hairpin loop DNA is enhanced by AA or GA dinucleotide motifs present downstream in the 3'-direction of the target-C editing sites. The effective distance between AA/GA and the target-C sites is contingent on the local DNA secondary structure. We present two co-crystal structures of rhesus macaque APOBEC3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic domain in capturing AA/GA DNA. Our findings elucidate the molecular mechanism of APOBEC3G's cooperative function, which is critical for its antiviral role and its contribution to mutations in cancer genomes.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ayub Bokani
- School of Engineering and Technology, CQUniversity, Sydney, NSW, 2000, Australia
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Los Angeles, CA, 90033, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90033, USA.
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Brown GW. The cytidine deaminase APOBEC3C has unique sequence and genome feature preferences. Genetics 2024; 227:iyae092. [PMID: 38946641 DOI: 10.1093/genetics/iyae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.
Collapse
Affiliation(s)
- Grant W Brown
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, Canada M5S 1A8
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
6
|
Yang H, Pacheco J, Kim K, Ebrahimi D, Ito F, Chen XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584510. [PMID: 38559028 PMCID: PMC10980023 DOI: 10.1101/2024.03.11.584510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
APOBEC3G (A3G) belongs to the AID/APOBEC cytidine deaminase family and is essential for antiviral immunity. It contains two zinc-coordinated cytidine-deaminase (CD) domains. The N-terminal CD1 domain is non-catalytic but has a strong affinity for nucleic acids, whereas the C-terminal CD2 domain catalyzes C-to-U editing in single-stranded DNA. The interplay between the two domains in DNA binding and editing is not fully understood. Here, our studies on rhesus macaque A3G (rA3G) show that the DNA editing function in linear and hairpin loop DNA is greatly enhanced by AA or GA dinucleotide motifs present downstream (in the 3'-direction) but not upstream (in the 5'-direction) of the target-C editing sites. The effective distance between AA/GA and the target-C sites depends on the local DNA secondary structure. We present two co-crystal structures of rA3G bound to ssDNA containing AA and GA, revealing the contribution of the non-catalytic CD1 domain in capturing AA/GA DNA and explaining our biochemical observations. Our structural and biochemical findings elucidate the molecular mechanism underlying the cooperative function between the non-catalytic and the catalytic domains of A3G, which is critical for its antiviral role and its contribution to genome mutations in cancer.
Collapse
Affiliation(s)
- Hanjing Yang
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Josue Pacheco
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Diako Ebrahimi
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Fumiaki Ito
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA90095, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Sievers BL, Cheng MTK, Csiba K, Meng B, Gupta RK. SARS-CoV-2 and innate immunity: the good, the bad, and the "goldilocks". Cell Mol Immunol 2024; 21:171-183. [PMID: 37985854 PMCID: PMC10805730 DOI: 10.1038/s41423-023-01104-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
An ancient conflict between hosts and pathogens has driven the innate and adaptive arms of immunity. Knowledge about this interplay can not only help us identify biological mechanisms but also reveal pathogen vulnerabilities that can be leveraged therapeutically. The humoral response to SARS-CoV-2 infection has been the focus of intense research, and the role of the innate immune system has received significantly less attention. Here, we review current knowledge of the innate immune response to SARS-CoV-2 infection and the various means SARS-CoV-2 employs to evade innate defense systems. We also consider the role of innate immunity in SARS-CoV-2 vaccines and in the phenomenon of long COVID.
Collapse
Affiliation(s)
| | - Mark T K Cheng
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kata Csiba
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bo Meng
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Medina-Munoz HC, Kofman E, Jagannatha P, Boyle EA, Yu T, Jones KL, Mueller JR, Lykins GD, Doudna AT, Park SS, Blue SM, Ranzau BL, Kohli RM, Komor AC, Yeo GW. Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies. Nat Commun 2024; 15:875. [PMID: 38287010 PMCID: PMC10825223 DOI: 10.1038/s41467-024-45009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.
Collapse
Affiliation(s)
- Hugo C Medina-Munoz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Evan A Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten L Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Grace D Lykins
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew T Doudna
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel S Park
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brodie L Ranzau
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Budzko L, Hoffa-Sobiech K, Jackowiak P, Figlerowicz M. Engineered deaminases as a key component of DNA and RNA editing tools. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102062. [PMID: 38028200 PMCID: PMC10661471 DOI: 10.1016/j.omtn.2023.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Over recent years, zinc-dependent deaminases have attracted increasing interest as key components of nucleic acid editing tools that can generate point mutations at specific sites in either DNA or RNA by combining a targeting module (such as a catalytically impaired CRISPR-Cas component) and an effector module (most often a deaminase). Deaminase-based molecular tools are already being utilized in a wide spectrum of therapeutic and research applications; however, their medical and biotechnological potential seems to be much greater. Recent reports indicate that the further development of nucleic acid editing systems depends largely on our ability to engineer the substrate specificity and catalytic activity of the editors themselves. In this review, we summarize the current trends and achievements in deaminase engineering. The presented data indicate that the potential of these enzymes has not yet been fully revealed or understood. Several examples show that even relatively minor changes in the structure of deaminases can give them completely new and unique properties.
Collapse
Affiliation(s)
- Lucyna Budzko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Karolina Hoffa-Sobiech
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paulina Jackowiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
10
|
Eckenroth BE, Bumgarner JD, Matsumoto-Elliott O, David S, Doublié S. Structural and biochemical insights into NEIL2's preference for abasic sites. Nucleic Acids Res 2023; 51:12508-12521. [PMID: 37971311 PMCID: PMC10711445 DOI: 10.1093/nar/gkad1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
Cellular DNA is subject to damage from a multitude of sources and repair or bypass of sites of damage utilize an array of context or cell cycle dependent systems. The recognition and removal of oxidatively damaged bases is the task of DNA glycosylases from the base excision repair pathway utilizing two structural families that excise base lesions in a wide range of DNA contexts including duplex, single-stranded and bubble structures arising during transcription. The mammalian NEIL2 glycosylase of the Fpg/Nei family excises lesions from each of these DNA contexts favoring the latter two with a preference for oxidized cytosine products and abasic sites. We have determined the first liganded crystal structure of mammalian NEIL2 in complex with an abasic site analog containing DNA duplex at 2.08 Å resolution. Comparison to the unliganded structure revealed a large interdomain conformational shift upon binding the DNA substrate accompanied by local conformational changes in the C-terminal domain zinc finger and N-terminal domain void-filling loop necessary to position the enzyme on the DNA. The detailed biochemical analysis of NEIL2 with an array of oxidized base lesions indicates a significant preference for its lyase activity likely to be paramount when interpreting the biological consequences of variants.
Collapse
Affiliation(s)
- Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Joshua D Bumgarner
- Department of Chemistry and Graduate Program in Chemistry and Chemical Biology, University of California Davis, Davis, CA 95616, USA
| | - Olivia Matsumoto-Elliott
- Department of Chemistry and Graduate Program in Chemistry and Chemical Biology, University of California Davis, Davis, CA 95616, USA
| | - Sheila S David
- Department of Chemistry and Graduate Program in Chemistry and Chemical Biology, University of California Davis, Davis, CA 95616, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| |
Collapse
|
11
|
Kurkowiak M, Fletcher S, Daniels A, Mozolewski P, Silvestris DA, Król E, Marek-Trzonkowska N, Hupp T, Tait-Burkard C. Differential RNA editing landscapes in host cell versus the SARS-CoV-2 genome. iScience 2023; 26:108031. [PMID: 37876814 PMCID: PMC10590966 DOI: 10.1016/j.isci.2023.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The SARS-CoV-2 pandemic was defined by the emergence of new variants formed through virus mutation originating from random errors not corrected by viral proofreading and/or the host antiviral response introducing mutations into the viral genome. While sequencing information hints at cellular RNA editing pathways playing a role in viral evolution, here, we use an in vitro human cell infection model to assess RNA mutation types in two SARS-CoV-2 strains representing the original and the alpha variants. The variants showed both different cellular responses and mutation patterns with alpha showing higher mutation frequency with most substitutions observed being C-U, indicating an important role for apolipoprotein B mRNA editing catalytic polypeptide-like editing. Knockdown of select APOBEC3s through RNAi increased virus production in the original virus, but not in alpha. Overall, these data suggest a deaminase-independent anti-viral function of APOBECs in SARS-CoV-2 while the C-U editing itself might function to enhance genetic diversity enabling evolutionary adaptation.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Sarah Fletcher
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Alison Daniels
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Infection Medicine, University of Edinburgh, Little France Crescent, UK
| | - Paweł Mozolewski
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | | | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine Medical University of Gdańsk, Gdańsk, Poland
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
- Cell Signalling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Christine Tait-Burkard
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
12
|
Harjes S, Kurup HM, Rieffer AE, Bayarjargal M, Filitcheva J, Su Y, Hale TK, Filichev VV, Harjes E, Harris RS, Jameson GB. Structure-guided inhibition of the cancer DNA-mutating enzyme APOBEC3A. Nat Commun 2023; 14:6382. [PMID: 37821454 PMCID: PMC10567711 DOI: 10.1038/s41467-023-42174-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
The normally antiviral enzyme APOBEC3A is an endogenous mutagen in human cancer. Its single-stranded DNA C-to-U editing activity results in multiple mutagenic outcomes including signature single-base substitution mutations (isolated and clustered), DNA breakage, and larger-scale chromosomal aberrations. APOBEC3A inhibitors may therefore comprise a unique class of anti-cancer agents that work by blocking mutagenesis, slowing tumor evolvability, and preventing detrimental outcomes such as drug resistance and metastasis. Here we reveal the structural basis of competitive inhibition of wildtype APOBEC3A by hairpin DNA bearing 2'-deoxy-5-fluorozebularine in place of the cytidine in the TC substrate motif that is part of a 3-nucleotide loop. In addition, the structural basis of APOBEC3A's preference for YTCD motifs (Y = T, C; D = A, G, T) is explained. The nuclease-resistant phosphorothioated derivatives of these inhibitors have nanomolar potency in vitro and block APOBEC3A activity in human cells. These inhibitors may be useful probes for studying APOBEC3A activity in cellular systems and leading toward, potentially as conjuvants, next-generation, combinatorial anti-mutator and anti-cancer therapies.
Collapse
Affiliation(s)
- Stefan Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Amanda E Rieffer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maitsetseg Bayarjargal
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jana Filitcheva
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yongdong Su
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Department of Pediatrics, Emory University School of Medicine, and the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Tracy K Hale
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Vyacheslav V Filichev
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Elena Harjes
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA.
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| | - Geoffrey B Jameson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
Rieffer AE, Chen Y, Salamango DJ, Moraes SN, Harris RS. APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels. CRISPR J 2023; 6:430-446. [PMID: 37672599 PMCID: PMC10611974 DOI: 10.1089/crispr.2023.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Precision genome editing has become a reality with the discovery of base editors. Cytosine base editor (CBE) technologies are improving rapidly but are mostly optimized for TC dinucleotide targets. Here, we report the development and implementation of APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels (ARSENEL) in living cells. The ARSENEL panel is comprised of four constructs that quantitatively report editing of each of the four dinucleotide motifs (AC/CC/GC/TC) through real-time accumulation of eGFP fluorescence. Editing rates of APOBEC3Bctd and AIDΔC CBEs reflect established mechanistic preferences with intrinsic biases to TC and GC, respectively. Twelve different (new and established) base editors are tested here using this system with a full-length APOBEC3B CBE showing the greatest on-target TC specificity and an APOBEC3A construct showing the highest editing efficiency. In addition, ARSENEL enables real-time assessment of natural and synthetic APOBEC inhibitors with the most potent to-date being the large subunit of the Epstein-Barr virus ribonucleotide reductase. These reporters have the potential to play important roles in research and development as precision genome engineering technologies progress toward achieving maximal specificity and efficiency.
Collapse
Affiliation(s)
- Amanda E. Rieffer
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, Minneapolis, Minnesota, USA; University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; and University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Daniel J. Salamango
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, Minneapolis, Minnesota, USA; University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Sofia N. Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, Minneapolis, Minnesota, USA; University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, Minneapolis, Minnesota, USA; University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, USA; and University of Texas Health San Antonio, San Antonio, Texas, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
14
|
Medina-Munoz HC, Kofman E, Jagannatha P, Boyle EA, Yu T, Jones KL, Mueller JR, Lykins GD, Doudna AT, Park SS, Blue SM, Ranzau BL, Kohli RM, Komor AC, Yeo GW. Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.558915. [PMID: 37808757 PMCID: PMC10557582 DOI: 10.1101/2023.09.25.558915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.
Collapse
Affiliation(s)
- Hugo C. Medina-Munoz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Evan A. Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten L. Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R. Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Grace D. Lykins
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew T. Doudna
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel S. Park
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M. Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brodie L. Ranzau
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Rahul M. Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexis C. Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Poulsgaard GA, Sørensen SG, Juul RI, Nielsen MM, Pedersen JS. Sequence dependencies and mutation rates of localized mutational processes in cancer. Genome Med 2023; 15:63. [PMID: 37592287 PMCID: PMC10436389 DOI: 10.1186/s13073-023-01217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Cancer mutations accumulate through replication errors and DNA damage coupled with incomplete repair. Individual mutational processes often show nucleotide sequence and functional region preferences. As a result, some sequence contexts mutate at much higher rates than others, with additional variation found between functional regions. Mutational hotspots, with recurrent mutations across cancer samples, represent genomic positions with elevated mutation rates, often caused by highly localized mutational processes. METHODS We count the 11-mer genomic sequences across the genome, and using the PCAWG set of 2583 pan-cancer whole genomes, we associate 11-mers with mutational signatures, hotspots of single nucleotide variants, and specific genomic regions. We evaluate the mutation rates of individual and combined sets of 11-mers and derive mutational sequence motifs. RESULTS We show that hotspots generally identify highly mutable sequence contexts. Using these, we show that some mutational signatures are enriched in hotspot sequence contexts, corresponding to well-defined sequence preferences for the underlying localized mutational processes. This includes signature 17b (of unknown etiology) and signatures 62 (POLE deficiency), 7a (UV), and 72 (linked to lymphomas). In some cases, the mutation rate and sequence preference increase further when focusing on certain genomic regions, such as signature 62 in transcribed regions, where the mutation rate is increased up to 9-folds over cancer type and mutational signature average. CONCLUSIONS We summarize our findings in a catalog of localized mutational processes, their sequence preferences, and their estimated mutation rates.
Collapse
Affiliation(s)
- Gustav Alexander Poulsgaard
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Simon Grund Sørensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Randi Istrup Juul
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Morten Muhlig Nielsen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Jakob Skou Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Bioinformatics Research Centre (BiRC), Aarhus University, University City 81, Building 1872, 3Rd Floor, 8000, Aarhus C, Denmark.
| |
Collapse
|
16
|
Colson P, Penant G, Delerce J, Boschi C, Wurtz N, Bedotto M, Branger S, Brouqui P, Parola P, Lagier JC, Cassir N, Tissot-Dupont H, Million M, Aherfi S, La Scola B. Sequencing of monkeypox virus from infected patients reveals viral genomes with APOBEC3-like editing, gene inactivation, and bacterial agents of skin superinfection. J Med Virol 2023; 95:e28799. [PMID: 37342884 DOI: 10.1002/jmv.28799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023]
Abstract
A large outbreak of Monkeypox virus (MPXV) infections has arisen in May 2022 in nonendemic countries. Here, we performed DNA metagenomics using next-generation sequencing with Illumina or Nanopore technologies for clinical samples from MPXV-infected patients diagnosed between June and July 2022. Classification of the MPXV genomes and determination of their mutational patterns were performed using Nextclade. Twenty-five samples from 25 patients were studied. A MPXV genome was obtained for 18 patients, essentially from skin lesions and rectal swabbing. All 18 genomes were classified in clade IIb, lineage B.1, and we identified four B.1 sublineages (B.1.1, B.1.10, B.1.12, B.1.14). We detected a high number of mutations (range, 64-73) relatively to a 2018 Nigerian genome (genome GenBank Accession no. NC_063383.1), which were harbored by a large part of a set of 3184 MPXV genomes of lineage B.1 recovered from GenBank and Nextstrain; and we detected 35 mutations relatively to genome ON563414.3 (a B.1 lineage reference genome). Nonsynonymous mutations occurred in genes encoding central proteins, among which transcription factors and core and envelope proteins, and included two mutations that would truncate a RNA polymerase subunit and a phospholipase d-like protein, suggesting an alternative start codon and gene inactivation, respectively. A large majority (94%) of nucleotide substitutions were G > A or C > U, suggesting the action of human APOBEC3 enzymes. Finally, >1000 reads were identified as from Staphylococcus aureus and Streptococcus pyogenes for 3 and 6 samples, respectively. These findings warrant a close genomic monitoring of MPXV to get a better picture of the genetic micro-evolution and mutational patterns of this virus, and a close clinical monitoring of skin bacterial superinfection in monkeypox patients.
Collapse
Affiliation(s)
- Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Gwilherm Penant
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Céline Boschi
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Nathalie Wurtz
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Marielle Bedotto
- IHU Méditerranée Infection, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Stéphanie Branger
- Service de Médecine Interne Infectiologie Aïgue Polyvalente, Centre hospitalier d'Avignon, Avignon, France
| | - Philippe Brouqui
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Philippe Parola
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Institut de Recherche pour le Développement (IRD), Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Aix-Marseille Univ., Marseille, France
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Nadim Cassir
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Hervé Tissot-Dupont
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Sarah Aherfi
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Bernard La Scola
- IHU Méditerranée Infection, Marseille, France
- Institut de Recherche pour le Développement (IRD), Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille Univ., Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
17
|
Ratcliff J, Simmonds P. The roles of nucleic acid editing in adaptation of zoonotic viruses to humans. Curr Opin Virol 2023; 60:101326. [PMID: 37031485 PMCID: PMC10155873 DOI: 10.1016/j.coviro.2023.101326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023]
Abstract
Following spillover, viruses must adapt to new selection pressures exerted by antiviral responses in their new hosts. In mammals, cellular defense mechanisms often include viral nucleic acid editing pathways mediated through protein families apolipoprotein-B mRNA-editing complex (APOBEC) and Adenosine Deaminase Acting on ribonucleic acid (ADAR). APOBECs induce C→U transitions in viral genomes; the APOBEC locus is highly polymorphic with variable numbers of APOBEC3 paralogs and target preferences in humans and other mammals. APOBEC3 paralogs have shaped the evolutionary history of human immunodeficiency virus, with compelling bioinformatic evidence also for its mutagenic impact on monkeypox virus and severe acute respiratory syndrome coronavirus 2. ADAR-1 induces adenose-to-inosine (A→I) substitutions in double-stranded ribonucleic acid (RNA); its role in virus adaptation is less clear, as are epigenetic modifications to viral genomes, such as methylation. Nucleic acid editing restricts evolutionary space in which viruses can explore and may restrict viral-host range.
Collapse
Affiliation(s)
- Jeremy Ratcliff
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
18
|
Forni D, Cagliani R, Pozzoli U, Sironi M. An APOBEC3 Mutational Signature in the Genomes of Human-Infecting Orthopoxviruses. mSphere 2023; 8:e0006223. [PMID: 36920219 PMCID: PMC10117092 DOI: 10.1128/msphere.00062-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
The ongoing worldwide monkeypox outbreak is caused by viral lineages (globally referred to as hMPXV1) that are related to but distinct from clade IIb MPXV viruses transmitted within Nigeria. Analysis of the genetic differences has indicated that APOBEC-mediated editing might be responsible for the unexpectedly high number of mutations observed in hMPXV1 genomes. Here, using 1,624 publicly available hMPXV1 sequences, we analyzed the mutations that accrued between 2017 and the emergence of the current predominant variant (B.1), as well as those that that have been accumulating during the 2022 outbreak. We confirmed an overwhelming prevalence of C-to-T and G-to-A mutations, with a sequence context (5'-TC-3') consistent with the preferences of several human APOBEC3 enzymes. We also found that mutations preferentially occur in highly expressed viral genes, although no transcriptional asymmetry was observed. A comparison of the mutation spectrum and context was also performed against the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV), as well as fowlpox virus (FWPV). The results indicated that in VARV genomes, C-to-T and G-to-A changes were more common than the opposite substitutions, although the effect was less marked than for hMPXV1. Conversely, no preference toward C-to-T and G-to-A changes was observed in CPXV and FWPV. Consistently, the sequence context of C-to-T changes confirmed a preference for a T in the -1 position for VARV, but not for CPXV or FWPV. Overall, our results strongly support the view that, irrespective of the transmission route, orthopoxviruses infecting humans are edited by the host APOBEC3 enzymes. IMPORTANCE Analysis of the viral lineages responsible for the 2022 monkeypox outbreak suggested that APOBEC enzymes are driving hMPXV1 evolution. Using 1,624 public sequences, we analyzed the mutations that accumulated between 2017 and the emergence of the predominant variant and those that characterize the last outbreak. We found that the mutation spectrum of hMPXV1 has been dominated by TC-to-TT and GA-to-AA changes, consistent with the editing activity of human APOBEC3 proteins. We also found that mutations preferentially affect highly expressed viral genes, possibly because transcription exposes single-stranded DNA (ssDNA), a target of APOBEC3 editing. Notably, analysis of the human-specific variola virus (VARV) and the zoonotic cowpox virus (CPXV) indicated that in VARV genomes, TC-to-TT and GA-to-AA changes are likewise extremely frequent. Conversely, no preference toward TC-to-TT and GA-to-AA changes is observed in CPXV. These results suggest that APOBEC3 proteins have an impact on the evolution of different human-infecting orthopoxviruses.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Uberto Pozzoli
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, IRCCS E. Medea Scientific Institute, Bosisio Parini, Lecco, Italy
| |
Collapse
|
19
|
Roelofs PA, Timmermans MAM, Stefanovska B, den Boestert MA, van den Borne AWM, Balcioglu HE, Trapman AM, Harris RS, Martens JWM, Span PN. Aberrant APOBEC3B Expression in Breast Cancer Is Linked to Proliferation and Cell Cycle Phase. Cells 2023; 12:1185. [PMID: 37190094 PMCID: PMC10136826 DOI: 10.3390/cells12081185] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
APOBEC3B (A3B) is aberrantly overexpressed in a subset of breast cancers, where it associates with advanced disease, poor prognosis, and treatment resistance, yet the causes of A3B dysregulation in breast cancer remain unclear. Here, A3B mRNA and protein expression levels were quantified in different cell lines and breast tumors and related to cell cycle markers using RT-qPCR and multiplex immunofluorescence imaging. The inducibility of A3B expression during the cell cycle was additionally addressed after cell cycle synchronization with multiple methods. First, we found that A3B protein levels within cell lines and tumors are heterogeneous and associate strongly with the proliferation marker Cyclin B1 characteristic of the G2/M phase of the cell cycle. Second, in multiple breast cancer cell lines with high A3B, expression levels were observed to oscillate throughout the cell cycle and again associate with Cyclin B1. Third, induction of A3B expression is potently repressed throughout G0/early G1, likely by RB/E2F pathway effector proteins. Fourth, in cells with low A3B, induction of A3B through the PKC/ncNF-κB pathway occurs predominantly in actively proliferating cells and is largely absent in cells arrested in G0. Altogether, these results support a model in which dysregulated A3B overexpression in breast cancer is the cumulative result of proliferation-associated relief from repression with concomitant pathway activation during the G2/M phase of the cell cycle.
Collapse
Affiliation(s)
- Pieter A. Roelofs
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mieke A. M. Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Bojana Stefanovska
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Myrthe A. den Boestert
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Amber W. M. van den Borne
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Hayri E. Balcioglu
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Anita M. Trapman
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, Institute for Molecular Virology, and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - Paul N. Span
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
20
|
Manjunath L, Oh S, Ortega P, Bouin A, Bournique E, Sanchez A, Martensen PM, Auerbach AA, Becker JT, Seldin M, Harris RS, Semler BL, Buisson R. APOBEC3B drives PKR-mediated translation shutdown and protects stress granules in response to viral infection. Nat Commun 2023; 14:820. [PMID: 36781883 PMCID: PMC9925369 DOI: 10.1038/s41467-023-36445-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Double-stranded RNA produced during viral replication and transcription activates both protein kinase R (PKR) and ribonuclease L (RNase L), which limits viral gene expression and replication through host shutoff of translation. In this study, we find that APOBEC3B forms a complex with PABPC1 to stimulate PKR and counterbalances the PKR-suppressing activity of ADAR1 in response to infection by many types of viruses. This leads to translational blockage and the formation of stress granules. Furthermore, we show that APOBEC3B localizes to stress granules through the interaction with PABPC1. APOBEC3B facilitates the formation of protein-RNA condensates with stress granule assembly factor (G3BP1) by protecting mRNA associated with stress granules from RNAse L-induced RNA cleavage during viral infection. These results not only reveal that APOBEC3B is a key regulator of different steps of the innate immune response throughout viral infection but also highlight an alternative mechanism by which APOBEC3B can impact virus replication without editing viral genomes.
Collapse
Affiliation(s)
- Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexis Bouin
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pia Møller Martensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Ashley A Auerbach
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Jordan T Becker
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN, USA
| | - Marcus Seldin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Bert L Semler
- Center for Virus Research, University of California Irvine, Irvine, CA, USA
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Virus Research, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
21
|
Wang M, Xie NB, Chen KK, Ji TT, Xiong J, Guo X, Yu SY, Tang F, Xie C, Feng YQ, Yuan BF. Engineered APOBEC3C Sequencing Enables Bisulfite-Free and Direct Detection of DNA Methylation at a Single-Base Resolution. Anal Chem 2023; 95:1556-1565. [PMID: 36563112 DOI: 10.1021/acs.analchem.2c04616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA methylation (5-methylcytosine, 5mC) is the most important epigenetic modification in mammals. Deciphering the roles of 5mC relies on the quantitative detection of 5mC at the single-base resolution. Bisulfite sequencing (BS-seq) is the most often employed technique for mapping 5mC in DNA. However, bisulfite treatment may cause serious degradation of input DNA due to the harsh reaction conditions. Here, we engineered the human apolipoprotein B mRNA-editing catalytic polypeptide-like 3C (A3C) protein to endow the engineered A3C (eA3C) protein with differential deamination activity toward cytosine and 5mC. By the virtue of the unique property of eA3C, we proposed an engineered A3C sequencing (EAC-seq) method for the bisulfite-free and quantitative mapping of 5mC in DNA at the single-base resolution. In EAC-seq, the eA3C protein can deaminate C but not 5mC, which is employed to differentiate C and 5mC in sequencing. Using the EAC-seq method, we quantitatively detected 5mC in genomic DNA of lung cancer tissue. In contrast to the harsh reaction conditions of BS-seq, which could lead to significant degradation of DNA, the whole procedure of EAC-seq is carried out under mild conditions, thereby preventing DNA damage. Taken together, the EAC-seq approach is bisulfite-free and straightforward, making it an invaluable tool for the quantitative detection of 5mC in limited DNA at the single-base resolution.
Collapse
Affiliation(s)
- Min Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Neng-Bin Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,School of Public Health, Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ke-Ke Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Xiong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,School of Public Health, Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xia Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Si-Yu Yu
- School of Public Health, Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Feng Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Conghua Xie
- School of Public Health, Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,School of Public Health, Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,School of Public Health, Department of Radiation and Medical Oncology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.,Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| |
Collapse
|
22
|
Serrano JC, von Trentini D, Berríos KN, Barka A, Dmochowski IJ, Kohli RM. Structure-Guided Design of a Potent and Specific Inhibitor against the Genomic Mutator APOBEC3A. ACS Chem Biol 2022; 17:3379-3388. [PMID: 36475588 PMCID: PMC9990883 DOI: 10.1021/acschembio.2c00796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleic acid structure plays a critical role in governing the selectivity of DNA- and RNA-modifying enzymes. In the case of the APOBEC3 family of cytidine deaminases, these enzymes catalyze the conversion of cytosine (C) to uracil (U) in single-stranded DNA, primarily in the context of innate immunity. DNA deamination can also have pathological consequences, accelerating the evolution of viral genomes or, when the host genome is targeted by either APOBEC3A (A3A) or APOBEC3B (A3B), promoting tumor evolution leading to worse patient prognosis and chemotherapeutic resistance. For A3A, nucleic acid secondary structure has emerged as a critical determinant of substrate targeting, with a predilection for DNA that can form stem loop hairpins. Here, we report the development of a specific nanomolar-level, nucleic acid-based inhibitor of A3A. Our strategy relies on embedding the nucleobase 5-methylzebularine, a mechanism-based inhibitor, into a DNA dumbbell structure, which mimics the ideal substrate secondary structure for A3A. Structure-activity relationship studies using a panel of diverse inhibitors reveal a critical role for the stem and position of the inhibitor moiety in achieving potent inhibition. Moreover, we demonstrate that DNA dumbbell inhibitors, but not nonstructured inhibitors, show specificity against A3A relative to the closely related catalytic domain of A3B. Overall, our work demonstrates the feasibility of leveraging secondary structural preferences in inhibitor design, offering a blueprint for further development of modulators of DNA-modifying enzymes and potential therapeutics to circumvent APOBEC-driven viral and tumor evolution.
Collapse
Affiliation(s)
- Juan C. Serrano
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Dora von Trentini
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kiara N. Berríos
- Graduate Group in Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Aleksia Barka
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Rahul M. Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
23
|
Meissner ME, Talledge N, Mansky LM. Molecular Biology and Diversification of Human Retroviruses. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:872599. [PMID: 35783361 PMCID: PMC9242851 DOI: 10.3389/fviro.2022.872599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies of retroviruses have led to many extraordinary discoveries that have advanced our understanding of not only human diseases, but also molecular biology as a whole. The most recognizable human retrovirus, human immunodeficiency virus type 1 (HIV-1), is the causative agent of the global AIDS epidemic and has been extensively studied. Other human retroviruses, such as human immunodeficiency virus type 2 (HIV-2) and human T-cell leukemia virus type 1 (HTLV-1), have received less attention, and many of the assumptions about the replication and biology of these viruses are based on knowledge of HIV-1. Existing comparative studies on human retroviruses, however, have revealed that key differences between these viruses exist that affect evolution, diversification, and potentially pathogenicity. In this review, we examine current insights on disparities in the replication of pathogenic human retroviruses, with a particular focus on the determinants of structural and genetic diversity amongst HIVs and HTLV.
Collapse
Affiliation(s)
- Morgan E. Meissner
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
- Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, MN 55455 USA
| |
Collapse
|
24
|
Differential Activity of APOBEC3F, APOBEC3G, and APOBEC3H in the Restriction of HIV-2. J Mol Biol 2022; 434:167355. [PMID: 34774569 PMCID: PMC8752514 DOI: 10.1016/j.jmb.2021.167355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 02/01/2023]
Abstract
Human immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated. In this study, we provide the first comprehensive characterization of the restrictive capacity of A3 proteins against HIV-2 in cell culture using a dual fluorescent reporter HIV-2 vector virus. We found that A3F, A3G, and A3H restricted HIV-2 infectivity in the absence of Vif and were associated with significant increases in the frequency of viral mutants. These proteins increased the frequency of G-to-A mutations within the proviruses of infected cells as well. A3G and A3H also reduced HIV-2 infectivity via inhibition of reverse transcription and the accumulation of DNA products during replication. In contrast, A3D did not exhibit any restrictive activity against HIV-2, even at higher expression levels. Taken together, these results provide evidence that A3F, A3G, and A3H, but not A3D, are capable of HIV-2 restriction. Differences in A3-mediated restriction of HIV-1 and HIV-2 may serve to provide new insights in the observed mutation profiles of these viruses.
Collapse
|
25
|
Faure-Dupuy S, Riedl T, Rolland M, Hizir Z, Reisinger F, Neuhaus K, Schuehle S, Remouchamps C, Gillet N, Schönung M, Stadler M, Wettengel J, Barnault R, Parent R, Schuster LC, Farhat R, Prokosch S, Leuchtenberger C, Öllinger R, Engleitner T, Rippe K, Rad R, Unger K, Tscharahganeh D, Lipka DB, Protzer U, Durantel D, Lucifora J, Dejardin E, Heikenwälder M. Control of APOBEC3B induction and cccDNA decay by NF-κB and miR-138-5p. JHEP Rep 2021; 3:100354. [PMID: 34704004 PMCID: PMC8523871 DOI: 10.1016/j.jhepr.2021.100354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Background & Aims Immune-mediated induction of cytidine deaminase APOBEC3B (A3B) expression leads to HBV covalently closed circular DNA (cccDNA) decay. Here, we aimed to decipher the signalling pathway(s) and regulatory mechanism(s) involved in A3B induction and related HBV control. Methods Differentiated HepaRG cells (dHepaRG) knocked-down for NF-κB signalling components, transfected with siRNA or micro RNAs (miRNA), and primary human hepatocytes ± HBV or HBVΔX or HBV-RFP, were treated with lymphotoxin beta receptor (LTβR)-agonist (BS1). The biological outcomes were analysed by reverse transcriptase-qPCR, immunoblotting, luciferase activity, chromatin immune precipitation, electrophoretic mobility-shift assay, targeted-bisulfite-, miRNA-, RNA-, genome-sequencing, and mass-spectrometry. Results We found that canonical and non-canonical NF-κB signalling pathways are mandatory for A3B induction and anti-HBV effects. The degree of immune-mediated A3B production is independent of A3B promoter demethylation but is controlled post-transcriptionally by the miRNA 138-5p expression (hsa-miR-138-5p), promoting A3B mRNA decay. Hsa-miR-138-5p over-expression reduced A3B levels and its antiviral effects. Of note, established infection inhibited BS1-induced A3B expression through epigenetic modulation of A3B promoter. Twelve days of treatment with a LTβR-specific agonist BS1 is sufficient to reduce the cccDNA pool by 80% without inducing significant damages to a subset of cancer-related host genes. Interestingly, the A3B-mediated effect on HBV is independent of the transcriptional activity of cccDNA as well as on rcDNA synthesis. Conclusions Altogether, A3B represents the only described enzyme to target both transcriptionally active and inactive cccDNA. Thus, inhibiting hsa-miR-138-5p expression should be considered in the combinatorial design of new therapies against HBV, especially in the context of immune-mediated A3B induction. Lay summary Immune-mediated induction of cytidine deaminase APOBEC3B is transcriptionally regulated by NF-κB signalling and post-transcriptionally downregulated by hsa-miR-138-5p expression, leading to cccDNA decay. Timely controlled APOBEC3B-mediated cccDNA decay occurs independently of cccDNA transcriptional activity and without damage to a subset of cancer-related genes. Thus, APOBEC3B-mediated cccDNA decay could offer an efficient therapeutic alternative to target hepatitis B virus chronic infection. Impairment of NF-κB signalling prevents APOBEC3B induction and cccDNA decay. APOBEC3B is post-transcriptionally regulated by the hsa-miR-138-5p. Over-expression of the hsa-miR-138-5p inhibits APOBEC3B expression and cccDNA decay. A3B timely induces cccDNA decay without damage to cancer-related genes. APOBEC3B-mediated cccDNA decay is independent of cccDNA transcriptional activity.
Collapse
Key Words
- A20, tumour necrosis factor alpha-induced protein 3
- APOBEC3A/A3A, apolipoprotein B mRNA editing catalytic polypeptide-like A
- APOBEC3B
- APOBEC3B/A3B, apolipoprotein B mRNA editing catalytic polypeptide-like B
- APOBEC3G/A3G, apolipoprotein B mRNA editing catalytic polypeptide-like G
- BCA, bicinchoninic acid assay
- CHB, chronic hepatitis B
- CXCL10, C-X-C motif chemokine ligand 10
- ChIP, chromatin immune precipitation
- EMSA, electrophoretic mobility-shift assay
- H3K4Me3, histone 3 lysine 4 trimethylation
- HBx
- Hepatitis B virus
- IFNα/γ, interferon alpha/gamma
- IKKα/β, IκB kinase alpha/beta
- JMJD8, jumonji domain containing 8
- LPS, lipopolysaccharide
- LTβR, lymphotoxin beta receptor
- MAPK, mitogen-activated protein kinase
- NEMO, NF-κB essential modulator
- NF-κB
- NF-κB, nuclear factor kappa B
- NIK, NF-κB inducing kinase
- NT, non-treated
- RT-qPCR, reverse transcription-quantitative PCR
- RelA, NF-κB p65 subunit
- TNF, tumour necrosis factor
- UBE2V1, ubiquitin conjugating enzyme E2 V1
- UTR, untranslated region
- cccDNA
- cccDNA, covalently closed circular DNA
- d.p.i., days post infection
- miRNA
- miRNA, micro RNA
- siCTRL, siRNA control
Collapse
Affiliation(s)
- Suzanne Faure-Dupuy
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Maude Rolland
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Zoheir Hizir
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Florian Reisinger
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Katharina Neuhaus
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Caroline Remouchamps
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
| | - Nicolas Gillet
- Integrated Veterinary Research Unit, Namur Research Institute for Life Sciences, Namur, Belgium
| | - Maximilian Schönung
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Mira Stadler
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jochen Wettengel
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Romain Barnault
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Romain Parent
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Linda Christina Schuster
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Rayan Farhat
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Sandra Prokosch
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinna Leuchtenberger
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Rechts der Isar University Hospital, Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, Rechts der Isar University Hospital, Munich, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Rechts der Isar University Hospital, Munich, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Darjus Tscharahganeh
- Helmholtz-University Group 'Cell Plasticity and Epigenetic Remodeling', German Cancer Research Center (DKFZ) and Institute of Pathology University Hospital, Heidelberg, Germany
| | - Daniel B. Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Julie Lucifora
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard (CLB), Lyon, France
| | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Institute, University of Liège, Liège, Belgium
- Corresponding authors. Addresses: Laboratory of Molecular Immunology and Signal Transduction, University of Liège, GIGA-Institute, Avenue de l'Hôpital, 1, CHU, B34, 4000 Liege, Belgium. Tel.: +32 4 366 4472; fax: +32 4 366 4534
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- Division Chronic Inflammation and Cancer (F180), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany. Tel.: +49 6221 42 3891; Fax: +49 6221 42 3899
| |
Collapse
|
26
|
Brown AL, Collins CD, Thompson S, Coxon M, Mertz TM, Roberts SA. Single-stranded DNA binding proteins influence APOBEC3A substrate preference. Sci Rep 2021; 11:21008. [PMID: 34697369 PMCID: PMC8546098 DOI: 10.1038/s41598-021-00435-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
The cytidine deaminase, APOBEC3A (A3A), is a prominent source of mutations in multiple cancer types. These APOBEC-signature mutations are non-uniformly distributed across cancer genomes, associating with single-stranded (ss) DNA formed during DNA replication and hairpin-forming sequences. The biochemical and cellular factors that influence these specificities are unclear. We measured A3A's cytidine deaminase activity in vitro on substrates that model potential sources of ssDNA in the cell and found that A3A is more active on hairpins containing 4 nt ssDNA loops compared to hairpins with larger loops, bubble structures, replication fork mimics, ssDNA gaps, or linear DNA. Despite pre-bent ssDNAs being expected to fit better in the A3A active site, we determined A3A favors a 4 nt hairpin substrate only 2- to fivefold over linear ssDNA substrates. Addition of whole cell lysates or purified RPA to cytidine deaminase assays more severely reduced A3A activity on linear ssDNA (45 nt) compared to hairpin substrates. These results indicate that the large enrichment of A3A-driven mutations in hairpin-forming sequences in tumor genomes is likely driven in part by other proteins that preferentially bind longer ssDNA regions, which limit A3A's access. Furthermore, A3A activity is reduced at ssDNA associated with a stalled T7 RNA polymerase, suggesting that potential protein occlusion by RNA polymerase also limits A3A activity. These results help explain the small transcriptional strand bias for APOBEC mutation signatures in cancer genomes and the general targeting of hairpin-forming sequences in the lagging strand template during DNA replication.
Collapse
Affiliation(s)
- Amber L Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Christopher D Collins
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Secily Thompson
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Margo Coxon
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Tony M Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Steven A Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA.
| |
Collapse
|
27
|
Ortega-Del Campo S, Grigoras I, Timchenko T, Gronenborn B, Grande-Pérez A. Twenty years of evolution and diversification of digitaria streak virus in Digitaria setigera. Virus Evol 2021; 7:veab083. [PMID: 34659796 PMCID: PMC8516820 DOI: 10.1093/ve/veab083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022] Open
Abstract
Within the family Geminiviridae, the emergence of new species results from their high mutation and recombination rates. In this study, we report the variability and evolution of digitaria streak virus (DSV), a mastrevirus isolated in 1986 from the grass Digitaria setigera in an island of the Vanuatu archipelago. Viral DNA of DSV samples was amplified from D. setigera specimens, derived from the naturally infected original plant, which were propagated in different laboratories in France and Italy for more than 20 years. From the consensus sequences, the nucleotide substitution rate was estimated for the period between a sample and the original sequence published in 1987, as well as for the period between samples. In addition, the intra-host genetic complexity and diversity of 8 DSV populations with a total of 165 sequenced haplotypes was characterized. The evolutionary rate of DSV was estimated to be between 1.13 × 10−4 and 9.87 × 10−4 substitutions/site/year, within the ranges observed in other single-stranded DNA viruses and RNA viruses. Bioinformatic analyses revealed high variability and heterogeneity in DSV populations, which confirmed that mutant spectra are continuously generated and are organized as quasispecies. The analysis of polymorphisms revealed nucleotide substitution biases in viral genomes towards deamination and oxidation of single-stranded DNA. The differences in variability in each of the genomic regions reflected a dynamic and modular evolution in the mutant spectra that was not reflected in the consensus sequences. Strikingly, the most variable region of the DSV genome, encoding the movement protein, showed rapid fixation of the mutations in the consensus sequence and a concomitant dN/dS ratio of 6.130, which suggests strong positive selection in this region. Phylogenetic analyses revealed a possible divergence in three genetic lineages from the original Vanuatu DSV isolate.
Collapse
Affiliation(s)
| | - Ioana Grigoras
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Tatiana Timchenko
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Bruno Gronenborn
- CNRS, Institut des Sciences du Végétal, Gif-sur-Yvette 91198, France
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga 29071, Spain
| |
Collapse
|
28
|
Sadykov M, Mourier T, Guan Q, Pain A. Short sequence motif dynamics in the SARS-CoV-2 genome suggest a role for cytosine deamination in CpG reduction. J Mol Cell Biol 2021; 13:225-227. [PMID: 33630074 PMCID: PMC7928816 DOI: 10.1093/jmcb/mjab011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mukhtar Sadykov
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah 23955-6900, Saudi Arabia
| | - Tobias Mourier
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah 23955-6900, Saudi Arabia
| | - Qingtian Guan
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah 23955-6900, Saudi Arabia
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah 23955-6900, Saudi Arabia
- Research Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-Ku, Sapporo 001-0020, Japan
| |
Collapse
|
29
|
Infection of Bronchial Epithelial Cells by the Human Adenoviruses A12, B3, and C2 Differently Regulates the Innate Antiviral Effector APOBEC3B. J Virol 2021; 95:e0241320. [PMID: 33853956 DOI: 10.1128/jvi.02413-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human adenoviruses (HAdVs) are a large family of DNA viruses that include more than 100 genotypes divided into seven species (A to G) and induce respiratory tract infections, gastroenteritis, and conjunctivitis. Genetically modified adenoviruses are also used as vaccines, gene therapies, and anticancer treatments. The APOBEC3s are a family of cytidine deaminases that restrict viruses by introducing mutations in their genomes. Viruses developed different strategies to cope with the APOBEC3 selection pressure, but nothing is known on the interplay between the APOBEC3s and the HAdVs. In this study, we focused on three HAdV strains: the B3 and C2 strains, as they are very frequent, and the A12 strain, which is less common but is oncogenic in animal models. We demonstrated that the three HAdV strains induce a similar APOBEC3B upregulation at the transcriptional level. At the protein level, however, APOBEC3B is abundantly expressed during HAdV-A12 and -C2 infection and shows a nuclear distribution. On the contrary, APOBEC3B is barely detectable in HAdV-B3-infected cells. APOBEC3B deaminase activity is detected in total protein extracts upon HAdV-A12 and -C2 infection. Bioinformatic analysis demonstrates that the HAdV-A12 genome bears a stronger APOBEC3 evolutionary footprint than that of the HAdV-C2 and HAdV-B3 genomes. Our results show that HAdV infection triggers the transcriptional upregulation of the antiviral innate effector APOBEC3B. The discrepancies between the APOBEC3B mRNA and protein levels might reflect the ability of some HAdV strains to antagonize the APOBEC3B protein. These findings point toward an involvement of APOBEC3B in HAdV restriction and evolution. IMPORTANCE The APOBEC3 family of cytosine deaminases has important roles in antiviral innate immunity and cancer. Notably, APOBEC3A and APOBEC3B are actively upregulated by several DNA tumor viruses and contribute to transformation by introducing mutations in the cellular genome. Human adenoviruses (HAdVs) are a large family of DNA viruses that cause generally asymptomatic infections in immunocompetent adults. HAdVs encode several oncogenes, and some HAdV strains, like HAdV-A12, induce tumors in hamsters and mice. Here, we show that HAdV infection specifically promotes the expression of the APOBEC3B gene. We report that infection with the A12 strain induces a strong expression of an enzymatically active APOBEC3B protein in bronchial epithelial cells. We provide bioinformatic evidence that HAdVs' genomes and notably the A12 genome are under APOBEC3 selection pressure. Thus, APOBEC3B might contribute to adenoviral restriction, diversification, and oncogenic potential of particular strains.
Collapse
|
30
|
Shapiro M, Krug LT, MacCarthy T. Mutational pressure by host APOBEC3s more strongly affects genes expressed early in the lytic phase of herpes simplex virus-1 (HSV-1) and human polyomavirus (HPyV) infection. PLoS Pathog 2021; 17:e1009560. [PMID: 33930088 PMCID: PMC8115780 DOI: 10.1371/journal.ppat.1009560] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/12/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023] Open
Abstract
Herpes-Simplex Virus 1 (HSV-1) infects most humans when they are young, sometimes with fatal consequences. Gene expression occurs in a temporal order upon lytic HSV-1 infection: immediate early (IE) genes are expressed, then early (E) genes, followed by late (L) genes. During this infection cycle, the HSV-1 genome has the potential for exposure to APOBEC3 (A3) proteins, a family of cytidine deaminases that cause C>U mutations on single-stranded DNA (ssDNA), often resulting in a C>T transition. We developed a computational model for the mutational pressure of A3 on the lytic cycle of HSV-1 to determine which viral kinetic gene class is most vulnerable to A3 mutations. Using in silico stochastic methods, we simulated the infectious cycle under varying intensities of A3 mutational pressure. We found that the IE and E genes are more vulnerable to A3 than L genes. We validated this model by analyzing the A3 evolutionary footprints in 25 HSV-1 isolates. We find that IE and E genes have evolved to underrepresent A3 hotspot motifs more so than L genes, consistent with greater selection pressure on IE and E genes. We extend this model to two-step infections, such as those of polyomavirus, and find that the same pattern holds for over 25 human Polyomavirus (HPyVs) genomes. Genes expressed earlier during infection are more vulnerable to mutations than those expressed later.
Collapse
Affiliation(s)
- Maxwell Shapiro
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
31
|
Azgari C, Kilinc Z, Turhan B, Circi D, Adebali O. The Mutation Profile of SARS-CoV-2 Is Primarily Shaped by the Host Antiviral Defense. Viruses 2021; 13:394. [PMID: 33801257 PMCID: PMC7999997 DOI: 10.3390/v13030394] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding SARS-CoV-2 evolution is a fundamental effort in coping with the COVID-19 pandemic. The virus genomes have been broadly evolving due to the high number of infected hosts world-wide. Mutagenesis and selection are two inter-dependent mechanisms of virus diversification. However, which mechanisms contribute to the mutation profiles of SARS-CoV-2 remain under-explored. Here, we delineate the contribution of mutagenesis and selection to the genome diversity of SARS-CoV-2 isolates. We generated a comprehensive phylogenetic tree with representative genomes. Instead of counting mutations relative to the reference genome, we identified each mutation event at the nodes of the phylogenetic tree. With this approach, we obtained the mutation events that are independent of each other and generated the mutation profile of SARS-CoV-2 genomes. The results suggest that the heterogeneous mutation patterns are mainly reflections of host (i) antiviral mechanisms that are achieved through APOBEC, ADAR, and ZAP proteins, and (ii) probable adaptation against reactive oxygen species.
Collapse
Affiliation(s)
| | | | | | | | - Ogun Adebali
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (C.A.); (Z.K.); (B.T.); (D.C.)
| |
Collapse
|
32
|
Periyasamy M, Singh AK, Gemma C, Farzan R, Allsopp RC, Shaw JA, Charmsaz S, Young LS, Cunnea P, Coombes RC, Győrffy B, Buluwela L, Ali S. Induction of APOBEC3B expression by chemotherapy drugs is mediated by DNA-PK-directed activation of NF-κB. Oncogene 2021; 40:1077-1090. [PMID: 33323971 PMCID: PMC7116738 DOI: 10.1038/s41388-020-01583-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
The mutagenic APOBEC3B (A3B) cytosine deaminase is frequently over-expressed in cancer and promotes tumour heterogeneity and therapy resistance. Hence, understanding the mechanisms that underlie A3B over-expression is important, especially for developing therapeutic approaches to reducing A3B levels, and consequently limiting cancer mutagenesis. We previously demonstrated that A3B is repressed by p53 and p53 mutation increases A3B expression. Here, we investigate A3B expression upon treatment with chemotherapeutic drugs that activate p53, including 5-fluorouracil, etoposide and cisplatin. Contrary to expectation, these drugs induced A3B expression and concomitant cellular cytosine deaminase activity. A3B induction was p53-independent, as chemotherapy drugs stimulated A3B expression in p53 mutant cells. These drugs commonly activate ATM, ATR and DNA-PKcs. Using specific inhibitors and gene knockdowns, we show that activation of DNA-PKcs and ATM by chemotherapeutic drugs promotes NF-κB activity, with consequent recruitment of NF-κB to the A3B gene promoter to drive A3B expression. Further, we find that A3B knockdown re-sensitises resistant cells to cisplatin, and A3B knockout enhances sensitivity to chemotherapy drugs. Our data highlight a role for A3B in resistance to chemotherapy and indicate that stimulation of A3B expression by activation of DNA repair and NF-κB pathways could promote cancer mutations and expedite chemoresistance.
Collapse
Affiliation(s)
| | - Anup K Singh
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Carolina Gemma
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Raed Farzan
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rebecca C Allsopp
- Department of Cancer Studies and Cancer Research UK, Leicester Centre, University of Leicester, Leicester, UK
| | - Jacqueline A Shaw
- Department of Cancer Studies and Cancer Research UK, Leicester Centre, University of Leicester, Leicester, UK
| | - Sara Charmsaz
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Leonie S Young
- Endocrine Oncology Research Group, Department of Surgery, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Paula Cunnea
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - R Charles Coombes
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Balázs Győrffy
- Department of Bioinformatics and 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Lakjaya Buluwela
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, London, W12 0NN, UK.
| |
Collapse
|
33
|
Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution. Virology 2021; 556:62-72. [PMID: 33545556 PMCID: PMC7831814 DOI: 10.1016/j.virol.2020.12.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
Members of the APOBEC family of cytidine deaminases show antiviral activities in mammalian cells through lethal editing in the genomes of small DNA viruses, herpesviruses and retroviruses, and potentially those of RNA viruses such as coronaviruses. Consistent with the latter, APOBEC-like directional C→U transitions of genomic plus-strand RNA are greatly overrepresented in SARS-CoV-2 genome sequences of variants emerging during the COVID-19 pandemic. A C→U mutational process may leave evolutionary imprints on coronavirus genomes, including extensive homoplasy from editing and reversion at targeted sites and the occurrence of driven amino acid sequence changes in viral proteins. If sustained over longer periods, this process may account for the previously reported marked global depletion of C and excess of U bases in human seasonal coronavirus genomes. This review synthesizes the current knowledge on APOBEC evolution and function and the evidence of their role in APOBEC-mediated genome editing of SARS-CoV-2 and other coronaviruses. SARS-CoV-2 sequence variants contain an overabundance of C- > U transitions C- > U transitions are the hallmark of the activity of APOBEC cytosine deaminases Further work is needed to determine APOBEC's role in coronavirus evolution
Collapse
|
34
|
Sadykov M, Mourier T, Guan Q, Pain A. Short sequence motif dynamics in the SARS-CoV-2 genome suggest a role for cytosine deamination in CpG reduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.06.19.161687. [PMID: 34013262 PMCID: PMC8132218 DOI: 10.1101/2020.06.19.161687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA viruses use CpG reduction to evade the host cell defense, but the driving mechanisms are still largely unknown. In an attempt to address this we used a rapidly growing genomic dataset of SARS-CoV-2 with relevant metadata information. Remarkably, by simply ordering SARS-CoV-2 genomes by their date of collection, we find a progressive increase of C-to-U substitutions resulting in 5'-UCG-3' motif reduction that in turn have reduced the CpG frequency over just a few months of observation. This is consistent with APOBEC-mediated RNA editing resulting in CpG reduction, thus allowing the virus to escape ZAP-mediated RNA degradation. Our results thus link the dynamics of target sequences in the viral genome for two known host molecular defense mechanisms, mediated by the APOBEC and ZAP proteins.
Collapse
|
35
|
Wei Y, Silke JR, Aris P, Xia X. Coronavirus genomes carry the signatures of their habitats. PLoS One 2020; 15:e0244025. [PMID: 33351847 PMCID: PMC7755226 DOI: 10.1371/journal.pone.0244025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses such as SARS-CoV-2 regularly infect host tissues that express antiviral proteins (AVPs) in abundance. Understanding how they evolve to adapt or evade host immune responses is important in the effort to control the spread of infection. Two AVPs that may shape viral genomes are the zinc finger antiviral protein (ZAP) and the apolipoprotein B mRNA editing enzyme-catalytic polypeptide-like 3 (APOBEC3). The former binds to CpG dinucleotides to facilitate the degradation of viral transcripts while the latter frequently deaminates C into U residues which could generate notable viral sequence variations. We tested the hypothesis that both APOBEC3 and ZAP impose selective pressures that shape the genome of an infecting coronavirus. Our investigation considered a comprehensive number of publicly available genomes for seven coronaviruses (SARS-CoV-2, SARS-CoV, and MERS infecting Homo sapiens, Bovine CoV infecting Bos taurus, MHV infecting Mus musculus, HEV infecting Sus scrofa, and CRCoV infecting Canis lupus familiaris). We show that coronaviruses that regularly infect tissues with abundant AVPs have CpG-deficient and U-rich genomes; whereas those that do not infect tissues with abundant AVPs do not share these sequence hallmarks. Among the coronaviruses surveyed herein, CpG is most deficient in SARS-CoV-2 and a temporal analysis showed a marked increase in C to U mutations over four months of SARS-CoV-2 genome evolution. Furthermore, the preferred motifs in which these C to U mutations occur are the same as those subjected to APOBEC3 editing in HIV-1. These results suggest that both ZAP and APOBEC3 shape the SARS-CoV-2 genome: ZAP imposes a strong CpG avoidance, and APOBEC3 constantly edits C to U. Evolutionary pressures exerted by host immune systems onto viral genomes may motivate novel strategies for SARS-CoV-2 vaccine development.
Collapse
Affiliation(s)
- Yulong Wei
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jordan R. Silke
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Parisa Aris
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
36
|
Hakata Y, Miyazawa M. Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins. Microorganisms 2020; 8:microorganisms8121976. [PMID: 33322756 PMCID: PMC7764128 DOI: 10.3390/microorganisms8121976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3.
Collapse
Affiliation(s)
- Yoshiyuki Hakata
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Correspondence: ; Tel.: +81-72-367-7660
| | - Masaaki Miyazawa
- Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan;
- Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| |
Collapse
|
37
|
Simmonds P. Rampant C→U Hypermutation in the Genomes of SARS-CoV-2 and Other Coronaviruses: Causes and Consequences for Their Short- and Long-Term Evolutionary Trajectories. mSphere 2020; 5:e00408-20. [PMID: 32581081 PMCID: PMC7316492 DOI: 10.1128/msphere.00408-20] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has motivated an intensive analysis of its molecular epidemiology following its worldwide spread. To understand the early evolutionary events following its emergence, a data set of 985 complete SARS-CoV-2 sequences was assembled. Variants showed a mean of 5.5 to 9.5 nucleotide differences from each other, consistent with a midrange coronavirus substitution rate of 3 × 10-4 substitutions/site/year. Almost one-half of sequence changes were C→U transitions, with an 8-fold base frequency normalized directional asymmetry between C→U and U→C substitutions. Elevated ratios were observed in other recently emerged coronaviruses (SARS-CoV, Middle East respiratory syndrome [MERS]-CoV), and decreasing ratios were observed in other human coronaviruses (HCoV-NL63, -OC43, -229E, and -HKU1) proportionate to their increasing divergence. C→U transitions underpinned almost one-half of the amino acid differences between SARS-CoV-2 variants and occurred preferentially in both 5' U/A and 3' U/A flanking sequence contexts comparable to favored motifs of human APOBEC3 proteins. Marked base asymmetries observed in nonpandemic human coronaviruses (U ≫ A > G ≫ C) and low G+C contents may represent long-term effects of prolonged C→U hypermutation in their hosts. The evidence that much of sequence change in SARS-CoV-2 and other coronaviruses may be driven by a host APOBEC-like editing process has profound implications for understanding their short- and long-term evolution. Repeated cycles of mutation and reversion in favored mutational hot spots and the widespread occurrence of amino acid changes with no adaptive value for the virus represent a quite different paradigm of virus sequence change from neutral and Darwinian evolutionary frameworks and are not incorporated by standard models used in molecular epidemiology investigations.IMPORTANCE The wealth of accurately curated sequence data for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its long genome, and its low substitution rate provides a relatively blank canvas with which to investigate effects of mutational and editing processes imposed by the host cell. The finding that a large proportion of sequence change in SARS-CoV-2 in the initial months of the pandemic comprised C→U mutations in a host APOBEC-like context provides evidence for a potent host-driven antiviral editing mechanism against coronaviruses more often associated with antiretroviral defense. In evolutionary terms, the contribution of biased, convergent, and context-dependent mutations to sequence change in SARS-CoV-2 is substantial, and these processes are not incorporated by standard models used in molecular epidemiology investigations.
Collapse
Affiliation(s)
- P Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|