1
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2025; 477:187-199. [PMID: 39482558 PMCID: PMC11761519 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Dong A, Yoshizumi M, Kokubo H. Odz4 upregulates SAN-specific genes to promote differentiation into cardiac pacemaker-like cells. FEBS Lett 2025; 599:299-315. [PMID: 39462648 PMCID: PMC11808419 DOI: 10.1002/1873-3468.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Cardiac arrhythmias stemming from abnormal sinoatrial node (SAN) function can lead to sudden death. Developing a biological pacemaker device for treating sick sinus syndrome (SSS) could offer a potential cure. Understanding SAN differentiation is crucial, yet its regulatory mechanism remains unclear. We reanalyzed published RNA-seq data and identified Odz4 as a SAN-specific candidate. In situ hybridization revealed Odz4 expression in the cardiac crescent and throughout the cardiac conduction system (CCS). To assess the role of Odz4 in CCS differentiation, we utilized a Tet-Off inducible system for its intracellular domain (ICD). Embryonic bodies (EBs) exogenously expressing Odz4-ICD exhibited an increased propensity to develop into pacemaker-like cells with enhanced automaticity and upregulated expression of SAN-specific genes. CellChat and GO analyses unveiled SAN-specific enrichment of ligand-receptor sets, especially Ptn-Ncl, and extracellular matrix components in the group exogenously expressing Odz4-ICD. Our findings underscore the significance of Odz4 in SAN development and offer fresh insights into biological pacemaker establishment.
Collapse
Affiliation(s)
- Anqi Dong
- Department of Physiology and BiophysicsHiroshima UniversityJapan
| | - Masao Yoshizumi
- Department of Physiology and BiophysicsHiroshima UniversityJapan
| | - Hiroki Kokubo
- Department of Physiology and BiophysicsHiroshima UniversityJapan
- Department of Physical TherapyTohto UniversityChibaJapan
| |
Collapse
|
3
|
Mochizuki K, Sharif J, Shirane K, Uranishi K, Bogutz AB, Janssen SM, Suzuki A, Okuda A, Koseki H, Lorincz MC. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat Commun 2021; 12:7020. [PMID: 34857746 PMCID: PMC8639735 DOI: 10.1038/s41467-021-27345-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Silencing of a subset of germline genes is dependent upon DNA methylation (DNAme) post-implantation. However, these genes are generally hypomethylated in the blastocyst, implicating alternative repressive pathways before implantation. Indeed, in embryonic stem cells (ESCs), an overlapping set of genes, including germline "genome-defence" (GGD) genes, are upregulated following deletion of the H3K9 methyltransferase SETDB1 or subunits of the non-canonical PRC1 complex PRC1.6. Here, we show that in pre-implantation embryos and naïve ESCs (nESCs), hypomethylated promoters of germline genes bound by the PRC1.6 DNA-binding subunits MGA/MAX/E2F6 are enriched for RING1B-dependent H2AK119ub1 and H3K9me3. Accordingly, repression of these genes in nESCs shows a greater dependence on PRC1.6 than DNAme. In contrast, GGD genes are hypermethylated in epiblast-like cells (EpiLCs) and their silencing is dependent upon SETDB1, PRC1.6/RING1B and DNAme, with H3K9me3 and DNAme establishment dependent upon MGA binding. Thus, GGD genes are initially repressed by PRC1.6, with DNAme subsequently engaged in post-implantation embryos.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Kenjiro Shirane
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Uranishi K, Hirasaki M, Kitamura Y, Mizuno Y, Nishimoto M, Suzuki A, Okuda A. Two DNA binding domains of MGA act in combination to suppress ectopic activation of meiosis-related genes in mouse embryonic stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1435-1446. [PMID: 34224650 DOI: 10.1002/stem.3433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/25/2021] [Indexed: 11/10/2022]
Abstract
Although the physiological meaning of the high potential of mouse embryonic stem cells (ESCs) for meiotic entry is not understood, a rigid safeguarding system is required to prevent ectopic onset of meiosis. PRC1.6, a non-canonical PRC1, is known for its suppression of precocious and ectopic meiotic onset in germ cells and ESCs, respectively. MGA, a scaffolding component of PRC1.6, bears two distinct DNA-binding domains termed bHLHZ and T-box. However, it is unclear how this feature contributes to the functions of PRC1.6. Here, we demonstrated that both domains repress distinct sets of genes in murine ESCs, but substantial numbers of meiosis-related genes are included in both gene sets. In addition, our data demonstrated that bHLHZ is crucially involved in repressing the expression of Meiosin, which plays essential roles in meiotic entry with Stra8, revealing at least part of the molecular mechanisms that link negative and positive regulation of meiotic onset.
Collapse
Affiliation(s)
- Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Masataka Hirasaki
- Department of Clinical Cancer Genomics, International Medical Center, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Yuka Kitamura
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Yosuke Mizuno
- Biomedical Research Center, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Masazumi Nishimoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan.,Biomedical Research Center, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| |
Collapse
|
5
|
Kitamura Y, Uranishi K, Hirasaki M, Nishimoto M, Suzuki A, Okuda A. Identification of germ cell-specific Mga variant mRNA that promotes meiosis via impediment of a non-canonical PRC1. Sci Rep 2021; 11:9737. [PMID: 33958653 PMCID: PMC8102552 DOI: 10.1038/s41598-021-89123-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
A non-canonical PRC1 (PRC1.6) prevents precocious meiotic onset. Germ cells alleviate its negative effect by reducing their amount of MAX, a component of PRC1.6, as a prerequisite for their bona fide meiosis. Here, we found that germ cells produced Mga variant mRNA bearing a premature termination codon (PTC) during meiosis as an additional mechanism to impede the function of PRC1.6. The variant mRNA encodes an anomalous MGA protein that lacks the bHLHZ domain and thus functions as a dominant negative regulator of PRC1.6. Notwithstanding the presence of PTC, the Mga variant mRNA are rather stably present in spermatocytes and spermatids due to their intrinsic inefficient background of nonsense-mediated mRNA decay. Thus, our data indicate that meiosis is controlled in a multi-layered manner in which both MAX and MGA, which constitute the core of PRC1.6, are at least used as targets to deteriorate the integrity of the complex to ensure progression of meiosis.
Collapse
Affiliation(s)
- Yuka Kitamura
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Masataka Hirasaki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
- Department of Clinical Cancer Genomics, International Medical Center, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Masazumi Nishimoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
- Biomedical Research Center, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan.
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|
6
|
A transcriptomic study of Williams-Beuren syndrome associated genes in mouse embryonic stem cells. Sci Data 2019; 6:262. [PMID: 31695049 PMCID: PMC6834640 DOI: 10.1038/s41597-019-0281-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Williams-Beuren syndrome (WBS) is a relatively rare disease caused by the deletion of 1.5 to 1.8 Mb on chromosome 7 which contains approximately 28 genes. This multisystem disorder is mainly characterized by supravalvular aortic stenosis, mental retardation, and distinctive facial features. We generated mouse embryonic stem (ES) cells clones expressing each of the 4 human WBS genes (WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2) found in the specific delated region 7q11.23 causative of the WBS. We generated at least three stable clones for each gene with stable integration in the ROSA26 locus of a tetracycline-inducible upstream of the coding sequence of the genet tagged with a 3xFLAG epitope. Three clones for each gene were transcriptionally profiled in inducing versus non-inducing conditions for a total of 24 profiles. This small collection of human WBS-ES cell clones represents a resource to facilitate the study of the function of these genes during differentiation. Measurement(s) | transcription profiling assay • regulation of transcription, DNA-templated | Technology Type(s) | microarray assay • gene overexpression | Factor Type(s) | WBSCR1, GTF2I, GTF2IRD1 and GTF2IRD2 | Sample Characteristic - Organism | Homo sapiens |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.10003127
Collapse
|
7
|
Gisler S, Gonçalves JP, Akhtar W, de Jong J, Pindyurin AV, Wessels LFA, van Lohuizen M. Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Nat Commun 2019; 10:1598. [PMID: 30962441 PMCID: PMC6453899 DOI: 10.1038/s41467-019-09551-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/14/2019] [Indexed: 12/16/2022] Open
Abstract
Understanding the impact of guide RNA (gRNA) and genomic locus on CRISPR-Cas9 activity is crucial to design effective gene editing assays. However, it is challenging to profile Cas9 activity in the endogenous cellular environment. Here we leverage our TRIP technology to integrate ~ 1k barcoded reporter genes in the genomes of mouse embryonic stem cells. We target the integrated reporters (IRs) using RNA-guided Cas9 and characterize induced mutations by sequencing. We report that gRNA-sequence and IR locus explain most variation in mutation efficiency. Predominant insertions of a gRNA-specific nucleotide are consistent with template-dependent repair of staggered DNA ends with 1-bp 5' overhangs. We confirm that such staggered ends are induced by Cas9 in mouse pre-B cells. To explain observed insertions, we propose a model generating primarily blunt and occasionally staggered DNA ends. Mutation patterns indicate that gRNA-sequence controls the fraction of staggered ends, which could be used to optimize Cas9-based insertion efficiency.
Collapse
Affiliation(s)
- Santiago Gisler
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Joana P Gonçalves
- Department of Intelligent Systems, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628 XE, The Netherlands
- Division of Molecular Carcinogenesis, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Johann de Jong
- Division of Molecular Carcinogenesis, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
- Data & Translational Sciences Group, UCB Biosciences GmbH, Alfred-Nobel-Straße 10, Monheim am Rhein, 40789, Germany
| | - Alexey V Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, Novosibirsk, 630090, Russia
- Division of Gene Regulation, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Lodewyk F A Wessels
- Department of Intelligent Systems, Delft University of Technology, Van Mourik Broekmanweg 6, Delft, 2628 XE, The Netherlands.
- Division of Molecular Carcinogenesis, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
| | - Maarten van Lohuizen
- Division of Molecular Genetics, Oncode and The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
| |
Collapse
|
8
|
Hirota A, Nakajima-Koyama M, Ashida Y, Nishida E. The nucleosome remodeling and deacetylase complex protein CHD4 regulates neural differentiation of mouse embryonic stem cells by down-regulating p53. J Biol Chem 2019; 294:195-209. [PMID: 30409903 DOI: 10.1074/jbc.ra118.004086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/07/2018] [Indexed: 11/06/2022] Open
Abstract
Lineage specification of the three germ layers occurs during early embryogenesis and is critical for normal development. The nucleosome remodeling and deacetylase (NuRD) complex is a repressive chromatin modifier that plays a role in lineage commitment. However, the role of chromodomain helicase DNA-binding protein 4 (CHD4), one of the core subunits of the NuRD complex, in neural lineage commitment is poorly understood. Here, we report that the CHD4/NuRD complex plays a critical role in neural differentiation of mouse embryonic stem cells (ESCs). We found that RNAi-mediated Chd4 knockdown suppresses neural differentiation, as did knockdown of methyl-CpG-binding domain protein Mbd3, another NuRD subunit. Chd4 and Mbd3 knockdowns similarly affected changes in global gene expression during neural differentiation and up-regulated several mesendodermal genes. However, inhibition of mesendodermal genes by knocking out the master regulators of mesendodermal lineages, Brachyury and Eomes, through a CRISPR/Cas9 approach could not restore the impaired neural differentiation caused by the Chd4 knockdown, suggesting that CHD4 controls neural differentiation by not repressing other lineage differentiation processes. Notably, Chd4 knockdown increased the acetylation levels of p53, resulting in increased protein levels of p53. Double knockdown of Chd4 and p53 restored the neural differentiation rate. Furthermore, overexpression of BCL2, a downstream factor of p53, partially rescued the impaired neural differentiation caused by the Chd4 knockdown. Our findings reveal that the CHD4/NuRD complex regulates neural differentiation of ESCs by down-regulating p53.
Collapse
Affiliation(s)
- Akira Hirota
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | - May Nakajima-Koyama
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502; AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| | - Yuhei Ashida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502; AMED-CREST, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
9
|
Cullmann K, Blokland KEC, Sebe A, Schenk F, Ivics Z, Heinz N, Modlich U. Sustained and regulated gene expression by Tet-inducible "all-in-one" retroviral vectors containing the HNRPA2B1-CBX3 UCOE ®. Biomaterials 2018; 192:486-499. [PMID: 30508767 DOI: 10.1016/j.biomaterials.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Genetic modification of induced pluripotent stem (iPS) cells may be necessary for the generation of effector cells for cellular therapies. Hereby, it can be important to induce transgene expression at restricted and defined time windows, especially if it interferes with pluripotency or differentiation. To achieve this, inducible expression systems can be used such as the tetracycline-inducible retroviral vector system, however, retroviral expression can be subjected to epigenetic silencing or to position-effect variegation. One strategy to overcome this is the incorporation of ubiquitous chromatin opening elements (UCOE®'s) into retroviral vectors to maintain a transcriptionally permissive chromatin state at the integration site. In this study, we developed Tet-inducible all-in-one gammaretroviral vectors carrying different sized UCOE®'s derived from the A2UCOE. The ability to prevent vector silencing by preserving the Tet-regulatory potential was investigated in different cell lines, and in murine and human iPS cells. A 670-bp fragment spanning the CBX3 promoter region of A2UCOE (U670) was the most potent element in preventing silencing, and conferred the strongest expression from the vector in the induced state. While longer fragments of A2UCOEs also sustained expression, vector titers and induction efficiencies were impaired. Finally, we demonstrate that U670 can be used for constitutive expression of the transactivator in the all-in-one vector for faithful regulation of transgenes by doxycycline, including the thrombopoietin receptor Mpl conferring cytokine-dependent cell growth.
Collapse
Affiliation(s)
- Katharina Cullmann
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kaj E C Blokland
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Attila Sebe
- Div. of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Franziska Schenk
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Zoltán Ivics
- Div. of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Niels Heinz
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany; BioNTech Innovative Manufacturing Services GmbH, Idar-Oberstein, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany.
| |
Collapse
|
10
|
Hirasaki M, Ueda A, Asaka MN, Uranishi K, Suzuki A, Kohda M, Mizuno Y, Okazaki Y, Nishimoto M, Sharif J, Koseki H, Okuda A. Identification of the Coiled-Coil Domain as an Essential Methyl-CpG-Binding Domain Protein 3 Element for Preserving Lineage Commitment Potential of Embryonic Stem Cells. Stem Cells 2018; 36:1355-1367. [DOI: 10.1002/stem.2849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/31/2018] [Accepted: 04/13/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Masataka Hirasaki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Atsushi Ueda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masamitsu N. Asaka
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Kousuke Uranishi
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Ayumu Suzuki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masakazu Kohda
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yasushi Okazaki
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masazumi Nishimoto
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Jafar Sharif
- Developmental Genetics Laboratory; RIKEN Center for Integrative Medical Sciences (IMS), Tsurumiku; Yokohama Kanagawa Japan
| | - Haruhiko Koseki
- Developmental Genetics Laboratory; RIKEN Center for Integrative Medical Sciences (IMS), Tsurumiku; Yokohama Kanagawa Japan
| | - Akihiko Okuda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| |
Collapse
|
11
|
Yazawa T, Imamichi Y, Miyamoto K, Khan MRI, Uwada J, Umezawa A, Taniguchi T. Induction of steroidogenic cells from adult stem cells and pluripotent stem cells [Review]. Endocr J 2016; 63:943-951. [PMID: 27681884 DOI: 10.1507/endocrj.ej16-0373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Steroid hormones are mainly produced in adrenal glands and gonads. Because steroid hormones play vital roles in various physiological processes, replacement of deficient steroid hormones by hormone replacement therapy (HRT) is necessary for patients with adrenal and gonadal failure. In addition to HRT, tissue regeneration using stem cells is predicted to provide novel therapy. Among various stem cell types, mesenchymal stem cells can be differentiated into steroidogenic cells following ectopic expression of nuclear receptor (NR) 5A subfamily proteins, steroidogenic factor-1 (also known as adrenal 4 binding protein) and liver receptor homolog-1, with the aid of cAMP signaling. Conversely, these approaches cannot be applied to pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, because of poor survival following cytotoxic expression of NR5A subfamily proteins. However, if pluripotent stem cells are first differentiated through mesenchymal lineage, they can also be differentiated into steroidogenic cells via NR5A subfamily protein expression. This approach offers a potential suitable cells for future regenerative medicine and gene therapy for diseases caused by steroidogenesis deficiencies. It represents a powerful tool to investigate the molecular mechanisms involved in steroidogenesis. This article highlights our own and current research on the induction of steroidogenic cells from various stem cells. We also discuss the future direction of their clinical application.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
PRDM14 Drives OCT3/4 Recruitment via Active Demethylation in the Transition from Primed to Naive Pluripotency. Stem Cell Reports 2016; 7:1072-1086. [PMID: 27866876 PMCID: PMC5161533 DOI: 10.1016/j.stemcr.2016.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Primordial germ cells (PGCs) are specified from epiblast cells in mice. Genes associated with naive pluripotency are repressed in the transition from inner cell mass to epiblast cells, followed by upregulation after PGC specification. However, the molecular mechanisms underlying the reactivation of pluripotency genes are poorly characterized. Here, we exploited the in vitro differentiation of epiblast-like cells (EpiLCs) from embryonic stem cells (ESCs) to elucidate the molecular and epigenetic functions of PR domain-containing 14 (PRDM14). We found that Prdm14 overexpression in EpiLCs induced their conversion to ESC-like cells even in the absence of leukemia inhibitory factor in adherent culture. This was impaired by the loss of Kruppel-like factor 2 and ten-eleven translocation (TET) proteins. Furthermore, PRDM14 recruited OCT3/4 to the enhancer regions of naive pluripotency genes via TET-base excision repair-mediated demethylation. Our results provide evidence that PRDM14 establishes a transcriptional network for naive pluripotency via active DNA demethylation.
Collapse
|
13
|
Abstract
Chromatin structure and function are determined by a plethora of proteins whose genome-wide distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to investigate the local chromatin environment at specific DNA sequences. We combined the programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and mass spectrometry identified both known and previously unknown chromatin factors associated with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy, we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-specific chromatin composition.
Collapse
Affiliation(s)
- Elisabeth Schmidtmann
- a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany
| | - Tobias Anton
- a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany
| | - Pascaline Rombaut
- b Gene Center and Department of Biochemistry , LMU Munich , Munich , Germany
| | - Franz Herzog
- b Gene Center and Department of Biochemistry , LMU Munich , Munich , Germany
| | - Heinrich Leonhardt
- a Department of Biology II and Center for Integrated Protein Science Munich (CIPSM) , LMU Munich , Martinsried , Germany
| |
Collapse
|
14
|
Yamamizu K, Sharov AA, Piao Y, Amano M, Yu H, Nishiyama A, Dudekula DB, Schlessinger D, Ko MSH. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines. Sci Rep 2016; 6:25667. [PMID: 27150017 PMCID: PMC4858678 DOI: 10.1038/srep25667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/21/2016] [Indexed: 11/22/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs.
Collapse
Affiliation(s)
- Kohei Yamamizu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexei A Sharov
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Misa Amano
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hong Yu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Akira Nishiyama
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Minoru S H Ko
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
15
|
Nakai-Futatsugi Y, Niwa H. Zscan4 Is Activated after Telomere Shortening in Mouse Embryonic Stem Cells. Stem Cell Reports 2016; 6:483-495. [PMID: 26997646 PMCID: PMC4834046 DOI: 10.1016/j.stemcr.2016.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 02/07/2023] Open
Abstract
ZSCAN4 is a DNA-binding protein that functions for telomere elongation and genomic stability. In vivo, it is specifically expressed at the two-cell stage during mouse development. In vitro, it is transiently expressed in mouse embryonic stem cells (ESCs), only in 5% of the population at one time. Here we attempted to elucidate when, under what circumstances, Zscan4 is activated in ESCs. Using live cell imaging, we monitored the activity of Zscan4 together with the pluripotency marker Rex1. The lengths of the cell cycles in ESCs were diverse. Longer cell cycles were accompanied by shorter telomeres and higher activation of Zscan4. Since activation of Zscan4 is involved in telomere elongation, we speculate that the extended cell cycles accompanied by Zscan4 activation reflect the time for telomere recovery. Rex1 and Zscan4 did not show any correlation. Taken together, we propose that Zscan4 is activated to recover shortened telomeres during extended cell cycles, irrespective of the pluripotent status. At longer cell cycles, telomeres are shorter Zscan4 is activated when the cell cycles become long After the activation of Zscan4, the next cell cycle becomes short We propose Zscan4 is activated for telomere maintenance irrespective of pluripotency
Collapse
Affiliation(s)
- Yoko Nakai-Futatsugi
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan; Japan Science and Technology Agency, CREST, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
16
|
Yano Y, Iimura N, Kojima N, Uchiyama H. Non-neural and cardiac differentiating properties of Tbx6-expressing mouse embryonic stem cells. Regen Ther 2016; 3:1-6. [PMID: 31245465 PMCID: PMC6581818 DOI: 10.1016/j.reth.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/10/2016] [Accepted: 02/08/2016] [Indexed: 11/30/2022] Open
Abstract
T-box transcription factors play important roles in vertebrate mesoderm formation. Eomesodermin is involved in the initial step of the prospective mesodermal cells recruited near the primitive streak. Then T or Brachyury gene is responsible for general and axial mesodermal development. Tbx6, on the other hand, promotes paraxial mesodermal development while suppressing neural differentiation. Here, we studied differentiative properties of mouse ES cells (mESCs) with its Tbx6 expression regulated under the Tet-off system. mESCs were treated with noggin to promote neural differentiation. When Tbx6 was simultaneously turned on, later neural differentiation of these cells hardly occurred. Next, mESCs were subjected to formation of the embryoid bodies (EBs). When Tbx6 was turned on during EB formation, the rate of later cardiac troponin T (cTnT)-positive cells increased. If the cells were further treated with a wnt inhibitor KY02111 after EB formation, a synergistic increase of cTnT-positive cells occurred. Tbx6 expression in mESCs influenced the constituent ratio of the cardiac myosin light chain types, such that atrial species markedly increased over ventricular ones. These results are coincident with the function of Tbx6 in normal development, in that Tbx6 strongly suppressed neural differentiation while promoting cardiac development in a cooperative manner with wnt inhibition. Tbx6 expression in mouse ES cells (mESCs) inhibited neural differentiation. Tbx6 expression in mESCs increased cardiac muscle synergistically with wnt inhibitor. Tbx6 expression increased atrial myosin light chains over ventricular chains.
Collapse
Affiliation(s)
- Yoshiteru Yano
- Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Naoya Iimura
- Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Nobuhiko Kojima
- Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Hideho Uchiyama
- Graduate School of Nanobiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
17
|
Lambers E, Arnone B, Fatima A, Qin G, Wasserstrom JA, Kume T. Foxc1 Regulates Early Cardiomyogenesis and Functional Properties of Embryonic Stem Cell Derived Cardiomyocytes. Stem Cells 2016; 34:1487-500. [DOI: 10.1002/stem.2301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Erin Lambers
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - Baron Arnone
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - Anees Fatima
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - Gangjian Qin
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - J. Andrew Wasserstrom
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University; Chicago Illinois USA
| |
Collapse
|
18
|
Watanabe-Susaki K, Takada H, Enomoto K, Miwata K, Ishimine H, Intoh A, Ohtaka M, Nakanishi M, Sugino H, Asashima M, Kurisaki A. Biosynthesis of ribosomal RNA in nucleoli regulates pluripotency and differentiation ability of pluripotent stem cells. Stem Cells 2015; 32:3099-111. [PMID: 25187421 DOI: 10.1002/stem.1825] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 07/23/2014] [Indexed: 01/28/2023]
Abstract
Pluripotent stem cells have been shown to have unique nuclear properties, for example, hyperdynamic chromatin and large, condensed nucleoli. However, the contribution of the latter unique nucleolar character to pluripotency has not been well understood. Here, we show that fibrillarin (FBL), a critical methyltransferase for ribosomal RNA (rRNA) processing in nucleoli, is one of the proteins highly expressed in pluripotent embryonic stem (ES) cells. Stable expression of FBL in ES cells prolonged the pluripotent state of mouse ES cells cultured in the absence of leukemia inhibitory factor (LIF). Analyses using deletion mutants and a point mutant revealed that the methyltransferase activity of FBL regulates stem cell pluripotency. Knockdown of this gene led to significant delays in rRNA processing, growth inhibition, and apoptosis in mouse ES cells. Interestingly, both partial knockdown of FBL and treatment with actinomycin D, an inhibitor of rRNA synthesis, induced the expression of differentiation markers in the presence of LIF and promoted stem cell differentiation into neuronal lineages. Moreover, we identified p53 signaling as the regulatory pathway for pluripotency and differentiation of ES cells. These results suggest that proper activity of rRNA production in nucleoli is a novel factor for the regulation of pluripotency and differentiation ability of ES cells.
Collapse
Affiliation(s)
- Kanako Watanabe-Susaki
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kinoshita M, Shimosato D, Yamane M, Niwa H. Sox7 is dispensable for primitive endoderm differentiation from mouse ES cells. BMC DEVELOPMENTAL BIOLOGY 2015; 15:37. [PMID: 26475439 PMCID: PMC4609079 DOI: 10.1186/s12861-015-0079-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/07/2015] [Indexed: 11/10/2022]
Abstract
Background Primitive endoderm is a cell lineage segregated from the epiblast in the blastocyst and gives rise to parietal and visceral endoderm. Sox7 is a member of the SoxF gene family that is specifically expressed in primitive endoderm in the late blastocyst, although its function in this cell lineage remains unclear. Results Here we characterize the function of Sox7 in primitive endoderm differentiation using mouse embryonic stem (ES) cells as a model system. We show that ectopic expression of Sox7 in ES cells has a marginal effect on triggering differentiation into primitive endoderm-like cells. We also show that targeted disruption of Sox7 in ES cells does not affect differentiation into primitive endoderm cells in embryoid body formation as well as by forced expression of Gata6. Conclusions These data indicate that Sox7 function is supplementary and not essential for this differentiation from ES cells. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0079-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masaki Kinoshita
- Laboratory for Pluripotent cell studies, RIKEN, Centre for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Daisuke Shimosato
- Laboratory for Pluripotent cell studies, RIKEN, Centre for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,Laboratory for Development and Regenerative Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Mariko Yamane
- Laboratory for Pluripotent cell studies, RIKEN, Centre for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
| | - Hitoshi Niwa
- Laboratory for Pluripotent cell studies, RIKEN, Centre for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan. .,Laboratory for Development and Regenerative Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. .,Present address: Department of Pluripotent Stem Cell Biology, Institure of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan.
| |
Collapse
|
20
|
TBX1 Represses Vegfr2 Gene Expression and Enhances the Cardiac Fate of VEGFR2+ Cells. PLoS One 2015; 10:e0138525. [PMID: 26382615 PMCID: PMC4575176 DOI: 10.1371/journal.pone.0138525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/01/2015] [Indexed: 02/04/2023] Open
Abstract
The T-box transcription factor TBX1 has critical roles in maintaining proliferation and inhibiting differentiation of cardiac progenitor cells of the second heart field (SHF). Haploinsufficiency of the gene that encodes it is a cause of congenital heart disease. Here, we developed an embryonic stem (ES) cell-based model in which Tbx1 expression can be modulated by tetracycline. Using this model, we found that TBX1 down regulates the expression of VEGFR2, and we confirmed this finding in vivo during embryonic development. In addition, we found a Vegfr2 domain of expression, not previously described, in the posterior SHF and this expression is extended by loss of Tbx1. VEGFR2 has been previously described as a marker of a subpopulation of cardiac progenitors. Clonal analysis of ES-derived VEGFR2+ cells indicated that 12.5% of clones expressed three markers of cardiac lineage (cardiomyocyte, smooth muscle and endothelium). However, a pulse of Tbx1 expression was sufficient to increase the percentage to 20.8%. In addition, the percentage of clones expressing markers of multiple cardiac lineages increased from 41.6% to 79.1% after Tbx1 pulse. These results suggest that TBX1 plays a role in maintaining a progenitor state in VEGFR2+ cells.
Collapse
|
21
|
Noguchi TAK, Ninomiya N, Sekine M, Komazaki S, Wang PC, Asashima M, Kurisaki A. Generation of stomach tissue from mouse embryonic stem cells. Nat Cell Biol 2015; 17:984-93. [PMID: 26192439 DOI: 10.1038/ncb3200] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Successful pluripotent stem cell differentiation methods have been developed for several endoderm-derived cells, including hepatocytes, β-cells and intestinal cells. However, stomach lineage commitment from pluripotent stem cells has remained a challenge, and only antrum specification has been demonstrated. We established a method for stomach differentiation from embryonic stem cells by inducing mesenchymal Barx1, an essential gene for in vivo stomach specification from gut endoderm. Barx1-inducing culture conditions generated stomach primordium-like spheroids, which differentiated into mature stomach tissue cells in both the corpus and antrum by three-dimensional culture. This embryonic stem cell-derived stomach tissue (e-ST) shared a similar gene expression profile with adult stomach, and secreted pepsinogen as well as gastric acid. Furthermore, TGFA overexpression in e-ST caused hypertrophic mucus and gastric anacidity, which mimicked Ménétrier disease in vitro. Thus, in vitro stomach tissue derived from pluripotent stem cells mimics in vivo development and can be used for stomach disease models.
Collapse
Affiliation(s)
- Taka-aki K Noguchi
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Ibaraki 305-8577, Japan
| | - Naoto Ninomiya
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8562, Japan
| | - Mari Sekine
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Ibaraki 305-8577, Japan
| | - Shinji Komazaki
- Department of Anatomy, Saitama Medical University, Saitama 350-0495, Japan
| | - Pi-Chao Wang
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Ibaraki 305-8577, Japan
| | - Makoto Asashima
- 1] Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8562, Japan [2] Life Science Center of Tsukuba Advanced Research Alliance, The University of Tsukuba, Ibaraki 305-8577, Japan
| | - Akira Kurisaki
- 1] Graduate School of Life and Environmental Sciences, The University of Tsukuba, Ibaraki 305-8577, Japan [2] Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8562, Japan
| |
Collapse
|
22
|
Integrative Analysis of the Acquisition of Pluripotency in PGCs Reveals the Mutually Exclusive Roles of Blimp-1 and AKT Signaling. Stem Cell Reports 2015; 5:111-24. [PMID: 26050930 PMCID: PMC4618250 DOI: 10.1016/j.stemcr.2015.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022] Open
Abstract
Primordial germ cells (PGCs) are lineage-restricted unipotent cells that can dedifferentiate into pluripotent embryonic germ cells (EGCs). Here we performed whole-transcriptome analysis during the conversion of PGCs into EGCs, a process by which cells acquire pluripotency. To examine the molecular mechanism underlying this conversion, we focused on Blimp-1 and Akt, which are involved in PGC specification and dedifferentiation, respectively. Blimp-1 overexpression in embryonic stem cells suppressed the expression of downstream targets of the pluripotency network. Conversely, Blimp-1 deletion in PGCs accelerated their dedifferentiation into pluripotent EGCs, illustrating that Blimp-1 is a pluripotency gatekeeper protein in PGCs. AKT signaling showed a synergistic effect with basic fibroblast growth factor plus 2i+A83 treatment on EGC formation. AKT played a major role in suppressing genes regulated by MBD3. From these results, we defined the distinct functions of Blimp-1 and Akt and provided mechanistic insights into the acquisition of pluripotency in PGCs.
Collapse
|
23
|
Mulholland CB, Smets M, Schmidtmann E, Leidescher S, Markaki Y, Hofweber M, Qin W, Manzo M, Kremmer E, Thanisch K, Bauer C, Rombaut P, Herzog F, Leonhardt H, Bultmann S. A modular open platform for systematic functional studies under physiological conditions. Nucleic Acids Res 2015; 43:e112. [PMID: 26007658 PMCID: PMC4787826 DOI: 10.1093/nar/gkv550] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/14/2015] [Indexed: 12/15/2022] Open
Abstract
Any profound comprehension of gene function requires detailed information about the subcellular localization, molecular interactions and spatio-temporal dynamics of gene products. We developed a multifunctional integrase (MIN) tag for rapid and versatile genome engineering that serves not only as a genetic entry site for the Bxb1 integrase but also as a novel epitope tag for standardized detection and precipitation. For the systematic study of epigenetic factors, including Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2, Tet3 and Uhrf1, we generated MIN-tagged embryonic stem cell lines and created a toolbox of prefabricated modules that can be integrated via Bxb1-mediated recombination. We used these functional modules to study protein interactions and their spatio-temporal dynamics as well as gene expression and specific mutations during cellular differentiation and in response to external stimuli. Our genome engineering strategy provides a versatile open platform for efficient generation of multiple isogenic cell lines to study gene function under physiological conditions.
Collapse
Affiliation(s)
- Christopher B Mulholland
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Martha Smets
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Elisabeth Schmidtmann
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Susanne Leidescher
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Yolanda Markaki
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Mario Hofweber
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Weihua Qin
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Massimiliano Manzo
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Elisabeth Kremmer
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Molecular Immunology, Marchioninistrasse 25, 81377 Munich, Germany
| | - Katharina Thanisch
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Christina Bauer
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Pascaline Rombaut
- Gene Center and Department of Biochemistry, Ludwig Maximilians University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Franz Herzog
- Gene Center and Department of Biochemistry, Ludwig Maximilians University Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Heinrich Leonhardt
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Sebastian Bultmann
- Ludwig Maximilians University Munich, Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Großhaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
24
|
Letourneau A, Cobellis G, Fort A, Santoni F, Garieri M, Falconnet E, Ribaux P, Vannier A, Guipponi M, Carninci P, Borel C, Antonarakis SE. HSA21 Single-Minded 2 (Sim2) Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells. PLoS One 2015; 10:e0126475. [PMID: 25955728 PMCID: PMC4425456 DOI: 10.1371/journal.pone.0126475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/02/2015] [Indexed: 01/22/2023] Open
Abstract
The HSA21 encoded Single-minded 2 (SIM2) transcription factor has key neurological functions and is a good candidate to be involved in the cognitive impairment of Down syndrome. We aimed to explore the functional capacity of SIM2 by mapping its DNA binding sites in mouse embryonic stem cells. ChIP-sequencing revealed 1229 high-confidence SIM2-binding sites. Analysis of the SIM2 target genes confirmed the importance of SIM2 in developmental and neuronal processes and indicated that SIM2 may be a master transcription regulator. Indeed, SIM2 DNA binding sites share sequence specificity and overlapping domains of occupancy with master transcription factors such as SOX2, OCT4 (Pou5f1), NANOG or KLF4. The association between SIM2 and these pioneer factors is supported by co-immunoprecipitation of SIM2 with SOX2, OCT4, NANOG or KLF4. Furthermore, the binding of SIM2 marks a particular sub-category of enhancers known as super-enhancers. These regions are characterized by typical DNA modifications and Mediator co-occupancy (MED1 and MED12). Altogether, we provide evidence that SIM2 binds a specific set of enhancer elements thus explaining how SIM2 can regulate its gene network in neuronal features.
Collapse
Affiliation(s)
- Audrey Letourneau
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Gilda Cobellis
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, Napoli, Italy
| | - Alexandre Fort
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Federico Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Marco Garieri
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Pascale Ribaux
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Anne Vannier
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- University Hospitals of Geneva, Geneva, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- University Hospitals of Geneva, Geneva, Switzerland
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- * E-mail: (SEA); (CB)
| | - Stylianos E. Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- University Hospitals of Geneva, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
- * E-mail: (SEA); (CB)
| |
Collapse
|
25
|
A novel autoregulatory loop between the Gcn2-Atf4 pathway and (L)-Proline [corrected] metabolism controls stem cell identity. Cell Death Differ 2015; 22:1094-105. [PMID: 25857264 PMCID: PMC4572871 DOI: 10.1038/cdd.2015.24] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 02/07/2015] [Accepted: 02/16/2015] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence indicates that metabolism is implicated in the control of stem cell identity. Here, we demonstrate that embryonic stem cell (ESC) behaviour relies on a feedback loop that involves the non-essential amino acid L-Proline (L-Pro) in the modulation of the Gcn2-Eif2α-Atf4 amino acid starvation response (AAR) pathway that in turn regulates L-Pro biosynthesis. This regulatory loop generates a highly specific intrinsic shortage of L-Pro that restricts proliferation of tightly packed domed-like ESC colonies and safeguards ESC identity. Indeed, alleviation of this nutrient stress condition by exogenously provided L-Pro induces proliferation and modifies the ESC phenotypic and molecular identity towards that of mesenchymal-like, invasive pluripotent stem cells. Either pharmacological inhibition of the prolyl-tRNA synthetase by halofuginone or forced expression of Atf4 antagonises the effects of exogenous L-Pro. Our data provide unprecedented evidence that L-Pro metabolism and the nutrient stress response are functionally integrated to maintain ESC identity.
Collapse
|
26
|
Hishida T, Nakachi Y, Mizuno Y, Katano M, Okazaki Y, Ema M, Takahashi S, Hirasaki M, Suzuki A, Ueda A, Nishimoto M, Hishida-Nozaki Y, Vazquez-Ferrer E, Sancho-Martinez I, Carlos Izpisua Belmonte J, Okuda A. Functional Compensation Between Myc and PI3K Signaling Supports Self-Renewal of Embryonic Stem Cells. Stem Cells 2015; 33:713-25. [DOI: 10.1002/stem.1893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/25/2014] [Accepted: 10/15/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Tomoaki Hishida
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | - Yutaka Nakachi
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yosuke Mizuno
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Miyuki Katano
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yasushi Okazaki
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Division of Translational Research; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Division of Functional Genomics and Systems Medicine; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masatsugu Ema
- Department of Anatomy and Embryology; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba Japan
| | - Satoru Takahashi
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
- Department of Anatomy and Embryology; Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba Japan
| | - Masataka Hirasaki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Ayumu Suzuki
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Atsushi Ueda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Masazumi Nishimoto
- Radioisotope Experimental Laboratory; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
| | - Yuriko Hishida-Nozaki
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | - Eric Vazquez-Ferrer
- Gene Expression Laboratory; Salk Institute for Biological Studies; La Jolla California USA
| | | | | | - Akihiko Okuda
- Division of Developmental Biology; Research Center for Genomic Medicine, Saitama Medical University; Yamane Hidaka Saitama Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency; Kawaguchi Saitama Japan
| |
Collapse
|
27
|
Enomoto K, Watanabe-Susaki K, Kowno M, Takada H, Intoh A, Yamanaka Y, Hirano H, Sugino H, Asashima M, Kurisaki A. Identification of novel proteins differentially expressed in pluripotent embryonic stem cells and differentiated cells. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 62:130-6. [DOI: 10.2152/jmi.62.130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Kei Enomoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Kanako Watanabe-Susaki
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4
| | - Megumi Kowno
- Graduate School of Life and Environmental Sciences, The University of Tsukuba
| | - Hitomi Takada
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4
| | - Atsushi Intoh
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo
| | - Yuko Yamanaka
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine
| | - Hisashi Hirano
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine
| | - Hiromu Sugino
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4
| | - Makoto Asashima
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo
- ICORP Organ Regeneration Project, Japan Science and Technology Agency (JST)
| | - Akira Kurisaki
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4
- Graduate School of Life and Environmental Sciences, The University of Tsukuba
| |
Collapse
|
28
|
Fujimoto M, Ohte S, Shin M, Yoneyama K, Osawa K, Miyamoto A, Tsukamoto S, Mizuta T, Kokabu S, Machiya A, Okuda A, Suda N, Katagiri T. Establishment of a novel model of chondrogenesis using murine embryonic stem cells carrying fibrodysplasia ossificans progressiva-associated mutant ALK2. Biochem Biophys Res Commun 2014; 455:347-52. [PMID: 25446088 DOI: 10.1016/j.bbrc.2014.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 11/07/2014] [Indexed: 01/05/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a genetic disorder characterized by heterotopic endochondral ossification in soft tissue. A mutation in the bone morphogenetic protein (BMP) receptor ALK2, R206H, has been identified in patients with typical FOP. In the present study, we established murine embryonic stem (ES) cells that express wild-type human ALK2 or typical mutant human ALK2 [ALK2(R206H)] under the control of the Tet-Off system. Although wild-type ALK2 and mutant ALK2(R206H) were expressed in response to a withdrawal of doxycycline (Dox), BMP signaling was activated only in the mutant ALK2(R206H)-expressing cells without the addition of exogenous BMPs. The Dox-dependent induction of BMP signaling was blocked by a specific kinase inhibitor of the BMP receptor. The mutant ALK2(R206H)-carrying cells showed Dox-regulated chondrogenesis in vitro, which occurred in co-operation with transforming growth factor-β1 (TGF-β1). Overall, our ES cells are useful for studying the molecular mechanisms of heterotopic ossification in FOP in vitro and for developing novel inhibitors of chondrogenesis induced by mutant ALK2(R206H) associated with FOP.
Collapse
Affiliation(s)
- Mai Fujimoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan; Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado-shi, Saitama 350-0283, Japan
| | - Satoshi Ohte
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Masashi Shin
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Katsumi Yoneyama
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Kenji Osawa
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Arei Miyamoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Sho Tsukamoto
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Takato Mizuta
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Shoichiro Kokabu
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Aiko Machiya
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan; Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado-shi, Saitama 350-0283, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan
| | - Naoto Suda
- Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado-shi, Saitama 350-0283, Japan
| | - Takenobu Katagiri
- Division of Pathophysiology, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
| |
Collapse
|
29
|
Zhu L, Zhang S, Jin Y. Foxd3 suppresses NFAT-mediated differentiation to maintain self-renewal of embryonic stem cells. EMBO Rep 2014; 15:1286-96. [PMID: 25378483 DOI: 10.15252/embr.201438643] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pluripotency-associated transcription factor Foxd3 is required for maintaining pluripotent cells. However, molecular mechanisms underlying its function are largely unknown. Here, we report that Foxd3 suppresses differentiation induced by calcineurin-NFAT signaling to maintain the ESC identity. Mechanistically, Foxd3 interacts with NFAT proteins and recruits co-repressor Tle4, a member of the Tle repressor family highly expressed in undifferentiated ESCs, to suppress NFATc3's transcriptional activities. Furthermore, global transcriptome analysis shows that Foxd3 and NFATc3 co-regulate a set of differentiation-associated genes in ESCs. Collectively, our study establishes a molecular and functional link between a pluripotency-associated factor and an important ESC differentiation-inducing pathway.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shiyue Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes of Biological Sciences Chinese Academy of Sciences/Shanghai JiaoTong University School of Medicine, Shanghai, China Shanghai Stem Cell Institute, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Zhao J, Li S, Trilok S, Tanaka M, Jokubaitis-Jameson V, Wang B, Niwa H, Nakayama N. Small molecule-directed specification of sclerotome-like chondroprogenitors and induction of a somitic chondrogenesis program from embryonic stem cells. Development 2014; 141:3848-58. [PMID: 25294938 PMCID: PMC7055718 DOI: 10.1242/dev.105981] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 08/16/2014] [Indexed: 02/03/2023]
Abstract
Pluripotent embryonic stem cells (ESCs) generate rostral paraxial mesoderm-like progeny in 5-6 days of differentiation induced by Wnt3a and Noggin (Nog). We report that canonical Wnt signaling introduced either by forced expression of activated β-catenin, or the small-molecule inhibitor of Gsk3, CHIR99021, satisfied the need for Wnt3a signaling, and that the small-molecule inhibitor of BMP type I receptors, LDN193189, was able to replace Nog. Mesodermal progeny generated using such small molecules were chondrogenic in vitro, and expressed trunk paraxial mesoderm markers such as Tcf15 and Meox1, and somite markers such as Uncx, but failed to express sclerotome markers such as Pax1. Induction of the osteochondrogenically committed sclerotome from somite requires sonic hedgehog and Nog. Consistently, Pax1 and Bapx1 expression was induced when the isolated paraxial mesodermal progeny were treated with SAG1 (a hedgehog receptor agonist) and LDN193189, then Sox9 expression was induced, leading to cartilaginous nodules and particles in the presence of BMP, indicative of chondrogenesis via sclerotome specification. By contrast, treatment with TGFβ also supported chondrogenesis and stimulated Sox9 expression, but failed to induce the expression of Pax1 and Bapx1. On ectopic transplantation to immunocompromised mice, the cartilage particles developed under either condition became similarly mineralized and formed pieces of bone with marrow. Thus, the use of small molecules led to the effective generation from ESCs of paraxial mesodermal progeny, and to their further differentiation in vitro through sclerotome specification into growth plate-like chondrocytes, a mechanism resembling in vivo somitic chondrogenesis that is not recapitulated with TGFβ.
Collapse
Affiliation(s)
- Jiangang Zhao
- Institute of Molecular Medicine, The University of Texas Health Science Center Medical School at Houston, Houston, TX 77030, USA
| | - Songhui Li
- Australian Stem Cell Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Suprita Trilok
- Institute of Molecular Medicine, The University of Texas Health Science Center Medical School at Houston, Houston, TX 77030, USA
| | - Makoto Tanaka
- Australian Stem Cell Centre, Monash University, Clayton, Victoria 3800, Australia
| | | | - Bei Wang
- Australian Stem Cell Centre, Monash University, Clayton, Victoria 3800, Australia
| | - Hitoshi Niwa
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Naoki Nakayama
- Institute of Molecular Medicine, The University of Texas Health Science Center Medical School at Houston, Houston, TX 77030, USA Australian Stem Cell Centre, Monash University, Clayton, Victoria 3800, Australia Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
31
|
Abstract
The influence of local chromatin context on gene expression can be explored by integrating a transcription reporter at different locations in the genome as a sensor. Here we provide a detailed protocol for analyzing thousands of reporters integrated in parallel (TRIP) at a genome-wide level. TRIP is based on tagging each reporter with a unique barcode, which is used for independent reporter expression analysis and integration site mapping. Compared with previous methods for studying position effects, TRIP offers a 100-1,000-fold higher throughput in a faster and less-labor-intensive manner. The entire experimental protocol takes ∼42 d to complete, with high-throughput sequencing and data analysis requiring an additional ∼11 d. TRIP was developed by using transcription reporters in mouse embryonic stem (mES) cells, but because of its flexibility the method can be used to probe the influence of chromatin context on a variety of molecular processes in any transfectable cell line.
Collapse
|
32
|
Hematopoietic overexpression of FOG1 does not affect B-cells but reduces the number of circulating eosinophils. PLoS One 2014; 9:e92836. [PMID: 24747299 PMCID: PMC3991581 DOI: 10.1371/journal.pone.0092836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/26/2014] [Indexed: 12/31/2022] Open
Abstract
We have identified expression of the gene encoding the transcriptional coactivator FOG-1 (Friend of GATA-1; Zfpm1, Zinc finger protein multitype 1) in B lymphocytes. We found that FOG-1 expression is directly or indirectly dependent on the B cell-specific coactivator OBF-1 and that it is modulated during B cell development: expression is observed in early but not in late stages of B cell development. To directly test in vivo the role of FOG-1 in B lymphocytes, we developed a novel embryonic stem cell recombination system. For this, we combined homologous recombination with the FLP recombinase activity to rapidly generate embryonic stem cell lines carrying a Cre-inducible transgene at the Rosa26 locus. Using this system, we successfully generated transgenic mice where FOG-1 is conditionally overexpressed in mature B-cells or in the entire hematopoietic system. While overexpression of FOG-1 in B cells did not significantly affect B cell development or function, we found that enforced expression of FOG-1 throughout all hematopoietic lineages led to a reduction in the number of circulating eosinophils, confirming and extending to mammals the known function of FOG-1 in this lineage.
Collapse
|
33
|
de Jong J, Akhtar W, Badhai J, Rust AG, Rad R, Hilkens J, Berns A, van Lohuizen M, Wessels LFA, de Ridder J. Chromatin landscapes of retroviral and transposon integration profiles. PLoS Genet 2014; 10:e1004250. [PMID: 24721906 PMCID: PMC3983033 DOI: 10.1371/journal.pgen.1004250] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/04/2014] [Indexed: 12/16/2022] Open
Abstract
The ability of retroviruses and transposons to insert their genetic material into host DNA makes them widely used tools in molecular biology, cancer research and gene therapy. However, these systems have biases that may strongly affect research outcomes. To address this issue, we generated very large datasets consisting of to unselected integrations in the mouse genome for the Sleeping Beauty (SB) and piggyBac (PB) transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at both local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome. More distinct preferences were observed for the two transposons, with PB showing remarkable resemblance to bias profiles of the Murine Leukemia Virus. Furthermore, we present a model where target site selection is directed at multiple scales. At a large scale, target site selection is similar across systems, and defined by domain-oriented features, namely expression of proximal genes, proximity to CpG islands and to genic features, chromatin compaction and replication timing. Notable differences between the systems are mainly observed at smaller scales, and are directed by a diverse range of features. To study the effect of these biases on integration sites occupied under selective pressure, we turned to insertional mutagenesis (IM) screens. In IM screens, putative cancer genes are identified by finding frequently targeted genomic regions, or Common Integration Sites (CISs). Within three recently completed IM screens, we identified 7%–33% putative false positive CISs, which are likely not the result of the oncogenic selection process. Moreover, results indicate that PB, compared to SB, is more suited to tag oncogenes. Retroviruses and transposons are widely used in cancer research and gene therapy. However, these systems show integration biases that may strongly affect results. To address this issue, we generated very large datasets consisting of to unselected integrations for the Sleeping Beauty and piggyBac transposons, and the Mouse Mammary Tumor Virus (MMTV). We analyzed (epi)genomic features to generate bias maps at local and genome-wide scales. MMTV showed a remarkably uniform distribution of integrations across the genome, and a striking similarity was observed between piggyBac and the Murine Leukemia Virus. Moreover, we find that target site selection is directed at multiple scales. At larger scales, it is similar across systems, and directed by a set of domain-oriented features, including chromatin compaction, replication timing, and CpG islands. Notable differences between systems are defined at smaller scales by a diverse range of epigenetic features. As a practical application of our findings, we determined that three recent insertional mutagenesis screens - commonly used for cancer gene discovery - contained 7%–33% putative false positive integration hotspots.
Collapse
Affiliation(s)
- Johann de Jong
- Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
| | - Waseem Akhtar
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jitendra Badhai
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alistair G. Rust
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton-Cambridge, United Kingdom
| | - Roland Rad
- Department of Medicine II; Klinikum Rechts der Isar; Technische Universität München, German Cancer Research Center (DKFZ), Heidelberg, & German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Skoltech Center for Stem Cell Research, Skolkovo Institute for Science and Technology, Skolkovo, Odintsovsky, Moscow, Russia
| | - Maarten van Lohuizen
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F. A. Wessels
- Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Netherlands Consortium for Systems Biology, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
- * E-mail: (LFAW); (JdR)
| | - Jeroen de Ridder
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
- * E-mail: (LFAW); (JdR)
| |
Collapse
|
34
|
Kowno M, Watanabe-Susaki K, Ishimine H, Komazaki S, Enomoto K, Seki Y, Wang YY, Ishigaki Y, Ninomiya N, Noguchi TAK, Kokubu Y, Ohnishi K, Nakajima Y, Kato K, Intoh A, Takada H, Yamakawa N, Wang PC, Asashima M, Kurisaki A. Prohibitin 2 regulates the proliferation and lineage-specific differentiation of mouse embryonic stem cells in mitochondria. PLoS One 2014; 9:e81552. [PMID: 24709813 PMCID: PMC3977857 DOI: 10.1371/journal.pone.0081552] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/24/2013] [Indexed: 12/03/2022] Open
Abstract
Background The pluripotent state of embryonic stem (ES) cells is controlled by a network of specific transcription factors. Recent studies also suggested the significant contribution of mitochondria on the regulation of pluripotent stem cells. However, the molecules involved in these regulations are still unknown. Methodology/Principal Findings In this study, we found that prohibitin 2 (PHB2), a pleiotrophic factor mainly localized in mitochondria, is a crucial regulatory factor for the homeostasis and differentiation of ES cells. PHB2 was highly expressed in undifferentiated mouse ES cells, and the expression was decreased during the differentiation of ES cells. Knockdown of PHB2 induced significant apoptosis in pluripotent ES cells, whereas enhanced expression of PHB2 contributed to the proliferation of ES cells. However, enhanced expression of PHB2 strongly inhibited ES cell differentiation into neuronal and endodermal cells. Interestingly, only PHB2 with intact mitochondrial targeting signal showed these specific effects on ES cells. Moreover, overexpression of PHB2 enhanced the processing of a dynamin-like GTPase (OPA1) that regulates mitochondrial fusion and cristae remodeling, which could induce partial dysfunction of mitochondria. Conclusions/Significance Our results suggest that PHB2 is a crucial mitochondrial regulator for homeostasis and lineage-specific differentiation of ES cells.
Collapse
Affiliation(s)
- Megumi Kowno
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kanako Watanabe-Susaki
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hisako Ishimine
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shinji Komazaki
- Department of Anatomy, Saitama Medical School, Moroyama, Iruma, Saitama, Japan
| | - Kei Enomoto
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yasuhiro Seki
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Ying Ying Wang
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Japan Society for the Promotion of Science (JSPS), Tsukuba, Ibaraki, Japan
| | - Yohei Ishigaki
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoto Ninomiya
- Department of Biological Science, Graduate School of Science, The University of Tokyo, Meguro, Tokyo, Japan
| | - Taka-aki K. Noguchi
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuko Kokubu
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keigoh Ohnishi
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiro Nakajima
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kaoru Kato
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Atsushi Intoh
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Hitomi Takada
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Norio Yamakawa
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Pi-Chao Wang
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Makoto Asashima
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, The University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Kurisaki
- Graduate School of Life and Environmental Sciences, The University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
35
|
Coppola A, Romito A, Borel C, Gehrig C, Gagnebin M, Falconnet E, Izzo A, Altucci L, Banfi S, Antonarakis SE, Minchiotti G, Cobellis G. Cardiomyogenesis is controlled by the miR-99a/let-7c cluster and epigenetic modifications. Stem Cell Res 2013; 12:323-37. [PMID: 24365598 DOI: 10.1016/j.scr.2013.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 01/24/2023] Open
Abstract
Understanding the molecular basis of cardiomyocyte development is critical for understanding the pathogenesis of pre- and post-natal cardiac disease. MicroRNAs (miRNAs) are post-transcriptional modulators of gene expression that play an important role in many developmental processes. Here, we show that the miR-99a/let-7c cluster, mapping on human chromosome 21, is involved in the control of cardiomyogenesis by altering epigenetic factors. By perturbing miRNA expression in mouse embryonic stem cells, we find that let-7c promotes cardiomyogenesis by upregulating genes involved in mesoderm specification (T/Bra and Nodal) and cardiac differentiation (Mesp1, Nkx2.5 and Tbx5). The action of let-7c is restricted to the early phase of mesoderm formation at the expense of endoderm and its late activation redirects cells toward other mesodermal derivatives. The Polycomb complex group protein Ezh2 is a direct target of let-7c, which promotes cardiac differentiation by modifying the H3K27me3 marks from the promoters of crucial cardiac transcription factors (Nkx2.5, Mef2c, Tbx5). In contrast, miR-99a represses cardiac differentiation via the nucleosome-remodeling factor Smarca5, attenuating the Nodal/Smad2 signaling. We demonstrated that the identified targets are underexpressed in human Down syndrome fetal heart specimens. By perturbing the expression levels of these miRNAs in embryonic stem cells, we were able to demonstrate that these miRNAs control lineage- and stage-specific transcription factors, working in concert with chromatin modifiers to direct cardiomyogenesis.
Collapse
Affiliation(s)
- Antonietta Coppola
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy
| | - Antonio Romito
- Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Corinne Gehrig
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Maryline Gagnebin
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Antonella Izzo
- Department of Molecular Medicine and Biotechnology, Università Federico II, 80131 Napoli, Italy
| | - Lucia Altucci
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy
| | - Sandro Banfi
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy; Telethon Institute of Genetics and Medicine (TIGEM), 80131 Napoli, Italy
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Gabriella Minchiotti
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131 Napoli, Italy
| | - Gilda Cobellis
- Department of Biophysics, Biochemistry and General Pathology, Seconda Università di Napoli, 80138 Napoli, Italy.
| |
Collapse
|
36
|
Akhtar W, de Jong J, Pindyurin AV, Pagie L, Meuleman W, de Ridder J, Berns A, Wessels LFA, van Lohuizen M, van Steensel B. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 2013; 154:914-27. [PMID: 23953119 DOI: 10.1016/j.cell.2013.07.018] [Citation(s) in RCA: 241] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/31/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Reporter genes integrated into the genome are a powerful tool to reveal effects of regulatory elements and local chromatin context on gene expression. However, so far such reporter assays have been of low throughput. Here, we describe a multiplexing approach for the parallel monitoring of transcriptional activity of thousands of randomly integrated reporters. More than 27,000 distinct reporter integrations in mouse embryonic stem cells, obtained with two different promoters, show ∼1,000-fold variation in expression levels. Data analysis indicates that lamina-associated domains act as attenuators of transcription, likely by reducing access of transcription factors to binding sites. Furthermore, chromatin compaction is predictive of reporter activity. We also found evidence for crosstalk between neighboring genes and estimate that enhancers can influence gene expression on average over ∼20 kb. The multiplexed reporter assay is highly flexible in design and can be modified to query a wide range of aspects of gene regulation.
Collapse
Affiliation(s)
- Waseem Akhtar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yasuhara N, Yamagishi R, Arai Y, Mehmood R, Kimoto C, Fujita T, Touma K, Kaneko A, Kamikawa Y, Moriyama T, Yanagida T, Kaneko H, Yoneda Y. Importin alpha subtypes determine differential transcription factor localization in embryonic stem cells maintenance. Dev Cell 2013; 26:123-35. [PMID: 23906064 DOI: 10.1016/j.devcel.2013.06.022] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/15/2013] [Accepted: 06/22/2013] [Indexed: 11/25/2022]
Abstract
We recently demonstrated that the expression of the importin α subtype is switched from α2 to α1 during neural differentiation in mouse embryonic stem cells (ESCs) and that this switching has a major impact on cell differentiation. In this study, we report a cell-fate determination mechanism in which importin α2 negatively regulates the nuclear import of certain transcription factors to maintain ESC properties. The nuclear import of Oct6 and Brn2 was inhibited via the formation of a transport-incompetent complex of the cargo bound to a nuclear localization signal binding site in importin α2. Unless this dominant-negative effect was downregulated upon ESC differentiation, inappropriate cell death was induced. We propose that although certain transcription factors are necessary for differentiation in ESCs, these factors are retained in the cytoplasm by importin α2, thereby preventing transcription factor activity in the nucleus until the cells undergo differentiation.
Collapse
Affiliation(s)
- Noriko Yasuhara
- Department of Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang Q, Wagner RT, Cooney AJ. Regulatable in vivo biotinylation expression system in mouse embryonic stem cells. PLoS One 2013; 8:e63532. [PMID: 23667633 PMCID: PMC3646753 DOI: 10.1371/journal.pone.0063532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/03/2013] [Indexed: 11/19/2022] Open
Abstract
Embryonic stem (ES) cells have several unique attributes, the two most important of which are they can differentiate into all cell types in the body and they can proliferate indefinitely. To study the regulation of these phenomena, we developed a regulatable in vivo biotinylation expression system in mouse ES cells. The E. coli biotin ligase gene BirA, whose protein product can biotinylate a 15-aa peptide sequence, called the AviTag, was cloned downstream of an IRES. The primary vector containing the doxycycline controlled transactivator gene tTA and IRES-BirA was knocked into the ROSA26 locus by homologous recombination. The secondary vector containing the AviTag tagged hKlf4 gene was exchanged into the ROSA26 locus using Cre recombinase. Western blot analysis showed that the doxycycline induced BirA protein can biotinylate the doxycycline induced AviTag tagged hKlf4 protein. The induction of hKlf4 repressed cell growth in the presence or absence of LIF. Chromatin immunoprecipitation assays using streptavidin beads showed that the AviTag tagged hKlf4 protein could enrich the Nanog enhancer. Our results suggested that the regulatable biotinylation system is promising for the gene function studies in mouse ES cells.
Collapse
Affiliation(s)
- Qin Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ryan T. Wagner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Austin J. Cooney
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
39
|
Funabashi H, Oura S, Saito M, Matsuoka H. Targeted delivery of a decoy oligodeoxynucleotide to a single ES cell by femtoinjection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:855-63. [PMID: 23506950 DOI: 10.1016/j.nano.2013.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/26/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Femtoinjection has been proposed as a feasible approach for the targeted delivery of a decoy oligodeoxynucleotide (ODN) into a single ES cell for the study of transcription factor activity. Here, we evaluated the utility of decoy ODN delivery via femtoinjection in an ES cell model in which Venus fluorescent protein was expressed under the control of the tet-off system. Femtoinjection of a control decoy (Con-decoy) and a tetracycline response element decoy (TRE-decoy) into the cytoplasm had no apparent effect on Venus fluorescent protein expression; however, femtoinjection of the TRE-decoy into the nucleus successfully suppressed expression of the Venus fluorescent protein. We therefore conclude that it is feasible to suppress the activity of a transcription factor in a single ES cell by the delivery of a decoy ODN into the nucleus using the femtoinjection technique. FROM THE CLINICAL EDITOR The authors of this novel basic science study successfully demonstrate a femtoinjection technique to deliver a decoy oligodeoxynucleotide into a single ES cell.
Collapse
Affiliation(s)
- Hisakage Funabashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology 2-24-16, Naka-cho, Koganei, Tokyo, Japan
| | | | | | | |
Collapse
|
40
|
Ninomiya N, Michiue T, Asashima M, Kurisaki A. BMP signaling regulates the differentiation of mouse embryonic stem cells into lung epithelial cell lineages. In Vitro Cell Dev Biol Anim 2013; 49:230-7. [PMID: 23468359 DOI: 10.1007/s11626-013-9589-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/01/2013] [Indexed: 10/27/2022]
Abstract
Somatic stem/progenitor cells are known to be present in most adult tissues. However, those in the lung have limited abilities for tissue regeneration after serious damage as a result of chronic disease. Therefore, regenerative medicine using exogenous stem cells has been suggested for the treatment of progressive lung diseases such as chronic obstructive pulmonary disease and pulmonary fibrosis. Embryonic stem (ES) cells and induced pluripotent stem cells, with their potent differentiation abilities, are promising sources for the generation of various tissue cells. In this study, we investigated the effects of various differentiation-inducing growth factors on the differentiation of lung cells from ES cells in vitro. Several factors, including activin, nodal, and noggin, significantly promoted the induction of Nkx2.1-positive lung progenitor cells when cells were cultured as embryoid bodies. Bone morphogenetic protein (BMP) 4 signaling controls the lineage commitment of lung cells along the proximal-distal axis. BMP4 promotes the induction of distal cell lineages of alveolar bud, such as Clara cells and mucus-producing goblet cells. These results suggest that several developmentally essential factors, including nodal/activin and BMP signaling, are important in the control of the differentiation of lung epithelial cells from mouse ES cells in vitro.
Collapse
Affiliation(s)
- Naoto Ninomiya
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | | | | | | |
Collapse
|
41
|
Slawny N, O'Shea KS. Geminin promotes an epithelial-to-mesenchymal transition in an embryonic stem cell model of gastrulation. Stem Cells Dev 2013; 22:1177-89. [PMID: 23249188 DOI: 10.1089/scd.2012.0050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Geminin is a nuclear protein that performs the related functions of modulating cell cycle progression by binding Cdt1, and controlling differentiation by binding transcription factors. Since embryonic stem cells (ESC) and the epiblast share a similar gene expression profile and an attenuated cell cycle, ESC form an accessible and tractable model system to study lineage choice at gastrulation. We derived several ESC lines in which Geminin can be inducibly expressed, and employed short hairpin RNAs targeting Geminin. As in the embryo, a lack of Geminin protein resulted in DNA damage and cell death. In monolayer culture, in defined medium, Geminin supported neural differentiation; however, in three-dimensional culture, overexpression of Geminin promoted mesendodermal differentiation and epithelial-to-mesenchymal transition. In vitro, ESC overexpressing Geminin rapidly recolonized a wound, downregulated E-cadherin expression, and activated Wnt signaling. We suggest that Geminin may promote differentiation via binding Groucho/TLE proteins and upregulating canonical Wnt signaling.
Collapse
Affiliation(s)
- Nicole Slawny
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | |
Collapse
|
42
|
Hishida T, Nozaki Y, Nakachi Y, Mizuno Y, Iseki H, Katano M, Kamon M, Hirasaki M, Nishimoto M, Okazaki Y, Okuda A. Sirt1, p53, and p38(MAPK) are crucial regulators of detrimental phenotypes of embryonic stem cells with Max expression ablation. Stem Cells 2013; 30:1634-44. [PMID: 22696478 DOI: 10.1002/stem.1147] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
c-Myc participates in diverse cellular processes including cell cycle control, tumorigenic transformation, and reprogramming of somatic cells to induced pluripotent cells. c-Myc is also an important regulator of self-renewal and pluripotency of embryonic stem cells (ESCs). We recently demonstrated that loss of the Max gene, encoding the best characterized partner for all Myc family proteins, causes loss of the pluripotent state and extensive cell death in ESCs strictly in this order. However, the mechanisms and molecules that are responsible for these phenotypes remain largely obscure. Here, we show that Sirt1, p53, and p38(MAPK) are crucially involved in the detrimental phenotype of Max-null ESCs. Moreover, our analyses revealed that these proteins are involved at varying levels to one another in the hierarchy of the pathway leading to cell death in Max-null ESCs.
Collapse
Affiliation(s)
- Tomoaki Hishida
- Division of Developmental Biology, Saitama Medical University, Hidaka, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Klarenbeek S, van Miltenburg MH, Jonkers J. Genetically engineered mouse models of PI3K signaling in breast cancer. Mol Oncol 2013; 7:146-64. [PMID: 23478237 DOI: 10.1016/j.molonc.2013.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 02/11/2013] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common type of cancer in women. A substantial fraction of breast cancers have acquired mutations that lead to activation of the phosphoinositide 3-kinase (PI3K) signaling pathway, which plays a central role in cellular processes that are essential in cancer, such as cell survival, growth, division and motility. Oncogenic mutations in the PI3K pathway generally involve either activating mutation of the gene encoding PI3K (PIK3CA) or AKT (AKT1), or loss or reduced expression of PTEN. Several kinases involved in PI3K signaling are being explored as a therapeutic targets for pharmacological inhibition. Despite the availability of a range of inhibitors, acquired resistance may limit the efficacy of single-agent therapy. In this review we discuss the role of PI3K pathway mutations in human breast cancer and relevant genetically engineered mouse models (GEMMs), with special attention to the role of PI3K signaling in oncogenesis, in therapeutic response, and in resistance to therapy. Several sophisticated GEMMs have revealed the cause-and-effect relationships between PI3K pathway mutations and mammary oncogenesis. These GEMMs enable us to study the biology of tumors induced by activated PI3K signaling, as well as preclinical response and resistance to PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Sjoerd Klarenbeek
- Division of Molecular Pathology, Cancer Genomics Centre Netherlands and Cancer Systems Biology Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
44
|
Wang CH, Ma N, Lin YT, Wu CC, Hsiao M, Lu FL, Yu CC, Chen SY, Lu J. A shRNA functional screen reveals Nme6 and Nme7 are crucial for embryonic stem cell renewal. Stem Cells 2013; 30:2199-211. [PMID: 22899353 DOI: 10.1002/stem.1203] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In contrast to the somatic cells, embryonic stem cells (ESCs) are characterized by its immortalization ability, pluripotency, and oncogenicity. Revealing the underlying mechanism of ESC characteristics is important for the application of ESCs in clinical medicine. We performed systematic functional screen in mouse ESCs with 4,801 shRNAs that target 929 kinases and phosphatases. One hundred and thirty-two candidate genes that regulate both ESC expansion and stem cell marker expression were identified. Twenty-seven out of the 132 genes were regarded as most important since knockdown of each gene induces morphological changes from undifferentiated to differentiated state. Among the 27 genes, we chose nonmetastatic cell 6 (Nme6, also named as Nm23-H6) and nonmetastatic cell 7 (Nme7, also designated as Nm23-H7) to study first. Nme6 and Nme7 both belong to the members of nucleoside diphosphate kinase family. We demonstrate that Nme6 and Nme7 are important for the regulation of Oct4, Nanog, Klf4, c-Myc, telomerase, Dnmt3B, Sox2, and ERas expression. Either knockdown of Nme6 or Nme7 reduces the formation of embryoid body (EB) and teratoma. The overexpression of either Nme6 or Nme7 can rescue the stem cell marker expression and the EB formation in the absence of leukemia inhibiting factor. This implies the importance of Nme6 and Nme7 in ESC renewal. This finding not only pinpoints Nme6 or Nme7 can regulate several critical regulators in ESC renewal but also increases our understanding of the ESC renewal and oncogenesis.
Collapse
Affiliation(s)
- Chia-Hui Wang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
De Cegli R, Iacobacci S, Flore G, Gambardella G, Mao L, Cutillo L, Lauria M, Klose J, Illingworth E, Banfi S, di Bernardo D. Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation. Nucleic Acids Res 2012. [PMID: 23180766 PMCID: PMC3553984 DOI: 10.1093/nar/gks1136] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology ‘reverse engineering’ approaches. We ‘reverse engineered’ an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression (‘hubs’). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central ‘hub’ of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Rossella De Cegli
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, Napoli 80131, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Snider AC, Leong D, Wang QT, Wysocka J, Yao MWM, Scott MP. The chromatin remodeling factor Chd1l is required in the preimplantation embryo. Biol Open 2012; 2:121-31. [PMID: 23429299 PMCID: PMC3575647 DOI: 10.1242/bio.20122949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023] Open
Abstract
During preimplantation development, the embryo must establish totipotency and enact the earliest differentiation choices, processes that involve extensive chromatin modification. To identify novel developmental regulators, we screened for genes that are preferentially transcribed in the pluripotent inner cell mass (ICM) of the mouse blastocyst. Genes that encode chromatin remodeling factors were prominently represented in the ICM, including Chd1l, a member of the Snf2 gene family. Chd1l is developmentally regulated and expressed in embryonic stem (ES) cells, but its role in development has not been investigated. Here we show that inhibiting Chd1l protein production by microinjection of antisense morpholinos causes arrest prior to the blastocyst stage. Despite this important function in vivo, Chd1l is non-essential for cultured ES cell survival, pluripotency, or differentiation, suggesting that Chd1l is vital for events in embryos that are distinct from events in ES cells. Our data reveal a novel role for the chromatin remodeling factor Chd1l in the earliest cell divisions of mammalian development.
Collapse
Affiliation(s)
- Alyssa C Snider
- Departments of Developmental Biology, Genetics, and Bioengineering, University School of Medicine , Stanford, CA 94305-5101 , USA
| | | | | | | | | | | |
Collapse
|
47
|
Sargeant TJ, Drage DJ, Wang S, Apostolakis AA, Cox TM, Cachón-González MB. Characterization of inducible models of Tay-Sachs and related disease. PLoS Genet 2012; 8:e1002943. [PMID: 23028353 PMCID: PMC3447966 DOI: 10.1371/journal.pgen.1002943] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 07/25/2012] [Indexed: 11/18/2022] Open
Abstract
Tay-Sachs and Sandhoff diseases are lethal inborn errors of acid β-N-acetylhexosaminidase activity, characterized by lysosomal storage of GM2 ganglioside and related glycoconjugates in the nervous system. The molecular events that lead to irreversible neuronal injury accompanied by gliosis are unknown; but gene transfer, when undertaken before neurological signs are manifest, effectively rescues the acute neurodegenerative illness in Hexb−/− (Sandhoff) mice that lack β-hexosaminidases A and B. To define determinants of therapeutic efficacy and establish a dynamic experimental platform to systematically investigate cellular pathogenesis of GM2 gangliosidosis, we generated two inducible experimental models. Reversible transgenic expression of β-hexosaminidase directed by two promoters, mouse Hexb and human Synapsin 1 promoters, permitted progression of GM2 gangliosidosis in Sandhoff mice to be modified at pre-defined ages. A single auto-regulatory tetracycline-sensitive expression cassette controlled expression of transgenic Hexb in the brain of Hexb−/− mice and provided long-term rescue from the acute neuronopathic disorder, as well as the accompanying pathological storage of glycoconjugates and gliosis in most parts of the brain. Ultimately, late-onset brainstem and ventral spinal cord pathology occurred and was associated with increased tone in the limbs. Silencing transgenic Hexb expression in five-week-old mice induced stereotypic signs and progression of Sandhoff disease, including tremor, bradykinesia, and hind-limb paralysis. As in germline Hexb−/− mice, these neurodegenerative manifestations advanced rapidly, indicating that the pathogenesis and progression of GM2 gangliosidosis is not influenced by developmental events in the maturing nervous system. Sandhoff and Tay-Sachs disease are devastating neurological diseases associated with developmental regression, blindness, seizures, and death in infants and young children. These disorders are caused by mutations in β-hexosaminidase genes, which result in neuronal accumulation of certain lipids, glycosphingolipids, inside the lysosomes of neurons. It is not yet known how accumulation of lipids affects neuronal function, and although promising treatments such as gene therapy are in development, currently none has been clinically approved. We aimed to develop genetic models that allow manipulation of β-hexosaminidase expression over time. Two inducible strains of mice were created in which acute Sandhoff disease could be “turned on” by the addition of doxycycline in the diet. Once induced in the adult mouse, the disease progressed relentlessly and was apparently independent of the rapid developmental processes that occur in the fetal and neonatal brain, resembling disease course in the germline Hexb−/− mouse. These transgenic inducible strains of Sandhoff disease mice provide a dynamic platform with which to explore the pathophysiological sequelae immediately after loss of neuronal lysosomal β-hexosaminidase activity.
Collapse
Affiliation(s)
- Timothy J Sargeant
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Hishida T, Nozaki Y, Nakachi Y, Mizuno Y, Okazaki Y, Ema M, Takahashi S, Nishimoto M, Okuda A. Indefinite self-renewal of ESCs through Myc/Max transcriptional complex-independent mechanisms. Cell Stem Cell 2012; 9:37-49. [PMID: 21726832 DOI: 10.1016/j.stem.2011.04.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 03/19/2011] [Accepted: 04/28/2011] [Indexed: 12/21/2022]
Abstract
Embryonic stem cells (ESCs) can self-renew indefinitely under the governance of ESC-specific transcriptional circuitries in which each transcriptional factor regulates distinct or overlapping sets of genes with other factors. c-Myc is a key player that is crucially involved in maintaining the undifferentiated state and the self-renewal of ESCs. However, the mechanism by which c-Myc helps preserve the ESC status is still poorly understood. Here we addressed this question by performing loss-of-function studies with the Max gene, which encodes the best-characterized partner protein for all Myc family proteins. Although Myc/Max complexes are widely regarded as crucial regulators of the ESC status, our data revealed that ESCs do not absolutely require these complexes in certain contexts and that this requirement is restricted to empirical ESC culture conditions without a MAPK inhibitor.
Collapse
Affiliation(s)
- Tomoaki Hishida
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yoshie S, Ito J, Shirasawa S, Yokoyama T, Fujimura Y, Takeda K, Mizuguchi M, Matsumoto K, Tomotsune D, Sasaki K. Establishment of Novel Detection System for Embryonic Stem Cell-Derived Hepatocyte-Like Cells Based on Nongenetic Manipulation with Indocyanine Green. Tissue Eng Part C Methods 2012; 18:12-20. [DOI: 10.1089/ten.tec.2011.0179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Susumu Yoshie
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jun Ito
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | - Yuu Fujimura
- On-chip Biotechnologies Co., Ltd., Koganei, Japan
| | - Kazuo Takeda
- On-chip Biotechnologies Co., Ltd., Koganei, Japan
| | | | | | - Daihachiro Tomotsune
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Katsunori Sasaki
- Department of Histology and Embryology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
50
|
Generation of mouse ES cell lines engineered for the forced induction of transcription factors. Sci Rep 2011; 1:167. [PMID: 22355682 PMCID: PMC3240988 DOI: 10.1038/srep00167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022] Open
Abstract
Here we report the generation and characterization of 84 mouse ES cell lines with doxycycline-controllable transcription factors (TFs) which, together with the previous 53 lines, cover 7–10% of all TFs encoded in the mouse genome. Global gene expression profiles of all 137 lines after the induction of TFs for 48 hrs can associate each TF with the direction of ES cell differentiation, regulatory pathways, and mouse phenotypes. These cell lines and microarray data provide building blocks for a variety of future biomedical research applications as a community resource.
Collapse
|