1
|
Li N, Fu J, Wang Q, Rao Q, Yao L, Shao X, Zhang P. MiR-454-3p regulates high glucose-induced mesothelial-mesenchymal transition and glycolysis in peritoneal mesothelial cells by targeting STAT3. Ren Fail 2024; 46:2394635. [PMID: 39192609 PMCID: PMC11360635 DOI: 10.1080/0886022x.2024.2394635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The quality of life of patients receiving long-term peritoneal dialysis (PD) is significantly impacted by the onset of peritoneal fibrosis (PF), and one of the pathological changes is mesothelial-mesenchymal transition (MMT). In this study, we investigated the potential roles of miR-454-3p and signal transducer and activator of transcription 3 (STAT3) in the progression of peritoneal MMT and the underlying mechanisms. METHODS Peritoneums were collected to detect morphology via hematoxylin-eosin staining and differentially expressed miRNAs were detected via RT-qPCR. PD effluent-derived cell populations in the peritoneal cavity were isolated from the effluents of 20 PD patients to determine miR-454-3p, STAT3, and MMT markers via Western blotting and RT-qPCR. The relationship between miR-454-3p and STAT3 was examined via a dual-luciferase reporter assay. Western blotting and RT-qPCR were utilized to evaluate the expression of STAT3, MMT markers, and glycolytic enzymes. Immunofluorescence staining revealed the localization and expression of MMT markers and STAT3. RESULTS MiR-454-3p was downregulated in the peritoneums and PD effluent-derived cell populations of long-term PD patients. High glucose (HG) treatment promoted HMrSV5 cell MMT and glycolysis. MiR-454-3p overexpression alleviated HG-induced MMT and suppressed the expression of STAT3 and glycolytic enzymes. In contrast, the miR-454-3p inhibitor exacerbated HG-induced MMT and promoted the expression of glycolytic enzymes and STAT3. Moreover, STAT3 was the target of miR-454-3p. CONCLUSIONS This study demonstrated the protective role of miR-454-3p in HG-induced MMT and glycolysis in HMrSv5 cells, suggesting that miR-454-3p may prevent MMT by suppressing glycolytic enzymes via the STAT3/PFKFB3 pathway in the HG environment.
Collapse
Affiliation(s)
- Nan Li
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiao Fu
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiufeng Wang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qingqing Rao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Yao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaoqi Shao
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Pei Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Ahmad I, Xuan T, Wang Q, Zhang S, Wang L, Gu J, Qi F, Luan W. Bacterial Lipoteichoic Acid Induces Capsular Contracture by Activating Innate Immune Response. Plast Reconstr Surg 2024; 154:333-342. [PMID: 37699551 DOI: 10.1097/prs.0000000000011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
BACKGROUND Capsular contracture is attributed to an exaggerated fibrosis response within the capsule and is partly associated with bacterial contamination in situ. However, the cellular mechanisms that initiate this response are unclear. METHODS The authors developed a mouse model of capsular contracture by repeated injection of 10 μg/mL lipoteichoic acid (LTA). The histological changes in the capsule tissue were measured by hematoxylin and eosin, Masson trichrome, and immunohistochemical staining. The expression of cytokines was measured by quantitative reverse transcription polymerase chain reaction. The authors also used pharmacological methods to verify the roles of macrophages and toll-like receptor 2 (TLR2) signaling in this pathological process. RESULTS The authors discovered that repeated LTA injection, at a low concentration, could induce thickening of the capsule tissue. Macrophage infiltration and TLR2/nuclear factor-κB signaling activated in this process could be suppressed by macrophage depletion or TLR2 receptor inhibition. CONCLUSION As TLR2 signal activation was found to cause capsular contracture by inducing macrophage infiltration as a consequence of trace amounts of LTA contamination in situ, this target is helpful for understanding that chronic or repeated subclinical infection can activate capsular contracture. CLINICAL RELEVANCE STATEMENT This finding is of significant importance for understanding that chronic or repeated subclinical infection could activate a persistent immune response and capsular contracture, and provides novel strategies to interfere with the formation of capsular contracture.
Collapse
Affiliation(s)
- Ikram Ahmad
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Tianfan Xuan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
- Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Jiangnan University
| | - Qiang Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Simin Zhang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Lu Wang
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Jianying Gu
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| | - Wenjie Luan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University
| |
Collapse
|
3
|
Trionfetti F, Montaldo C, Caiello I, Bontempi G, Terri M, Tiberi M, Marchant V, Domenici A, Menè P, Cordani M, Zwergel C, Prencipe G, Ruiz-Ortega M, Valente S, Mai A, Tripodi M, Strippoli R. Mechanisms of mesothelial cell response to viral infections: HDAC1-3 inhibition blocks poly(I:C)-induced type I interferon response and modulates the mesenchymal/inflammatory phenotype. Front Cell Infect Microbiol 2024; 14:1308362. [PMID: 38476167 PMCID: PMC10927979 DOI: 10.3389/fcimb.2024.1308362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Infectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses. Among TLRs, TLR3 recognizes viral dsRNA and triggers antiviral response cascades upon activation. Epigenetic regulation, mediated by histone deacetylase (HDAC), has been demonstrated to control several cellular functions in response to various extracellular stimuli. Employing epigenetic target modulators, such as epidrugs, is a current therapeutic option in several cancers and holds promise in treating viral diseases. This study aims to elucidate the impact of TLR3 stimulation on the plasticity of human mesothelial cells (MCs) in PD patients and to investigate the effects of HDAC1-3 inhibition. Treatment of MCs from PD patients with the TLR3 agonist polyinosinic:polycytidylic acid (Poly(I:C)), led to the acquisition of a bona fide mesothelial-to-mesenchymal transition (MMT) characterized by the upregulation of mesenchymal genes and loss of epithelial-like features. Moreover, Poly(I:C) modulated the expression of several inflammatory cytokines and chemokines. A quantitative proteomic analysis of MCs treated with MS-275, an HDAC1-3 inhibitor, unveiled altered expression of several proteins, including inflammatory cytokines/chemokines and interferon-stimulated genes (ISGs). Treatment with MS-275 facilitated MMT reversal and inhibited the interferon signature, which was associated with reduced STAT1 phosphorylation. However, the modulation of inflammatory cytokine/chemokine production was not univocal, as IL-6 and CXCL8 were augmented while TNF-α and CXCL10 were decreased. Collectively, our findings underline the significance of viral infections in acquiring a mesenchymal-like phenotype by MCs and the potential consequences of virus-associated peritonitis episodes for PD patients. The observed promotion of MMT reversal and interferon response inhibition by an HDAC1-3 inhibitor, albeit without a general impact on inflammatory cytokine production, has translational implications deserving further analysis.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Ivan Caiello
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Michela Terri
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Marta Tiberi
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- 15 REDINREN/RICORS2040, Madrid, Spain
| | - Alessandro Domenici
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Menè
- Renal Unit, Department of Clinical and Molecular Medicine, Sant’Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giusi Prencipe
- Division of Rheumatology, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- 15 REDINREN/RICORS2040, Madrid, Spain
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
4
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
6
|
Millrine D, Rice CM, Fernandez JU, Jones SA. Tracking the Host Response to Infection in Peritoneal Models of Acute Resolving Inflammation. Methods Mol Biol 2023; 2691:81-95. [PMID: 37355539 DOI: 10.1007/978-1-0716-3331-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Antimicrobial host defense is dependent on the rapid recruitment of inflammatory cells to the site of infection, the elimination of invading pathogens, and the efficient resolution of inflammation that minimizes damage to the host. The peritoneal cavity provides an accessible and physiologically relevant system where the delicate balance of these processes may be studied. Here, we describe murine models of peritoneal inflammation that enable studies of competent antimicrobial immunity and inflammation-associated tissue damage as a consequence of recurrent bacterial challenge. The inflammatory hallmarks of these models reflect the clinical and molecular features of peritonitis seen in renal failure patients on peritoneal dialysis. The development of these models relies on the preparation of a cell-free supernatant derived from an isolate of Staphylococcus epidermidis (termed SES). Intraperitoneal administration of SES induces a Toll-like receptor 2-driven acute inflammatory response that is characterized by an initial transient influx of neutrophils that are replaced by a more sustained recruitment of mononuclear cells and lymphocytes. Adaptation of this model using a repeated administration of SES allows investigations into the development of adaptive immunity and the hallmarks associated with tissue remodelling and fibrosis. These models are therefore clinically relevant and provide exciting opportunities to study innate and adaptive immunity and the response of the stromal tissue compartment to bacterial infection and the ensuing inflammatory reaction.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - Christopher M Rice
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, UK
| | - Javier U Fernandez
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
- Systems Immunity University Research Institute, Cardiff University, Cardiff, Wales, UK
| | - Simon A Jones
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK.
- Systems Immunity University Research Institute, Cardiff University, Cardiff, Wales, UK.
| |
Collapse
|
7
|
Human Omental Mesothelial Cells Impart an Immunomodulatory Landscape Impeding B- and T-Cell Activation. Int J Mol Sci 2022; 23:ijms23115924. [PMID: 35682603 PMCID: PMC9180401 DOI: 10.3390/ijms23115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Mesothelial cells form the mesothelium, a simple epithelium lining the walls of serous cavities and the surface of visceral organs. Although mesothelial cells are phenotypically well characterized, their immunoregulatory properties remain largely unknown, with only two studies reporting their capacity to inhibit T cells through TGF-β and their consumption of L-arginine by arginase-1. Whether human mesothelial cells can suppress other immune cells and possess additional leukosuppressive mechanisms, remain to be addressed to better delineate their therapeutic potential for cell therapy. Herein, we generated secretomes from omental mesothelial cells (OMC) and assess their capacity to inhibit lymphocytes proliferation, suppress activated T and B cells, as well as to modify macrophage activation markers. The secretome from mesenchymal stromal cells (MSC) served as a control of immuno-suppression. Although OMC and MSC were phenotypically divergent, their cytokine secretion patterns as well as expression of inflammatory and immunomodulary genes were similar. As such, OMC- and MSC-derived secretomes (OMC-S and MSC-S) both polarized RAW 264.7 macrophages towards a M2-like anti-inflammatory phenotype and suppressed mouse and human lymphocytes proliferation. OMC-S displayed a strong ability to suppress mouse- and human-activated CD19+/CD25+ B cells as compared to MSC-S. The lymphosuppressive activity of the OMC-S could be significantly counteracted either by SB-431542, an inhibitor of TGFβ and activin signaling pathways, or with a monoclonal antibody against the TGFβ1, β2, and β3 isoforms. A strong blockade of the OMC-S-mediated lymphosuppressive activity was achieved using L-NMMA, a specific inhibitor of nitric oxide synthase (NOS). Taken together, our results suggest that OMC are potent immunomodulators.
Collapse
|
8
|
Abstract
Peritoneal surface malignancies comprise a heterogeneous group of primary tumours, including peritoneal mesothelioma, and peritoneal metastases of other tumours, including ovarian, gastric, colorectal, appendicular or pancreatic cancers. The pathophysiology of peritoneal malignancy is complex and not fully understood. The two main hypotheses are the transformation of mesothelial cells (peritoneal primary tumour) and shedding of cells from a primary tumour with implantation of cells in the peritoneal cavity (peritoneal metastasis). Diagnosis is challenging and often requires modern imaging and interventional techniques, including surgical exploration. In the past decade, new treatments and multimodal strategies helped to improve patient survival and quality of life and the premise that peritoneal malignancies are fatal diseases has been dismissed as management strategies, including complete cytoreductive surgery embedded in perioperative systemic chemotherapy, can provide cure in selected patients. Furthermore, intraperitoneal chemotherapy has become an important part of combination treatments. Improving locoregional treatment delivery to enhance penetration to tumour nodules and reduce systemic uptake is one of the most active research areas. The current main challenges involve not only offering the best treatment option and developing intraperitoneal therapies that are equivalent to current systemic therapies but also defining the optimal treatment sequence according to primary tumour, disease extent and patient preferences. New imaging modalities, less invasive surgery, nanomedicines and targeted therapies are the basis for a new era of intraperitoneal therapy and are beginning to show encouraging outcomes.
Collapse
|
9
|
Li J, Qin X, Shi J, Wang X, Li T, Xu M, Chen X, Zhao Y, Han J, Piao Y, Zhang W, Qu P, Wang L, Xiang R, Shi Y. A systematic CRISPR screen reveals an IL-20/IL20RA-mediated immune crosstalk to prevent the ovarian cancer metastasis. eLife 2021; 10:66222. [PMID: 34114949 PMCID: PMC8195602 DOI: 10.7554/elife.66222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/04/2021] [Indexed: 01/22/2023] Open
Abstract
Transcoelomic spread of cancer cells across the peritoneal cavity occurs in most initially diagnosed ovarian cancer (OC) patients and accounts for most cancer-related death. However, how OC cells interact with peritoneal stromal cells to evade the immune surveillance remains largely unexplored. Here, through an in vivo genome-wide CRISPR/Cas9 screen, we identified IL20RA, which decreased dramatically in OC patients during peritoneal metastasis, as a key factor preventing the transcoelomic metastasis of OC. Reconstitution of IL20RA in highly metastatic OC cells greatly suppresses the transcoelomic metastasis. OC cells, when disseminate into the peritoneal cavity, greatly induce peritoneum mesothelial cells to express IL-20 and IL-24, which in turn activate the IL20RA downstream signaling in OC cells to produce mature IL-18, eventually resulting in the polarization of macrophages into the M1-like subtype to clear the cancer cells. Thus, we show an IL-20/IL20RA-mediated crosstalk between OC and mesothelial cells that supports a metastasis-repressing immune microenvironment.
Collapse
Affiliation(s)
- Jia Li
- The School of Medicine, Nankai University, Tianjin, China
| | - Xuan Qin
- The School of Medicine, Nankai University, Tianjin, China
| | - Jie Shi
- The School of Medicine, Nankai University, Tianjin, China
| | | | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyao Xu
- The School of Medicine, Nankai University, Tianjin, China
| | - Xiaosu Chen
- The School of Medicine, Nankai University, Tianjin, China
| | - Yujia Zhao
- The School of Medicine, Nankai University, Tianjin, China
| | - Jiahao Han
- The School of Medicine, Nankai University, Tianjin, China
| | - Yongjun Piao
- The School of Medicine, Nankai University, Tianjin, China
| | - Wenwen Zhang
- Research Institute of Obstetrics and Gynecology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Pengpeng Qu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Longlong Wang
- The School of Medicine, Nankai University, Tianjin, China
| | - Rong Xiang
- The School of Medicine, Nankai University, Tianjin, China
| | - Yi Shi
- The School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Shentu Y, Li Y, Xie S, Jiang H, Sun S, Lin R, Chen C, Bai Y, Zhang Y, Zheng C, Zhou Y. Empagliflozin, a sodium glucose cotransporter-2 inhibitor, ameliorates peritoneal fibrosis via suppressing TGF-β/Smad signaling. Int Immunopharmacol 2021; 93:107374. [PMID: 33517222 DOI: 10.1016/j.intimp.2021.107374] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/26/2023]
Abstract
Sodium glucose cotransporter-2 (SGLT-2) inhibitor has been reported to exert a glucose-lowering effect in the peritoneum exposed to peritoneal dialysis solution. However, whether SGLT-2 inhibitors can regulate peritoneal fibrosis by suppressing TGF-β/Smad signaling is unclear. We aimed to (i) examine the effect of the SGLT-2 inhibitor empagliflozin in reducing inflammatory reaction and preventing peritoneal dialysis solution-induced peritoneal fibrosis and (ii) elucidate the underlying mechanisms. High-glucose peritoneal dialysis solution or transforming growth factor β1 (TGF-β1) was used to induce peritoneal fibrosis in vivo, in a mouse peritoneal dialysis model (C57BL/6 mice) and in human peritoneal mesothelial cells in vitro, to stimulate extracellular matrix accumulation. The effects of empagliflozin and adeno-associated virus-RNAi, which is used to suppress SGLT-2 activity, on peritoneal fibrosis and extracellular matrix were evaluated. The mice that received chronic peritoneal dialysis solution infusions showed typical features of peritoneal fibrosis, including markedly increased peritoneal thickness, excessive matrix deposition, increased peritoneal permeability, and upregulated α-smooth muscle actin and collagen I expression. Empagliflozin treatment or downregulation of SGLT-2 expression significantly ameliorated these pathological changes. Inflammatory cytokines (TNF-α, IL-1β, IL-6) and TGF-β/Smad signaling-associated proteins, such as TGF-β1 and phosphorylated Smad (p-Smad3), decreased in the empagliflozin-treated and SGLT-2 downregulated groups. In addition, empagliflozin treatment and downregulation of SGLT-2 expression reduced the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6), TGF-β1, α-smooth muscle actin, collagen I, and p-Smad3 accumulation in human peritoneal mesothelial cells. Collectively, these results indicated that empagliflozin exerted a clear protective effect on high-glucose peritoneal dialysis-induced peritoneal fibrosis via suppressing TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Yangping Shentu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yuyang Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shicheng Xie
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Huanchang Jiang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Shicheng Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Rixu Lin
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Institute of Kidney Health, Center for Health Assessment, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yu Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chenfei Zheng
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
11
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
12
|
Prasad JM, Negrón O, Du X, Mullins ES, Palumbo JS, Gilbertie JM, Höök M, Grover SP, Pawlinski R, Mackman N, Degen JL, Flick MJ. Host fibrinogen drives antimicrobial function in Staphylococcus aureus peritonitis through bacterial-mediated prothrombin activation. Proc Natl Acad Sci U S A 2021; 118:e2009837118. [PMID: 33443167 PMCID: PMC7817220 DOI: 10.1073/pnas.2009837118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The blood-clotting protein fibrinogen has been implicated in host defense following Staphylococcus aureus infection, but precise mechanisms of host protection and pathogen clearance remain undefined. Peritonitis caused by staphylococci species is a complication for patients with cirrhosis, indwelling catheters, or undergoing peritoneal dialysis. Here, we sought to characterize possible mechanisms of fibrin(ogen)-mediated antimicrobial responses. Wild-type (WT) (Fib+) mice rapidly cleared S. aureus following intraperitoneal infection with elimination of ∼99% of an initial inoculum within 15 min. In contrast, fibrinogen-deficient (Fib-) mice failed to clear the microbe. The genotype-dependent disparity in early clearance resulted in a significant difference in host mortality whereby Fib+ mice uniformly survived whereas Fib- mice exhibited high mortality rates within 24 h. Fibrin(ogen)-mediated bacterial clearance was dependent on (pro)thrombin procoagulant function, supporting a suspected role for fibrin polymerization in this mechanism. Unexpectedly, the primary host initiator of coagulation, tissue factor, was found to be dispensable for this antimicrobial activity. Rather, the bacteria-derived prothrombin activator vWbp was identified as the source of the thrombin-generating potential underlying fibrin(ogen)-dependent bacterial clearance. Mice failed to eliminate S. aureus deficient in vWbp, but clearance of these same microbes in WT mice was restored if active thrombin was administered to the peritoneal cavity. These studies establish that the thrombin/fibrinogen axis is fundamental to host antimicrobial defense, offer a possible explanation for the clinical observation that coagulase-negative staphylococci are a highly prominent infectious agent in peritonitis, and suggest caution against anticoagulants in individuals susceptible to peritoneal infections.
Collapse
Affiliation(s)
- Joni M Prasad
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Oscar Negrón
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Xinli Du
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Eric S Mullins
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Joseph S Palumbo
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Jessica M Gilbertie
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technologies, Texas A&M Health Sciences Center, Houston, TX 77030
| | - Steven P Grover
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Rafal Pawlinski
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Nigel Mackman
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Jay L Degen
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599;
| |
Collapse
|
13
|
Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochem J 2020; 477:583-600. [PMID: 32026949 DOI: 10.1042/bcj20190467] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/21/2022]
Abstract
A central function of adipose tissue is in the management of systemic energy homeostasis that is achieved through the co-ordinated regulation of energy storage and mobilization, adipokine release, and immune functions. With the dramatic increase in the prevalence of obesity and obesity-related metabolic disease over the past 30 years, there has been extensive interest in targeting adipose tissue for therapeutic benefit. However, in order for this goal to be achieved it is essential to establish a comprehensive atlas of adipose tissue cellular composition and define mechanisms of intercellular communication that mediate pathologic and therapeutic responses. While traditional methods, such as fluorescence-activated cell sorting (FACS) and genetic lineage tracing, have greatly advanced the field, these approaches are inherently limited by the choice of markers and the ability to comprehensively identify and characterize dynamic interactions among stromal cells within the tissue microenvironment. Single cell RNA sequencing (scRNAseq) has emerged as a powerful tool for deconvolving cellular heterogeneity and holds promise for understanding the development and plasticity of adipose tissue under normal and pathological conditions. scRNAseq has recently been used to characterize adipose stem cell (ASC) populations and has provided new insights into subpopulations of macrophages that arise during anabolic and catabolic remodeling in white adipose tissue. The current review summarizes recent findings that use this technology to explore adipose tissue heterogeneity and plasticity.
Collapse
|
14
|
Noh EJ, Kim DJ, Lee JY, Park JH, Kim JS, Han JW, Kim BC, Kim CJ, Lee SK. Ureaplasma Urealyticum Infection Contributes to the Development of Pelvic Endometriosis Through Toll-Like Receptor 2. Front Immunol 2019; 10:2373. [PMID: 31636643 PMCID: PMC6788432 DOI: 10.3389/fimmu.2019.02373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/23/2019] [Indexed: 12/29/2022] Open
Abstract
Endometriosis is a chronic gynecological disorder, characterized by the presence of ectopic endometrial tissue outside the uterine cavity. Among several hypotheses, Sampson's theory of retrograde menstruation is still applicable. Recent studies have reported the importance of inflammation among endometrial tissue, the peritoneum, and immune cells. However, less is known regarding the role of bacterial infection in the pathophysiology of endometriosis. We hypothesized that Ureaplasma urealyticum infection might contribute to the development of endometriosis by inducing the production of inflammatory mediators by peritoneal mesothelial cells (PMCs), possibly through TLR2. Hence, our objective was to reveal whether PMC infection by U. urealyticum is associated with endometriosis. Moreover, we aimed to demonstrate the molecular mechanism involved in this relationship. We developed a new infection-induced mouse model of endometriosis with wild type and Tlr2-deficient mice. Based on the in vivo mouse model, U. urealyticum-infected mice showed significantly increased numbers and sizes of ectopic endometriotic lesions. U. urealyticum upregulated not only the production of IL-6, CXCL1, and CCL2, but also the expression of ICAM-1, VCAM-1, and MMP2 in murine PMCs. Similarly, endometrial stromal cells dose-dependently produced IL-6, CXCL1, and CCL2 in response to U. urealyticum infection. The series of inflammatory responses in PMCs was mediated mainly through TLR2. The phosphorylation of ERK and JNK was observed when U. urealyticum was added to PMCs and knock out of Tlr2 inhibited these MAPKs phosphorylation. Based on our co-culture study, U. urealyticum-infected PMCs exhibited significantly increased attachment to ESCs compared with uninfected PMCs. Collectively, U. urealyticum infection promotes the development of endometriosis by increasing inflammatory mediators, adhesion molecules, and MMP-2 expression in PMCs through TLR2 signaling. Through our results, we present a theory that infection-induced pelvic inflammation contributes to the initiation and progression of endometriosis. Appropriate treatment of reproductive tract infection may decrease the prevalence of endometriosis.
Collapse
Affiliation(s)
- Eui Jeong Noh
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Dong Jae Kim
- Laboratory Animal Resource Centre, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Jun Young Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Jong Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Jae Won Han
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Byoung Chan Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Chul Jung Kim
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea.,Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| |
Collapse
|
15
|
Kim Y, Park SY, Jung H, Noh YS, Lee JJ, Hong JY. Inhibition of NADPH Oxidase 4 (NOX4) Signaling Attenuates Tuberculous Pleural Fibrosis. J Clin Med 2019; 8:jcm8010116. [PMID: 30669315 PMCID: PMC6351931 DOI: 10.3390/jcm8010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [NOX] enzymes serve several hemostatic and host defense functions in various lung diseases, but the role of NOX4 signaling in tuberculous pleurisy is not well understood. The role of NOX4 signaling in tuberculous pleural fibrosis was studied using invitro pleural mesothelial cell (PMC) experiments and a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection. The production of NOX4 reactive oxygen species (NOX4–ROS) and the epithelial mesenchymal transition (EMT) in PMCs were both induced by heat-killed mycobacterium tuberculosis (HKMT). In cultured PMCs, HKMT-induced collagen-1 synthesis and EMT were blocked by pretreatment with small interfering RNA (siRNA) NOX4. Moreover, NOX4–ROS production and subsequent fibrosis were reduced by treatment with losartan and the toll-like receptor 4 (TLR4) inhibitor TAK-242. The HKMT-induced EMT and intracellular ROS production were mediated by NOX4 via the activation of extracellular signal-regulated kinase (ERK) signaling. Finally, in a BCG-induced pleurisy model, recruitment of inflammatory pleural cells, release of inflammatory cytokines, and thickened mesothelial fibrosis were attenuated by SiNOX4 compared to SiCon. Our study identified that HKMT-induced pleural fibrosis is mediated by NOX4–ERK–ROS via TLR4 and Angiotensin II receptor type1 (AT1R). There results suggest that NOX4 may be a novel therapeutic target for intervention in tuberculous pleural fibrosis.
Collapse
Affiliation(s)
- Youngmi Kim
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - So Yeong Park
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Harry Jung
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - You Sun Noh
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Jae Jun Lee
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
| | - Ji Young Hong
- Institute of New frontier Research, Hallym University College of Medicine, Chuncheon 24253, Korea.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chuncheon Sacred Heart Hospital, Hallym University Medical Center, Chuncheon 24235, Korea.
- Lung Research Institute of Hallym University College of Medicine, Chuncheon 24253, Korea.
| |
Collapse
|
16
|
Zhou Y, Fan J, Zheng C, Yin P, Wu H, Li X, Luo N, Yu X, Chen C. SGLT-2 inhibitors reduce glucose absorption from peritoneal dialysis solution by suppressing the activity of SGLT-2. Biomed Pharmacother 2019; 109:1327-1338. [DOI: 10.1016/j.biopha.2018.10.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 11/15/2022] Open
|
17
|
Raby AC, Labéta MO. Preventing Peritoneal Dialysis-Associated Fibrosis by Therapeutic Blunting of Peritoneal Toll-Like Receptor Activity. Front Physiol 2018; 9:1692. [PMID: 30538643 PMCID: PMC6277495 DOI: 10.3389/fphys.2018.01692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Peritoneal dialysis (PD) is an essential daily life-saving treatment for end-stage renal failure. PD therapy is limited by peritoneal inflammation, which leads to peritoneal membrane failure as a result of progressive fibrosis. Peritoneal infections, with the concomitant acute inflammatory response and membrane fibrosis development, worsen PD patient outcomes. Patients who remain infection-free, however, also show evidence of inflammation-induced membrane damage and fibrosis, leading to PD cessation. In this case, uraemia, prolonged exposure to bio-incompatible PD solutions and surgical catheter insertion have been reported to induce sterile peritoneal inflammation and fibrosis as a result of cellular stress or tissue injury. Attempts to reduce inflammation (either infection-induced or sterile) and, thus, minimize fibrosis development in PD have been hampered because the immunological mechanisms underlying this PD-associated pathology remain to be fully defined. Toll-like receptors (TLRs) are central to mediating inflammatory responses by recognizing a wide variety of microorganisms and endogenous components released following cellular stress or generated as a consequence of extracellular matrix degradation during tissue injury. Given the close link between inflammation and fibrosis, recent investigations have evaluated the role that TLRs play in infection-induced and sterile peritoneal fibrosis development during PD. Here, we review the findings and discuss the potential of reducing peritoneal TLR activity by using a TLR inhibitor, soluble TLR2, as a therapeutic strategy to prevent PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Anne-Catherine Raby
- The Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mario O Labéta
- The Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
18
|
Isaza-Restrepo A, Martin-Saavedra JS, Velez-Leal JL, Vargas-Barato F, Riveros-Dueñas R. The Peritoneum: Beyond the Tissue - A Review. Front Physiol 2018; 9:738. [PMID: 29962968 PMCID: PMC6014125 DOI: 10.3389/fphys.2018.00738] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Despite its complexity, the peritoneum is usually underestimated in classical medical texts simply as the surrounding tissue (serous membrane) of the gut. Novel findings on physiology and morphology of the peritoneum and mesothelial cell exist but they are usually focused or limited to Continuous Ambulatory Peritoneal Dialysis research and practice. This review aims to expose, describe and analyze the most recent evidence on the peritoneum’s morphology, embryology and physiology. Materials and Methods: A literature review was performed on Pubmed and MEDLINE. With no limit of publication date, original papers and literature reviews about the peritoneum, the peritoneal cavity, peritoneal fluid, and mesothelial cells were included (n = 72). Results: Peritoneum develops in close relationship to the gut from an early period in embryogenesis. Analyzing together the development of the primitive gut and the surrounding mesothelium helps understanding that the peritoneal cavity, the mesenteries and other structures can be considered parts of the peritoneum. However, some authors consider that structures like the mesenteries are different to the peritoneum. The mesothelial cell has a complex ultrastructural organization with intercellular junctions and apical microvilli. This complexity is further proven by the large array of functions like selective fluid and cell transport; physiological protective barrier; immune induction, modulation, and inhibition; tissue repair and scarring; preventing adhesion and tumoral dissemination; cellular migration; and the epithelial-mesenchymal transition capacity. Conclusion: Recent evidence on the anatomy, histology, and physiology of the peritoneum, shows that this structure is more complex than a simple serous membrane. These results call for a new conceptualization of peritoneum, and highlight the need of adequate research for identifying clinical relevance of this knowledge.
Collapse
Affiliation(s)
- Andres Isaza-Restrepo
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia.,Department of Clinical Surgery, Hospital Universitario Mayor - Méderi, Bogotá, Colombia
| | - Juan S Martin-Saavedra
- Clinical Research Group, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Juan L Velez-Leal
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Vargas-Barato
- Department of Clinical Surgery, Hospital Universitario Mayor - Méderi, Bogotá, Colombia
| | - Rafael Riveros-Dueñas
- Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
19
|
Targeting Toll-like receptors with soluble Toll-like receptor 2 prevents peritoneal dialysis solution-induced fibrosis. Kidney Int 2018; 94:346-362. [PMID: 29861057 DOI: 10.1016/j.kint.2018.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Peritoneal membrane failure due to fibrosis limits the use of peritoneal dialysis (PD). Peritoneal fibrosis may potentially be induced by sterile inflammation caused by ongoing cellular stress due to prolonged exposure to PD solutions (PDS). Effective therapies to prevent this process remain to be developed. Toll-like receptors (TLRs) mediate sterile inflammation by recognizing damage-associated molecular patterns (DAMPs) released by cellular stress. We evaluated the involvement of TLRs and DAMPs in PDS-induced fibrosis models and the therapeutic potential of TLR-DAMP targeting for preventing fibrosis. A range of PDS elicited pro-inflammatory and fibrotic responses from PD patient peritoneal leukocytes, mesothelial cells and mouse peritoneal leukocytes. TLR2/4 blockade of human peritoneal cells or TLR2/4 knockouts inhibited these effects. PDS did not induce rapid ERK phosphorylation or IκB-α degradation, suggesting that they do not contain components capable of direct TLR activation. However, PDS increased the release of Hsp70 and hyaluronan, both TLR2/4 DAMP ligands, by human and mouse peritoneal cells, and their blockade decreased PDS-driven inflammation. Soluble TLR2, a TLR inhibitor, reduced PDS-induced pro-inflammatory and fibrotic cytokine release ex vivo. Daily catheter infusion of PDS in mice caused peritoneal fibrosis, but co-administration of soluble TLR2 prevented fibrosis, suppressed pro-fibrotic gene expression and pro-inflammatory cytokine production, reduced leukocyte/neutrophil recruitment, recovered Treg cell levels and increased the Treg:Th17 ratio. Thus, TLR2/4, Hsp70 and hyaluronan showed major roles in PDS-induced peritoneal inflammation and fibrosis. The study demonstrates the therapeutic potential of a TLR-DAMP targeting strategy to prevent PDS-induced fibrosis.
Collapse
|
20
|
Hwanga EH, Kim TH, Park JY, Hong JJ, Kim DH, Ha SJ, Yang SJ, Shin SJ, Park JH. TLR2 contributes to trigger immune response of pleural mesothelial cells against Mycobacterium bovis BCG and M. tuberculosis infection. Cytokine 2018; 95:80-87. [PMID: 28249177 DOI: 10.1016/j.cyto.2017.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis is a causative agent leading to pleural effusion, characterized by the accumulation of fluid and immune cells in the pleural cavity. Although this phenomenon has been described before, detailed processes or mechanisms associated with the pleural effusion are still not well understood. Pleural mesothelial cells (PMCs) are specialized epithelial cells that cover the body wall and internal organs in pleural cavity playing a central role in pleural inflammation. Toll-like receptors are expressed in various cell types including mesothelial cells and initiate the recognition and defense against mycobacterial infection. In the present study, we investigated direct immune responses of PMCs against two mycobacterial strains, M. bovis vaccine strain Bacille Calmette-Guérin (BCG) and M. tuberculosis virulent strain H37Rv, and the role of TLR2 in such responses. Infection with BCG and H37Rv increased the production of IL-6, CXCL1, and CCL2 in WT PMCs, which was partially impaired in TLR2-deficient cells. In addition, the activation of NF-κB and MAPKs induced by BCG and H37Rv was suppressed in TLR2-deficient PMCs, as compared with the WT cells. TLR2 deficiency led to the decrease of nitric oxide (NO) production through the delayed gene expression of iNOS in PMCs. TLR2 was also shown to be essential for optimal expression of cellular adhesion molecules such as ICAM-1 and VCAM-1 in PMCs in response to BCG and H37Rv. These findings strongly suggest that TLR2 participates in mycobacteria-induced innate immune responses in PMCs and may play a role in pathogenesis of tuberculosis pleural effusion.
Collapse
Affiliation(s)
- Eun-Ha Hwanga
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju 61186, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Tae-Hyoun Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk 28116, Republic of Korea
| | - Dong-Hyun Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University, Seoul 06591, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK 21 PLUS Project Team, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
21
|
Mihara T, Otsubo W, Horiguchi K, Mikawa S, Kaji N, Iino S, Ozaki H, Hori M. The anti-inflammatory pathway regulated via nicotinic acetylcholine receptors in rat intestinal mesothelial cells. J Vet Med Sci 2017; 79:1795-1802. [PMID: 28931778 PMCID: PMC5709555 DOI: 10.1292/jvms.17-0304] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of inflammation in intestinal mesothelial cells in the abdominal cavity is important for the pathogeny of clinical conditions, such as postoperative ileus, peritonitis and encapsulating peritoneal sclerosis. Here we have examined the inflammatory effect of lipopolysaccharide (LPS) and the anti-inflammatory effect of nicotinic acetylcholine receptor stimulation in rat intestinal mesothelial cells. LPS upregulated mRNA expression of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1) and inducible nitric oxide synthase (iNOS). The α7, α9 and α10 subunits of nicotinic acetylcholine receptor were detected in intestinal mesothelial cells. Nicotine (10 nM) significantly inhibited LPS-induced mRNA expression of IL-1β and iNOS, but not TNF-α and MCP-1. In addition, the α7 nicotinic acetylcholine receptor selective agonist, PNU-282987 (10 nM), significantly inhibited LPS-induced mRNA expression of IL-1β but not TNF-α, iNOS and MCP-1. Finally, we found that enteric nerves adhered to intestinal mesothelial cells located under the ileal serosa. In conclusion, intestinal mesothelial cells react to LPS to induce the production of nitric oxide from iNOS. The anti-inflammatory action of intestinal mesothelial cells expressing α7nAChR may be mediated via their connectivity with enteric nerves.
Collapse
Affiliation(s)
- Taiki Mihara
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Wataru Otsubo
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuhide Horiguchi
- Division of Anatomy, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Shoma Mikawa
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Noriyuki Kaji
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Iino
- Division of Anatomy, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences, Fukui 910-1193, Japan
| | - Hiroshi Ozaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
22
|
Zhang Z, Jiang N, Ni Z. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis. Front Med 2017; 11:349-358. [PMID: 28791669 DOI: 10.1007/s11684-017-0571-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Peritoneal dialysis (PD) is an established form of renal replacement therapy. Long-term PD leads to morphologic and functional changes to the peritoneal membrane (PM), which is defined as peritoneal fibrosis, a known cause of loss of peritoneal ultrafiltration capacity. Inflammation and angiogenesis are key events during the pathogenesis of peritoneal fibrosis. This review discusses the pathophysiology of peritoneal fibrosis and recent research progress on key fibrogenic molecular mechanisms in peritoneal inflammation and angiogenesis, including Toll-like receptor ligand-mediated, NOD-like receptor protein 3/interleukin-1β, vascular endothelial growth factor, and angiopoietin-2/Tie2 signaling pathways. Furthermore, novel strategies targeting peritoneal inflammation and angiogenesis to preserve the PM are discussed in depth.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Na Jiang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
23
|
McGuire AL, Mulroney KT, Carson CF, Ram R, Morahan G, Chakera A. Analysis of early mesothelial cell responses to Staphylococcus epidermidis isolated from patients with peritoneal dialysis-associated peritonitis. PLoS One 2017; 12:e0178151. [PMID: 28542390 PMCID: PMC5443531 DOI: 10.1371/journal.pone.0178151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 05/08/2017] [Indexed: 02/06/2023] Open
Abstract
The major complication of peritoneal dialysis (PD) is the development of peritonitis, an infection within the abdominal cavity, primarily caused by bacteria. PD peritonitis is associated with significant morbidity, mortality and health care costs. Staphylococcus epidermidis is the most frequently isolated cause of PD-associated peritonitis. Mesothelial cells are integral to the host response to peritonitis, and subsequent clinical outcomes, yet the effects of infection on mesothelial cells are not well characterised. We systematically investigated the early mesothelial cell response to clinical and reference isolates of S. epidermidis using primary mesothelial cells and the mesothelial cell line Met-5A. Using an unbiased whole genome microarray, followed by a targeted panel of genes known to be involved in the human antibacterial response, we identified 38 differentially regulated genes (adj. p-value < 0.05) representing 35 canonical pathways after 1 hour exposure to S. epidermidis. The top 3 canonical pathways were TNFR2 signaling, IL-17A signaling, and TNFR1 signaling (adj. p-values of 0.0012, 0.0012 and 0.0019, respectively). Subsequent qPCR validation confirmed significant differences in gene expression in a number of genes not previously described in mesothelial cell responses to infection, with heterogeneity observed between clinical isolates of S. epidermidis, and between Met-5A and primary mesothelial cells. Heterogeneity between different S. epidermidis isolates suggests that specific virulence factors may play critical roles in influencing outcomes from peritonitis. This study provides new insights into early mesothelial cell responses to infection with S. epidermidis, and confirms the importance of validating findings in primary mesothelial cells.
Collapse
Affiliation(s)
- Amanda L. McGuire
- Translational Renal Research Group, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Kieran T. Mulroney
- Translational Renal Research Group, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Christine F. Carson
- Translational Renal Research Group, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
| | - Ramesh Ram
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Aron Chakera
- Translational Renal Research Group, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, University of Western Australia, Crawley, Western Australia, Australia
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| |
Collapse
|
24
|
The role of Toll-like receptor 4 in high-glucose-induced inflammatory and fibrosis markers in human peritoneal mesothelial cells. Int Urol Nephrol 2016; 49:171-181. [PMID: 27722989 DOI: 10.1007/s11255-016-1430-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE High glucose stimulates peritoneal inflammation and extracellular matrix accumulation in human peritoneal mesothelial cells (HPMCs). However, the roles of Toll-like receptor 4 (TLR4) and TLR2 in high-glucose-induced inflammation and fibrosis in peritoneal dialysis (PD) remain unclear. This study aimed to evaluate the effect of high glucose on TLR2 and TLR4 expression in HPMCs and to assess their impact on peritoneal inflammatory and fibrosis markers. METHODS Using cultured HPMCs, TLRs expression by high-glucose (50 mM) stimulation was assessed by quantitative real-time PCR. The association of reactive oxygen species (ROS) in high-glucose-induced TLR2 and TLR4 expression was measured by 2',7'-dichlorodihydrofluorescein diacetate staining with or without ROS inhibitor. In addition, the role of TLR2 and TLR4 on high-glucose-induced inflammatory and fibrosis markers including chemoattractant protein-1 (MCP-1), NF-κB, alpha-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-ß), and fibronectin was evaluated after inhibition of TLR2 and TLR4 by small-interfering RNA (siRNA) or anti-TLR4/TLR2 antibodies, respectively. RESULTS High glucose induced TLR1, TLR2, and TLR4 mRNAs expressions. High-glucose-induced TLR4 and TLR2 mRNAs were associated partly with the generation of ROS. Inhibition of TLR4 attenuated the high-glucose-induced expression of MCP-1 mRNA and protein, MyD88 mRNA, nuclear NF-κB p65 protein, TGF-β, fibronectin, and α-SMA mRNA and protein. However, inhibition of TLR2 did not change the expression of MCP-1 mRNA and protein. CONCLUSIONS High glucose induces inflammatory and fibrosis markers in HPMCs partly through the TLR4/MyD88/NF-κB signaling pathway rather than TLR2. Therefore, TLR4 might be a therapeutic target for ameliorating peritoneal inflammation and fibrosis in PD.
Collapse
|
25
|
Raby AC, Colmont CS, Kift-Morgan A, Köhl J, Eberl M, Fraser D, Topley N, Labéta MO. Toll-Like Receptors 2 and 4 Are Potential Therapeutic Targets in Peritoneal Dialysis-Associated Fibrosis. J Am Soc Nephrol 2016; 28:461-478. [PMID: 27432741 DOI: 10.1681/asn.2015080923] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 06/02/2016] [Indexed: 01/07/2023] Open
Abstract
Peritoneal dialysis (PD) remains limited by dialysis failure due to peritoneal membrane fibrosis driven by inflammation caused by infections or sterile cellular stress. Given the fundamental role of Toll-like receptors (TLRs) and complement in inflammation, we assessed the potential of peritoneal TLR2, TLR4 and C5a receptors, C5aR and C5L2, as therapeutic targets in PD-associated fibrosis. We detected TLR2-, TLR4-, and C5aR-mediated proinflammatory and fibrotic responses to bacteria that were consistent with the expression of these receptors in peritoneal macrophages (TLR2/4, C5aR) and mesothelial cells (TLR2, C5aR). Experiments in knockout mice revealed a major role for TLR2, a lesser role for TLR4, a supplementary role for C5aR, and no apparent activity of C5L2 in infection-induced peritoneal fibrosis. Similarly, antibody blockade of TLR2, TLR4, or C5aR differentially inhibited bacteria-induced profibrotic and inflammatory mediator production by peritoneal leukocytes isolated from the peritoneal dialysis effluent (PDE) of noninfected uremic patients. Additionally, antibodies against TLR2, TLR4, or the coreceptor CD14 reduced the profibrotic responses of uremic leukocytes to endogenous components present in the PDE of noninfected patients. Enhancing TLR2-mediated inflammation increased fibrosis in vivo Furthermore, soluble TLR2 (sTLR2), a negative modulator of TLRs that we detected in PDE, inhibited PDE-induced, TLR2- or TLR4-mediated profibrotic responses. Notably, sTLR2 treatment markedly reduced Gram-positive and -negative bacteria-induced fibrosis in vivo, inhibiting proinflammatory and fibrotic genes without affecting infection clearance. These findings reveal the influence of peritoneal TLR2 and TLR4 on PD-associated fibrosis and describe a therapeutic strategy against fibrosis.
Collapse
Affiliation(s)
- Anne-Catherine Raby
- Division of Infection and Immunity and The Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom;
| | - Chantal S Colmont
- Division of Infection and Immunity and The Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Ann Kift-Morgan
- Division of Infection and Immunity and The Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lubeck, Germany; and.,Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Matthias Eberl
- Division of Infection and Immunity and The Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Donald Fraser
- Division of Infection and Immunity and The Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicholas Topley
- Division of Infection and Immunity and The Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mario O Labéta
- Division of Infection and Immunity and The Wales Kidney Research Unit, School of Medicine, Cardiff University, Cardiff, United Kingdom;
| |
Collapse
|
26
|
TLR4 induces CCR7-dependent monocytes transmigration through the blood-brain barrier. J Neuroimmunol 2016; 295-296:12-7. [PMID: 27235343 DOI: 10.1016/j.jneuroim.2016.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/22/2022]
Abstract
In this study, we examined whether bacterial pathogen-associated molecular patterns recognized by toll-like receptors (TLRs) can modify the CCR7-dependent migration of human monocytes. MonoMac-1 (MM-1) cells and freshly isolated human monocytes were cultivated in the presence of agonists for TLR4 (which senses lipopolysaccharides from gram-negative bacteria), TLR1/2 (which senses peptidoglycan from gram-positive bacteria), and TLR9 (which recognizes bacterial DNA rich in unmethylated CpG DNA). CCR7 mRNA transcription was measured using quantitative reverse transcription polymerase chain reaction and protein expression was examined using flow cytometry. CCR7 function was monitored using migration and transmigration assays in response to CCL19/CCL21, which are natural ligands for CCR7. Our results show that TLR4 strongly increases monocyte migratory capacity in response to CCL19 in chemotaxis and transmigration assays in a model that mimics the human blood-brain barrier, whereas TLR1/2 and 9 have no effect. Examination of monocyte migration in response to TLRs that are activated by bacterial components would contribute to understanding the excessive monocyte migration that characterizes the pathogenesis of bacterial infections and/or neuroinflammatory diseases.
Collapse
|
27
|
Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells Int 2016; 2016:3543678. [PMID: 26941801 PMCID: PMC4752998 DOI: 10.1155/2016/3543678] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/10/2016] [Indexed: 12/26/2022] Open
Abstract
Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
|
28
|
Hwang EH, Kim TH, Oh SM, Lee KB, Yang SJ, Park JH. Toll/IL-1 domain-containing adaptor inducing IFN-β (TRIF) mediates innate immune responses in murine peritoneal mesothelial cells through TLR3 and TLR4 stimulation. Cytokine 2015; 77:127-34. [PMID: 26579632 PMCID: PMC7128242 DOI: 10.1016/j.cyto.2015.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 10/22/2015] [Accepted: 11/05/2015] [Indexed: 01/27/2023]
Abstract
TRIF is involved in cytokines and chemokines production by poly I:C and LPS in PMCs. TRIF mediates iNOS expression and NO production by poly I:C or LPS in PMCs. TRIF is required for IFN-β gene expression in PMCs stimulated by poly I:C or LPS. TRIF is essential for optimal production of IL-6, CXCL1, and CCL2 by live G-bacteria.
Mesothelial cells are composed of monolayer of the entire surface of serosal cavities including pleural, pericardial, and peritoneal cavity. Although mesothelial cells are known to express multiple Toll-like receptors (TLRs) which contribute to trigger innate immune responses against infections, the precise molecular mechanism remains still unclear. In the present study, we investigated the role of Toll/IL-1 domain-containing adaptor inducing IFN-β (TRIF), one of the two major TLRs–adaptor molecules, on innate immune response induced by TLR3 and TLR4 stimulation in murine peritoneal mesothelial cells (PMCs). TRIF was strongly expressed in PMCs and its deficiency led to impaired production of cytokines and chemokines by poly I:C and LPS in the cells. Activation of NF-κB or MAPKs through poly I:C and LPS stimulation was reduced in TRIF-deficient PMCs as compared to the WT cells. TRIF was also necessary for optimal nitric oxide synthesis and gene expression of inducible nitric oxide synthase (iNOS) and IFN-β in PMCs in response to poly I:C and LPS. Furthermore, both Escherichia coli and Pseudomonas aeruginosa induced high level of IL-6, CXCL1, and CCL2 production in PMCs, which was significantly impaired by TRIF deficiency. These results demonstrated that TRIF is required for optimal activation of innate immune responses in mesothelial cells against microbial infections.
Collapse
Affiliation(s)
- Eun-Ha Hwang
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Republic of Korea
| | - Tae-Hyoun Kim
- BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Republic of Korea
| | - Kyung-Bok Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 302-718, Republic of Korea
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, Anseong 456-756, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
29
|
Gupta OT, Gupta RK. Visceral Adipose Tissue Mesothelial Cells: Living on the Edge or Just Taking Up Space? Trends Endocrinol Metab 2015; 26:515-523. [PMID: 26412153 DOI: 10.1016/j.tem.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/29/2015] [Accepted: 07/13/2015] [Indexed: 01/22/2023]
Abstract
Visceral adiposity and pathological adipose tissue remodeling, a result of overnutrition, are strong predictors of metabolic health in obesity. Factors intrinsic to visceral adipose depots are likely to play a causal role in eliciting the detrimental effects of this tissue on systemic nutrient homeostasis. The visceral adipose-associated mesothelium, a monolayer of epithelial cells of mesodermal origin that line the visceral serosa, has recently attracted attention for its role in metabolic dysfunction. Here we highlight and consolidate literature from various fields of study that points to the visceral adipose-associated mesothelium as a potential contributor to adipose development and remodeling. We propose a hypothesis in which adipose mesothelial cells represent a visceral depot-specific determinant of adipose tissue health in obesity.
Collapse
Affiliation(s)
- Olga T Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, Division of Pediatric Endocrinology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
30
|
Xie G, Luo H, Tian B, Mann B, Bao X, McBride J, Tesh R, Barrett AD, Wang T. A West Nile virus NS4B-P38G mutant strain induces cell intrinsic innate cytokine responses in human monocytic and macrophage cells. Vaccine 2015; 33:869-78. [PMID: 25562791 DOI: 10.1016/j.vaccine.2014.12.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/17/2014] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that an attenuated West Nile virus (WNV) nonstructural (NS) 4B-P38G mutant induces stronger innate and adaptive immune responses than wild-type WNV in mice, which has important applications to vaccine development. To investigate the mechanism of immunogenicity, we characterized WNV NS4B-P38G mutant infection in two human cell lines-THP-1 cells and THP-1 macrophages. Although the NS4B-P38G mutant produced more viral RNA than the parental WNV NY99 in both cell types, there was no detectable infectious virus in the supernatant of either cell type. Nonetheless, the attenuated mutant boosted higher innate cytokine responses than virulent parental WNV NY99 in these cells. The NS4B-P38G mutant infection of THP-1 cells led to more diverse and robust innate cytokine responses than that seen in THP-1 macrophages, which were mediated by toll-like receptor (TLR)7 and retinoic acid-inducible gene 1(RIG-I) signaling pathways. Overall, these results suggest that a defective viral life cycle during NS4B-P38G mutant infection in human monocytic and macrophage cells leads to more potent cell intrinsic innate cytokine responses.
Collapse
Affiliation(s)
- Guorui Xie
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bing Tian
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Brian Mann
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaoyong Bao
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jere McBride
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Robert Tesh
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Alan D Barrett
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Tian Wang
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555 USA.
| |
Collapse
|
31
|
Jones SA, Fraser DJ, Fielding CA, Jones GW. Interleukin-6 in renal disease and therapy. Nephrol Dial Transplant 2014; 30:564-74. [DOI: 10.1093/ndt/gfu233] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
32
|
Chen YT, Chang YT, Pan SY, Chou YH, Chang FC, Yeh PY, Liu YH, Chiang WC, Chen YM, Wu KD, Tsai TJ, Duffield JS, Lin SL. Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol 2014; 25:2847-58. [PMID: 24854266 DOI: 10.1681/asn.2013101079] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Fibrosis of the peritoneal cavity remains a serious, life-threatening problem in the treatment of kidney failure with peritoneal dialysis. The mechanism of fibrosis remains unclear partly because the fibrogenic cells have not been identified with certainty. Recent studies have proposed mesothelial cells to be an important source of myofibroblasts through the epithelial-mesenchymal transition; however, confirmatory studies in vivo are lacking. Here, we show by inducible genetic fate mapping that type I collagen-producing submesothelial fibroblasts are specific progenitors of α-smooth muscle actin-positive myofibroblasts that accumulate progressively in models of peritoneal fibrosis induced by sodium hypochlorite, hyperglycemic dialysis solutions, or TGF-β1. Similar genetic mapping of Wilms' tumor-1-positive mesothelial cells indicated that peritoneal membrane disruption is repaired and replaced by surviving mesothelial cells in peritoneal injury, and not by submesothelial fibroblasts. Although primary cultures of mesothelial cells or submesothelial fibroblasts each expressed α-smooth muscle actin under the influence of TGF-β1, only submesothelial fibroblasts expressed α-smooth muscle actin after induction of peritoneal fibrosis in mice. Furthermore, pharmacologic inhibition of the PDGF receptor, which is expressed by submesothelial fibroblasts but not mesothelial cells, attenuated the peritoneal fibrosis but not the remesothelialization induced by hypochlorite. Thus, our data identify distinctive fates for injured mesothelial cells and submesothelial fibroblasts during peritoneal injury and fibrosis.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Graduate Institute of Physiology, College of Medicine, and Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Ting Chang
- Graduate Institute of Physiology, College of Medicine, and
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Graduate Institute of Physiology, College of Medicine, and Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Graduate Institute of Physiology, College of Medicine, and Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Pei-Ying Yeh
- Graduate Institute of Physiology, College of Medicine, and
| | - Yuan-Hung Liu
- Department of Cardiovascular Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; and
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Kwan-Dun Wu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Tun-Jun Tsai
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Jeremy S Duffield
- Institute for Stem Cell and Regenerative Medicine, and Kidney Research Institute, University of Washington, Seattle, Washington
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, and Renal Division, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan;
| |
Collapse
|
33
|
Fielding C, Jones G, McLoughlin R, McLeod L, Hammond V, Uceda J, Williams A, Lambie M, Foster T, Liao CT, Rice C, Greenhill C, Colmont C, Hams E, Coles B, Kift-Morgan A, Newton Z, Craig K, Williams J, Williams G, Davies S, Humphreys I, O’Donnell V, Taylor P, Jenkins B, Topley N, Jones S. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity 2014; 40:40-50. [PMID: 24412616 PMCID: PMC3919204 DOI: 10.1016/j.immuni.2013.10.022] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Abstract
Fibrosis in response to tissue damage or persistent inflammation is a pathological hallmark of many chronic degenerative diseases. By using a model of acute peritoneal inflammation, we have examined how repeated inflammatory activation promotes fibrotic tissue injury. In this context, fibrosis was strictly dependent on interleukin-6 (IL-6). Repeat inflammation induced IL-6-mediated T helper 1 (Th1) cell effector commitment and the emergence of STAT1 (signal transducer and activator of transcription-1) activity within the peritoneal membrane. Fibrosis was not observed in mice lacking interferon-γ (IFN-γ), STAT1, or RAG-1. Here, IFN-γ and STAT1 signaling disrupted the turnover of extracellular matrix by metalloproteases. Whereas IL-6-deficient mice resisted fibrosis, transfer of polarized Th1 cells or inhibition of MMP activity reversed this outcome. Thus, IL-6 causes compromised tissue repair by shifting acute inflammation into a more chronic profibrotic state through induction of Th1 cell responses as a consequence of recurrent inflammation.
Collapse
Affiliation(s)
- Ceri A. Fielding
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Gareth W. Jones
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Rachel M. McLoughlin
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Monash Institute for Medical Research, Monash University, Clayton, VIC 3168, Australia
| | - Victoria J. Hammond
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Javier Uceda
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Anwen S. Williams
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Mark Lambie
- Department of Nephrology, University Hospital of North Staffordshire and Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Thomas L. Foster
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Chia-Te Liao
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Christopher M. Rice
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Claire J. Greenhill
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Chantal S. Colmont
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Emily Hams
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Barbara Coles
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Ann Kift-Morgan
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Zarabeth Newton
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Katherine J. Craig
- Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - John D. Williams
- Institute of Nephrology, Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Geraint T. Williams
- Section of Pathology, Institute of Cancer and Genetics, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Simon J. Davies
- Department of Nephrology, University Hospital of North Staffordshire and Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent ST4 7QB, UK
| | - Ian R. Humphreys
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Valerie B. O’Donnell
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Philip R. Taylor
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Monash Institute for Medical Research, Monash University, Clayton, VIC 3168, Australia
| | - Nicholas Topley
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Simon A. Jones
- Cardiff Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK,Corresponding author
| |
Collapse
|
34
|
Lin CY, Roberts GW, Kift-Morgan A, Donovan KL, Topley N, Eberl M. Pathogen-specific local immune fingerprints diagnose bacterial infection in peritoneal dialysis patients. J Am Soc Nephrol 2013; 24:2002-9. [PMID: 24179164 PMCID: PMC3839555 DOI: 10.1681/asn.2013040332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/26/2013] [Indexed: 12/21/2022] Open
Abstract
Accurate and timely diagnosis of bacterial infection is crucial for effective and targeted treatment, yet routine microbiological identification is inefficient and often delayed to an extent that makes it clinically unhelpful. The immune system is capable of a rapid, sensitive and specific detection of a broad spectrum of microbes, which has been optimized over millions of years of evolution. A patient's early immune response is therefore likely to provide far better insight into the true nature and severity of microbial infections than conventional tests. To assess the diagnostic potential of pathogen-specific immune responses, we characterized the local responses of 52 adult patients during episodes of acute peritoneal dialysis (PD)-associated peritonitis by multicolor flow cytometry and multiplex ELISA, and defined the immunologic signatures in relation to standard microbiological culture results and to clinical outcomes. We provide evidence that unique local "immune fingerprints" characteristic of individual organisms are evident in PD patients on the day of presentation with acute peritonitis and discriminate between culture-negative, Gram-positive, and Gram-negative episodes of infection. Those humoral and cellular parameters with the most promise for defining disease-specific immune fingerprints include the local levels of IL-1β, IL-10, IL-22, TNF-α, and CXCL10, as well as the frequency of local γδ T cells and the relative proportion of neutrophils and monocytes/macrophages among total peritoneal cells. Our data provide proof of concept for the feasibility of using immune fingerprints to inform the design of point-of-care tests that will allow rapid and accurate infection identification and facilitate targeted antibiotic prescription and improved patient management.
Collapse
Affiliation(s)
- Chan-Yu Lin
- Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, Wales, United Kingdom
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Gareth W. Roberts
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ann Kift-Morgan
- Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, Wales, United Kingdom
| | - Kieron L. Donovan
- Department of Nephrology and Transplant, Cardiff and Vale University Health Board, Cardiff, Wales, United Kingdom; and
| | - Nicholas Topley
- Institute of Translation, Innovation, Methodology and Engagement, School of Medicine, Cardiff University, Cardiff, Wales, United Kingdom
| | - Matthias Eberl
- Cardiff Institute of Infection and Immunity, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
35
|
Kim TH, Lee KB, Kang MJ, Park JH. Critical role of Toll-like receptor 2 in Bacteroides fragilis-mediated immune responses in murine peritoneal mesothelial cells. Microbiol Immunol 2013; 56:782-8. [PMID: 22938101 DOI: 10.1111/j.1348-0421.2012.00505.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, the role of Toll-like receptor 2 (TLR2) in immune responses of murine peritoneal mesothelial cells against Bacteroides fragilis was investigated. Enzyme linked immunosorbent assay was used to measure cytokines and chemokines. Activation of nuclear factor κB (NF-κB-α) and mitogen-activated protein kinases (MAP kinases) was investigated by western blot analysis. B. fragilis induced production of interleukin-6, chemokine (C-X-C motif) ligand 1 (CXCL1) and chemokine (C-C motif) ligand 2 (CCL2) in wild type peritoneal mesothelial cells; this was impaired in TLR2-deficient cells. In addition, in response to B. fragilis, phosphorylation of inhibitory NF-κB-α and c-Jun N-terminal kinase mitogen-activated protein kinase (MAPK) was induced in wild type mesothelial cells, but not in TLR2-deficient cells,. Inhibitor assay revealed that NF-κB and MAPKs are essential for B. fragilis-induced production of CXCL1 and CCL2 in mesothelial cells. These findings suggest that TLR2 mediates immune responses in peritoneal mesothelial cells in response to B. fragilis.
Collapse
Affiliation(s)
- Tae-Hyoun Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
36
|
Lin CY, Kift-Morgan A, Moser B, Topley N, Eberl M. Suppression of pro-inflammatory T-cell responses by human mesothelial cells. Nephrol Dial Transplant 2013; 28:1743-50. [PMID: 23355626 DOI: 10.1093/ndt/gfs612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Human γδ T cells reactive to the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP) contribute to acute inflammatory responses. We have previously shown that peritoneal dialysis (PD)-associated infections with HMB-PP producing bacteria are characterized by locally elevated γδ T-cell frequencies and poorer clinical outcome compared with HMB-PP negative infections, implying that γδ T cells may be of diagnostic, prognostic and therapeutic value in acute disease. The regulation by local tissue cells of these potentially detrimental γδ T-cell responses remains to be investigated. METHODS Freshly isolated γδ or αβ T cells were cultured with primary mesothelial cells derived from omental tissue, or with mesothelial cell-conditioned medium. Stimulation of cytokine production and proliferation by peripheral T cells in response to HMB-PP or CD3/CD28 beads was assessed by flow cytometry. RESULTS Resting mesothelial cells were potent suppressors of pro-inflammatory γδ T cells as well as CD4+ and CD8+ αβ T cells. The suppression of γδ T-cell responses was mediated through soluble factors released by primary mesothelial cells and could be counteracted by SB-431542, a selective inhibitor of TGF-β and activin signalling. Recombinant TGF-β1 but not activin-A mimicked the mesothelial cell-mediated suppression of γδ T-cell responses to HMB-PP. CONCLUSIONS The present findings indicate an important regulatory function of mesothelial cells in the peritoneal cavity by dampening pro-inflammatory T-cell responses, which may help preserve the tissue integrity of the peritoneal membrane in the steady state and possibly during the resolution of acute inflammation.
Collapse
Affiliation(s)
- Chan-Yu Lin
- Cardiff Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | | | | | | | | |
Collapse
|
37
|
Immunity and malignant mesothelioma: From mesothelial cell damage to tumor development and immune response-based therapies. Cancer Lett 2012; 322:18-34. [DOI: 10.1016/j.canlet.2012.02.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 02/24/2012] [Accepted: 02/24/2012] [Indexed: 11/22/2022]
|
38
|
Bouchery T, Dénécé G, Attout T, Ehrhardt K, Lhermitte-Vallarino N, Hachet-Haas M, Galzi JL, Brotin E, Bachelerie F, Gavotte L, Moulia C, Bain O, Martin C. The chemokine CXCL12 is essential for the clearance of the filaria Litomosoides sigmodontis in resistant mice. PLoS One 2012; 7:e34971. [PMID: 22511975 PMCID: PMC3325259 DOI: 10.1371/journal.pone.0034971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/10/2012] [Indexed: 01/07/2023] Open
Abstract
Litomosoides sigmodontis is a cause of filarial infection in rodents. Once infective larvae overcome the skin barrier, they enter the lymphatic system and then settle in the pleural cavity, causing soft tissue infection. The outcome of infection depends on the parasite's modulatory ability and also on the immune response of the infected host, which is influenced by its genetic background. The goal of this study was to determine whether host factors such as the chemokine axis CXCL12/CXCR4, which notably participates in the control of immune surveillance, can influence the outcome of the infection. We therefore set up comparative analyses of subcutaneous infection by L. sigmodontis in two inbred mouse strains with different outcomes: one susceptible strain (BALB/c) and one resistant strain (C57BL/6). We showed that rapid parasite clearance was associated with a L. sigmodontis-specific CXCL12-dependent cell response in C57BL/6 mice. CXCL12 was produced mainly by pleural mesothelial cells during infection. Conversely, the delayed parasite clearance in BALB/c mice was neither associated with an increase in CXCL12 levels nor with cell influx into the pleural cavity. Remarkably, interfering with the CXCL12/CXCR4 axis in both strains of mice delayed filarial development, as evidenced by the postponement of the fourth molting process. Furthermore, the in vitro growth of stage 4 filariae was favored by the addition of low amounts of CXCL12. The CXCL12/CXCR4 axis thus appears to have a dual effect on the L. sigmodontis life cycle: by acting as a host-cell restriction factor for infection, and as a growth factor for worms.
Collapse
Affiliation(s)
- Tiffany Bouchery
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Gaelle Dénécé
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Tarik Attout
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Katharina Ehrhardt
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Muriel Hachet-Haas
- IREBS, Biotechnologie et Signalisation Cellulaire, UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Jean Luc Galzi
- IREBS, Biotechnologie et Signalisation Cellulaire, UMR 7242, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Emilie Brotin
- INSERM UMR-S 996, University of Paris-Sud 11, LabEx LERMIT, Clamart, France
| | | | - Laurent Gavotte
- UMR 5554 ISEM CNRS, Université Montpellier 2, Montpellier, France
| | - Catherine Moulia
- UMR 5554 ISEM CNRS, Université Montpellier 2, Montpellier, France
| | - Odile Bain
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Coralie Martin
- UMR 7245 MCAM MNHN CNRS & UMR 7205 OSEB MNHN CNRS, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
39
|
Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm 2012; 2012:484167. [PMID: 22577250 PMCID: PMC3337720 DOI: 10.1155/2012/484167] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/18/2012] [Accepted: 01/18/2012] [Indexed: 01/08/2023] Open
Abstract
The success of peritoneal dialysis (PD) is dependent on the structural and functional integrity of the
peritoneal membrane. The mesothelium lines the peritoneal membrane and is the first line of
defense against chemical and/or bacterial insult. Peritonitis remains a major complication of PD and
is a predominant cause of technique failure, morbidity and mortality amongst PD patients. With
appropriate antibiotic treatment, peritonitis resolves without further complications, but in some PD
patients excessive peritoneal inflammatory responses lead to mesothelial cell exfoliation and
thickening of the submesothelium, resulting in peritoneal fibrosis and sclerosis. The detrimental
changes in the peritoneal membrane structure and function correlate with the number and severity
of peritonitis episodes and the need for catheter removal. There is evidence that despite clinical
resolution of peritonitis, increased levels of inflammatory and fibrotic mediators may persist in the
peritoneal cavity, signifying persistent injury to the mesothelial cells. This review will describe the
structural and functional changes that occur in the peritoneal membrane during peritonitis and how
mesothelial cells contribute to these changes and respond to infection. The latter part of the review
discusses the potential of mesothelial cell transplantation and genetic manipulation in the
preservation of the peritoneal membrane.
Collapse
|
40
|
Mast cell-mediated inhibition of abdominal neutrophil inflammation by a PEGylated TLR7 ligand. Mediators Inflamm 2011; 2012:262394. [PMID: 22619481 PMCID: PMC3348532 DOI: 10.1155/2012/262394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/19/2011] [Indexed: 11/18/2022] Open
Abstract
Although the mechanisms for sustained chemokine gradients and recurring cell infiltration in sterile peritonitis have not been elucidated, toll-like receptors (TLRs) have been implicated. To abate the deleterious recruitment of neutrophils in sterile inflammation, we repeatedly administered a TLR7 ligand that hyposensitized to TLR7 and receptors that converged on the MyD88-signaling intermediary and reduced cellular infiltration in murine autoimmune models of multiple sclerosis and arthritis. To reduce potential adverse effects, a polyethylene glycol polymer was covalently attached to the parent compound (Tolerimod1). The proinflammatory potency of Tolerimod1 was 10-fold less than the unconjugated TLR7 ligand, and Tolerimod1 reduced neutrophil recruitment in chemically induced peritonitis and colitis. The effects of Tolerimod1 were mediated by the radioresistant cells in radiation chimeric mice and by mast cells in reconstituted mast cell-deficient mice (Kit(W-sh)). Although the Tolerimod1 had weak proinflammatory agonist activity, it effectively reduced neutrophil recruitment in sterile peritoneal inflammation.
Collapse
|