1
|
Ren J, Amoozgar Z, Uccello TP, Lei PJ, Zhao Y, Ho WW, Huang P, Kardian A, Mack SC, Duda DG, Xu L, Jain RK. Targeting EPHB2/ABL1 restores antitumor immunity in preclinical models of ependymoma. Proc Natl Acad Sci U S A 2025; 122:e2319474122. [PMID: 39841145 PMCID: PMC11789170 DOI: 10.1073/pnas.2319474122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood. New treatments for various molecular subtypes of EPN are desperately needed. Using ST-EPN-ZFTA subtype-specific syngeneic mouse models, we found an increased frequency of M2-like tumor-associated macrophages (TAMs), which proportionally increased with tumor size during tumor progression. Transcriptomic profiling of ST-EPN-ZFTA and analysis of a human EPN dataset revealed multiple protein kinases as potential druggable targets. By matching transcriptomic signatures with the target spectrum of FDA-approved drugs, we found that the multikinase inhibitor dasatinib potently inhibited the growth of EPN both in vitro and in vivo, mainly through blocking EPHB2 and ABL1. Treatment with dasatinib reprogrammed the EPN immune microenvironment by polarizing TAMs toward an M1-like phenotype and increasing CD8 T cell activation. Furthermore, dasatinib treatment induced complete regression of established EPN tumors in 78% of the animals and protected survivors against tumor recurrence. Depletion of CD8 cells compromised the durability of EPN responses and reduced overall survival. These data indicate that dasatinib has the potential to be an effective therapy for ST-EPN-ZFTA molecular subgroup of EPN and support further investigation of dasatinib in clinical trials.
Collapse
Affiliation(s)
- Jun Ren
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Zohreh Amoozgar
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Taylor P. Uccello
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Pin-Ji Lei
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Yuhui Zhao
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - William W. Ho
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Peigen Huang
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Alisha Kardian
- Center of Excellence in Neuro-Oncology Sciences, St Jude Children’s Research Hospital, Memphis, TN38105
- Neurobiology and Brain Tumor Program, St Jude Children’s Research Hospital, Memphis, TN38105
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN38105
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX77030
| | - Stephen C. Mack
- Center of Excellence in Neuro-Oncology Sciences, St Jude Children’s Research Hospital, Memphis, TN38105
- Neurobiology and Brain Tumor Program, St Jude Children’s Research Hospital, Memphis, TN38105
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN38105
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX77030
| | - Dan G. Duda
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Lei Xu
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Rakesh K. Jain
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| |
Collapse
|
2
|
Huang ZL, Liu ZG, Lin Q, Tao YL, Li X, Baxter P, Su JM, Adesina AM, Man C, Chintagumpala M, Teo WY, Du YC, Xia YF, Li XN. Fractionated radiation therapy alters energy metabolism and induces cellular quiescence exit in patient-derived orthotopic xenograft models of high-grade glioma. Transl Oncol 2024; 45:101988. [PMID: 38733642 PMCID: PMC11101904 DOI: 10.1016/j.tranon.2024.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Radiation is one of the standard therapies for pediatric high-grade glioma (pHGG), of which the prognosis remains poor. To gain an in-depth understanding of biological consequences beyond the classic DNA damage, we treated 9 patient-derived orthotopic xenograft (PDOX) models, including one with DNA mismatch repair (MMR) deficiency, with fractionated radiations (2 Gy/day x 5 days). Extension of survival time was noted in 5 PDOX models (P < 0.05) accompanied by γH2AX positivity in >95 % tumor cells in tumor core and >85 % in the invasive foci as well as ∼30 % apoptotic and mitotic catastrophic cell death. The model with DNA MMR (IC-1406HGG) was the most responsive to radiation with a reduction of Ki-67(+) cells. Altered metabolism, including mitochondria number elevation, COX IV activation and reactive oxygen species accumulation, were detected together with the enrichment of CD133+ tumor cells. The latter was caused by the entry of quiescent G0 cells into cell cycle and the activation of self-renewal (SOX2 and BMI1) and epithelial mesenchymal transition (fibronectin) genes. These novel insights about the cellular and molecular mechanisms of fractionated radiation in vivo should support the development of new radio-sensitizing therapies.
Collapse
Affiliation(s)
- Zi-Lu Huang
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Zhi-Gang Liu
- Cancer Center, The 10th Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, China; Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The 10th Affiliated Hospital of Southern Medical University, Southern Medical University, China; Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States.
| | - Qi Lin
- Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Department of Pharmacology, School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ya-Lan Tao
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China
| | - Xinzhuoyun Li
- Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Patricia Baxter
- Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Jack Mf Su
- Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Adekunle M Adesina
- Department of Pathology, Texas Children's Hospital, Houston, TX, United States
| | - Chris Man
- Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Murali Chintagumpala
- Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Wan Yee Teo
- Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, 169856, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, A*STAR, KK Women's & Children's Hospital Singapore, Institute of Molecular and Cell Biology, Singapore
| | - Yu-Chen Du
- Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| | - Yun-Fei Xia
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, PR China.
| | - Xiao-Nan Li
- Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States; Texas Children's Cancer Center and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
3
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Qi L, Baxter P, Kogiso M, Zhang H, Braun FK, Lindsay H, Zhao S, Xiao S, Abdallah AS, Suarez M, Huang Z, Teo WY, Yu L, Zhao X, Liu Z, Huang Y, Su JM, Man TK, Lau CC, Perlaky L, Du Y, Li XN. Direct Implantation of Patient Brain Tumor Cells into Matching Locations in Mouse Brains for Patient-Derived Orthotopic Xenograft Model Development. Cancers (Basel) 2024; 16:1716. [PMID: 38730671 PMCID: PMC11083000 DOI: 10.3390/cancers16091716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Despite multimodality therapies, the prognosis of patients with malignant brain tumors remains extremely poor. One of the major obstacles that hinders development of effective therapies is the limited availability of clinically relevant and biologically accurate (CRBA) mouse models. Methods: We have developed a freehand surgical technique that allows for rapid and safe injection of fresh human brain tumor specimens directly into the matching locations (cerebrum, cerebellum, or brainstem) in the brains of SCID mice. Results: Using this technique, we successfully developed 188 PDOX models from 408 brain tumor patient samples (both high-and low-grade) with a success rate of 72.3% in high-grade glioma, 64.2% in medulloblastoma, 50% in ATRT, 33.8% in ependymoma, and 11.6% in low-grade gliomas. Detailed characterization confirmed their replication of the histopathological and genetic abnormalities of the original patient tumors. Conclusions: The protocol is easy to follow, without a sterotactic frame, in order to generate large cohorts of tumor-bearing mice to meet the needs of biological studies and preclinical drug testing.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen 510080, China;
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Patricia Baxter
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mari Kogiso
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank K. Braun
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holly Lindsay
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sibo Zhao
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sophie Xiao
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Aalaa Sanad Abdallah
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Milagros Suarez
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Zilu Huang
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
| | - Wan Yee Teo
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore
| | - Litian Yu
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiumei Zhao
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhigang Liu
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yulun Huang
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jack M. Su
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
| | - Tsz-Kwong Man
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
| | - Ching C. Lau
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
| | - Laszlo Perlaky
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
| | - Yuchen Du
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Xiao-Nan Li
- Texas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA; (P.B.); (M.K.); (H.Z.); (F.K.B.); (H.L.); (S.Z.); (W.Y.T.); (L.Y.); (X.Z.); (Z.L.); (Y.H.); (J.M.S.); (T.-K.M.); (C.C.L.); (L.P.)
- Laboratory of Molecular Neuro-Oncology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (S.X.); (A.S.A.); (M.S.); (Z.H.)
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore
| |
Collapse
|
5
|
Hatanaka EA, Breunig JJ. In vitro and in vivo modeling systems of supratentorial ependymomas. Front Oncol 2024; 14:1360358. [PMID: 38469231 PMCID: PMC10925685 DOI: 10.3389/fonc.2024.1360358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Ependymomas are rare brain tumors that can occur in both children and adults. Subdivided by the tumors' initial location, ependymomas develop in the central nervous system in the supratentorial or infratentorial/posterior fossa region, or the spinal cord. Supratentorial ependymomas (ST-EPNs) are predominantly characterized by common driver gene fusions such as ZFTA and YAP1 fusions. Some variants of ST-EPNs carry a high overall survival rate. In poorly responding ST-EPN variants, high levels of inter- and intratumoral heterogeneity, limited therapeutic strategies, and tumor recurrence are among the reasons for poor patient outcomes with other ST-EPN subtypes. Thus, modeling these molecular profiles is key in further studying tumorigenesis. Due to the scarcity of patient samples, the development of preclinical in vitro and in vivo models that recapitulate patient tumors is imperative when testing therapeutic approaches for this rare cancer. In this review, we will survey ST-EPN modeling systems, addressing the strengths and limitations, application for therapeutic targeting, and current literature findings.
Collapse
Affiliation(s)
- Emily A. Hatanaka
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Joshua J. Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Center for Neural Sciences in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Habowski AN, Budagavi DP, Scherer SD, Aurora AB, Caligiuri G, Flynn WF, Langer EM, Brody JR, Sears RC, Foggetti G, Arnal Estape A, Nguyen DX, Politi KA, Shen X, Hsu DS, Peehl DM, Kurhanewicz J, Sriram R, Suarez M, Xiao S, Du Y, Li XN, Navone NM, Labanca E, Willey CD. Patient-Derived Models of Cancer in the NCI PDMC Consortium: Selection, Pitfalls, and Practical Recommendations. Cancers (Basel) 2024; 16:565. [PMID: 38339316 PMCID: PMC10854945 DOI: 10.3390/cancers16030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
For over a century, early researchers sought to study biological organisms in a laboratory setting, leading to the generation of both in vitro and in vivo model systems. Patient-derived models of cancer (PDMCs) have more recently come to the forefront of preclinical cancer models and are even finding their way into clinical practice as part of functional precision medicine programs. The PDMC Consortium, supported by the Division of Cancer Biology in the National Cancer Institute of the National Institutes of Health, seeks to understand the biological principles that govern the various PDMC behaviors, particularly in response to perturbagens, such as cancer therapeutics. Based on collective experience from the consortium groups, we provide insight regarding PDMCs established both in vitro and in vivo, with a focus on practical matters related to developing and maintaining key cancer models through a series of vignettes. Although every model has the potential to offer valuable insights, the choice of the right model should be guided by the research question. However, recognizing the inherent constraints in each model is crucial. Our objective here is to delineate the strengths and limitations of each model as established by individual vignettes. Further advances in PDMCs and the development of novel model systems will enable us to better understand human biology and improve the study of human pathology in the lab.
Collapse
Affiliation(s)
- Amber N. Habowski
- Cold Spring Harbor Laboratory, Long Island, NY 11724, USA; (A.N.H.); (D.P.B.); (G.C.)
| | - Deepthi P. Budagavi
- Cold Spring Harbor Laboratory, Long Island, NY 11724, USA; (A.N.H.); (D.P.B.); (G.C.)
| | - Sandra D. Scherer
- Department of Oncologic Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Arin B. Aurora
- Children’s Research Institute and Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75235, USA;
| | - Giuseppina Caligiuri
- Cold Spring Harbor Laboratory, Long Island, NY 11724, USA; (A.N.H.); (D.P.B.); (G.C.)
| | | | - Ellen M. Langer
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Jonathan R. Brody
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA;
| | | | - Anna Arnal Estape
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA;
| | - Don X. Nguyen
- Department of Pathology, Yale University, New Haven, CT 06520, USA; (D.X.N.); (K.A.P.)
| | - Katerina A. Politi
- Department of Pathology, Yale University, New Haven, CT 06520, USA; (D.X.N.); (K.A.P.)
| | - Xiling Shen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA;
| | - David S. Hsu
- Department of Medicine, Duke University, Durham, NC 27710, USA;
| | - Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (D.M.P.); (J.K.); (R.S.)
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (D.M.P.); (J.K.); (R.S.)
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158, USA; (D.M.P.); (J.K.); (R.S.)
| | - Milagros Suarez
- Department of Pediatrics, Lurie Children’s Hospital of Chicago Northwestern University, Chicago, IL 60611, USA; (M.S.); (S.X.); (Y.D.); (X.-N.L.)
| | - Sophie Xiao
- Department of Pediatrics, Lurie Children’s Hospital of Chicago Northwestern University, Chicago, IL 60611, USA; (M.S.); (S.X.); (Y.D.); (X.-N.L.)
| | - Yuchen Du
- Department of Pediatrics, Lurie Children’s Hospital of Chicago Northwestern University, Chicago, IL 60611, USA; (M.S.); (S.X.); (Y.D.); (X.-N.L.)
| | - Xiao-Nan Li
- Department of Pediatrics, Lurie Children’s Hospital of Chicago Northwestern University, Chicago, IL 60611, USA; (M.S.); (S.X.); (Y.D.); (X.-N.L.)
| | - Nora M. Navone
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.N.)
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology, David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (N.M.N.)
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
7
|
Zhang Z, Chen Y, Guo Y, Shen H, Wang J, Chen H. RFX2 promotes tumor cell stemness through epigenetic regulation of PAF1 in spinal ependymoma. J Neurooncol 2023; 165:487-497. [PMID: 38057505 DOI: 10.1007/s11060-023-04506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Spinal ependymoma (SE) is a rare tumor that is most commonly low-grade and tends to recur when complete tumor resection is not feasible. We investigated the molecular mechanism induces stem cell features in SE. METHODS Immunohistochemical staining was conducted to analyze the expression of RFX2 in tumor tissues of SE patients at different stages. The expression of tumor stemness markers (Netsin and CD133) was analyzed using western blot analysis and IF, and the efficiency of sphere formation in SE cells was analyzed. The biological activities of SE cells were analyzed by EdU proliferation assay, TUNEL, wound healing, and Transwell assays. The regulatory relationship of RFX2 on PAF1 was verified by ChIP-qPCR and the dual-luciferase assay. SE cells were injected into the spinal cord of nude mice for in vivo assays. RESULTS RFX2 was higher in the tumor tissues of SE-III patients than in the tumor tissues of SE-I patients. RFX2 knockdown reduced the expression of tumor stemness markers in SE cells and inhibited the sphere formation efficiency. Moreover, RFX2 knockdown ameliorated the malignant progression of SE in nude mice, as manifested by prolonged survival and alleviated SE tumor infiltration. RFX2 bound to the PAF1 promoter to induce its transcription. Overexpression of PAF1 overturned the effects of RFX2 knockdown on stem cell features and biological activities of SE cells, thereby reducing survival in mice. CONCLUSIONS RFX2 activates PAF1 transcription, which promotes tumor stemness of SE cells and leads to the malignant progression of SE.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yusheng Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hanwei Shen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jiangtao Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hang Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China.
| |
Collapse
|
8
|
Ibanez J, Hebbar N, Thanekar U, Yi Z, Houke H, Ward M, Nevitt C, Tian L, Mack SC, Sheppard H, Chiang J, Velasquez MP, Krenciute G. GRP78-CAR T cell effector function against solid and brain tumors is controlled by GRP78 expression on T cells. Cell Rep Med 2023; 4:101297. [PMID: 37992682 PMCID: PMC10694756 DOI: 10.1016/j.xcrm.2023.101297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Lack of targetable antigens is a key limitation for developing successful T cell-based immunotherapies. Members of the unfolded protein response (UPR) represent ideal immunotherapy targets because the UPR regulates the ability of cancer cells to resist cell death, sustain proliferation, and metastasize. Glucose-regulated protein 78 (GRP78) is a key UPR regulator that is overexpressed and translocated to the cell surface of a wide variety of cancers in response to elevated endoplasmic reticulum (ER) stress. We show that GRP78 is highly expressed on the cell surface of multiple solid and brain tumors, making cell surface GRP78 a promising chimeric antigen receptor (CAR) T cell target. We demonstrate that GRP78-CAR T cells can recognize and kill GRP78+ brain and solid tumors in vitro and in vivo. Additionally, our findings demonstrate that GRP78 is upregulated on CAR T cells upon T cell activation; however, this expression is tumor-cell-line specific and results in heterogeneous GRP78-CAR T cell therapeutic response.
Collapse
Affiliation(s)
- Jorge Ibanez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nikhil Hebbar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Unmesha Thanekar
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Zhongzhen Yi
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Haley Houke
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Meghan Ward
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Chris Nevitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephen C Mack
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason Chiang
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - M Paulina Velasquez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
9
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, Roy LO, Lucien F, Tian S, Fortin D, Dubois CM. The development of a rapid patient-derived xenograft model to predict chemotherapeutic drug sensitivity/resistance in malignant glial tumors. Neuro Oncol 2023; 25:1605-1616. [PMID: 36821432 PMCID: PMC10479744 DOI: 10.1093/neuonc/noad047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND High-grade gliomas (HGG) are aggressive brain tumors associated with short median patient survival and limited response to therapies, driving the need to develop tools to improve patient outcomes. Patient-derived xenograft (PDX) models, such as mouse PDX, have emerged as potential Avatar platforms for personalized oncology approaches, but the difficulty for some human grafts to grow successfully and the long time required for mice to develop tumors preclude their use for HGG. METHODS We used a rapid and efficient ex-ovo chicken embryo chorioallantoic membrane (CAM) culture system to evaluate the efficacy of oncologic drug options for HGG patients. RESULTS Implantation of fresh glioma tissue fragments from 59 of 60 patients, that include difficult-to-grow IDH-mutated samples, successfully established CAM tumor xenografts within 7 days, with a tumor take rate of 98.3%. These xenografts faithfully recapitulate the histological and molecular characteristics of the primary tumor, and the ability of individual fragments to form tumors was predictive of poor patient prognosis. Treatment of drug-sensitive or drug-resistant xenografts indicates that the CAM-glioma assay enables testing tumor sensitivity to temozolomide and carboplatin at doses consistent with those administered to patients. In a proof-of-concept study involving 14 HGG patients, we observed a correlation of 100% between the CAM xenograft response to temozolomide or carboplatin and the clinical response of patients. CONCLUSION The CAM-glioma model is a fast and reliable assay that has the potential to serve as a complementary model to drug discovery and a real-time Avatar platform to predict the best treatment for HGG patients.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Laurent-Olivier Roy
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | | | - Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - David Fortin
- Department of Surgery, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| | - Claire M Dubois
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, QC J1H 5N4, Canada
| |
Collapse
|
10
|
Tang-Schomer MD, Bookland MJ, Sargent JE, N Jackvony T. Human Patient-Derived Brain Tumor Models to Recapitulate Ependymoma Tumor Vasculature. Bioengineering (Basel) 2023; 10:840. [PMID: 37508868 PMCID: PMC10376907 DOI: 10.3390/bioengineering10070840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/25/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Despite in vivo malignancy, ependymoma lacks cell culture models, thus limiting therapy development. Here, we used a tunable three-dimensional (3D) culture system to approximate the ependymoma microenvironment for recapitulating a patient's tumor in vitro. Our data showed that the inclusion of VEGF in serum-free, mixed neural and endothelial cell culture media supported the in vitro growth of all four ependymoma patient samples. The growth was driven by Nestin and Ki67 double-positive cells in a putative cancer stem cell niche, which was manifested as rosette-looking clusters in 2D and spheroids in 3D. The effects of extracellular matrix (ECM) such as collagen or Matrigel superseded that of the media conditions, with Matrigel resulting in the greater enrichment of Nestin-positive cells. When mixed with endothelial cells, the 3D co-culture models developed capillary networks resembling the in vivo ependymoma vasculature. The transcriptomic analysis of two patient cases demonstrated the separation of in vitro cultures by individual patients, with one patient's culture samples closely clustered with the primary tumor tissue. While VEGF was found to be necessary for preserving the transcriptomic features of in vitro cultures, the presence of endothelial cells shifted the gene's expression patterns, especially genes associated with ECM remodeling. The homeobox genes were mostly affected in the 3D in vitro models compared to the primary tumor tissue and between different 3D formats. These findings provide a basis for understanding the ependymoma microenvironment and enabling the further development of patient-derived in vitro ependymoma models for personalized medicine.
Collapse
Affiliation(s)
- Min D Tang-Schomer
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Markus J Bookland
- Connecticut Children's Medical Center, 282 Washington St., Hartford, CT 06106, USA
| | - Jack E Sargent
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| | - Taylor N Jackvony
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
11
|
Zhang H, Du Y, Qi L, Xiao S, Braun FK, Kogiso M, Huang Y, Huang F, Abdallah A, Suarez M, Karthick S, Ahmed NM, Salsman VS, Baxter PA, Su JM, Brat DJ, Hellenbeck PL, Teo WY, Patel AJ, Li XN. Targeting GBM with an Oncolytic Picornavirus SVV-001 alone and in combination with fractionated Radiation in a Novel Panel of Orthotopic PDX models. J Transl Med 2023; 21:444. [PMID: 37415222 PMCID: PMC10324131 DOI: 10.1186/s12967-023-04237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Animal models representing different molecular subtypes of glioblastoma multiforme (GBM) is desired for developing new therapies. SVV-001 is an oncolytic virus selectively targeting cancer cells. It's capacity of passing through the blood brain barrier makes is an attractive novel approach for GBM. MATERIALS AND METHODS 23 patient tumor samples were implanted into the brains of NOD/SCID mice (1 × 105 cells/mouse). Tumor histology, gene expression (RNAseq), and growth rate of the developed patient-derived orthotopic xenograft (PDOX) models were compared with the originating patient tumors during serial subtransplantations. Anti-tumor activities of SVV-001 were examined in vivo; and therapeutic efficacy validated in vivo via single i.v. injection (1 × 1011 viral particle) with or without fractionated (2 Gy/day x 5 days) radiation followed by analysis of animal survival times, viral infection, and DNA damage. RESULTS PDOX formation was confirmed in 17/23 (73.9%) GBMs while maintaining key histopathological features and diffuse invasion of the patient tumors. Using differentially expressed genes, we subclassified PDOX models into proneural, classic and mesenchymal groups. Animal survival times were inversely correlated with the implanted tumor cells. SVV-001 was active in vitro by killing primary monolayer culture (4/13 models), 3D neurospheres (7/13 models) and glioma stem cells. In 2/2 models, SVV-001 infected PDOX cells in vivo without harming normal brain cells and significantly prolonged survival times in 2/2 models. When combined with radiation, SVV-001 enhanced DNA damages and further prolonged animal survival times. CONCLUSION A panel of 17 clinically relevant and molecularly annotated PDOX modes of GBM is developed, and SVV-001 exhibited strong anti-tumor activities in vitro and in vivo.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Lin Qi
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Sophie Xiao
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mari Kogiso
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery, Dushou Lake Hospital, Soochow University Medical School, Suzhou, Jiangsu, China
| | - Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Aalaa Abdallah
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Sekar Karthick
- Pediatric Brain Tumor Research Office, Cancer and Stem Cell Biology Program, SingHealth Duke-NUS Academic Medical Center, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore
| | | | | | - Patricia A Baxter
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack M Su
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Wan-Yee Teo
- Texas Children's Cancer Center, Houston, TX, USA
- Pediatric Brain Tumor Research Office, Cancer and Stem Cell Biology Program, SingHealth Duke-NUS Academic Medical Center, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Houston, TX, USA.
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
Han YP, Lin HW, Li H. Cancer Stem Cells in Tumours of the Central Nervous System in Children: A Comprehensive Review. Cancers (Basel) 2023; 15:3154. [PMID: 37370764 DOI: 10.3390/cancers15123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer stem cells (CSCs) are a subgroup of cells found in various kinds of tumours with stem cell characteristics, such as self-renewal, induced differentiation, and tumourigenicity. The existence of CSCs is regarded as a major source of tumour recurrence, metastasis, and resistance to conventional chemotherapy and radiation treatment. Tumours of the central nervous system (CNS) are the most common solid tumours in children, which have many different types including highly malignant embryonal tumours and midline gliomas, and low-grade gliomas with favourable prognoses. Stem cells from the CNS tumours have been largely found and reported by researchers in the last decade and their roles in tumour biology have been deeply studied. However, the cross-talk of CSCs among different CNS tumour types and their clinical impacts have been rarely discussed. This article comprehensively reviews the achievements in research on CSCs in paediatric CNS tumours. Biological functions, diagnostic values, and therapeutic perspectives are reviewed in detail. Further investigations into CSCs are warranted to improve the clinical practice in treating children with CNS tumours.
Collapse
Affiliation(s)
- Yi-Peng Han
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Hou-Wei Lin
- Department of Paediatric Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Paediatric Surgery, Jiaxing Women and Children Hospital Affiliated to Jiaxing University, Jiaxing 314001, China
| | - Hao Li
- Department of Neurosurgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| |
Collapse
|
13
|
Hwang EI, Hanson D, Filbin MG, Mack SC. Why haven't we solved intracranial pediatric ependymoma? Current questions and barriers to treatment advances. Neoplasia 2023; 39:100895. [PMID: 36944298 PMCID: PMC10036929 DOI: 10.1016/j.neo.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/22/2023]
Abstract
Pediatric intracranial ependymoma has seen a recent exponential expansion of biological findings, rapidly dividing the diagnosis into several subgroups, each with specific molecular and clinical characteristics. While such subdivision may complicate clinical conclusions from historical trials, this knowledge also provides an opportunity for interrogating the major clinical and biological questions preventing near-term translation into effective therapy for children with ependymoma. In this article, we briefly review some of the most critical clinical questions facing both patient management and the construct of future trials in childhood ependymoma, as well as explore some of the current barriers to efficient translation of preclinical discovery to the clinic.
Collapse
|
14
|
de Almeida Magalhães T, Alencastro Veiga Cruzeiro G, Ribeiro de Sousa G, Englinger B, Fernando Peinado Nagano L, Ancliffe M, Rodrigues da Silva K, Jiang L, Gojo J, Cherry Liu Y, Carline B, Kuchibhotla M, Pinto Saggioro F, Kazue Nagahashi Marie S, Mieko Oba-Shinjo S, Andres Yunes J, Gomes de Paula Queiroz R, Alberto Scrideli C, Endersby R, Filbin MG, Silva Borges K, Salic A, Gonzaga Tone L, Valera ET. Activation of Hedgehog signaling by the oncogenic RELA fusion reveals a primary cilia-dependent vulnerability in supratentorial ependymoma. Neuro Oncol 2023; 25:185-198. [PMID: 35640920 PMCID: PMC9825332 DOI: 10.1093/neuonc/noac147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Supratentorial RELA fusion (ST-RELA) ependymomas (EPNs) are resistant tumors without an approved chemotherapeutic treatment. Unfortunately, the molecular mechanisms that lead to chemoresistance traits of ST-RELA remain elusive. The aim of this study was to assess RELA fusion-dependent signaling modules, specifically the role of the Hedgehog (Hh) pathway as a novel targetable vulnerability in ST-RELA. METHODS Gene expression was analyzed in EPN from patient cohorts, by microarray, RNA-seq, qRT-PCR, and scRNA-seq. Inhibitors against Smoothened (SMO) (Sonidegib) and Aurora kinase A (AURKA) (Alisertib) were evaluated. Protein expression, primary cilia formation, and drug effects were assessed by immunoblot, immunofluorescence, and immunohistochemistry. RESULTS Hh components were selectively overexpressed in EPNs induced by the RELA fusion. Single-cell analysis showed that the Hh signature was primarily confined to undifferentiated, stem-like cell subpopulations. Sonidegib exhibited potent growth-inhibitory effects on ST-RELA cells, suggesting a key role in active Hh signaling; importantly, the effect of Sonidegib was reversed by primary cilia loss. We, thus, tested the effect of AURKA inhibition by Alisertib, to induce cilia stabilization/reassembly. Strikingly, Alisertib rescued ciliogenesis and synergized with Sonidegib in killing ST-RELA cells. Using a xenograft model, we show that cilia loss is a mechanism for acquiring resistance to the inhibitory effect of Sonidegib. However, Alisertib fails to rescue cilia and highlights the need for other strategies to promote cilia reassembly, for treating ST-RELA tumors. CONCLUSION Our study reveals a crucial role for the Hh pathway in ST-RELA tumor growth, and suggests that rescue of primary cilia represents a vulnerability of the ST-RELA EPNs.
Collapse
Affiliation(s)
- Taciani de Almeida Magalhães
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Graziella Ribeiro de Sousa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Luis Fernando Peinado Nagano
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mathew Ancliffe
- Brain Tumour Research Program, Telethon Kids Institute and the University of Western Australia, Nedlands, Western Australia, Australia
| | - Keteryne Rodrigues da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Brain Tumour Research Program, Telethon Kids Institute and the University of Western Australia, Nedlands, Western Australia, Australia
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Johannes Gojo
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Yulu Cherry Liu
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brooke Carline
- Brain Tumour Research Program, Telethon Kids Institute and the University of Western Australia, Nedlands, Western Australia, Australia
| | - Mani Kuchibhotla
- Brain Tumour Research Program, Telethon Kids Institute and the University of Western Australia, Nedlands, Western Australia, Australia
| | - Fabiano Pinto Saggioro
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Suely Kazue Nagahashi Marie
- Cellular and Molecular Biology Laboratory, Department of Neurology, Faculdade de Medicina (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Sueli Mieko Oba-Shinjo
- Cellular and Molecular Biology Laboratory, Department of Neurology, Faculdade de Medicina (FMUSP), University of São Paulo, São Paulo, Brazil
| | - José Andres Yunes
- Molecular Biology Laboratory, Boldrini Children’s Center, Campinas, São Paulo, Brazil
| | | | - Carlos Alberto Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Institute and the University of Western Australia, Nedlands, Western Australia, Australia
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Kleiton Silva Borges
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Division of Endocrinology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Adrian Salic
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Luiz Gonzaga Tone
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
15
|
Zhao S, Li J, Zhang H, Qi L, Du Y, Kogiso M, Braun FK, Xiao S, Huang Y, Li J, Teo WY, Lindsay H, Baxter P, Su JMF, Adesina A, Laczik M, Genevini P, Veillard AC, Schvartzman S, Berguet G, Ding SR, Du L, Stephan C, Yang J, Davies PJA, Lu X, Chintagumpala M, Parsons DW, Perlaky L, Xia YF, Man TK, Huang Y, Sun D, Li XN. Epigenetic Alterations of Repeated Relapses in Patient-matched Childhood Ependymomas. Nat Commun 2022; 13:6689. [PMID: 36335125 PMCID: PMC9637194 DOI: 10.1038/s41467-022-34514-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Recurrence is frequent in pediatric ependymoma (EPN). Our longitudinal integrated analysis of 30 patient-matched repeated relapses (3.67 ± 1.76 times) over 13 years (5.8 ± 3.8) reveals stable molecular subtypes (RELA and PFA) and convergent DNA methylation reprogramming during serial relapses accompanied by increased orthotopic patient derived xenograft (PDX) (13/27) formation in the late recurrences. A set of differentially methylated CpGs (DMCs) and DNA methylation regions (DMRs) are found to persist in primary and relapse tumors (potential driver DMCs) and are acquired exclusively in the relapses (potential booster DMCs). Integrating with RNAseq reveals differentially expressed genes regulated by potential driver DMRs (CACNA1H, SLC12A7, RARA in RELA and HSPB8, GMPR, ITGB4 in PFA) and potential booster DMRs (PLEKHG1 in RELA and NOTCH, EPHA2, SUFU, FOXJ1 in PFA tumors). DMCs predicators of relapse are also identified in the primary tumors. This study provides a high-resolution epigenetic roadmap of serial EPN relapses and 13 orthotopic PDX models to facilitate biological and preclinical studies.
Collapse
Affiliation(s)
- Sibo Zhao
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.413584.f0000 0004 0383 5679Jane and John Justin Neurosciences Center, Cook Children’s Medical Center, Fort Worth, TX 76104 USA ,grid.413584.f0000 0004 0383 5679Hematology and Oncology Center, Cook Children’s Medical Center, Fort Worth, TX 76104 USA
| | - Jia Li
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA ,grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA ,grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University; and Guangzhou Laboratory, Bioland, 510120 Guangzhou, Guangdong P. R. China
| | - Huiyuan Zhang
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Lin Qi
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yuchen Du
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Mari Kogiso
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Frank K. Braun
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Sophie Xiao
- grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yulun Huang
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.263761.70000 0001 0198 0694Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Department of Neurosurgery, Dushu Lake Hospital, Suzhou Medical College, Soochow University, 215007 Suzhou, P. R. China
| | - Jianfang Li
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Wan-Yee Teo
- grid.410724.40000 0004 0620 9745Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Singapore, 169610 Singapore ,grid.428397.30000 0004 0385 0924Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore, Singapore ,grid.414963.d0000 0000 8958 3388KK Women’s & Children’s Hospital Singapore, Singapore, Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Holly Lindsay
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Patricia Baxter
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jack M. F. Su
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Adekunle Adesina
- grid.39382.330000 0001 2160 926XDepartment of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Miklós Laczik
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Paola Genevini
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | | | - Sol Schvartzman
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Geoffrey Berguet
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Shi-Rong Ding
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Department of Radiation, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong P. R. China
| | - Liping Du
- grid.16753.360000 0001 2299 3507Clinical Cytogenetic Laboratory, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Clifford Stephan
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA
| | - Jianhua Yang
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Peter J. A. Davies
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA
| | - Xinyan Lu
- grid.16753.360000 0001 2299 3507Clinical Cytogenetic Laboratory, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Murali Chintagumpala
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Donald William Parsons
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Laszlo Perlaky
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun-Fei Xia
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Department of Radiation, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong P. R. China
| | - Tsz-Kwong Man
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun Huang
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Deqiang Sun
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Xiao-Nan Li
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
16
|
Zhao F, Chen Y, Li SW, Zhang J, Zhang S, Zhao XB, Yang ZJ, Wang B, He QY, Wang LM, Xu L, Liu PN. Novel patient-derived xenograft and cell line models for therapeutic screening in NF2-associated schwannoma. J Pathol 2022; 257:620-634. [PMID: 35394061 DOI: 10.1002/path.5908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022]
Abstract
Treatment of schwannomas in patients with neurofibromatosis type 2 (NF2) is extremely unsatisfactory, and innovative therapeutic approaches are urgently needed. However, the lack of clinically relevant NF2-associated schwannoma models has severely hampered drug discovery in this rare disease. Here, we report the first establishment and characterization of patient-derived xenograft (PDX) and cell line models of NF2-associated schwannoma, which recapitulate the morphological and histopathological features of patient tumors, retain patient NF2 mutations, and maintain gene expression profiles resembling patient tumor profiles with the preservation of multiple key signaling pathways commonly dysregulated in human schwannomas. Using gene expression profiling, we identified elevated PI3K/AKT/mTOR networks in human NF2-associated vestibular schwannomas. Using high-throughput screening of 157 inhibitors targeting the PI3K/AKT/mTOR pathways in vitro, we identified a dozen inhibitors (such as BEZ235, LY2090314, and AZD8055) with significant growth-suppressive effects. Interestingly, we observed that three cell lines displayed differential therapeutic responses to PI3K/AKT/mTOR inhibitors. Furthermore, we demonstrated two orally bioavailable inhibitors AZD8055 and PQR309 suppressed NF2-associated schwannoma growth both in vitro and in vivo. In conclusion, our novel patient-derived models of NF2-associated schwannoma closely mimic the phenotypes and genotypes of patient tumors, making them reliable preclinical tools for testing novel personalized therapies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fu Zhao
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yang Chen
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shi-Wei Li
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shun Zhang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiao-Bin Zhao
- Department of Nuclear Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jun Yang
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi-Yang He
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lei-Ming Wang
- Departments of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Xu
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Pi-Nan Liu
- Department of Neural Reconstruction, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Saleh AH, Samuel N, Juraschka K, Saleh MH, Taylor MD, Fehlings MG. The biology of ependymomas and emerging novel therapies. Nat Rev Cancer 2022; 22:208-222. [PMID: 35031778 DOI: 10.1038/s41568-021-00433-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
Ependymomas are rare central nervous system tumours that can arise in the brain's supratentorial region or posterior fossa, or in the spinal cord. In 1924, Percival Bailey published the first comprehensive study of ependymomas. Since then, and especially over the past 10 years, our understanding of ependymomas has grown exponentially. In this Review, we discuss the evolution in knowledge regarding ependymoma subgroups and the resultant clinical implications. We also discuss key oncogenic and tumour suppressor signalling pathways that regulate tumour growth, the role of epigenetic dysregulation in the biology of ependymomas, and the various biological features of ependymoma tumorigenesis, including cell immortalization, stem cell-like properties, the tumour microenvironment and metastasis. We further review the limitations of current therapies such as relapse, radiation-induced cognitive deficits and chemotherapy resistance. Finally, we highlight next-generation therapies that are actively being explored, including tyrosine kinase inhibitors, telomerase inhibitors, anti-angiogenesis agents and immunotherapy.
Collapse
Affiliation(s)
- Amr H Saleh
- MD Program, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Kyle Juraschka
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammad H Saleh
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael D Taylor
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, University Health Network, Toronto Western Hospital, Toronto, ON, Canada.
- Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
18
|
Kogiso M, Qi L, Du Y, Braun FK, Zhang H, Huang LF, Guo L, Huang Y, Teo WY, Lindsay H, Zhao S, Injac SG, Liu Z, Mehta V, Tran D, Li F, Baxter PA, Su JM, Perlaky L, Parsons DW, Chintagumpala M, Adesina A, Song Y, Li XN. Synergistic anti-tumor efficacy of mutant isocitrate dehydrogenase 1 inhibitor SYC-435 with standard therapy in patient-derived xenograft mouse models of glioma. Transl Oncol 2022; 18:101368. [PMID: 35182954 PMCID: PMC8857594 DOI: 10.1016/j.tranon.2022.101368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/05/2022] Open
Abstract
A novel pair of orthotopic PDX models of glioma bearing IDH1-R132H/R132C mutations. New mutant IDH1i (SY-435) with standard therapy led to strong therapeutic efficacy. H3K4/K9 methylation/mtDNA-encoded molecules mediate anti-tumor activity of SYC-435. Discovered MYO1F, CTC1 and BCL9 as novel genes that mediated SYC-435 resistance.
Clinical outcomes in patients with WHO grade II/III astrocytoma, oligodendroglioma or secondary glioblastoma remain poor. Isocitrate dehydrogenase 1 (IDH1) is mutated in > 70% of these tumors, making it an attractive therapeutic target. To determine the efficacy of our newly developed mutant IDH1 inhibitor, SYC-435 (1-hydroxypyridin-2-one), we treated orthotopic glioma xenograft model (IC-BT142AOA) carrying R132H mutation and our newly established orthotopic patient-derived xenograft (PDX) model of recurrent anaplastic oligoastrocytoma (IC-V0914AOA) bearing R132C mutation. In addition to suppressing IDH1 mutant cell proliferation in vitro, SYC-435 (15 mg/kg, daily x 28 days) synergistically prolonged animal survival times with standard therapies (Temozolomide + fractionated radiation) mediated by reduction of H3K4/H3K9 methylation and expression of mitochondrial DNA (mtDNA)-encoded molecules. Furthermore, RNA-seq of the remnant tumors identified genes (MYO1F, CTC1 and BCL9) and pathways (base excision repair, TCA cycle II, sirtuin signaling, protein kinase A, eukaryotic initiation factor 2 and α-adrenergic signaling) as mediators of therapy resistance. Our data demonstrated the efficacy SYC-435 in targeting IDH1 mutant gliomas when combined with standard therapy and identified a novel set of genes that should be prioritized for future studies to overcome SYC-435 resistance.
Collapse
Affiliation(s)
- Mari Kogiso
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuchen Du
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Frank K Braun
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - L Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Lei Guo
- Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, TX 77030, USA
| | - Yulun Huang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neurosurgery, Brain and Nerve Research Laboratory, the First Affiliated Hospital, Soochow University Medical School, Suzhou, Jiangsu 215007, China
| | - Wan-Yee Teo
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, National Cancer Center, KK Women's and Children's Hospital, Humphrey Oei Institute of Cancer Research, Institute of Molecular and Cell Biology, A*STAR, 169610, Singapore
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sibo Zhao
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Sarah G Injac
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Zhen Liu
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vidya Mehta
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diep Tran
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- Department of Pathology, Alkek Center for Drug Discovery, Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia A Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jack M Su
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Laszlo Perlaky
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - D Williams Parsons
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Murali Chintagumpala
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA
| | - Adekunle Adesina
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Simpson Querrey Biomedical Research Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
19
|
Qi L, Lindsay H, Kogiso M, Du Y, Braun FK, Zhang H, Guo L, Zhao S, Injac SG, Baxter PA, Su JM, Xiao S, Erickson SW, Earley EJ, Teicher B, Smith MA, Li XN. Evaluation of an EZH2 inhibitor in patient-derived orthotopic xenograft models of pediatric brain tumors alone and in combination with chemo- and radiation therapies. J Transl Med 2022; 102:185-193. [PMID: 34802040 PMCID: PMC10228180 DOI: 10.1038/s41374-021-00700-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
Brain tumors are the leading cause of cancer-related death in children. Tazemetostat is an FDA-approved enhancer of zeste homolog (EZH2) inhibitor. To determine its role in difficult-to-treat pediatric brain tumors, we examined EZH2 levels in a panel of 22 PDOX models and confirmed EZH2 mRNA over-expression in 9 GBM (34.6 ± 12.7-fold) and 11 medulloblastoma models (6.2 ± 1.7 in group 3, 6.0 ± 2.4 in group 4) accompanied by elevated H3K27me3 expression. Therapeutic efficacy was evaluated in 4 models (1 GBM, 2 medulloblastomas and 1 ATRT) via systematically administered tazemetostat (250 and 400 mg/kg, gavaged, twice daily) alone and in combination with cisplatin (5 mg/kg, i.p., twice) and/or radiation (2 Gy/day × 5 days). Compared with the untreated controls, tazemetostat significantly (Pcorrected < 0.05) prolonged survival times in IC-L1115ATRT (101% at 400 mg/kg) and IC-2305GBM (32% at 250 mg/kg, 45% at 400 mg/kg) in a dose-dependent manner. The addition of tazemetostat with radiation was evaluated in 3 models, with only one [IC-1078MB (group 4)] showing a substantial, though not statistically significant, prolongation in survival compared to radiation treatment alone. Combining tazemetostat (250 mg/kg) with cisplatin was not superior to cisplatin alone in any model. Analysis of in vivo drug resistance detected predominance of EZH2-negative cells in the remnant PDOX tumors accompanied by decreased H3K27me2 and H3K27me3 expressions. These data supported the use of tazemetostat in a subset of pediatric brain tumors and suggests that EZH2-negative tumor cells may have caused therapy resistance and should be prioritized for the search of new therapeutic targets.
Collapse
Affiliation(s)
- Lin Qi
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pharmacology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Yuchen Du
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Sibo Zhao
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Sarah G Injac
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Patricia A Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Sophie Xiao
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | - Xiao-Nan Li
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
20
|
Hwang EI, Sayour EJ, Flores CT, Grant G, Wechsler-Reya R, Hoang-Minh LB, Kieran MW, Salcido J, Prins RM, Figg JW, Platten M, Candelario KM, Hale PG, Blatt JE, Governale LS, Okada H, Mitchell DA, Pollack IF. The current landscape of immunotherapy for pediatric brain tumors. NATURE CANCER 2022; 3:11-24. [PMID: 35121998 DOI: 10.1038/s43018-021-00319-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.
Collapse
Affiliation(s)
- Eugene I Hwang
- Division of Oncology, Brain Tumor Institute, Children's National Hospital, Washington, DC, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Catherine T Flores
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Gerald Grant
- Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA, USA
| | - Robert Wechsler-Reya
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lan B Hoang-Minh
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | | | | | - Robert M Prins
- Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John W Figg
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University and CCU Brain Tumor Immunology, DKFZ, Heidelberg, Germany
| | - Kate M Candelario
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Paul G Hale
- Children's Brain Trust, Coral Springs, FL, USA
| | - Jason E Blatt
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Lance S Governale
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, CA, USA
| | - Duane A Mitchell
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Servidei T, Lucchetti D, Navarra P, Sgambato A, Riccardi R, Ruggiero A. Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:6100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
Affiliation(s)
- Tiziana Servidei
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Donatella Lucchetti
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
| | - Pierluigi Navarra
- Department of Healthcare Surveillance and Bioethics, Section of Pharmacology, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Alessandro Sgambato
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.L.); (A.S.)
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, PZ, Italy
| | - Riccardo Riccardi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of the Sacred Hearth, 00168 Rome, Italy; (R.R.); (A.R.)
| |
Collapse
|
22
|
Huang Y, Qi L, Kogiso M, Du Y, Braun FK, Zhang H, Huang LF, Xiao S, Teo W, Lindsay H, Zhao S, Baxter P, Su JMF, Adesina A, Yang J, Brabetz S, Kool M, Pfister SM, Chintagumpala M, Perlaky L, Wang Z, Zhou Y, Man T, Li X. Spatial Dissection of Invasive Front from Tumor Mass Enables Discovery of Novel microRNA Drivers of Glioblastoma Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101923. [PMID: 34719887 PMCID: PMC8655179 DOI: 10.1002/advs.202101923] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Diffuse invasion is the primary cause of treatment failure of glioblastoma (GBM). Previous studies on GBM invasion have long been forced to use the resected tumor mass cells. Here, a strategy to reliably isolate matching pairs of invasive (GBMINV ) and tumor core (GBMTC ) cells from the brains of 6 highly invasive patient-derived orthotopic models is described. Direct comparison of these GBMINV and GBMTC cells reveals a significantly elevated invasion capacity in GBMINV cells, detects 23/768 miRNAs over-expressed in the GBMINV cells (miRNAINV ) and 22/768 in the GBMTC cells (miRNATC ), respectively. Silencing the top 3 miRNAsINV (miR-126, miR-369-5p, miR-487b) successfully blocks invasion of GBMINV cells in vitro and in mouse brains. Integrated analysis with mRNA expression identifies miRNAINV target genes and discovers KCNA1 as the sole common computational target gene of which 3 inhibitors significantly suppress invasion in vitro. Furthermore, in vivo treatment with 4-aminopyridine (4-AP) effectively eliminates GBM invasion and significantly prolongs animal survival times (P = 0.035). The results highlight the power of spatial dissection of functionally accurate GBMINV and GBMTC cells in identifying novel drivers of GBM invasion and provide strong rationale to support the use of biologically accurate starting materials in understanding cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yulun Huang
- Department of NeurosurgeryDushu Lake HospitalSoochow UniversitySuzhou205124China
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Lin Qi
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
- Department of PharmacologySchool of MedicineSun Yat‐Sen UniversityShenzhen518107China
| | - Mari Kogiso
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Yuchen Du
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Frank K. Braun
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Huiyuan Zhang
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - L. Frank Huang
- Department of Systems Medicine and BioegineeringHouston Methodist Hospital Research Institute and Cancer CenterWeill Cornell MedicineHoustonTX77030USA
- Division of Experimental Hematology and Cancer BiologyBrain Tumor CenterCincinnati Children’s Hospital Medical CenterDepartment of PediatricsUniversity of Cincinnati College of MedicineCincinnatiUnited States45229United States
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Wan‐Yee Teo
- Humphrey Oei Institute of Cancer ResearchNational Cancer Center SingaporeSingapore169610Singapore
| | - Holly Lindsay
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Sibo Zhao
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Patricia Baxter
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Jack M. F. Su
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Adekunle Adesina
- Department of PathologyTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Jianhua Yang
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Sebastian Brabetz
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
| | - Stefan M. Pfister
- Hopp Children's Cancer Center (KiTZ)Heidelberg69120Germany
- Division of Pediatric Neuro‐oncologyGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
- Department of Pediatric Hematology and OncologyHeidelberg University HospitalHeidelberg69120Germany
| | - Murali Chintagumpala
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Laszlo Perlaky
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
| | - Youxin Zhou
- Department of Neurosurgery and Brain and Nerve Research Laboratorythe First Affiliated HospitalSoochow UniversitySuzhou215007China
| | - Tsz‐Kwong Man
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
| | - Xiao‐Nan Li
- Texas Children's Cancer CenterTexas Children's HospitalBaylor College of MedicineHoustonTX77030USA
- Program of Precision Medicine PDOX Modeling of Pediatric TumorsAnn & Robert H. Lurie Children's Hospital of ChicagoDepartment of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| |
Collapse
|
23
|
Lötsch D, Kirchhofer D, Englinger B, Jiang L, Okonechnikov K, Senfter D, Laemmerer A, Gabler L, Pirker C, Donson AM, Bannauer P, Korbel P, Jaunecker CN, Hübner JM, Mayr L, Madlener S, Schmook MT, Ricken G, Maaß K, Grusch M, Holzmann K, Grasl-Kraupp B, Spiegl-Kreinecker S, Hsu J, Dorfer C, Rössler K, Azizi AA, Foreman NK, Peyrl A, Haberler C, Czech T, Slavc I, Filbin MG, Pajtler KW, Kool M, Berger W, Gojo J. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol 2021; 142:339-360. [PMID: 34046693 PMCID: PMC8270873 DOI: 10.1007/s00401-021-02327-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Ependymomas (EPN) are central nervous system tumors comprising both aggressive and more benign molecular subtypes. However, therapy of the high-risk subtypes posterior fossa group A (PF-A) and supratentorial RELA-fusion positive (ST-RELA) is limited to gross total resection and radiotherapy, as effective systemic treatment concepts are still lacking. We have recently described fibroblast growth factor receptors 1 and 3 (FGFR1/FGFR3) as oncogenic drivers of EPN. However, the underlying molecular mechanisms and their potential as therapeutic targets have not yet been investigated in detail. Making use of transcriptomic data across 467 EPN tissues, we found that FGFR1 and FGFR3 were both widely expressed across all molecular groups. FGFR3 mRNA levels were enriched in ST-RELA showing the highest expression among EPN as well as other brain tumors. We further identified high expression levels of fibroblast growth factor 1 and 2 (FGF1, FGF2) across all EPN subtypes while FGF9 was elevated in ST-EPN. Interrogation of our EPN single-cell RNA-sequencing data revealed that FGFR3 was further enriched in cycling and progenitor-like cell populations. Corroboratively, we found FGFR3 to be predominantly expressed in radial glia cells in both mouse embryonal and human brain datasets. Moreover, we detected alternative splicing of the FGFR1/3-IIIc variant, which is known to enhance ligand affinity and FGFR signaling. Dominant-negative interruption of FGFR1/3 activation in PF-A and ST-RELA cell models demonstrated inhibition of key oncogenic pathways leading to reduced cell growth and stem cell characteristics. To explore the feasibility of therapeutically targeting FGFR, we tested a panel of FGFR inhibitors in 12 patient-derived EPN cell models revealing sensitivity in the low-micromolar to nano-molar range. Finally, we gain the first clinical evidence for the activity of the FGFR inhibitor nintedanib in the treatment of a patient with recurrent ST-RELA. Together, these preclinical and clinical data suggest FGFR inhibition as a novel and feasible approach to combat aggressive EPN.
Collapse
MESH Headings
- Animals
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/pathology
- Ependymoma/genetics
- Ependymoma/pathology
- Humans
- Mice
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
Collapse
Affiliation(s)
- Daniela Lötsch
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Dominik Kirchhofer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Bernhard Englinger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Senfter
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anna Laemmerer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Lisa Gabler
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Peter Bannauer
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Pia Korbel
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Carola N Jaunecker
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jens-Martin Hübner
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Maria T Schmook
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gerda Ricken
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Kendra Maaß
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Klaus Holzmann
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Bettina Grasl-Kraupp
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Jennifer Hsu
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Kristian W Pajtler
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Haematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Johannes Gojo
- Department of Medicine I, Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria.
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
24
|
Castillo‐Ecija H, Pascual‐Pasto G, Perez‐Jaume S, Resa‐Pares C, Vila‐Ubach M, Monterrubio C, Jimenez‐Cabaco A, Baulenas‐Farres M, Muñoz‐Aznar O, Salvador N, Cuadrado‐Vilanova M, Olaciregui NG, Balaguer‐Lluna L, Burgueño V, Vicario FJ, Manzanares A, Castañeda A, Santa‐Maria V, Cruz O, Celis V, Morales La Madrid A, Garraus M, Gorostegui M, Vancells M, Carrasco R, Krauel L, Torner F, Suñol M, Lavarino C, Mora J, Carcaboso AM. Prognostic value of patient-derived xenograft engraftment in pediatric sarcomas. J Pathol Clin Res 2021; 7:338-349. [PMID: 33837665 PMCID: PMC8185364 DOI: 10.1002/cjp2.210] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 03/10/2021] [Indexed: 12/19/2022]
Abstract
The goals of this work were to identify factors favoring patient-derived xenograft (PDX) engraftment and study the association between PDX engraftment and prognosis in pediatric patients with Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma. We used immunodeficient mice to establish 30 subcutaneous PDX from patient tumor biopsies, with a successful engraftment rate of 44%. Age greater than 12 years and relapsed disease were patient factors associated with higher engraftment rate. Tumor type and biopsy location did not associate with engraftment. PDX models retained histology markers and most chromosomal aberrations of patient samples during successive passages in mice. Model treatment with irinotecan resulted in significant activity in 20 of the PDXs and replicated the response of rhabdomyosarcoma patients. Successive generations of PDXs responded similarly to irinotecan, demonstrating functional stability of these models. Importantly, out of 68 tumor samples from 51 patients with a median follow-up of 21.2 months, PDX engraftment from newly diagnosed patients was a prognostic factor significantly associated with poor outcome (p = 0.040). This association was not significant for relapsed patients. In the subgroup of patients with newly diagnosed Ewing sarcoma classified as standard risk, we found higher risk of relapse or refractory disease associated with those samples that produced stable PDX models (p = 0.0357). Overall, our study shows that PDX engraftment predicts worse outcome in newly diagnosed pediatric sarcoma patients.
Collapse
|
25
|
BLBP Is Both a Marker for Poor Prognosis and a Potential Therapeutic Target in Paediatric Ependymoma. Cancers (Basel) 2021; 13:cancers13092100. [PMID: 33925302 PMCID: PMC8123630 DOI: 10.3390/cancers13092100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Paediatric ependymomas are aggressive, treatment-resistant tumours with a tendency towards relapse, consistent with a sub-population of therapy-resistant cancer stem cells. These cells are believed to derive from brain lipid binding protein (BLBP)-expressing radial glia, hence we proposed that BLBP may be a marker for ependymoma therapy resistance. BLBP protein expression correlated with reduced overall survival (OS) in patients from two trials (CNS9204, a chemotherapy-led infant trial-5 y OS 45% vs. 80%, p = 0.011-and CNS9904, a radiotherapy-led trial-OS 38% vs. 85%, p = 0.002). All ependymoma cell lines examined by qRT-PCR expressed BLBP, with expression elevated in stem cell-enriched neurospheres. Modulation of BLBP function in 2D and 3D assays, using either peroxisome proliferator activated receptor (PPAR) antagonists or BLBP's fatty acid substrate docosahexaneoic acid (DHA), potentiated chemotherapy response and reduced cell migration and invasion in ependymoma cell lines. BLBP is therefore an independent predictor of poor survival in paediatric ependymoma, and treatment with PPAR antagonists or DHA may represent effective novel therapies, preventing chemotherapy resistance and invasion in paediatric ependymoma patients.
Collapse
|
26
|
Integrated Metabolomics and Transcriptomics Using an Optimised Dual Extraction Process to Study Human Brain Cancer Cells and Tissues. Metabolites 2021; 11:metabo11040240. [PMID: 33919944 PMCID: PMC8070957 DOI: 10.3390/metabo11040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme–metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.
Collapse
|
27
|
Assessment of Cannabidiol and Δ9-Tetrahydrocannabiol in Mouse Models of Medulloblastoma and Ependymoma. Cancers (Basel) 2021; 13:cancers13020330. [PMID: 33477420 PMCID: PMC7829707 DOI: 10.3390/cancers13020330] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Phytocannabinoids Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) have been demonstrated to exhibit anti-cancer activity in preclinical models of brain cancer leading to new clinical trials for adults with glioblastoma. We describe here the first report that has investigated a role for THC and CBD in pediatric brain cancer. Cannabinoids had cytotoxic activity against medulloblastoma and ependymoma cells in vitro, functioning in part through the inhibition of cell cycle progression and the induction of autophagy. Despite these effects in vitro, when tested in orthotopic mouse models of medulloblastoma or ependymoma, no impact on animal survival was observed. Furthermore, cannabinoids neither enhanced nor impaired conventional chemotherapy in a medulloblastoma mouse model. These data show that while THC and CBD do have some effects on medulloblastoma and ependymoma cells, are well tolerated, and have minimal adverse effects, they do not appear to elicit any survival benefit in preclinical models of pediatric brain cancer. Abstract Children with medulloblastoma and ependymoma are treated with a multidisciplinary approach that incorporates surgery, radiotherapy, and chemotherapy; however, overall survival rates for patients with high-risk disease remain unsatisfactory. Data indicate that plant-derived cannabinoids are effective against adult glioblastoma; however, preclinical evidence supporting their use in pediatric brain cancers is lacking. Here we investigated the potential role for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in medulloblastoma and ependymoma. Dose-dependent cytotoxicity of medulloblastoma and ependymoma cells was induced by THC and CBD in vitro, and a synergistic reduction in viability was observed when both drugs were combined. Mechanistically, cannabinoids induced cell cycle arrest, in part by the production of reactive oxygen species, autophagy, and apoptosis; however, this did not translate to increased survival in orthotopic transplant models despite being well tolerated. We also tested the combination of cannabinoids with the medulloblastoma drug cyclophosphamide, and despite some in vitro synergism, no survival advantage was observed in vivo. Consequently, clinical benefit from the use of cannabinoids in the treatment of high-grade medulloblastoma and ependymoma is expected to be limited. This study emphasizes the importance of preclinical models in validating therapeutic agent efficacy prior to clinical trials, ensuring that enrolled patients are afforded the most promising therapies available.
Collapse
|
28
|
C11orf95-RELA reprograms 3D epigenome in supratentorial ependymoma. Acta Neuropathol 2020; 140:951-960. [PMID: 32909151 PMCID: PMC7666583 DOI: 10.1007/s00401-020-02225-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Supratentorial ependymoma (ST-EPN) is a type of malignant brain tumor mainly seen in children. Since 2014, it has been known that an intrachromosomal fusion C11orf95-RELA is an oncogenic driver in ST-EPN [Parker et al. Nature 506:451–455 (2014); Pietsch et al. Acta Neuropathol 127:609–611 (2014)] but the molecular mechanisms of oncogenesis are unclear. Here we show that the C11orf95 component of the fusion protein dictates DNA binding activity while the RELA component is required for driving the expression of ependymoma-associated genes. Epigenomic characterizations using ChIP-seq and HiChIP approaches reveal that C11orf95-RELA modulates chromatin states and mediates chromatin interactions, leading to transcriptional reprogramming in ependymoma cells. Our findings provide important characterization of the molecular underpinning of C11orf95-RELA fusion and shed light on potential therapeutic targets for C11orf95-RELA subtype ependymoma.
Collapse
|
29
|
Qi L, Kogiso M, Du Y, Zhang H, Braun FK, Huang Y, Teo WY, Lindsay H, Zhao S, Baxter P, Zhao X, Yu L, Liu Z, Zhang X, Su JM, Adesina A, Yang J, Chintagumpala M, Perlaky L, Tsz-Kwong Man C, Lau CC, Li XN. Impact of SCID mouse gender on tumorigenicity, xenograft growth and drug-response in a large panel of orthotopic PDX models of pediatric brain tumors. Cancer Lett 2020; 493:197-206. [PMID: 32891713 DOI: 10.1016/j.canlet.2020.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/12/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022]
Abstract
Brain tumor is the leading cause of cancer related death in children. Clinically relevant animals are critical for new therapy development. To address the potential impact of animal gender on tumorigenicity rate, xenograft growth and in vivo drug responses, we retrospectively analyzed 99 of our established patient derived orthotopic xenograft mouse models (orthotopic PDX or PDOX). From 27 patient tumors, including 5 glioblastomas (GBMs), 11 medulloblastomas (MBs), 4 ependymomas (EPNs), 4 atypical teratoid/rhabdoid tumors (ATRTs) and 3 diffuse intrinsic pontine gliomas (DIPGs), that were directly implanted into matching locations in the brains of approximately equal numbers of male and female animals (n = 310) in age-matched (within 2-week age-difference) SCID mice, the tumor formation rate was 50.6 ± 21.5% in male and 52.7 ± 23.5% in female mice with animal survival times of 192.6 ± 31.7 days in male and 173.9 ± 34.5 days in female mice (P = 0.46) regardless of pathological diagnosis. Once established, PDOX tumors were serially subtransplanted for up to VII passage. Analysis of 1,595 mice from 59 PDOX models (18 GBMs, 18 MBs, 5 ATRTs, 6 EPNs, 7 DIPGs and 5 PENTs) during passage II and VII revealed similar tumor take rates of the 6 different tumor types between male (85.4 ± 15.5%) and female mice (84.7 ± 15.2%) (P = 0.74), and animal survival times were 96.7 ± 23.3 days in male mice and 99.7 ± 20 days in female (P = 0.25). A total of 284 mice from 7 GBM, 2 MB, 1 ATRT, 1 EPN, 2 DIPG and 1 PNET were treated with a series of standard and investigational drugs/compounds. The overall survival times were 106.9 ± 25.7 days in male mice, and 110.9 ± 31.8 days in female mice (P = 0.41), similar results were observed when different types/models were analyzed separately. In conclusion, our data demonstrated that the gender of SCID mice did not have a major impact on animal model development nor drug responses in vivo, and SCID mice of both genders are appropriate for use.
Collapse
Affiliation(s)
- Lin Qi
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Mari Kogiso
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Yuchen Du
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Frank K Braun
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Yulun Huang
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA; Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Wan-Yee Teo
- Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, 169610, Singapore; KK Women's and Children's Hospital, 169610, Singapore; Institute of Molecular and Cell Biology, A*STAR, 169610, Singapore; Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 169610, Singapore
| | - Holly Lindsay
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Sibo Zhao
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | | | - Xiumei Zhao
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Litian Yu
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Zhigang Liu
- Department of Head and Neck Oncology, The Oancer Oenter of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519001, China; Phase I Clinical Trial Laboratory, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, 519001, China
| | - Xingding Zhang
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jack Mf Su
- Texas Children's Cancer Center, Houston, TX, 77030, USA
| | - Adekunle Adesina
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jianhua Yang
- Texas Children's Cancer Center, Houston, TX, 77030, USA
| | | | | | | | - Ching C Lau
- Division of Hematology-Oncology, Connecticut Children's Medical Center, USA; The Jackson Laboratory for Genomic Medicine and University of Connecticut School of Medicine, USA
| | - Xiao-Nan Li
- Pre-clinical Neuro-oncology Research Program, Houston, TX, 77030, USA; Texas Children's Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
30
|
Zhang H, Qi L, Du Y, Huang LF, Braun FK, Kogiso M, Zhao Y, Li C, Lindsay H, Zhao S, Injac SG, Baxter PA, Su JM, Stephan C, Keller C, Heck KA, Harmanci A, Harmanci AO, Yang J, Klisch TJ, Li XN, Patel AJ. Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models of Primary and Recurrent Meningioma. Cancers (Basel) 2020; 12:cancers12061478. [PMID: 32517016 PMCID: PMC7352400 DOI: 10.3390/cancers12061478] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Meningiomas constitute one-third of all primary brain tumors. Although typically benign, about 20% of these tumors recur despite surgery and radiation, and may ultimately prove fatal. There are currently no effective chemotherapies for meningioma. We, therefore, set out to develop patient-derived orthotopic xenograft (PDOX) mouse models of human meningioma using tumor. METHOD Of nine patients, four had World Health Organization (WHO) grade I tumors, five had WHO grade II tumors, and in this second group two patients also had recurrent (WHO grade III) meningioma. We also classified the tumors according to our recently developed molecular classification system (Types A, B, and C, with C being the most aggressive). We transplanted all 11 surgical samples into the skull base of immunodeficient (SCID) mice. Only the primary and recurrent tumor cells from one patient-both molecular Type C, despite being WHO grades II and III, respectively-led to the formation of meningioma in the resulting mouse models. We characterized the xenografts by histopathology and RNA-seq and compared them with the original tumors. We performed an in vitro drug screen using 60 anti-cancer drugs followed by in vivo validation. RESULTS The PDOX models established from the primary and recurrent tumors from patient K29 (K29P-PDOX and K29R-PDOX, respectively) replicated the histopathology and key gene expression profiles of the original samples. Although these xenografts could not be subtransplanted, the cryopreserved primary tumor cells were able to reliably generate PDOX tumors. Drug screening in K29P and K29R tumor cell lines revealed eight compounds that were active on both tumors, including three histone deacetylase (HDAC) inhibitors. We tested the HDAC inhibitor Panobinostat in K29R-PDOX mice, and it significantly prolonged mouse survival (p < 0.05) by inducing histone H3 acetylation and apoptosis. CONCLUSION Meningiomas are not very amenable to PDOX modeling, for reasons that remain unclear. Yet at least some of the most malignant tumors can be modeled, and cryopreserved primary tumor cells can create large panels of tumors that can be used for preclinical drug testing.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yuchen Du
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - L. Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Frank K. Braun
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Mari Kogiso
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Yanling Zhao
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Can Li
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (C.L.); (C.S.)
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Sibo Zhao
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Sarah G. Injac
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Patricia A. Baxter
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Jack M. Su
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Clifford Stephan
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA; (C.L.); (C.S.)
| | - Charles Keller
- Children’s Cancer Therapy Development Institute, Beaverton, OR 97005, USA;
| | - Kent A. Heck
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Akdes Harmanci
- Center for Computational Systems Medicine, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Arif O. Harmanci
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Jianhua Yang
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
| | - Tiemo J. Klisch
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA;
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Department of Pediatrics, Preclinical Neuro-Oncology Research Program, Baylor College of Medicine, Houston, TX 77030, USA; (H.Z.); (L.Q.); (Y.D.); (F.K.B.); (M.K.); (H.L.); (S.Z.); (S.G.I.); (P.A.B.)
- Department of Pediatrics, Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX 77030, USA; (Y.Z.); (J.M.S.); (J.Y.)
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann and Robert H. Lurie Children’s Hospital of Chicago and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: (X.-N.L.); (A.J.P.)
| | - Akash J. Patel
- Jan and Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (X.-N.L.); (A.J.P.)
| |
Collapse
|
31
|
Dewi FRP, Jiapaer S, Kobayashi A, Hazawa M, Ikliptikawati DK, Hartono, Sabit H, Nakada M, Wong RW. Nucleoporin TPR (translocated promoter region, nuclear basket protein) upregulation alters MTOR-HSF1 trails and suppresses autophagy induction in ependymoma. Autophagy 2020; 17:1001-1012. [PMID: 32207633 PMCID: PMC8078762 DOI: 10.1080/15548627.2020.1741318] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Children with ependymoma have high mortality rates because ependymoma is resistant to conventional therapy. Genomic and transcriptomic studies have identified potential targets as significantly altered genes in ependymoma patients. Although several candidate oncogenes in ependymoma were recently reported, the detailed mechanisms for the roles of these candidate oncogenes in ependymoma progression remain unclear. Here, we report an oncogenic role of the nucleoporin TPR (translocated promoter region, nuclear basket protein) in regulating HSF1 (heat shock transcription factor 1) mRNA trafficking, maintaining MTORC1 activity to phosphorylate ULK1, and preventing macroautophagy/autophagy induction in ependymoma. High expression of TPR were associated with increased HSF1 and HSPA/HSP70 expression in ependymoma patients. In an ependymoma mouse xenograft model, MTOR inhibition by rapamycin therapeutically suppressed TPR expression and reduced tumor size in vivo. Together, these results suggest that TPR may act as a biomarker for ependymoma, and pharmacological interventions targeting TPR-HSF1-MTOR may have therapeutic potential for ependymoma treatment. Abbreviations: ATG: autophagy related; BECN1: beclin 1; BSA: bovine serum albumin; CQ: chloroquine; DMSO: dimethyl sulfoxide; GEO: gene expression omnibus; GFP: green fluorescence protein; HSF1: heat shock transcription factor 1; HSPA/HSP70: heat shock protein family A (Hsp70); LMNB1: lamin B1; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAPK: mitogen-activated protein kinase; MAPK8/JNK: mitogen-activated protein kinase 8; MTORC1: mechanistic target of rapamycin kinase complex 1; NPC: nuclear pore complex; NUP: nucleoporin; PBS: phosphate-buffered saline; q-PCR: quantitative real time PCR; SDS: sodium dodecyl sulfate; SQSTM1: sequestosome 1; STED: stimulated emission depletion microscopy; STX17: syntaxin 17; TCGA: the cancer genome atlas; TPR: translocated promoter region, nuclear basket protein; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Firli Rahmah Primula Dewi
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.,Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
| | - Shabierjiang Jiapaer
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akiko Kobayashi
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Masaharu Hazawa
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Dini Kurnia Ikliptikawati
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hartono
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Richard W Wong
- WPI Nano Life Science Institute (WPI-nanoLSI) & Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Hermans E, Hulleman E. Patient-Derived Orthotopic Xenograft Models of Pediatric Brain Tumors: In a Mature Phase or Still in Its Infancy? Front Oncol 2020; 9:1418. [PMID: 31970083 PMCID: PMC6960099 DOI: 10.3389/fonc.2019.01418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
In recent years, molecular profiling has led to the discovery of an increasing number of brain tumor subtypes, and associated therapeutic targets. These molecular features have been incorporated in the 2016 new World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS), which now distinguishes tumor subgroups not only histologically, but also based on molecular characteristics. Despite an improved diagnosis of (pediatric) tumors in the CNS however, the survival of children with malignant brain tumors still is far worse than for those suffering from other types of malignancies. Therefore, new treatments need to be developed, based on subgroup-specific genetic aberrations. Here, we provide an overview of the currently available orthotopic xenograft models for pediatric brain tumor subtypes as defined by the 2016 WHO classification, to facilitate the choice of appropriate animal models for the preclinical testing of novel treatment strategies, and to provide insight into the current gaps and challenges.
Collapse
Affiliation(s)
- Eva Hermans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Lester A, McDonald KL. Intracranial ependymomas: molecular insights and translation to treatment. Brain Pathol 2020; 30:3-12. [PMID: 31433520 PMCID: PMC8018002 DOI: 10.1111/bpa.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ependymomas are primary central nervous system tumors (CNS), arising within the posterior fossa and supratentorial regions of the brain, and in the spine. Over the last decade, research has resulted in substantial insights into the molecular characteristics of ependymomas, and significant advances have been made in the establishment of a molecular classification system. Ependymomas both within and between the three CNS regions in which they arise, have been shown to contain distinct genetic, epigenetic and cytogenic aberrations, with at least three molecularly distinct subgroups identified within each region. However, these advances in molecular characterization have yet to be translated into clinical practice, with the standard treatment for ependymoma patients largely unchanged. This review summarizes the advances made in the molecular characterization of intracranial ependymomas, outlines the progress made in establishing preclinical models and proposes strategies for moving toward subgroup-specific preclinical investigations and treatment.
Collapse
Affiliation(s)
- Ashleigh Lester
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyAustralia
| | - Kerrie L. McDonald
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyAustralia
| |
Collapse
|
34
|
Pierce AM, Witt DA, Donson AM, Gilani A, Sanford B, Sill M, Van Court B, Oweida A, Prince EW, Steiner J, Danis E, Dorris K, Hankinson T, Handler MH, Jones KL, Karam SD, Serkova NJ, Vibhakar R, Foreman NK, Griesinger AM. Establishment of patient-derived orthotopic xenograft model of 1q+ posterior fossa group A ependymoma. Neuro Oncol 2019; 21:1540-1551. [PMID: 31276586 PMCID: PMC6917412 DOI: 10.1093/neuonc/noz116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Treatment for pediatric posterior fossa group A (PFA) ependymoma with gain of chromosome 1q (1q+) has not improved over the past decade owing partially to lack of clinically relevant models. We described the first 2 1q+ PFA cell lines, which have significantly enhanced our understanding of PFA tumor biology and provided a tool to identify specific 1q+ PFA therapies. However, cell lines do not accurately replicate the tumor microenvironment. Our present goal is to establish patient-derived xenograft (PDX) mouse models. METHODS Disaggregated tumors from 2 1q+ PFA patients were injected into the flanks of NSG mice. Flank tumors were then transplanted into the fourth ventricle or lateral ventricle of NSG mice. Characterization of intracranial tumors was performed using imaging, histology, and bioinformatics. RESULTS MAF-811_XC and MAF-928_XC established intracranially within the fourth ventricle and retained histological, methylomic, and transcriptomic features of primary patient tumors. We tested the feasibility of treating PDX mice with fractionated radiation or chemotherapy. Mice tolerated radiation despite significant tumor burden, and follow-up imaging confirmed radiation can reduce tumor size. Treatment with fluorouracil reduced tumor size but did not appear to prolong survival. CONCLUSIONS MAF-811_XC and MAF-928_XC are novel, authentic, and reliable models for studying 1q+ PFA in vivo. Given the successful response to radiation, these models will be advantageous for testing clinically relevant combination therapies to develop future clinical trials for this high-risk subgroup of pediatric ependymoma.
Collapse
Affiliation(s)
- Angela M Pierce
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Davis A Witt
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Ahmed Gilani
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| | - Bridget Sanford
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Martin Sill
- Hopp Children’s Cancer Centre at National Centre for Tumour Diseases Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Van Court
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Radiation Oncology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Ayman Oweida
- Radiation Oncology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Eric W Prince
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Jenna Steiner
- Department of Radiology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Kathleen Dorris
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Todd Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Michael H Handler
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
- Department of Neurosurgery, University of Colorado Denver, Aurora, Colorado
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Sana D Karam
- Radiation Oncology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Natalie J Serkova
- Radiation Oncology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
- Department of Radiology, University of Colorado Anschutz Medical Campus and University of Colorado Cancer Center
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
- Corresponding Author: Nicholas Foreman, 12800 E. 19th Ave. RC1N-4104, Aurora, CO 80045 ()
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, Colorado
| |
Collapse
|
35
|
Rokita JL, Rathi KS, Cardenas MF, Upton KA, Jayaseelan J, Cross KL, Pfeil J, Egolf LE, Way GP, Farrel A, Kendsersky NM, Patel K, Gaonkar KS, Modi A, Berko ER, Lopez G, Vaksman Z, Mayoh C, Nance J, McCoy K, Haber M, Evans K, McCalmont H, Bendak K, Böhm JW, Marshall GM, Tyrrell V, Kalletla K, Braun FK, Qi L, Du Y, Zhang H, Lindsay HB, Zhao S, Shu J, Baxter P, Morton C, Kurmashev D, Zheng S, Chen Y, Bowen J, Bryan AC, Leraas KM, Coppens SE, Doddapaneni H, Momin Z, Zhang W, Sacks GI, Hart LS, Krytska K, Mosse YP, Gatto GJ, Sanchez Y, Greene CS, Diskin SJ, Vaske OM, Haussler D, Gastier-Foster JM, Kolb EA, Gorlick R, Li XN, Reynolds CP, Kurmasheva RT, Houghton PJ, Smith MA, Lock RB, Raman P, Wheeler DA, Maris JM. Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design. Cell Rep 2019; 29:1675-1689.e9. [PMID: 31693904 PMCID: PMC6880934 DOI: 10.1016/j.celrep.2019.09.071] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/10/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023] Open
Abstract
Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer.
Collapse
Affiliation(s)
- Jo Lynne Rokita
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Komal S Rathi
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maria F Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristen A Upton
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Joy Jayaseelan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Jacob Pfeil
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Laura E Egolf
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory P Way
- Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alvin Farrel
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan M Kendsersky
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Khushbu Patel
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Krutika S Gaonkar
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Apexa Modi
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA; Genomics and Computational Biology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Esther R Berko
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Gonzalo Lopez
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zalman Vaksman
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chelsea Mayoh
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jonas Nance
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX 79430, USA
| | - Kristyn McCoy
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX 79430, USA
| | - Michelle Haber
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kathryn Evans
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Katerina Bendak
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Julia W Böhm
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia; Sydney Children's Hospital, Sydney, NSW, Australia
| | | | - Karthik Kalletla
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Frank K Braun
- Texas Children's Cancer and Hematology Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lin Qi
- Preclinical Neurooncology Research Program, Texas Children's Cancer Research Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yunchen Du
- Preclinical Neurooncology Research Program, Texas Children's Cancer Research Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huiyuan Zhang
- Preclinical Neurooncology Research Program, Texas Children's Cancer Research Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holly B Lindsay
- Preclinical Neurooncology Research Program, Texas Children's Cancer Research Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sibo Zhao
- Preclinical Neurooncology Research Program, Texas Children's Cancer Research Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jack Shu
- Preclinical Neurooncology Research Program, Texas Children's Cancer Research Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Patricia Baxter
- Preclinical Neurooncology Research Program, Texas Children's Cancer Research Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Morton
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dias Kurmashev
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jay Bowen
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Anthony C Bryan
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kristen M Leraas
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Sara E Coppens
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | - Zeineen Momin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wendong Zhang
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gregory I Sacks
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Lori S Hart
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Kateryna Krytska
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Yael P Mosse
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA
| | - Gregory J Gatto
- Department of Global Health Technologies, RTI International, Research Triangle Park, NC 27709, USA
| | - Yolanda Sanchez
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| | - Casey S Greene
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA 19102, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon J Diskin
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Olena Morozova Vaske
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Haussler
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Julie M Gastier-Foster
- The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; The Ohio State University College of Medicine, Departments of Pathology and Pediatrics, Columbus, OH 43210, USA
| | - E Anders Kolb
- Department of Pediatrics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; Nemours Center for Cancer and Blood Disorders, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiao-Nan Li
- Preclinical Neurooncology Research Program, Texas Children's Cancer Research Center, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Division of Hematology, Oncology, Neuro-oncology and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - C Patrick Reynolds
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX 79430, USA
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | - Pichai Raman
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia, and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, USA.
| |
Collapse
|
36
|
Sood D, Tang-Schomer M, Pouli D, Mizzoni C, Raia N, Tai A, Arkun K, Wu J, Black LD, Scheffler B, Georgakoudi I, Steindler DA, Kaplan DL. 3D extracellular matrix microenvironment in bioengineered tissue models of primary pediatric and adult brain tumors. Nat Commun 2019; 10:4529. [PMID: 31586101 PMCID: PMC6778192 DOI: 10.1038/s41467-019-12420-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 08/27/2019] [Indexed: 12/15/2022] Open
Abstract
Dynamic alterations in the unique brain extracellular matrix (ECM) are involved in malignant brain tumors. Yet studies of brain ECM roles in tumor cell behavior have been difficult due to lack of access to the human brain. We present a tunable 3D bioengineered brain tissue platform by integrating microenvironmental cues of native brain-derived ECMs and live imaging to systematically evaluate patient-derived brain tumor responses. Using pediatric ependymoma and adult glioblastoma as examples, the 3D brain ECM-containing microenvironment with a balance of cell-cell and cell-matrix interactions supports distinctive phenotypes associated with tumor type-specific and ECM-dependent patterns in the tumor cells' transcriptomic and release profiles. Label-free metabolic imaging of the composite model structure identifies metabolically distinct sub-populations within a tumor type and captures extracellular lipid-containing droplets with potential implications in drug response. The versatile bioengineered 3D tumor tissue system sets the stage for mechanistic studies deciphering microenvironmental role in brain tumor progression.
Collapse
Affiliation(s)
- Disha Sood
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Min Tang-Schomer
- Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.,Connecticut Children's Medical Center, Harford, CT, 06106, USA
| | - Dimitra Pouli
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.,Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02114, USA
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Nicole Raia
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Albert Tai
- Genomics Core, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Knarik Arkun
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, 02111, USA
| | - Julian Wu
- Department of Neurosurgery, Tufts Medical Center, Boston, MA, 02111, USA
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Bjorn Scheffler
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA.,DKFZ-Division of Translational Oncology/ Neurooncology, German Cancer Consortium (DKTK), Heidelberg & University Hospital Essen, Essen, Germany
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Dennis A Steindler
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA.,Neuroscience and Aging Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
37
|
Sabnis DH, Storer LCD, Liu JF, Jackson HK, Kilday JP, Grundy RG, Kerr ID, Coyle B. A role for ABCB1 in prognosis, invasion and drug resistance in ependymoma. Sci Rep 2019; 9:10290. [PMID: 31311995 PMCID: PMC6635358 DOI: 10.1038/s41598-019-46700-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/27/2019] [Indexed: 11/16/2022] Open
Abstract
Three of the hallmarks of poor prognosis in paediatric ependymoma are drug resistance, local invasion and recurrence. We hypothesised that these hallmarks were due to the presence of a sub-population of cancer stem cells expressing the multi-drug efflux transporter ABCB1. ABCB1 gene expression was observed in 4 out of 5 paediatric ependymoma cell lines and increased in stem cell enriched neurospheres. Functional inhibition of ABCB1 using vardenafil or verapamil significantly (p ≤ 0.05–0.001) potentiated the response to three chemotherapeutic drugs (vincristine, etoposide and methotrexate). Both inhibitors were also able to significantly reduce migration (p ≤ 0.001) and invasion (p ≤ 0.001). We demonstrate that ABCB1 positive patients from an infant chemotherapy-led trial (CNS9204) had a shorter mean event free survival (EFS) (2.7 versus 8.6 years; p = 0.007 log-rank analysis) and overall survival (OS) (5.4 versus 12 years; p = 0.009 log-rank analysis). ABCB1 positivity also correlated with reduced event free survival in patients with incompletely resected tumours who received chemotherapy across CNS9204 and CNS9904 (a radiotherapy-led SIOP 1999-04 trial cohort; p = 0.03). ABCB1 is a predictive marker of chemotherapy response in ependymoma patients and vardenafil, currently used to treat paediatric pulmonary hypertension in children, could be repurposed to reduce chemoresistance, migration and invasion in paediatric ependymoma patients at non-toxic concentrations.
Collapse
Affiliation(s)
- Durgagauri H Sabnis
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Lisa C D Storer
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jo-Fen Liu
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Hannah K Jackson
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - J P Kilday
- Royal Manchester Children's Hospital, Children's Brain Tumour Research Network & Institute of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
38
|
Rogers HA, Chapman R, Kings H, Allard J, Barron-Hastings J, Pajtler KW, Sill M, Pfister S, Grundy RG. Limitations of current in vitro models for testing the clinical potential of epigenetic inhibitors for treatment of pediatric ependymoma. Oncotarget 2018; 9:36530-36541. [PMID: 30559935 PMCID: PMC6284855 DOI: 10.18632/oncotarget.26370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background Epigenetic modifications have been shown to play an important role in the classification and pathogenesis of the pediatric brain tumor ependymoma, suggesting they are a potential therapeutic target. Results Agents targeting epigenetic modifications inhibited the growth and induced the death of ependymoma cells with variable efficiency. However, this was often not at clinically achievable doses. Additionally, DNA methylation profiling revealed a lack of similarity to primary ependymomas suggesting alterations were induced during culture. Toxicity to fetal neural stem cells was also seen at similar drug concentrations Conclusions Agents targeting epigenetic modifications were able to inhibit the growth and induced the death of ependymoma cells grown in vitro. However, many agents were only active at high doses, outside clinical ranges, and also resulted in toxicity to normal brain cells. The lack of similarity in DNA methylation profiles between cultured cells and primary ependymomas questions the validity of using in vitro cultured cells for pre-clinical analysis of agents targeting epigenetic mechanisms and suggests further investigation using models that are more appropriate should be undertaken before agents are taken forward for clinical testing. Materials and Methods The effects of agents targeting epigenetic modifications on the growth and death of a panel of ependymoma cell lines was investigated, as well as toxicity to normal fetal neural stem cells. The ependymoma cell lines were characterized using DNA methylation profiling.
Collapse
Affiliation(s)
- Hazel Anne Rogers
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Rebecca Chapman
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Holly Kings
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Julie Allard
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jodie Barron-Hastings
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kristian W Pajtler
- Hopp Children's Cancer Centre at the NCT (KiTZ), Heidelberg, Germany.,German Cancer Research Centre (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Haematology and Oncology, University Hospital, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Centre at the NCT (KiTZ), Heidelberg, Germany.,German Cancer Research Centre (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan Pfister
- Hopp Children's Cancer Centre at the NCT (KiTZ), Heidelberg, Germany.,German Cancer Research Centre (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Haematology and Oncology, University Hospital, Heidelberg, Germany
| | - Richard Guy Grundy
- Children's Brain Tumour Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
39
|
Testa U, Castelli G, Pelosi E. Genetic Abnormalities, Clonal Evolution, and Cancer Stem Cells of Brain Tumors. Med Sci (Basel) 2018; 6:E85. [PMID: 30279357 PMCID: PMC6313628 DOI: 10.3390/medsci6040085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Brain tumors are highly heterogeneous and have been classified by the World Health Organization in various histological and molecular subtypes. Gliomas have been classified as ranging from low-grade astrocytomas and oligodendrogliomas to high-grade astrocytomas or glioblastomas. These tumors are characterized by a peculiar pattern of genetic alterations. Pediatric high-grade gliomas are histologically indistinguishable from adult glioblastomas, but they are considered distinct from adult glioblastomas because they possess a different spectrum of driver mutations (genes encoding histones H3.3 and H3.1). Medulloblastomas, the most frequent pediatric brain tumors, are considered to be of embryonic derivation and are currently subdivided into distinct subgroups depending on histological features and genetic profiling. There is emerging evidence that brain tumors are maintained by a special neural or glial stem cell-like population that self-renews and gives rise to differentiated progeny. In many instances, the prognosis of the majority of brain tumors remains negative and there is hope that the new acquisition of information on the molecular and cellular bases of these tumors will be translated in the development of new, more active treatments.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
40
|
Establishment of primary cell culture and an intracranial xenograft model of pediatric ependymoma: a prospect for therapy development and understanding of tumor biology. Oncotarget 2018; 9:21731-21743. [PMID: 29774098 PMCID: PMC5955158 DOI: 10.18632/oncotarget.24932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/06/2018] [Indexed: 12/19/2022] Open
Abstract
Background Ependymoma (EPN), the third most common pediatric brain tumor, is a central nervous system (CNS) malignancy originating from the walls of the ventricular system. Surgical resection followed by radiation therapy has been the primary treatment for most pediatric intracranial EPNs. Despite numerous studies into the prognostic value of histological classification, the extent of surgical resection and adjuvant radiotherapy, there have been relatively few studies into the molecular and cellular biology of EPNs. Results We elucidated the ultrastructure of the cultured EPN cells and characterized their profile of immunophenotypic pluripotency markers (CD133, CD90, SSEA-3, CXCR4). We established an experimental EPN model by the intracerebroventricular infusion of EPN cells labeled with multimodal iron oxide nanoparticles (MION), thereby generating a tumor and providing a clinically relevant animal model. MRI analysis was shown to be a valuable tool when combined with effective MION labeling techniques to accompany EPN growth. Conclusions We demonstrated that GFAP/CD133+CD90+/CD44+ EPN cells maintained key histopathological and growth characteristics of the original patient tumor. The characterization of EPN cells and the experimental model could facilitate biological studies and preclinical drug screening for pediatric EPNs. Methods In this work, we established notoriously challenging primary cell culture of anaplastic EPNs (WHO grade III) localized in the posterior fossa (PF), using EPNs obtained from 1 to 10-year-old patients (n = 07), and then characterized their immunophenotype and ultrastructure to finally develop a xenograft model.
Collapse
|
41
|
Kogiso M, Qi L, Braun FK, Injac SG, Zhang L, Du Y, Zhang H, Lin FY, Zhao S, Lindsay H, Su JM, Baxter PA, Adesina AM, Liao D, Qian MG, Berg S, Muscal JA, Li XN. Concurrent Inhibition of Neurosphere and Monolayer Cells of Pediatric Glioblastoma by Aurora A Inhibitor MLN8237 Predicted Survival Extension in PDOX Models. Clin Cancer Res 2018; 24:2159-2170. [PMID: 29463553 DOI: 10.1158/1078-0432.ccr-17-2256] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/28/2017] [Accepted: 02/16/2018] [Indexed: 12/27/2022]
Abstract
Purpose: Pediatric glioblastoma multiforme (pGBM) is a highly aggressive tumor in need of novel therapies. Our objective was to demonstrate the therapeutic efficacy of MLN8237 (alisertib), an orally available selective inhibitor of Aurora A kinase (AURKA), and to evaluate which in vitro model system (monolayer or neurosphere) can predict therapeutic efficacy in vivoExperimental Design: AURKA mRNA expressions were screened with qRT-PCR. In vitro antitumor effects were examined in three matching pairs of monolayer and neurosphere lines established from patient-derived orthotopic xenograft (PDOX) models of the untreated (IC-4687GBM), recurrent (IC-3752GBM), and terminal (IC-R0315GBM) tumors, and in vivo therapeutic efficacy through log rank analysis of survival times in two models (IC-4687GBM and IC-R0315GBM) following MLN8237 treatment (30 mg/kg/day, orally, 12 days). Drug concentrations in vivo and mechanism of action and resistance were also investigated.Results: AURKA mRNA overexpression was detected in 14 pGBM tumors, 10 PDOX models, and 6 cultured pGBM lines as compared with 11 low-grade gliomas and normal brains. MLN8237 penetrated into pGBM xenografts in mouse brains. Significant extension of survival times were achieved in IC-4687GBM of which both neurosphere and monolayer were inhibited in vitro, but not in IC-R0315GBM of which only neurosphere cells responded (similar to IC-3752GBM). Apoptosis-mediated MLN8237 induced cell death, and the presence of AURKA-negative and CD133+ cells appears to have contributed to in vivo therapy resistance.Conclusions: MLN8237 successfully targeted AURKA in a subset of pGBMs. Our data suggest that combination therapy should aim at AURKA-negative and/or CD133+ pGBM cells to prevent tumor recurrence. Clin Cancer Res; 24(9); 2159-70. ©2018 AACR.
Collapse
Affiliation(s)
- Mari Kogiso
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Lin Qi
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Frank K Braun
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sarah G Injac
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Linna Zhang
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yuchen Du
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Huiyuan Zhang
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Frank Y Lin
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Sibo Zhao
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Holly Lindsay
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jack M Su
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Patricia A Baxter
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Adekunle M Adesina
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Debra Liao
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts
| | - Mark G Qian
- Takeda Pharmaceuticals International Co., Cambridge, Massachusetts
| | - Stacey Berg
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Jodi A Muscal
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Xiao-Nan Li
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas. .,Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
42
|
Singh M, Bakhshinyan D, Venugopal C, Singh SK. Preclinical Modeling and Therapeutic Avenues for Cancer Metastasis to the Central Nervous System. Front Oncol 2017; 7:220. [PMID: 28971065 PMCID: PMC5609558 DOI: 10.3389/fonc.2017.00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022] Open
Abstract
Metastasis is the dissemination of cells from the primary tumor to other locations within the body, and continues to be the predominant cause of death among cancer patients. Metastatic progression within the adult central nervous system is 10 times more frequent than primary brain tumors. Metastases affecting the brain parenchyma and leptomeninges are associated with grave prognosis, and even after successful control of the primary tumor the median survival is a dismal 2-3 months with treatment options typically limited to palliative care. Current treatment options for brain metastases (BM) and disseminated brain tumors are scarce, and the improvement of novel targeted therapies requires a broader understanding of the biological complexity that characterizes metastatic progression. In this review, we provide insight into patterns of BM progression and leptomeningeal spread, outlining the development of clinically relevant in vivo models and their contribution to the discovery of innovative cancer therapies. In vivo models paired with manipulation of in vitro methods have expanded the tools available for investigators to develop agents that can be used to prevent or treat metastatic disease. The knowledge gained from the use of such models can ultimately lead to the prevention of metastatic dissemination and can extend patient survival by transforming a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.
Collapse
Affiliation(s)
- Mohini Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chitra Venugopal
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada.,Faculty of Health Sciences, Department of Surgery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
43
|
Amani V, Donson AM, Lummus SC, Prince EW, Griesinger AM, Witt DA, Hankinson TC, Handler MH, Dorris K, Vibhakar R, Foreman NK, Hoffman LM. Characterization of 2 Novel Ependymoma Cell Lines With Chromosome 1q Gain Derived From Posterior Fossa Tumors of Childhood. J Neuropathol Exp Neurol 2017; 76:595-604. [PMID: 28863455 DOI: 10.1093/jnen/nlx040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ependymoma (EPN) is a common brain tumor of childhood that, despite standard surgery and radiation therapy, has a relapse rate of 50%. Clinical trials have been unsuccessful in improving outcome by addition of chemotherapy, and identification of novel therapeutics has been hampered by a lack of in vitro and in vivo models. We describe 2 unique EPN cell lines (811 and 928) derived from recurrent intracranial metastases. Both cell lines harbor the high-risk chromosome 1q gain (1q+) and a derivative chromosome 6, and both are classified as molecular group A according to transcriptomic analysis. Transcriptional enrichment of extracellular matrix-related genes was a common signature of corresponding primary tumors and cell lines in both monolayer and 3D formats. EPN cell lines, when cultured in 3D format, clustered closer to the primary tumors with better fidelity of EPN-specific transcripts than when grown as a monolayer. Additionally, 3D culture revealed ependymal rosette formation and cilia-related ontologies, similar to in situ tumors. Our data confirm the validity of the 811 and 928 cell lines as representative models of intracranial, posterior fossa 1q+ EPN, which holds potential to advance translational science for patients affected by this tumor.
Collapse
Affiliation(s)
- Vladimir Amani
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Seth C Lummus
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Eric W Prince
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Andrea M Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Davis A Witt
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Todd C Hankinson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Michael H Handler
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Kathleen Dorris
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| | - Lindsey M Hoffman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program; Department of Pathology; and Department of Neurosurgery, University of Colorado Anschutz Medical Campus; and Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
44
|
Kogiso M, Qi L, Lindsay H, Huang Y, Zhao X, Liu Z, Braun FK, Du Y, Zhang H, Bae G, Zhao S, Injac SG, Sobieski M, Brunell D, Mehta V, Tran D, Murray J, Baxter PA, Yuan XJ, Su JM, Adesina A, Perlaky L, Chintagumpala M, Parsons DW, Lau CC, Stephan CC, Lu X, Li XN. Xenotransplantation of pediatric low grade gliomas confirms the enrichment of BRAF V600E mutation and preservation of CDKN2A deletion in a novel orthotopic xenograft mouse model of progressive pleomorphic xanthoastrocytoma. Oncotarget 2017; 8:87455-87471. [PMID: 29152094 PMCID: PMC5675646 DOI: 10.18632/oncotarget.20713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
To identify cellular and molecular changes that driver pediatric low grade glioma (PLGG) progression, we analyzed putative cancer stem cells (CSCs) and evaluated key biological changes in a novel and progressive patient-derived orthotopic xenograft (PDOX) mouse model. Flow cytometric analysis of 22 PLGGs detected CD133+ (<1.5%) and CD15+ (20.7 ± 28.9%) cells, and direct intra-cranial implantation of 25 PLGGs led to the development of 1 PDOX model from a grade II pleomorphic xanthoastrocytoma (PXA). While CSC levels did not correlate with patient tumor progression, neurosphere formation and in vivo tumorigenicity, the PDOX model, IC-3635PXA, reproduced key histological features of the original tumor. Similar to the patient tumor that progressed and recurred, IC-3635PXA also progressed during serial in vivo subtransplantations (4 passages), exhibiting increased tumor take rate, elevated proliferation, loss of mature glial marker (GFAP), accumulation of GFAP−/Vimentin+ cells, enhanced local invasion, distant perivascular migration, and prominent reactive gliosis in normal mouse brains. Molecularly, xenograft cells with homozygous deletion of CDKN2A shifted from disomy chromosome 9 to trisomy chromosome 9; and BRAF V600E mutation allele frequency increased (from 28% in patient tumor to 67% in passage III xenografts). In vitro drug screening identified 2/7 BRAF V600E inhibitors and 2/9 BRAF inhibitors that suppressed cell proliferation. In summary, we showed that PLGG tumorigenicity was low despite the presence of putative CSCs, and our data supported GFAP−/Vimentin+ cells, CDKN2A homozygous deletion in trisomy chromosome 9 cells, and BRAF V600E mutation as candidate drivers of tumor progression in the PXA xenografts.
Collapse
Affiliation(s)
- Mari Kogiso
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Lin Qi
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Holly Lindsay
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Yulun Huang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA.,Department of Neurosurgery, The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Xiumei Zhao
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA.,Department of Ophthalmology, First Affiliated Hospital of Harbin, Medical University, Harbin, China
| | - Zhigang Liu
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA.,Department of Radiotherapy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Frank K Braun
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Yuchen Du
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Huiyuan Zhang
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Goeun Bae
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Sibo Zhao
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Sarah G Injac
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Mary Sobieski
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - David Brunell
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Vidya Mehta
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Diep Tran
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Jeffrey Murray
- Department of Hematology and Oncology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Patricia A Baxter
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Xiao-Jun Yuan
- Department of Hematology and Oncology, Xinhua Children's Hospital, Shanghai, China
| | - Jack M Su
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Adekunle Adesina
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Laszlo Perlaky
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Murali Chintagumpala
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - D Williams Parsons
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Ching C Lau
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| | - Clifford C Stephan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M College of Medicine, Houston, TX, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiao-Nan Li
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
45
|
Sandén E, Dyberg C, Krona C, Gallo-Oller G, Olsen TK, Enríquez Pérez J, Wickström M, Estekizadeh A, Kool M, Visse E, Ekström TJ, Siesjö P, Johnsen JI, Darabi A. Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation. Sci Rep 2017; 7:46366. [PMID: 28417956 PMCID: PMC5394470 DOI: 10.1038/srep46366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022] Open
Abstract
Medulloblastomas comprise a heterogeneous group of tumours and can be subdivided into four molecular subgroups (WNT, SHH, Group 3 and Group 4) with distinct prognosis, biological behaviour and implications for targeted therapies. Few experimental models exist of the aggressive and poorly characterized Group 3 tumours. In order to establish a reproducible transplantable Group 3 medulloblastoma model for preclinical therapeutic studies, we acquired a patient-derived tumour sphere culture and inoculated low-passage spheres into the cerebellums of NOD-scid mice. Mice developed symptoms of brain tumours with a latency of 17–18 weeks. Neurosphere cultures were re-established and serially transplanted for 3 generations, with a negative correlation between tumour latency and numbers of injected cells. Xenografts replicated the phenotype of the primary tumour, including high degree of clustering in DNA methylation analysis, high proliferation, expression of tumour markers, MYC amplification and elevated MYC expression, and sensitivity to the MYC inhibitor JQ1. Xenografts maintained maintained expression of tumour-derived VEGFA and stromal-derived COX-2. VEGFA, COX-2 and c-Myc are highly expressed in Group 3 compared to other medulloblastoma subgroups, suggesting that these molecules are relevant therapeutic targets in Group 3 medulloblastoma.
Collapse
Affiliation(s)
- Emma Sandén
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Cecilia Dyberg
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Cecilia Krona
- Uppsala University, Department of Immunology, Genetics and Pathology, Uppsala, Sweden
| | - Gabriel Gallo-Oller
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Thale Kristin Olsen
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Julio Enríquez Pérez
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Malin Wickström
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Atosa Estekizadeh
- Karolinska University Hospital, Solna, Center for Molecular Medicine, and Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Marcel Kool
- German Cancer Research Center DKFZ, Division of Pediatric Neurooncology, Heidelberg, Germany
| | - Edward Visse
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Tomas J Ekström
- Karolinska University Hospital, Solna, Center for Molecular Medicine, and Karolinska Institutet, Department of Clinical Neuroscience, Stockholm, Sweden
| | - Peter Siesjö
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden.,Lund University, Skane University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - John Inge Johnsen
- Karolinska Institutet, Department of Women´s and Children´s Health, Childhood Cancer Research Unit, Stockholm, Sweden
| | - Anna Darabi
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| |
Collapse
|
46
|
Ramsawhook A, Lewis L, Coyle B, Ruzov A. Medulloblastoma and ependymoma cells display increased levels of 5-carboxylcytosine and elevated TET1 expression. Clin Epigenetics 2017; 9:18. [PMID: 28228863 PMCID: PMC5307644 DOI: 10.1186/s13148-016-0306-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022] Open
Abstract
Background Alteration of DNA methylation (5-methylcytosine, 5mC) patterns represents one of the causes of tumorigenesis and cancer progression. Tet proteins can oxidise 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine and 5-carboxylcytosine (5caC). Although the roles of these oxidised forms of 5mC (oxi-mCs) in cancer pathogenesis are still largely unknown, there are indications that they may be involved in the mechanisms of malignant transformation. Thus, reduction of 5hmC content represents an epigenetic hallmark of human tumours, and according to our recent report, 5caC is enriched in a proportion of breast cancers and gliomas. Nevertheless, the distribution of oxi-mCs in paediatric brain tumours has not been assessed. Findings Here, we analyse the global levels and spatial distribution of 5hmC and 5caC in four brain tumour cell lines derived from paediatric sonic hedgehog (SHH) pathway-activated medulloblastomas (Daoy and UW228-3) and ependymomas (BXD-1425EPN and DKFZ-EP1NS). We show that, unlike HeLa cells, the paediatric tumour cell lines possess both 5hmC and 5caC at immunochemically detectable levels and demonstrate that both modifications display high degrees of spatial overlap in the nuclei of medulloblastomas and ependymomas. Moreover, although 5hmC levels are comparable in the four brain tumour cell lines, 5caC staining intensities differ dramatically between them with highest levels of this mark in a subpopulation of DKFZ-EP1NS cells. Remarkably, the 5caC enrichment does not correlate with 5hmC levels and is not associated with alterations in thymine DNA glycosylase (TDG) expression in SHH medulloblastoma and ependymoma cell lines but corresponds to elevated levels of TET1 transcript in UW228-3 and DKFZ-EP1NS cells. Conclusions We demonstrate that both 5caC enrichment and elevated TET1 expression are observed in SHH medulloblastomas and ependymomas. Our results suggest that increased Tet-dependent 5mC oxidation may represent one of the epigenetic signatures of cancers with neural stem cell origin and, thus, may contribute to development of novel approaches for diagnosis and therapy of the brain tumours.
Collapse
Affiliation(s)
- Ashley Ramsawhook
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Lara Lewis
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, QMC, University of Nottingham, Nottingham, NG7 2UH UK
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
47
|
Pajtler KW, Mack SC, Ramaswamy V, Smith CA, Witt H, Smith A, Hansford JR, von Hoff K, Wright KD, Hwang E, Frappaz D, Kanemura Y, Massimino M, Faure-Conter C, Modena P, Tabori U, Warren KE, Holland EC, Ichimura K, Giangaspero F, Castel D, von Deimling A, Kool M, Dirks PB, Grundy RG, Foreman NK, Gajjar A, Korshunov A, Finlay J, Gilbertson RJ, Ellison DW, Aldape KD, Merchant TE, Bouffet E, Pfister SM, Taylor MD. The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathol 2017; 133:5-12. [PMID: 27858204 PMCID: PMC5209402 DOI: 10.1007/s00401-016-1643-0] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/05/2022]
Abstract
Multiple independent genomic profiling efforts have recently identified clinically and molecularly distinct subgroups of ependymoma arising from all three anatomic compartments of the central nervous system (supratentorial brain, posterior fossa, and spinal cord). These advances motivated a consensus meeting to discuss: (1) the utility of current histologic grading criteria, (2) the integration of molecular-based stratification schemes in future clinical trials for patients with ependymoma and (3) current therapy in the context of molecular subgroups. Discussion at the meeting generated a series of consensus statements and recommendations from the attendees, which comment on the prognostic evaluation and treatment decisions of patients with intracranial ependymoma (WHO Grade II/III) based on the knowledge of its molecular subgroups. The major consensus among attendees was reached that treatment decisions for ependymoma (outside of clinical trials) should not be based on grading (II vs III). Supratentorial and posterior fossa ependymomas are distinct diseases, although the impact on therapy is still evolving. Molecular subgrouping should be part of all clinical trials henceforth.
Collapse
Affiliation(s)
- Kristian W Pajtler
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Vijay Ramaswamy
- Division of Neurosurgery, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Christian A Smith
- Division of Neurosurgery, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hendrik Witt
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Amy Smith
- Arnold Palmer Hospital, Orlando, FL, USA
| | | | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karen D Wright
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Eugene Hwang
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC, USA
| | - Didier Frappaz
- Pediatric Neuro-Oncology Centre Léon Bérard, Lyon, France
| | - Yonehiro Kanemura
- Department of Neurosurgery and Institute for Clinical Research, Osaka National Hospital, Osaka, Japan
| | - Maura Massimino
- Fondazione IRCCS-Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Piergiorgio Modena
- Laboratory of Genetics, Pathology Unit, S. Anna General Hospital, Como, Italy
| | - Uri Tabori
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine E Warren
- National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Felice Giangaspero
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
| | - David Castel
- Département de Cancérologie de l'Enfant et de l'Adolescent, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
- UMR8203 "Vectorologie and Thérapeutiques Anticancéreuses", CNRS, Gustave Roussy, Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Andreas von Deimling
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter B Dirks
- Division of Neurosurgery, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Richard G Grundy
- Children's Brain Tumour Research Centre, The Medical School, University of Nottingham, Nottingham, UK
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Amar Gajjar
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrey Korshunov
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan Finlay
- Nationwide Children's Hospital and the Ohio State University, Columbus, OH, USA
| | - Richard J Gilbertson
- Li Ka Shing Centre, CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - David W Ellison
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kenneth D Aldape
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Thomas E Merchant
- Department of Radiological Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Eric Bouffet
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Michael D Taylor
- Division of Neurosurgery, Arthur & Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
48
|
Abstract
Ependymomas are a heterogeneous group of neuroepithelial tumors of children and adults. In pediatric cases, the standard of care has long consisted of neurosurgical resection to the greatest extent acceptable followed by adjuvant involved field irradiation. Complete macroscopic surgical resection has remained the only consistent clinical variable known to improve survival. Adjuvant chemotherapy has yet to predictably affect outcome, possibly due to the molecular heterogeneity of histologically similar tumors. The administration of chemotherapy subsequently remains limited to clinical trials. However, recent comprehensive genomic, transcriptomic, and epigenetic interrogations of ependymomas have uncovered unique molecular characteristics and subtypes that correlated with clinical features such as age, neuroanatomical location, and prognosis. These findings represent a potential paradigm shift and provide a biologic rationale for targeted therapeutic strategies and risk-adapted administration of conventional treatment modalities. In this review, we focus on intracranial WHO grade II and III ependymoma of children and discuss conventional management strategies, followed by recent biologic findings and novel therapeutics currently under investigation.
Collapse
|
49
|
Preservation of KIT genotype in a novel pair of patient-derived orthotopic xenograft mouse models of metastatic pediatric CNS germinoma. J Neurooncol 2016; 128:47-56. [PMID: 26956263 DOI: 10.1007/s11060-016-2098-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 12/17/2022]
Abstract
Metastatic intracranial germinoma is difficult to treat. Although the proto-oncogene KIT is recognized as one of the most frequent genetic abnormalities in CNS germinoma, the development of new target therapeutic agents for CNS germinoma is hampered by the lack of clinically-relevant animal models that replicate the mutated or over-expressed KIT. CNS germinoma tumor cells from five pediatric patients were directly implanted into the brains of Rag2/severe combined immune deficiency mice. Once established, the xenograft tumors were sub-transplanted in vivo in mouse brains. Characterization of xenograft tumors were performed through histologic and immunohistochemical staining, and KIT mutation analysed with quantitative pyro-sequencing. Expression of putative cancer stem cell markers (CD133, CD15, CD24, CD44, CD49f) was analyzed through flow cytometry. Two patient-derived orthotopic xenograft (PDOX) models (IC-6999GCT and IC-9302GCT) were established from metastatic germinoma and serially sub-transplanted five times in mouse brains. Similar to the original patient tumors, they both exhibited faint expression (+) of PLAP, no expression (-) of β-HCG and strong (+++) expression of KIT. KIT mutation (D816H), however, was only found in IC-9320GCT. This mutation was maintained during the five in vivo tumor passages with an increased mutant allele frequency compared to the patient tumor. Expression of putative cancer stem cell markers CD49f and CD15 was also detected in a small population of tumor cells in both models. This new pair of PDOX models replicated the key biological features of pediatric intracranial germinoma and should facilitate the biological and pre-clinical studies for metastatic intracranial germinomas.
Collapse
|
50
|
miRNA therapy targeting cancer stem cells: a new paradigm for cancer treatment and prevention of tumor recurrence. Ther Deliv 2015; 6:323-37. [PMID: 25853308 DOI: 10.4155/tde.14.122] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within tumors that retain the properties of self-renewal and tumorigenicity in vivo. Although CSCs have been reported in multiple cancers, the regulation of CSCs has not been described at the molecular level. miRNAs are endogenous small noncoding RNAs that post-transcriptionally regulate the expression of their target genes via RNA interference and are involved in almost all cellular processes. Since aberrant miRNA expression occurs in CSCs, such dysregulated miRNAs may be promising therapeutic targets. In this review, we summarize the current knowledge regarding miRNAs that regulate CSC properties and discuss an in vivo delivery system for synthetic miRNA mimics and miRNA inhibitors for the development of innovative miRNA therapy against CSCs.
Collapse
|