1
|
Baheti B, Rai S, Innani S, Mehdiratta G, Bell WR, Guntuku SC, Nasrallah MP, Bakas S. Multimodal Explainable Artificial Intelligence for Prognostic Stratification of Glioblastoma Patients. Mod Pathol 2025:100797. [PMID: 40419087 DOI: 10.1016/j.modpat.2025.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/09/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
Glioblastoma is the most common and aggressive malignant adult tumor of the central nervous system, with a grim prognosis and heterogeneous morphologic and molecular profiles. Since the adoption of the current standard-of-care treatment in 2005, no substantial prognostic improvement has been noticed. In this study, we seek the identification of prognostically relevant glioblastoma characteristics from routinely acquired hematoxylin and eosin-stained whole slide images (WSI) and clinical data, that integrated via advanced computational methods could yield improved patient prognostic stratification and hence optimize clinical decision making and patient management. The proposed WSI analysis capitalizes on a comprehensive curation of apparent artifactual content and an interpretability mechanism via a weakly supervised attention-based multiple- instance learning approach that further utilizes clustering to constrain the search space. Patterns automatically identified by our approach as of high prognostic value classify each WSI as representative of short or long survivors. Further assessments of the prognostic relevance of the associated clinical patient data are performed both in isolation and in an integrated manner, using XGBoost and shapley additive explanations (SHAP). The multimodal integration of WSI with clinical data yields enhanced stratification performance when compared with using either one of the modalities. Identifying tumor morphological and clinical patterns associated with short and long survival will enable the clinical neuropathologist to provide additional relevant prognostic information to the treating team and suggest avenues of biological investigation for further understanding and potentially treating glioblastoma.
Collapse
Affiliation(s)
- Bhakti Baheti
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Sunny Rai
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA
| | - Shubham Innani
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Garv Mehdiratta
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - W Robert Bell
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sharath Chandra Guntuku
- Department of Computer and Information Science, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, United States.
| |
Collapse
|
2
|
Akbari H, Bakas S, Sako C, Fathi Kazerooni A, Villanueva-Meyer J, Garcia JA, Mamourian E, Liu F, Cao Q, Shinohara RT, Baid U, Getka A, Pati S, Singh A, Calabrese E, Chang S, Rudie J, Sotiras A, LaMontagne P, Marcus DS, Milchenko M, Nazeri A, Balana C, Capellades J, Puig J, Badve C, Barnholtz-Sloan JS, Sloan AE, Vadmal V, Waite K, Ak M, Colen RR, Park YW, Ahn SS, Chang JH, Choi YS, Lee SK, Alexander GS, Ali AS, Dicker AP, Flanders AE, Liem S, Lombardo J, Shi W, Shukla G, Griffith B, Poisson LM, Rogers LR, Kotrotsou A, Booth TC, Jain R, Lee M, Mahajan A, Chakravarti A, Palmer JD, DiCostanzo D, Fathallah-Shaykh H, Cepeda S, Santonocito OS, Di Stefano AL, Wiestler B, Melhem ER, Woodworth GF, Tiwari P, Valdes P, Matsumoto Y, Otani Y, Imoto R, Aboian M, Koizumi S, Kurozumi K, Kawakatsu T, Alexander K, Satgunaseelan L, Rulseh AM, Bagley SJ, Bilello M, Binder ZA, Brem S, Desai AS, Lustig RA, Maloney E, Prior T, Amankulor N, Nasrallah MP, O’Rourke DM, Mohan S, Davatzikos C. Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study. Neuro Oncol 2025; 27:1102-1115. [PMID: 39665363 PMCID: PMC12083074 DOI: 10.1093/neuonc/noae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive adult primary brain cancer, characterized by significant heterogeneity, posing challenges for patient management, treatment planning, and clinical trial stratification. METHODS We developed a highly reproducible, personalized prognostication, and clinical subgrouping system using machine learning (ML) on routine clinical data, magnetic resonance imaging (MRI), and molecular measures from 2838 demographically diverse patients across 22 institutions and 3 continents. Patients were stratified into favorable, intermediate, and poor prognostic subgroups (I, II, and III) using Kaplan-Meier analysis (Cox proportional model and hazard ratios [HR]). RESULTS The ML model stratified patients into distinct prognostic subgroups with HRs between subgroups I-II and I-III of 1.62 (95% CI: 1.43-1.84, P < .001) and 3.48 (95% CI: 2.94-4.11, P < .001), respectively. Analysis of imaging features revealed several tumor properties contributing unique prognostic value, supporting the feasibility of a generalizable prognostic classification system in a diverse cohort. CONCLUSIONS Our ML model demonstrates extensive reproducibility and online accessibility, utilizing routine imaging data rather than complex imaging protocols. This platform offers a unique approach to personalized patient management and clinical trial stratification in GBM.
Collapse
Affiliation(s)
- Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, California, USA
| | - Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, Indiana, USA
| | - Chiharu Sako
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anahita Fathi Kazerooni
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Javier Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jose A Garcia
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Mamourian
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang Liu
- Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Quy Cao
- Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Russell T Shinohara
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexander Getka
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ashish Singh
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Evan Calabrese
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Susan Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Rudie
- Department of Radiology, University of California San Diego, San Diego, California, USA
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pamela LaMontagne
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mikhail Milchenko
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arash Nazeri
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carmen Balana
- B-ARGO Group, Institut Investigació Germans Trias i Pujol (IGTP), Badalona (Barcelona), Catalonia, Spain
| | - Jaume Capellades
- Research Unit (IDIR), Image Diagnosis Institute, Badalona, Spain
| | - Josep Puig
- Department of Radiology (CDI), Hospital Clínic and IDIBAPS, Barcelona, Spain
| | - Chaitra Badve
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | - Jill S Barnholtz-Sloan
- Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute, Bethesda, Maryland, USA
- Central Brain Tumor Registry of the United States, Hinsdale, Illinois, USA
- Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
| | - Andrew E Sloan
- Brain and Tumor Neurosurgery, Neurosurgical Oncology, Piedmont Health, Atlanta, Georgia, USA
- Seidman Cancer Center and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vachan Vadmal
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Kristin Waite
- Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, Bethesda, Maryland, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Murat Ak
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rivka R Colen
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yae Won Park
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Soo Ahn
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Tumor Center, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
| | - Yoon Seong Choi
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seung-Koo Lee
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gregory S Alexander
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ayesha S Ali
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam P Dicker
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Adam E Flanders
- Department of Radiology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Spencer Liem
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Joseph Lombardo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gaurav Shukla
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Department of Radiation Oncology, Christiana Care Health System, Philadelphia, Pennsylvania, USA
| | - Brent Griffith
- Department of Radiology, Henry Ford Health System, Detroit, Michigan, USA
| | - Laila M Poisson
- Department of Public Health Sciences, Center for Bioinformatics, Henry Ford Health System, Detroit, Michigan, USA
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Lisa R Rogers
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | | | - Thomas C Booth
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Department of Neuroradiology, Ruskin Wing, King’s College Hospital NHS Foundation Trust, London, UK
| | - Rajan Jain
- Department of Radiology, New York University Langone Health, New York, New York, USA
- Department of Neurosurgery, New York University Langone Health, New York, New York, USA
| | - Matthew Lee
- Department of Radiology, New York University Langone Health, New York, New York, USA
| | - Abhishek Mahajan
- Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, India
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Arnab Chakravarti
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Dominic DiCostanzo
- Department of Radiation Oncology, The James Cancer Hospital at the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Santiago Cepeda
- Department of Neurosurgery, University Hospital Río Hortega, Valladolid, Spain
| | - Orazio Santo Santonocito
- Division of Neurosurgery, Spedali Riuniti di Livorno-Azienda USL Toscana Nord-Ovest, Livorno, Italy
| | - Anna Luisa Di Stefano
- Division of Neurosurgery, Spedali Riuniti di Livorno-Azienda USL Toscana Nord-Ovest, Livorno, Italy
| | - Benedikt Wiestler
- Department of Neuroradiology, Technical University of Munich, Munchen, Germany
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Graeme F Woodworth
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pallavi Tiwari
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Pablo Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuji Matsumoto
- Department of Neurological Surgery, Okayama University, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University, Okayama, Japan
| | - Ryoji Imoto
- Department of Neurological Surgery, Okayama University, Okayama, Japan
| | - Mariam Aboian
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shinichiro Koizumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toru Kawakatsu
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kimberley Alexander
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Laveniya Satgunaseelan
- Department of Neurosurgery, Chris O’Brien Lifehouse, Camperdown, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Aaron M Rulseh
- Department of Radiology, Na Homolce Hospital, Prague, Czechia
| | - Stephen J Bagley
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michel Bilello
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arati S Desai
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert A Lustig
- Department of Radiation-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eileen Maloney
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy Prior
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nduka Amankulor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - MacLean P Nasrallah
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald M O’Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Center for Data Science and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Statistics in Imaging and Visualization Center, and Center for Clinical Epidemiology ce and AI for Integrated Diagnostics (AI2D), and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Wu C, Andaloussi MA, Hormuth DA, Lima EABF, Lorenzo G, Stowers CE, Ravula S, Levac B, Dimakis AG, Tamir JI, Brock KK, Chung C, Yankeelov TE. A critical assessment of artificial intelligence in magnetic resonance imaging of cancer. NPJ IMAGING 2025; 3:15. [PMID: 40226507 PMCID: PMC11981920 DOI: 10.1038/s44303-025-00076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Given the enormous output and pace of development of artificial intelligence (AI) methods in medical imaging, it can be challenging to identify the true success stories to determine the state-of-the-art of the field. This report seeks to provide the magnetic resonance imaging (MRI) community with an initial guide into the major areas in which the methods of AI are contributing to MRI in oncology. After a general introduction to artificial intelligence, we proceed to discuss the successes and current limitations of AI in MRI when used for image acquisition, reconstruction, registration, and segmentation, as well as its utility for assisting in diagnostic and prognostic settings. Within each section, we attempt to present a balanced summary by first presenting common techniques, state of readiness, current clinical needs, and barriers to practical deployment in the clinical setting. We conclude by presenting areas in which new advances must be realized to address questions regarding generalizability, quality assurance and control, and uncertainty quantification when applying MRI to cancer to maintain patient safety and practical utility.
Collapse
Affiliation(s)
- Chengyue Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX USA
| | | | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX USA
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX USA
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX USA
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX USA
- Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Casey E. Stowers
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX USA
| | - Sriram Ravula
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
| | - Brett Levac
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
| | - Alexandros G. Dimakis
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
| | - Jonathan I. Tamir
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX USA
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX USA
| | - Kristy K. Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Caroline Chung
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Thomas E. Yankeelov
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA
- Department of Oncology, The University of Texas at Austin, Austin, TX USA
| |
Collapse
|
4
|
Maragno E, Ricchizzi S, Winter NR, Hellwig SJ, Stummer W, Hahn T, Holling M. Predictive modeling with linear machine learning can estimate glioblastoma survival in months based solely on MGMT-methylation status, age and sex. Acta Neurochir (Wien) 2025; 167:52. [PMID: 39992425 PMCID: PMC11850473 DOI: 10.1007/s00701-025-06441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Machine Learning (ML) has become an essential tool for analyzing biomedical data, facilitating the prediction of treatment outcomes and patient survival. However, the effectiveness of ML models heavily relies on both the choice of algorithms and the quality of the input data. In this study, we aimed to develop a novel predictive model to estimate individual survival for patients diagnosed with glioblastoma (GBM), focusing on key variables such as O6-Methylguanine-DNA Methyltransferase (MGMT) methylation status, age, and sex. METHODS To identify the optimal approach, we utilized retrospective data from 218 patients treated at our brain tumor center. The performance of the ML models was evaluated within repeated tenfold regression. The pipeline comprised five regression estimators, including both linear and non-linear algorithms. Permutation feature importance highlighted the feature with the most significant impact on the model. Statistical significance was assessed using a permutation test procedure. RESULTS The best machine learning algorithm achieved a mean absolute error (MAE) of 12.65 (SD = ± 2.18) and an explained variance (EV) of 7% (SD = ± 1.8%) with p < 0.001. Linear algorithms led to more accurate predictions than non-linear estimators. Feature importance testing indicated that age and positive MGMT-methylation influenced the predictions the most. CONCLUSION In summary, here we provide a novel approach allowing to predict GBM patient's survival in months solely based on key parameters such as age, sex and MGMT-methylation status and underscores MGMT-methylation status as key prognostic factor for GBM patients survival.
Collapse
Affiliation(s)
- Emanuele Maragno
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Sarah Ricchizzi
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Ralf Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Sönke Josua Hellwig
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1 A, 48149, Münster, Germany.
| |
Collapse
|
5
|
Mohammadzadeh I, Hajikarimloo B, Niroomand B, Eini P, Ghanbarnia R, Habibi MA, Albakr A, Borghei-Razavi H. Application of artificial intelligence in forecasting survival in high-grade glioma: systematic review and meta-analysis involving 79,638 participants. Neurosurg Rev 2025; 48:240. [PMID: 39954167 DOI: 10.1007/s10143-025-03419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
High-grade glioma (HGG) is an aggressive brain tumor with poor survival rates. Predicting survival outcomes is critical for personalized treatment planning. In recent years, artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL) models, has emerged as a promising approach for enhancing prognostic accuracy in HGG but this study especially focused on the potential of AI in the recurrence of HGG. A systematic review and meta-analysis were conducted to assess the performance of AI-based models in predicting survival outcomes for HGG patients. Relevant studies were retrieved from PubMed, Embase, Scopus, and Web of Science until 2 Dec 2024, using predefined keywords ("High-Grade Glioma", "Survival" and "Machine Learning") without date or language restrictions. Data extraction and quality assessment were performed in accordance with PRISMA and PROBAST guidelines. In this study were included. The pooled diagnostic metric, the area under the curve (AUC), was analyzed using random-effects models. A total of 39 studies with 29 various algorithms and 79,638 patients were included, with 15 studies contributing to the meta-analysis. The most commonly used algorithms were random forest (RF) and logistic regression (LR), which demonstrated robust predictive accuracy. The pooled AUCs for one-year, two-year, three-year and overall survival predictions were 0.816, 0.854, 0.871 and 0.789 respectively. Subgroup analysis revealed that RSF achieved the highest predictive accuracy with an AUC of 0.91 (95% CI: 0.84-0.98), while LR followed with an AUC of 0.89 (95% CI: 0.82-0.96). Models integrating clinical, radiomics, and genetic features consistently outperformed single-data-type models. MRI was the most frequently utilized imaging modality. AI-based models, particularly ML and DL algorithms, show significant potential for improving survival prediction in HGG patients. By integrating multimodal data, these models offer valuable tools for personalized treatment planning, although further validation in prospective, multicenter studies is needed to ensure clinical applicability.
Collapse
Affiliation(s)
- Ibrahim Mohammadzadeh
- Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neuroscience Lab, Department of Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bardia Hajikarimloo
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Behnaz Niroomand
- Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pooya Eini
- Toxicological Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Ghanbarnia
- Skull Base Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdulrahman Albakr
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA
- Department of Surgery, Division of Neurosurgery, King Saud University, Riyadh, Saudi Arabia
| | - Hamid Borghei-Razavi
- Department of Neurological Surgery, Pauline Braathen Neurological Center, Cleveland Clinic Florida, Weston, FL, USA.
| |
Collapse
|
6
|
Wroblewski TH, Karabacak M, Seah C, Yong RL, Margetis K. Radiomic Consensus Clustering in Glioblastoma and Association with Gene Expression Profiles. Cancers (Basel) 2024; 16:4256. [PMID: 39766155 PMCID: PMC11674874 DOI: 10.3390/cancers16244256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Glioblastoma (GBM) is the most common malignant primary central nervous system tumor with extremely poor prognosis and survival outcomes. Non-invasive methods like radiomic feature extraction, which assess sub-visual imaging features, provide a potentially powerful tool for distinguishing molecular profiles across groups of patients with GBM. Using consensus clustering of MRI-based radiomic features, this study aims to investigate differential gene expression profiles based on radiomic clusters. METHODS Patients from the TCGA and CPTAC datasets (n = 114) were included in this study. Radiomic features including T1, T1 with contrast, T2, and FLAIR MRI sequences were extracted using PyRadiomics. Selected radiomic features were then clustered using ConsensusClusterPlus (k-means base algorithm and Euclidean distance), which iteratively subsamples and clusters 80% of the data to identify stable clusters by calculating the frequency in which each patient is a member of a cluster across iterations. Gene expression data (available for n = 69 patients) was analyzed using differential gene expression (DEG) and gene set enrichment (GSEA) approaches, after batch correction using ComBat-seq. RESULTS Three distinct clusters were identified based on the relative consensus matrix and cumulative distribution plots (Cluster 1, n = 25; Cluster 2, n = 46; Cluster 3, n = 43). No significant differences in patient demographic characteristics, MGMT methylation status, tumor location, or overall survival were identified across clusters. Differentially expressed genes were identified in Cluster 1, which have been previously associated with GBM prognosis, recurrence, and treatment sensitivity. GSEA of Cluster 1 showed an enrichment of genes upregulated for immune-related and DNA metabolism pathways and genes downregulated in pathways associated with protein and histone deacetylation. Clusters 2 and 3 exhibited fewer DEGs which failed to reach significance after multiple testing corrections. CONCLUSIONS Consensus clustering of radiomic features revealed unique gene expression profiles in the GBM cohort which likely represent subtle differences in tumor biology and radiosensitivity that are not visually discernible, underscoring the potential of radiomics to serve as a non-invasive alternative for identifying GBM molecular heterogeneity. Further investigation is still required to validate these findings and their clinical implications.
Collapse
Affiliation(s)
- Tadeusz H. Wroblewski
- College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
- MD-PhD Program, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, NY 10029, USA; (M.K.); (R.L.Y.)
| | - Carina Seah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Raymund L. Yong
- Department of Neurosurgery, Mount Sinai Health System, New York, NY 10029, USA; (M.K.); (R.L.Y.)
| | - Konstantinos Margetis
- Department of Neurosurgery, Mount Sinai Health System, New York, NY 10029, USA; (M.K.); (R.L.Y.)
| |
Collapse
|
7
|
Bhandari A, Johnson K, Oh K, Yu F, Huynh LM, Lei Y, Wisnoskie S, Zhou S, Baine MJ, Lin C, Zhang C, Wang S. Developing a novel dosiomics model to predict treatment failures following lung stereotactic body radiation therapy. Front Oncol 2024; 14:1438861. [PMID: 39726705 PMCID: PMC11669717 DOI: 10.3389/fonc.2024.1438861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024] Open
Abstract
Purpose The purpose of this study was to investigate the dosiomics features of the interplay between CT density and dose distribution in lung SBRT plans, and to develop a model to predict treatment failure following lung SBRT treatment. Methods A retrospective study was conducted involving 179 lung cancer patients treated with SBRT at the University of Nebraska Medical Center (UNMC) between October 2007 and June 2022. Features from the CT image, Biological Effective Dose (BED) and five interaction matrices between CT and BED were extracted using radiomics mathematics. Our in-house feature selection pipeline was utilized to evaluate and rank features based on their importance and redundancy, with only the selected non-redundant features being used for predictive modeling. We randomly selected 151 cases and 28 cases as training and test datasets. Four different models were trained utilizing the Balanced Random Forest framework on the same training dataset to differentiate between failure and non-failure cases. These four models utilized the same number of selected features extracted from CT-only, BED-only, a combination of CT and BED, and a composite of CT and BED including their interaction matrices, respectively. Results The cohort included 125 non-failure cases and 54 failure cases, with a median follow-up time of 34.4 months. We selected the top 17 important and non-redundant features (with the Pearsons's coefficient < 0.5) in each model. When evaluated on the same independent test set, the four models-CT features-only, BED features-only, a combination of CT and BED features, and a composite model including features from CT and BED that includes their interaction matrices-achieved AUC values of 0.56, 0.75, 0.73, and 0.82, respectively, with corresponding accuracies of 0.61, 0.79, 0.71, and 0.79. The composite model demonstrated the highest AUC and accuracy, indicating that incorporating interactions between CT and BED reveals more predictive capabilities in distinguishing between failure and non-failure cases. Conclusion The dosiomics model integrating the interaction between CT and Dose can effectively predict treatment failure following lung SBRT treatment and may serve as a useful tool to proactively evaluate and select lung SBRT treatment plans to reduce treatment failure in the future.
Collapse
Affiliation(s)
- Ashok Bhandari
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kurtis Johnson
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kyuhak Oh
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Linda M. Huynh
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sarah Wisnoskie
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Radiation Oncology, Novant Health Cancer Institute, Winston-Salem, NC, United States
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael James Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chi Zhang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
8
|
Wang S, Belemlilga D, Lei Y, Ganti AKP, Lin C, Asif S, Marasco JT, Oh K, Zhou S. Enhancing Survival Outcome Predictions in Metastatic Non-Small Cell Lung Cancer Through PET Radiomics Analysis. Cancers (Basel) 2024; 16:3731. [PMID: 39594686 PMCID: PMC11592397 DOI: 10.3390/cancers16223731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: Advanced-stage lung cancer poses significant management challenges. The goal of this study was to identify crucial clinical and PET radiomics features that enable prognostic stratification for predicting outcomes. (2) Methods: PET radiomics features of the primary lung lesions were extracted from 99 patients with stage IVB NSCLC, and the robustness of these PET radiomics features was evaluated against uncertainties stemming from extraction parameters and contour variation. We trained three survival risk models (clinical, radiomics, and a composite) through a penalized Cox model framework. We also created a Balanced Random Forest classification predictive model, using the selected features, to predict 1-year survival. (3) Results: We identified 367 common PET radiomics features that exhibited robustness to perturbations introduced by contour variation and extraction parameters. Our findings indicated that both the radiomics and the composite model outperformed the clinical model in stratifying the risk for survival with statistical significance. In predicting 1-year survival, the radiomics model and the composite model also achieved better predicting accuracies compared to the clinical model. (4) Conclusions: Robust PET radiomics analysis successfully facilitated the stratification of patient risk for survival outcomes and predicted 1-year survival in stage IVB NSCLC.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Darryl Belemlilga
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
- College of Arts and Sciences, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Yu Lei
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Apar Kishor P Ganti
- Division of Oncology and Hematology, Department of Internal Medicine, VA Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA;
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Samia Asif
- Division of Oncology and Hematology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| | - Jacob T Marasco
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Kyuhak Oh
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| | - Sumin Zhou
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.B.); (Y.L.); (C.L.); (J.T.M.); (K.O.); (S.Z.)
| |
Collapse
|
9
|
Bakas S, Vollmuth P, Galldiks N, Booth TC, Aerts HJWL, Bi WL, Wiestler B, Tiwari P, Pati S, Baid U, Calabrese E, Lohmann P, Nowosielski M, Jain R, Colen R, Ismail M, Rasool G, Lupo JM, Akbari H, Tonn JC, Macdonald D, Vogelbaum M, Chang SM, Davatzikos C, Villanueva-Meyer JE, Huang RY. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 2: recommendations for standardisation, validation, and good clinical practice. Lancet Oncol 2024; 25:e589-e601. [PMID: 39481415 PMCID: PMC12007431 DOI: 10.1016/s1470-2045(24)00315-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
Technological advancements have enabled the extended investigation, development, and application of computational approaches in various domains, including health care. A burgeoning number of diagnostic, predictive, prognostic, and monitoring biomarkers are continuously being explored to improve clinical decision making in neuro-oncology. These advancements describe the increasing incorporation of artificial intelligence (AI) algorithms, including the use of radiomics. However, the broad applicability and clinical translation of AI are restricted by concerns about generalisability, reproducibility, scalability, and validation. This Policy Review intends to serve as the leading resource of recommendations for the standardisation and good clinical practice of AI approaches in health care, particularly in neuro-oncology. To this end, we investigate the repeatability, reproducibility, and stability of AI in response assessment in neuro-oncology in studies on factors affecting such computational approaches, and in publicly available open-source data and computational software tools facilitating these goals. The pathway for standardisation and validation of these approaches is discussed with the view of trustworthy AI enabling the next generation of clinical trials. We conclude with an outlook on the future of AI-enabled neuro-oncology.
Collapse
Affiliation(s)
- Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Neurological Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA; Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA.
| | - Philipp Vollmuth
- Division for Computational Radiology and Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Faculty of Medicine, University of Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Hugo J W L Aerts
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Artificial Intelligence in Medicine Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, Maastricht University, Maastricht, Netherlands
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Pallavi Tiwari
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Sarthak Pati
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA
| | - Ujjwal Baid
- Department of Pathology & Laboratory Medicine, Division of Computational Pathology, Indiana University, Indianopolis, IN, USA; Department of Radiology & Imaging Sciences, School of Medicine, Indiana University, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianopolis, IN, USA
| | - Evan Calabrese
- Department of Radiology, School of Medicine, Duke University, Durham, NC, USA
| | - Philipp Lohmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rivka Colen
- Department of Radiology, Neuroradiology Division, Center for Artificial Intelligence Innovation in Medical Imaging, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marwa Ismail
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium, Partner Site Munich, Munich, Germany
| | | | - Michael Vogelbaum
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Artificial Intelligence for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Yan RE, Greenfield JP. Challenges and Outlooks in Precision Medicine: Expectations Versus Reality. World Neurosurg 2024; 190:573-581. [PMID: 39425299 DOI: 10.1016/j.wneu.2024.06.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 10/21/2024]
Abstract
Recent developments in technology have led to rapid advances in precision medicine, especially due to the rise of next-generation sequencing and molecular profiling. These technological advances have led to rapid advances in research, including increased tumor subtype resolution, new therapeutic agents, and mechanistic insights. Certain therapies have even been approved for molecular biomarkers across histopathological diagnoses; however, translation of research findings to the clinic still faces a number of challenges. In this review, the authors discuss several key challenges to the clinical integration of precision medicine, including the blood-brain barrier, both a lack and excess of molecular targets, and tumor heterogeneity/escape from therapy. They also highlight a few key efforts to address these challenges, including new frontiers in drug delivery, a rapidly expanding treatment repertoire, and improvements in active response monitoring. With continued improvements and developments, the authors anticipate that precision medicine will increasingly become the gold standard for clinical care.
Collapse
Affiliation(s)
- Rachel E Yan
- Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Jeffrey P Greenfield
- Department of Neurological Surgery, NewYork-Presbyterian Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
11
|
Wang R, Erus G, Chaudhari P, Davatzikos C. Adapting Machine Learning Diagnostic Models to New Populations Using a Small Amount of Data: Results from Clinical Neuroscience. ARXIV 2024:arXiv:2308.03175v2. [PMID: 39314511 PMCID: PMC11419182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Machine learning (ML) is revolutionizing many areas of engineering and science, including healthcare. However, it is also facing a reproducibility crisis, especially in healthcare. ML models that are carefully constructed from and evaluated on data from one part of the population may not generalize well on data from a different population group, or acquisition instrument settings and acquisition protocols. We tackle this problem in the context of neuroimaging of Alzheimer's disease (AD), schizophrenia (SZ) and brain aging. We develop a weighted empirical risk minimization approach that optimally combines data from a source group, e.g., subjects are stratified by attributes such as sex, age group, race and clinical cohort to make predictions on a target group, e.g., other sex, age group, etc. using a small fraction (10%) of data from the target group. We apply this method to multi-source data of 15,363 individuals from 20 neuroimaging studies to build ML models for diagnosis of AD and SZ, and estimation of brain age. We found that this approach achieves substantially better accuracy than existing domain adaptation techniques: it obtains area under curve greater than 0.95 for AD classification, area under curve greater than 0.7 for SZ classification and mean absolute error less than 5 years for brain age prediction on all target groups, achieving robustness to variations of scanners, protocols, and demographic or clinical characteristics. In some cases, it is even better than training on all data from the target group, because it leverages the diversity and size of a larger training set. We also demonstrate the utility of our models for prognostic tasks such as predicting disease progression in individuals with mild cognitive impairment. Critically, our brain age prediction models lead to new clinical insights regarding correlations with neurophysiological tests. In summary, we present a relatively simple methodology, along with ample experimental evidence, supporting the good generalization of ML models to new datasets and patient cohorts.
Collapse
Affiliation(s)
- Rongguang Wang
- Department of Electrical and Systems Engineering, University of Pennsylvania
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania
| | - Guray Erus
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania
| | - Pratik Chaudhari
- Department of Electrical and Systems Engineering, University of Pennsylvania
- Department of Computer and Information Science, University of Pennsylvania
| | - Christos Davatzikos
- Department of Electrical and Systems Engineering, University of Pennsylvania
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania
- Department of Radiology, Perelman School of Messdicine, University of Pennsylvania
| |
Collapse
|
12
|
Zhou K, Xiao Z, Liu Q, Wang X, Huo J, Wu X, Zhao X, Feng X, Fu B, Xu P, Deng Y, Xiao W, Sun T, Da L. Comprehensive application of AI algorithms with TCR NGS data for glioma diagnosis. Sci Rep 2024; 14:15361. [PMID: 38965388 PMCID: PMC11224284 DOI: 10.1038/s41598-024-65305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
T-cell receptor (TCR) detection can examine the extent of T-cell immune responses. Therefore, the article analyzed characteristic data of glioma obtained by DNA-based TCR high-throughput sequencing, to predict the disease with fewer biomarkers and higher accuracy. We downloaded data online and obtained six TCR-related diversity indices to establish a multidimensional classification system. By comparing actual presence of the 602 correlated sequences, we obtained two-dimensional and multidimensional datasets. Multiple classification methods were utilized for both datasets with the classification accuracy of multidimensional data slightly less to two-dimensional datasets. This study reduced the TCR β sequences through feature selection methods like RFECV (Recursive Feature Elimination with Cross-Validation). Consequently, using only the presence of these three sequences, the classification AUC value of 96.67% can be achieved. The combination of the three correlated TCR clones obtained at a source data threshold of 0.1 is: CASSLGGNTEAFF_TRBV12_TRBJ1-1, CASSYSDTGELFF_TRBV6_TRBJ2-2, and CASSLTGNTEAFF_TRBV12_TRBJ1-1. At 0.001, the combination is: CASSLGETQYF_TRBV12_TRBJ2-5, CASSLGGNQPQHF_TRBV12_TRBJ1-5, and CASSLSGNTIYF_TRBV12_TRBJ1-3. This method can serve as a potential diagnostic and therapeutic tool, facilitating diagnosis and treatment of glioma and other cancers.
Collapse
Affiliation(s)
- Kaiyue Zhou
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Zhengliang Xiao
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Qi Liu
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Xu Wang
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Jiaxin Huo
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaoqi Wu
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaoxiao Zhao
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Xiaohan Feng
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Baoyi Fu
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China
| | - Pengfei Xu
- Hangzhou ImmuQuad Biotechnologies, LLC, Hangzhou, China
| | - Yunyun Deng
- Hangzhou ImmuQuad Biotechnologies, LLC, Hangzhou, China
| | - Wenwen Xiao
- Hangzhou ImmuQuad Biotechnologies, LLC, Hangzhou, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, LLC, Hangzhou, China.
- Institute of Wenzhou, Zhejiang University, Wenzhou, China.
| | - Lin Da
- Department of Mathematics, School of Mathematical Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
13
|
Chukwujindu E, Faiz H, Ai-Douri S, Faiz K, De Sequeira A. Role of artificial intelligence in brain tumour imaging. Eur J Radiol 2024; 176:111509. [PMID: 38788610 DOI: 10.1016/j.ejrad.2024.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Artificial intelligence (AI) is a rapidly evolving field with many neuro-oncology applications. In this review, we discuss how AI can assist in brain tumour imaging, focusing on machine learning (ML) and deep learning (DL) techniques. We describe how AI can help in lesion detection, differential diagnosis, anatomic segmentation, molecular marker identification, prognostication, and pseudo-progression evaluation. We also cover AI applications in non-glioma brain tumours, such as brain metastasis, posterior fossa, and pituitary tumours. We highlight the challenges and limitations of AI implementation in radiology, such as data quality, standardization, and integration. Based on the findings in the aforementioned areas, we conclude that AI can potentially improve the diagnosis and treatment of brain tumours and provide a path towards personalized medicine and better patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Khunsa Faiz
- McMaster University, Department of Radiology, L8S 4L8, Canada.
| | | |
Collapse
|
14
|
Chen J, Yang J, Wang J, Zhao Z, Wang M, Sun C, Song N, Feng S. Study on an Automatic Classification Method for Determining the Malignancy Grade of Glioma Pathological Sections Based on Hyperspectral Multi-Scale Spatial-Spectral Fusion Features. SENSORS (BASEL, SWITZERLAND) 2024; 24:3803. [PMID: 38931588 PMCID: PMC11207485 DOI: 10.3390/s24123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
This study describes a novel method for grading pathological sections of gliomas. Our own integrated hyperspectral imaging system was employed to characterize 270 bands of cancerous tissue samples from microarray slides of gliomas. These samples were then classified according to the guidelines developed by the World Health Organization, which define the subtypes and grades of diffuse gliomas. We explored a hyperspectral feature extraction model called SMLMER-ResNet using microscopic hyperspectral images of brain gliomas of different malignancy grades. The model combines the channel attention mechanism and multi-scale image features to automatically learn the pathological organization of gliomas and obtain hierarchical feature representations, effectively removing the interference of redundant information. It also completes multi-modal, multi-scale spatial-spectral feature extraction to improve the automatic classification of glioma subtypes. The proposed classification method demonstrated high average classification accuracy (>97.3%) and a Kappa coefficient (0.954), indicating its effectiveness in improving the automatic classification of hyperspectral gliomas. The method is readily applicable in a wide range of clinical settings, offering valuable assistance in alleviating the workload of clinical pathologists. Furthermore, the study contributes to the development of more personalized and refined treatment plans, as well as subsequent follow-up and treatment adjustment, by providing physicians with insights into the underlying pathological organization of gliomas.
Collapse
Affiliation(s)
- Jiaqi Chen
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.C.)
- University of Chinese Academy of Sciences, Beijing 130033, China
| | - Jin Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.C.)
| | - Jinyu Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.C.)
- University of Chinese Academy of Sciences, Beijing 130033, China
| | - Zitong Zhao
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.C.)
- University of Chinese Academy of Sciences, Beijing 130033, China
| | - Mingjia Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.C.)
| | - Ci Sun
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.C.)
| | - Nan Song
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.C.)
| | - Shulong Feng
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (J.C.)
| |
Collapse
|
15
|
Baheti B, Innani S, Nasrallah M, Bakas S. Prognostic stratification of glioblastoma patients by unsupervised clustering of morphology patterns on whole slide images furthering our disease understanding. Front Neurosci 2024; 18:1304191. [PMID: 38831756 PMCID: PMC11146603 DOI: 10.3389/fnins.2024.1304191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Glioblastoma (GBM) is a highly aggressive malignant tumor of the central nervous system that displays varying molecular and morphological profiles, leading to challenging prognostic assessments. Stratifying GBM patients according to overall survival (OS) from H&E-stained whole slide images (WSI) using advanced computational methods is challenging, but with direct clinical implications. Methods This work is focusing on GBM (IDH-wildtype, CNS WHO Gr.4) cases, identified from the TCGA-GBM and TCGA-LGG collections after considering the 2021 WHO classification criteria. The proposed approach starts with patch extraction in each WSI, followed by comprehensive patch-level curation to discard artifactual content, i.e., glass reflections, pen markings, dust on the slide, and tissue tearing. Each patch is then computationally described as a feature vector defined by a pre-trained VGG16 convolutional neural network. Principal component analysis provides a feature representation of reduced dimensionality, further facilitating identification of distinct groups of morphology patterns, via unsupervised k-means clustering. Results The optimal number of clusters, according to cluster reproducibility and separability, is automatically determined based on the rand index and silhouette coefficient, respectively. Our proposed approach achieved prognostic stratification accuracy of 83.33% on a multi-institutional independent unseen hold-out test set with sensitivity and specificity of 83.33%. Discussion We hypothesize that the quantification of these clusters of morphology patterns, reflect the tumor's spatial heterogeneity and yield prognostic relevant information to distinguish between short and long survivors using a decision tree classifier. The interpretability analysis of the obtained results can contribute to furthering and quantifying our understanding of GBM and potentially improving our diagnostic and prognostic predictions.
Collapse
Affiliation(s)
- Bhakti Baheti
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shubham Innani
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - MacLean Nasrallah
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
16
|
Wu G, Shi Z, Li Z, Xie X, Tang Q, Zhu J, Yang Z, Wang Y, Wu J, Yu J. Study of radiochemotherapy decision-making for young high-risk low-grade glioma patients using a macroscopic and microscopic combined radiomics model. Eur Radiol 2024; 34:2861-2872. [PMID: 37889272 DOI: 10.1007/s00330-023-10378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVES As a few types of glioma, young high-risk low-grade gliomas (HRLGGs) have higher requirements for postoperative quality of life. Although adjuvant chemotherapy with delayed radiotherapy is the first treatment strategy for HRLGGs, not all HRLGGs benefit from it. Accurate assessment of chemosensitivity in HRLGGs is vital for making treatment choices. This study developed a multimodal fusion radiomics (MFR) model to support radiochemotherapy decision-making for HRLGGs. METHODS A MFR model combining macroscopic MRI and microscopic pathological images was proposed. Multiscale features including macroscopic tumor structure and microscopic histological layer and nuclear information were grabbed by unique paradigm, respectively. Then, these features were adaptively incorporated into the MFR model through attention mechanism to predict the chemosensitivity of temozolomide (TMZ) by means of objective response rate and progression free survival (PFS). RESULTS Macroscopic tumor texture complexity and microscopic nuclear size showed significant statistical differences (p < 0.001) between sensitivity and insensitivity groups. The MFR model achieved stable prediction results, with an area under the curve of 0.950 (95% CI: 0.942-0.958), sensitivity of 0.833 (95% CI: 0.780-0.848), specificity of 0.929 (95% CI: 0.914-0.936), positive predictive value of 0.833 (95% CI: 0.811-0.860), and negative predictive value of 0.929 (95% CI: 0.914-0.934). The predictive efficacy of MFR was significantly higher than that of the reported molecular markers (p < 0.001). MFR was also demonstrated to be a predictor of PFS. CONCLUSIONS A MFR model including radiomics and pathological features predicts accurately the response postoperative TMZ treatment. CLINICAL RELEVANCE STATEMENT Our MFR model could identify young high-risk low-grade glioma patients who can have the most benefit from postoperative upfront temozolomide (TMZ) treatment. KEY POINTS • Multimodal radiomics is proposed to support the radiochemotherapy of glioma. • Some macro and micro image markers related to tumor chemotherapy sensitivity are revealed. • The proposed model surpasses reported molecular markers, with a promising area under the curve (AUC) of 0.95.
Collapse
Affiliation(s)
- Guoqing Wu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
| | - Zeyang Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
| | - Xuan Xie
- School of Information Science and Technology, Fudan University, Shanghai, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
| | - Jingjing Zhu
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong Yang
- Department of Radiology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Wang
- School of Information Science and Technology, Fudan University, Shanghai, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China.
- Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.
- The AI Lab of Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Guo J, Fathi Kazerooni A, Toorens E, Akbari H, Yu F, Sako C, Mamourian E, Shinohara RT, Koumenis C, Bagley SJ, Morrissette JJD, Binder ZA, Brem S, Mohan S, Lustig RA, O'Rourke DM, Ganguly T, Bakas S, Nasrallah MP, Davatzikos C. Integrating imaging and genomic data for the discovery of distinct glioblastoma subtypes: a joint learning approach. Sci Rep 2024; 14:4922. [PMID: 38418494 PMCID: PMC10902376 DOI: 10.1038/s41598-024-55072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
Glioblastoma is a highly heterogeneous disease, with variations observed at both phenotypical and molecular levels. Personalized therapies would be facilitated by non-invasive in vivo approaches for characterizing this heterogeneity. In this study, we developed unsupervised joint machine learning between radiomic and genomic data, thereby identifying distinct glioblastoma subtypes. A retrospective cohort of 571 IDH-wildtype glioblastoma patients were included in the study, and pre-operative multi-parametric MRI scans and targeted next-generation sequencing (NGS) data were collected. L21-norm minimization was used to select a subset of 12 radiomic features from the MRI scans, and 13 key driver genes from the five main signal pathways most affected in glioblastoma were selected from the genomic data. Subtypes were identified using a joint learning approach called Anchor-based Partial Multi-modal Clustering on both radiomic and genomic modalities. Kaplan-Meier analysis identified three distinct glioblastoma subtypes: high-risk, medium-risk, and low-risk, based on overall survival outcome (p < 0.05, log-rank test; Hazard Ratio = 1.64, 95% CI 1.17-2.31, Cox proportional hazard model on high-risk and low-risk subtypes). The three subtypes displayed different phenotypical and molecular characteristics in terms of imaging histogram, co-occurrence of genes, and correlation between the two modalities. Our findings demonstrate the synergistic value of integrated radiomic signatures and molecular characteristics for glioblastoma subtyping. Joint learning on both modalities can aid in better understanding the molecular basis of phenotypical signatures of glioblastoma, and provide insights into the biological underpinnings of tumor formation and progression.
Collapse
Affiliation(s)
- Jun Guo
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erik Toorens
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Fanyang Yu
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Penn Statistics in Imaging and Visualization (PennSIVE) Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Bagley
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tapan Ganguly
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - MacLean P Nasrallah
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, 3700 Hamilton Walk, 7Th Floor, Philadelphia, PA, 19104, USA.
- Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Jin W, Fatehi M, Guo R, Hamarneh G. Evaluating the clinical utility of artificial intelligence assistance and its explanation on the glioma grading task. Artif Intell Med 2024; 148:102751. [PMID: 38325929 DOI: 10.1016/j.artmed.2023.102751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 11/06/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
Clinical evaluation evidence and model explainability are key gatekeepers to ensure the safe, accountable, and effective use of artificial intelligence (AI) in clinical settings. We conducted a clinical user-centered evaluation with 35 neurosurgeons to assess the utility of AI assistance and its explanation on the glioma grading task. Each participant read 25 brain MRI scans of patients with gliomas, and gave their judgment on the glioma grading without and with the assistance of AI prediction and explanation. The AI model was trained on the BraTS dataset with 88.0% accuracy. The AI explanation was generated using the explainable AI algorithm of SmoothGrad, which was selected from 16 algorithms based on the criterion of being truthful to the AI decision process. Results showed that compared to the average accuracy of 82.5±8.7% when physicians performed the task alone, physicians' task performance increased to 87.7±7.3% with statistical significance (p-value = 0.002) when assisted by AI prediction, and remained at almost the same level of 88.5±7.0% (p-value = 0.35) with the additional assistance of AI explanation. Based on quantitative and qualitative results, the observed improvement in physicians' task performance assisted by AI prediction was mainly because physicians' decision patterns converged to be similar to AI, as physicians only switched their decisions when disagreeing with AI. The insignificant change in physicians' performance with the additional assistance of AI explanation was because the AI explanations did not provide explicit reasons, contexts, or descriptions of clinical features to help doctors discern potentially incorrect AI predictions. The evaluation showed the clinical utility of AI to assist physicians on the glioma grading task, and identified the limitations and clinical usage gaps of existing explainable AI techniques for future improvement.
Collapse
Affiliation(s)
- Weina Jin
- School of Computing Science, Simon Fraser University, Burnaby, Canada.
| | - Mostafa Fatehi
- Division of Neurosurgery, The University of British Columbia, Vancouver, Canada.
| | - Ru Guo
- Division of Neurosurgery, The University of British Columbia, Vancouver, Canada.
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, Canada.
| |
Collapse
|
19
|
Wani NA, Kumar R, Bedi J. DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107879. [PMID: 37897989 DOI: 10.1016/j.cmpb.2023.107879] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND OBJECTIVE Artificial intelligence (AI) has several uses in the healthcare industry, some of which include healthcare management, medical forecasting, practical making of decisions, and diagnosis. AI technologies have reached human-like performance, but their use is limited since they are still largely viewed as opaque black boxes. This distrust remains the primary factor for their limited real application, particularly in healthcare. As a result, there is a need for interpretable predictors that provide better predictions and also explain their predictions. METHODS This study introduces "DeepXplainer", a new interpretable hybrid deep learning-based technique for detecting lung cancer and providing explanations of the predictions. This technique is based on a convolutional neural network and XGBoost. XGBoost is used for class label prediction after "DeepXplainer" has automatically learned the features of the input using its many convolutional layers. For providing explanations or explainability of the predictions, an explainable artificial intelligence method known as "SHAP" is implemented. RESULTS The open-source "Survey Lung Cancer" dataset was processed using this method. On multiple parameters, including accuracy, sensitivity, F1-score, etc., the proposed method outperformed the existing methods. The proposed method obtained an accuracy of 97.43%, a sensitivity of 98.71%, and an F1-score of 98.08. After the model has made predictions with this high degree of accuracy, each prediction is explained by implementing an explainable artificial intelligence method at both the local and global levels. CONCLUSIONS A deep learning-based classification model for lung cancer is proposed with three primary components: one for feature learning, another for classification, and a third for providing explanations for the predictions made by the proposed hybrid (ConvXGB) model. The proposed "DeepXplainer" has been evaluated using a variety of metrics, and the results demonstrate that it outperforms the current benchmarks. Providing explanations for the predictions, the proposed approach may help doctors in detecting and treating lung cancer patients more effectively.
Collapse
Affiliation(s)
- Niyaz Ahmad Wani
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala (PIN: 147004), Punjab, India.
| | - Ravinder Kumar
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala (PIN: 147004), Punjab, India.
| | - Jatin Bedi
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala (PIN: 147004), Punjab, India.
| |
Collapse
|
20
|
Cepeda S. Machine Learning and Radiomics in Gliomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:231-243. [PMID: 39523269 DOI: 10.1007/978-3-031-64892-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The integration of machine learning (ML) and radiomics is emerging as a pivotal advancement in glioma research, offering novel insights into the diagnosis, prognosis, and treatment of these complex tumors. Radiomics involves the extraction of a multitude of quantitative features from medical images. When these features are analyzed through ML algorithms, the precision of tumor characterization is enhanced beyond traditional methods.This chapter examines the application of both supervised and unsupervised ML techniques for interpreting radiomic data, highlighting their potential for accurately predicting tumor grade, identifying genetic mutations, estimating patient survival rates, and evaluating treatment responses. The ability of ML-based radiomic analysis to discern intricate patterns in tumor imaging, imperceptible to human observation, is particularly emphasized.Challenges in this field, including data diversity, overfitting risks, and the need for extensive, annotated datasets, are critically assessed. The necessity of integrating these advanced technologies into clinical practice through interdisciplinary collaboration is underscored as a crucial factor for their effective utilization.Overall, the synergy between ML and radiomics in glioma research represents a significant step toward personalized medicine, offering enhanced tools for patient-specific treatment strategies.
Collapse
Affiliation(s)
- Santiago Cepeda
- Department of Neurosurgery, Río Hortega University Hospital, Valladolid, Spain.
| |
Collapse
|
21
|
Rathore S, Iftikhar MA, Chaddad A, Singh A, Gillani Z, Abdulkadir A. Imaging phenotypes predict overall survival in glioma more accurate than basic demographic and cell mutation profiles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 242:107812. [PMID: 37757566 DOI: 10.1016/j.cmpb.2023.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/14/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI), digital pathology imaging (PATH), demographics, and IDH mutation status predict overall survival (OS) in glioma. Identifying and characterizing predictive features in the different modalities may improve OS prediction accuracy. PURPOSE To evaluate the OS prediction accuracy of combinations of prognostic markers in glioma patients. MATERIALS AND METHODS Multi-contrast MRI, comprising T1-weighted, T1-weighted post-contrast, T2-weighted, T2 fluid-attenuated-inversion-recovery, and pathology images from glioma patients (n = 160) were retrospectively collected (1983-2008) from TCGA alongside age and sex. Phenotypic profiling of tumors was performed by quantifying the radiographic and histopathologic descriptors extracted from the delineated region-of-interest in MRI and PATH images. A Cox proportional hazard model was trained with the MRI and PATH features, IDH mutation status, and basic demographic variables (age and sex) to predict OS. The performance was evaluated in a split-train-test configuration using the concordance-index, computed between the predicted risk score and observed OS. RESULTS The average age of patients was 51.2years (women: n = 77, age-range=18-84years; men: n = 83, age-range=21-80years). The median OS of the participants was 494.5 (range,3-4752), 481 (range,7-4752), and 524.5 days (range,3-2869), respectively, in complete dataset, training, and test datasets. The addition of MRI or PATH features improved prediction of OS when compared to models based on age, sex, and mutation status alone or their combination (p < 0.001). The full multi-omics model integrated MRI, PATH, clinical, and genetic profiles and predicted the OS best (c-index= 0.87). CONCLUSION The combination of imaging, genetic, and clinical profiles leads to a more accurate prognosis than the clinical and/or mutation status.
Collapse
Affiliation(s)
- Saima Rathore
- AVID Radiopharmaceuticals, Philadelphia, PA, USA; Eli Lilly and Company, Indianapolis, IN, USA.
| | | | - Ahmad Chaddad
- School of Artificial Intelligence, GUET, Guilin, China
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeeshan Gillani
- Comsats University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Ahmed Abdulkadir
- Center for Research in Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Center for Artificial Intelligence, Zurich University of Applied Sciences, Winterthur, ZH, Switzerland
| |
Collapse
|
22
|
Lee J, Narang S, Martinez J, Rao G, Rao A. Association of graph-based spatial features with overall survival status of glioblastoma patients. Sci Rep 2023; 13:17046. [PMID: 37813981 PMCID: PMC10562480 DOI: 10.1038/s41598-023-44353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/06/2023] [Indexed: 10/11/2023] Open
Abstract
Glioblastoma is the most common malignant brain tumor with less than 15 months median survival. To aid prognosis, there is a need for decision tools that leverage diagnostic modalities such as MRI to inform survival. In this study, we examine higher-order spatial proximity characteristics from habitats and propose two graph-based methods (minimum spanning tree and graph run-length matrix) to characterize spatial heterogeneity over tumor MRI-derived intensity habitats and assess their relationships with overall survival as well as the immune signature status of patients with glioblastoma. A data set of 74 patients was studied based on the availability of post-contrast T1-weighted and T2-weighted fluid attenuated inversion recovery (FLAIR) image data in The Cancer Image Archive (TCIA). We assessed the predictive value of MST- and GRLM-derived features from 2D images for prediction of 12-month survival status and immune signature status of patients with glioblastoma via a receiver operating characteristic curve analysis. For 12-month survival prediction using MST-based method, sensitivity and specificity were 0.82 and 0.79 respectively. For GRLM-based method, sensitivity and specificity were 0.73 and 0.77 respectively. For immune status, sensitivity and specificity were 0.91 and 0.69, respectively, for the GRLM-based method with an immune effector. Our results show that the proposed MST- and GRLM-derived features are predictive of 12-month survival status as well as the immune signature status of patients with glioblastoma. To our knowledge, this is the first application of MST- and GRLM-based proximity analyses for the study of radiologically-defined tumor habitats in glioblastoma.
Collapse
Affiliation(s)
- Joonsang Lee
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Shivali Narang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan Martinez
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Guo Y, Ma Z, Pei D, Duan W, Guo Y, Liu Z, Guan F, Wang Z, Xing A, Guo Z, Luo L, Wang W, Yu B, Zhou J, Ji Y, Yan D, Cheng J, Liu X, Yan J, Zhang Z. Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm. J Magn Reson Imaging 2023; 58:1234-1242. [PMID: 36727433 DOI: 10.1002/jmri.28630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Genetic testing for molecular markers of gliomas sometimes is unavailable because of time-consuming and expensive, even limited tumor specimens or nonsurgery cases. PURPOSE To train a three-class radiomic model classifying three molecular subtypes including isocitrate dehydrogenase (IDH) mutations and 1p/19q-noncodeleted (IDHmut-noncodel), IDH wild-type (IDHwt), IDH-mutant and 1p/19q-codeleted (IDHmut-codel) of adult gliomas and investigate whether radiomic features from diffusion-weighted imaging (DWI) could bring additive value. STUDY TYPE Retrospective. POPULATION A total of 755 patients including 111 IDHmut-noncodel, 571 IDHwt, and 73 IDHmut-codel cases were divided into training (n = 480) and internal validation set (n = 275); 139 patients including 21 IDHmut-noncodel, 104 IDHwt, and 14 IDHmut-codel cases were utilized as external validation set. FIELD STRENGTH/SEQUENCE A 1.5 T or 3.0 T/multiparametric MRI, including T1-weighted (T1), T1-weighted gadolinium contrast-enhanced (T1c), T2-weighted (T2), fluid attenuated inversion recovery (FLAIR), and DWI. ASSESSMENT The performance of multiparametric radiomic model (random-forest model) using 22 selected features from T1, T2, FLAIR, T1c images and apparent diffusion coefficient (ADC) maps, and conventional radiomic model using 20 selected features from T1, T2, FLAIR, and T1c images was assessed in internal and external validation sets by comparing probability values and actual incidence. STATISTICAL TESTS Mann-Whitney U test, Chi-Squared test, Wilcoxon test, receiver operating curve (ROC), and area under the curve (AUC); DeLong analysis. P < 0.05 was statistically significant. RESULTS The multiparametric radiomic model achieved AUC values for IDHmut-noncodel, IDHwt, and IDHmut-codel of 0.8181, 0.8524, and 0.8502 in internal validation set and 0.7571, 0.7779, and 0.7491 in external validation set, respectively. Multiparametric radiomic model showed significantly better diagnostic performance after DeLong analysis, especially in classifying IDHwt and IDHmut-noncodel subtypes. DATA CONCLUSION Radiomic features from DWI could bring additive value and improve the performance of conventional MRI-based radiomic model for classifying the molecular subtypes especially IDHmut-noncodel and IDHwt of adult gliomas. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Yang Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurosurgery, The Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongyi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fangzhan Guan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Aoqi Xing
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhixuan Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Yu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinqiao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
24
|
Liu Z, Hong X, Wang L, Ma Z, Guan F, Wang W, Qiu Y, Zhang X, Duan W, Wang M, Sun C, Zhao Y, Duan J, Sun Q, Liu L, Ding L, Ji Y, Yan D, Liu X, Cheng J, Zhang Z, Li ZC, Yan J. Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas. BMC Cancer 2023; 23:848. [PMID: 37697238 PMCID: PMC10496393 DOI: 10.1186/s12885-023-11338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND We aimed to develop machine learning models for prediction of molecular subgroups (low-risk group and intermediate/high-risk group) and molecular marker (KIAA1549-BRAF fusion) of pediatric low-grade gliomas (PLGGs) based on radiomic features extracted from multiparametric MRI. METHODS 61 patients with PLGGs were included in this retrospective study, which were divided into a training set and an internal validation set at a ratio of 2:1 based on the molecular subgroups or the molecular marker. The patients were classified into low-risk and intermediate/high-risk groups, BRAF fusion positive and negative groups, respectively. We extracted 5929 radiomic features from multiparametric MRI. Thereafter, we removed redundant features, trained random forest models on the training set for predicting the molecular subgroups or the molecular marker, and validated their performance on the internal validation set. The performance of the prediction model was verified by 3-fold cross-validation. RESULTS We constructed the classification model differentiating low-risk PLGGs from intermediate/high-risk PLGGs using 4 relevant features, with an AUC of 0.833 and an accuracy of 76.2% in the internal validation set. In the prediction model for predicting KIAA1549-BRAF fusion using 4 relevant features, an AUC of 0.818 and an accuracy of 81.0% were achieved in the internal validation set. CONCLUSIONS The current study demonstrates that MRI radiomics is able to predict molecular subgroups of PLGGs and KIAA1549-BRAF fusion with satisfying sensitivity. TRIAL REGISTRATION This study was retrospectively registered at clinicaltrials.gov (NCT04217018).
Collapse
Grants
- 2019YFC0117704 the National Key R&D Program of China
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 2021B0101420006 the Key-Area Research and Development Program of Guangdong Province
- YXKC2022061 the Excellent Youth Talent Cultivation Program of Innovation in Health Science and Technology of Henan Province
- SBGJ202002062 the Key Program of Medical Science and Technique Foundation of Henan Province
- the National Key R&D Program of China
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xuanke Hong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Linglong Wang
- Yanjing Medical College of Capital Medical University, Beijing, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Fangzhan Guan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xueping Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Chen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Ding
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518045, China.
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China.
| |
Collapse
|
25
|
Hazari PP, Yadav SK, Kumar PK, Dhingra V, Rani N, Kumar R, Singh B, Mishra AK. Preclinical and Clinical Use of Indigenously Developed 99mTc-Diethylenetriaminepentaacetic Acid-Bis-Methionine: l-Type Amino Acid Transporter 1-Targeted Single Photon Emission Computed Tomography Radiotracer for Glioma Management. ACS Pharmacol Transl Sci 2023; 6:1233-1247. [PMID: 37705592 PMCID: PMC10496141 DOI: 10.1021/acsptsci.3c00091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/15/2023]
Abstract
A new era in tumor classification, diagnosis, and prognostic evaluation has begun as a consequence of recent developments in the molecular and genetic characterization of central nervous system tumors. In this newly emerging era, molecular imaging modalities are essential for preoperative diagnosis, surgical planning, targeted treatment, and post-therapy evaluation of gliomas. The radiotracers are able to identify brain tumors, distinguish between low- and high-grade lesions, confirm a patient's eligibility for theranostics, and assess post-radiation alterations. We previously synthesized and reported the novel l-type amino acid transporter 1 (LAT-1)-targeted amino acid derivative in light of the use of amino acid derivatives in imaging technologies. Further, we have developed a single vial ready to label Tc-lyophilized kit preparations of diethylenetriaminepentaacetic acid-bis-methionine [DTPA-bis(Met)], also referred to as methionine-diethylenetriaminepentaacetic acid-methionine (MDM) and evaluated its imaging potential in numerous clinical studies. This review summarizes our previous publications on 99mTc-DTPA-bis(Met) in different clinical studies such as detection of breast cancer, as a prognostic marker, in detection of recurrent/residual gliomas, for differentiation of recurrent/residual gliomas from radiation necrosis, and for comparison of 99mTc-DTPA-bis(Met) with 11C-L-methionine (11C-MET), with relevant literature on imaging modalities in glioma management.
Collapse
Affiliation(s)
- Puja Panwar Hazari
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| | - Shiv Kumar Yadav
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| | - Pardeep Kumar Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health & Neurosciences, Bangalore-560029, India
| | - Vandana Dhingra
- All India Institute of Medical Sciences, Rishikesh-249203, India
| | - Nisha Rani
- Division of Psychiatric Neuroimaging, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine 600 N. Wolfe Street, Phipps 300, Baltimore, Maryland 21287, United States
| | - Rakesh Kumar
- All India Institute of Medical Sciences, Delhi-110029, India
| | - Baljinder Singh
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh-160012, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi- 110054, India
| |
Collapse
|
26
|
Das A, Ding S, Liu R, Huang C. Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images. Cancers (Basel) 2023; 15:3614. [PMID: 37509277 PMCID: PMC10377296 DOI: 10.3390/cancers15143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Predicting the eventual volume of tumor cells, that might proliferate from a given tumor, can help in cancer early detection and medical procedure planning to prevent their migration to other organs. In this work, a new statistical framework is proposed using Bayesian techniques for detecting the eventual volume of cells expected to proliferate from a glioblastoma (GBM) tumor. Specifically, the tumor region was first extracted using a parallel image segmentation algorithm. Once the tumor region was determined, we were interested in the number of cells that could proliferate from this tumor until its survival time. For this, we constructed the posterior distribution of the tumor cell numbers based on the proposed likelihood function and a certain prior volume. Furthermore, we extended the detection model and conducted a Bayesian regression analysis by incorporating radiomic features to discover those non-tumor cells that remained undetected. The main focus of the study was to develop a time-independent prediction model that could reliably predict the ultimate volume a malignant tumor of the fourth-grade severity could attain and which could also determine if the incorporation of the radiomic properties of the tumor enhanced the chances of no malignant cells remaining undetected.
Collapse
Affiliation(s)
- Anisha Das
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Shengxian Ding
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Chao Huang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
27
|
Sun T, Wang Y, Liu X, Li Z, Zhang J, Lu J, Qu L, Haller S, Duan Y, Zhuo Z, Cheng D, Xu X, Jia W, Liu Y. Deep learning based on preoperative magnetic resonance (MR) images improves the predictive power of survival models in primary spinal cord astrocytomas. Neuro Oncol 2023; 25:1157-1165. [PMID: 36562243 PMCID: PMC10237430 DOI: 10.1093/neuonc/noac280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prognostic models for spinal cord astrocytoma patients are lacking due to the low incidence of the disease. Here, we aim to develop a fully automated deep learning (DL) pipeline for stratified overall survival (OS) prediction based on preoperative MR images. METHODS A total of 587 patients diagnosed with intramedullary tumors were retrospectively enrolled in our hospital to develop an automated pipeline for tumor segmentation and OS prediction. The automated pipeline included a T2WI-based tumor segmentation model and 3 cascaded binary OS prediction models (1-year, 3-year, and 5-year models). For the tumor segmentation model, 439 cases of intramedullary tumors were used to model training and testing using a transfer learning strategy. A total of 138 patients diagnosed with astrocytomas were included to train and test the OS prediction models via 10 × 10-fold cross-validation using CNNs. RESULTS The dice of the tumor segmentation model with the test set was 0.852. The results indicated that the best input of OS prediction models was a combination of T2W and T1C images and the tumor mask. The 1-year, 3-year, and 5-year automated OS prediction models achieved accuracies of 86.0%, 84.0%, and 88.0% and AUCs of 0.881 (95% CI 0.839-0.918), 0.862 (95% CI 0.827-0.901), and 0.905 (95% CI 0.867-0.942), respectively. The automated DL pipeline achieved 4-class OS prediction (<1 year, 1-3 years, 3-5 years, and >5 years) with 75.3% accuracy. CONCLUSIONS We proposed an automated DL pipeline for segmenting spinal cord astrocytomas and stratifying OS based on preoperative MR images.
Collapse
Affiliation(s)
- Ting Sun
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yongzhi Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xing Liu
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhaohui Li
- Department of Machine learning, BioMind Inc., Beijing, 100070, China
| | - Jie Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Radiology, Beijing Renhe Hospital, Beijing 102600, China
| | - Jing Lu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
- Department of Radiology, Third Medical Center of Chinese PLA General Hospital, Beijing 100089, China
| | - Liying Qu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Sven Haller
- Department of Imaging and Medical Informatics, University Hospitals of Geneva and Faculty of Medicine of the University of Geneva, Geneva, Switzerland
| | - Yunyun Duan
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhizheng Zhuo
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Dan Cheng
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiaolu Xu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenqing Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
28
|
Jiang S, Wen Z, Ahn SS, Cai K, Paech D, Eberhart CG, Zhou J. Applications of chemical exchange saturation transfer magnetic resonance imaging in identifying genetic markers in gliomas. NMR IN BIOMEDICINE 2023; 36:e4731. [PMID: 35297117 PMCID: PMC10557022 DOI: 10.1002/nbm.4731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer (CEST) imaging is an important molecular magnetic resonance imaging technique that can image numerous low-concentration biomolecules with water-exchangeable protons (such as cellular proteins) and tissue pH. CEST, or more specially amide proton transfer-weighted imaging, has been widely used for the detection, diagnosis, and response assessment of brain tumors, and its feasibility in identifying molecular markers in gliomas has also been explored in recent years. In this paper, after briefing on the basic principles and quantification methods of CEST imaging, we review its early applications in identifying isocitrate dehydrogenase mutation status, MGMT methylation status, 1p/19q deletion status, and H3K27M mutation status in gliomas. Finally, we discuss the limitations or weaknesses in these studies.
Collapse
Affiliation(s)
- Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
- Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | | | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
29
|
Laudicella R, Mantarro C, Catalfamo B, Alongi P, Gaeta M, Minutoli F, Baldari S, Bisdas S. PET Imaging in Gliomas. RADIOLOGY‐NUCLEAR MEDICINE DIAGNOSTIC IMAGING 2023:194-218. [DOI: 10.1002/9781119603627.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Machine Learning Models to Forecast Outcomes of Pituitary Surgery: A Systematic Review in Quality of Reporting and Current Evidence. Brain Sci 2023; 13:brainsci13030495. [PMID: 36979305 PMCID: PMC10046799 DOI: 10.3390/brainsci13030495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Background: The complex nature and heterogeneity involving pituitary surgery results have increased interest in machine learning (ML) applications for prediction of outcomes over the last decade. This study aims to systematically review the characteristics of ML models involving pituitary surgery outcome prediction and assess their reporting quality. Methods: We searched the PubMed, Scopus, and Web of Knowledge databases for publications on the use of ML to predict pituitary surgery outcomes. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) to assess report quality. Our search strategy was based on the terms “artificial intelligence”, “machine learning”, and “pituitary”. Results: 20 studies were included in this review. The principal models reported in each article were post-surgical endocrine outcomes (n = 10), tumor management (n = 3), and intra- and postoperative complications (n = 7). Overall, the included studies adhered to a median of 65% (IQR = 60–72%) of TRIPOD criteria, ranging from 43% to 83%. The median reported AUC was 0.84 (IQR = 0.80–0.91). The most popular algorithms were support vector machine (n = 5) and random forest (n = 5). Only two studies reported external validation and adherence to any reporting guideline. Calibration methods were not reported in 15 studies. No model achieved the phase of actual clinical applicability. Conclusion: Applications of ML in the prediction of pituitary outcomes are still nascent, as evidenced by the lack of any model validated for clinical practice. Although studies have demonstrated promising results, greater transparency in model development and reporting is needed to enable their use in clinical practice. Further adherence to reporting guidelines can help increase AI’s real-world utility and improve clinical practice.
Collapse
|
31
|
Wang R, Chaudhari P, Davatzikos C. Editorial for "Non-Invasive Evaluation of the Notch Signaling Pathway via Radiomic Signatures Based on Multiparametric MRI in Association With Biological Functions of Patients With Glioma: A Multi-Institutional Study". J Magn Reson Imaging 2023; 57:897-898. [PMID: 35903917 PMCID: PMC10077882 DOI: 10.1002/jmri.28377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Rongguang Wang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pratik Chaudhari
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Radiomic features from dynamic susceptibility contrast perfusion-weighted imaging improve the three-class prediction of molecular subtypes in patients with adult diffuse gliomas. Eur Radiol 2023; 33:3455-3466. [PMID: 36853347 DOI: 10.1007/s00330-023-09459-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Accepted: 01/20/2023] [Indexed: 03/01/2023]
Abstract
OBJECTIVES To investigate whether radiomic features extracted from dynamic susceptibility contrast perfusion-weighted imaging (DSC-PWI) can improve the prediction of the molecular subtypes of adult diffuse gliomas, and to further develop and validate a multimodal radiomic model by integrating radiomic features from conventional and perfusion MRI. METHODS We extracted 1197 radiomic features from each sequence of conventional MRI and DSC-PWI, respectively. The Boruta algorithm was used for feature selection and combination, and a three-class random forest method was applied to construct the models. We also constructed a combined model by integrating radiomic features and clinical metrics. The models' diagnostic performance for discriminating the molecular subtypes (IDH wild type [IDHwt], IDH mutant and 1p/19q-noncodeleted [IDHmut-noncodel], and IDH mutant and 1p/19q-codeleted [IDHmut-codel]) was compared using AUCs in the validation set. RESULTS We included 272 patients (training set, n = 166; validation set, n = 106) with grade II-IV gliomas (mean age, 48.7 years; range, 19-77 years). The proportions of the molecular subtypes were 66.2% IDHwt, 15.1% IDHmut-noncodel, and 18.8% IDHmut-codel. Nineteen radiomic features (13 from conventional MRI and 6 from DSC-PWI) were selected to build the multimodal radiomic model. In the validation set, the multimodal radiomic model showed better performance than the conventional radiomic model did in predicting the IDHwt and IDHmut-codel subtypes, which was comparable to the conventional radiomic model in predicting the IDHmut-noncodel subtype. The multimodal radiomic model yielded similar performance as the combined model in predicting the three molecular subtypes. CONCLUSIONS Adding DSC-PWI to conventional MRI can improve molecular subtype prediction in patients with diffuse gliomas. KEY POINTS • The multimodal radiomic model outperformed conventional MRI when predicting both the IDH wild type and IDH mutant and 1p/19q-codeleted subtypes of gliomas. • The multimodal radiomic model showed comparable performance to the combined model in the prediction of the three molecular subtypes. • Radiomic features from T1-weighted gadolinium contrast-enhanced and relative cerebral blood volume images played an important role in the prediction of molecular subtypes.
Collapse
|
33
|
Lechpammer M, Mahammedi A, Pomeranz Krummel DA, Sengupta S. Lessons learned from evolving frameworks in adult glioblastoma. HANDBOOK OF CLINICAL NEUROLOGY 2023; 192:131-140. [PMID: 36796938 DOI: 10.1016/b978-0-323-85538-9.00011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive malignant adult brain tumor. Significant effort has been directed to achieve a molecular subtyping of GBM to impact treatment. The discovery of new unique molecular alterations has resulted in a more effective classification of tumors and has opened the door to subtype-specific therapeutic targets. Morphologically identical GBM may have different genetic, epigenetic, and transcriptomic alterations and therefore different progression trajectories and response to treatments. With a transition to molecularly guided diagnosis, there is now a potential to personalize and successfully manage this tumor type to improve outcomes. The steps to achieve subtype-specific molecular signatures can be extrapolated to other neuroproliferative as well as neurodegenerative disorders.
Collapse
Affiliation(s)
- Mirna Lechpammer
- Foundation Medicine, Inc., Cambridge, MA, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States
| | - Abdelkader Mahammedi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Daniel A Pomeranz Krummel
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Soma Sengupta
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
34
|
McCague C, Ramlee S, Reinius M, Selby I, Hulse D, Piyatissa P, Bura V, Crispin-Ortuzar M, Sala E, Woitek R. Introduction to radiomics for a clinical audience. Clin Radiol 2023; 78:83-98. [PMID: 36639175 DOI: 10.1016/j.crad.2022.08.149] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Radiomics is a rapidly developing field of research focused on the extraction of quantitative features from medical images, thus converting these digital images into minable, high-dimensional data, which offer unique biological information that can enhance our understanding of disease processes and provide clinical decision support. To date, most radiomics research has been focused on oncological applications; however, it is increasingly being used in a raft of other diseases. This review gives an overview of radiomics for a clinical audience, including the radiomics pipeline and the common pitfalls associated with each stage. Key studies in oncology are presented with a focus on both those that use radiomics analysis alone and those that integrate its use with other multimodal data streams. Importantly, clinical applications outside oncology are also presented. Finally, we conclude by offering a vision for radiomics research in the future, including how it might impact our practice as radiologists.
Collapse
Affiliation(s)
- C McCague
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - S Ramlee
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - M Reinius
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - I Selby
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - D Hulse
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - P Piyatissa
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - V Bura
- Department of Radiology, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Radiology and Medical Imaging, County Clinical Emergency Hospital, Cluj-Napoca, Romania
| | - M Crispin-Ortuzar
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK
| | - E Sala
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - R Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK; Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK; Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Research Centre for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| |
Collapse
|
35
|
Hooper GW, Ginat DT. MRI radiomics and potential applications to glioblastoma. Front Oncol 2023; 13:1134109. [PMID: 36874083 PMCID: PMC9982088 DOI: 10.3389/fonc.2023.1134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
MRI plays an important role in the evaluation of glioblastoma, both at initial diagnosis and follow up after treatment. Quantitative analysis via radiomics can augment the interpretation of MRI in terms of providing insights regarding the differential diagnosis, genotype, treatment response, and prognosis. The various MRI radiomic features of glioblastoma are reviewed in this article.
Collapse
Affiliation(s)
- Grayson W Hooper
- Landstuhl Regional Medical Center, Department of Radiology, Landstuhl, Germany
| | - Daniel T Ginat
- University of Chicago, Department of Radiology, Chicago, IL, United States
| |
Collapse
|
36
|
Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging. J Comput Assist Tomogr 2023; 47:129-135. [PMID: 36194851 DOI: 10.1097/rct.0000000000001386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Recurrence is a major factor in the poor prognosis of patients with glioma. The aim of this study was to predict glioma recurrence using machine learning based on radiomic features. METHODS We recruited 77 glioma patients, consisting of 57 newly diagnosed patients and 20 patients with recurrence. After extracting the radiomic features from T2-weighted images, the data set was randomly divided into training (58 patients) and testing (19 patients) cohorts. An automated machine learning method (the Tree-based Pipeline Optimization Tool) was applied to generate 10 independent recurrence prediction models. The final model was determined based on the area under the curve (AUC) and average specificity. Moreover, an independent validation set of 20 patients with glioma was used to verify the model performance. RESULTS Recurrence in glioma patients was successfully predicting by machine learning using radiomic features. Among the 10 recurrence prediction models, the best model achieved an accuracy of 0.81, an AUC value of 0.85, and a specificity of 0.69 in the testing cohort, but an accuracy of 0.75 and an AUC value of 0.87 in the independent validation set. CONCLUSIONS Our algorithm that is generated by machine learning exhibits promising power and may predict recurrence noninvasively, thereby offering potential value for the early development of interventions to delay or prevent recurrence in glioma patients.
Collapse
|
37
|
Li H, He J, Li M, Li K, Pu X, Guo Y. Immune landscape-based machine-learning-assisted subclassification, prognosis, and immunotherapy prediction for glioblastoma. Front Immunol 2022; 13:1027631. [PMID: 36532035 PMCID: PMC9751405 DOI: 10.3389/fimmu.2022.1027631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction As a malignant brain tumor, glioblastoma (GBM) is characterized by intratumor heterogeneity, a worse prognosis, and highly invasive, lethal, and refractory natures. Immunotherapy has been becoming a promising strategy to treat diverse cancers. It has been known that there are highly heterogeneous immunosuppressive microenvironments among different GBM molecular subtypes that mainly include classical (CL), mesenchymal (MES), and proneural (PN), respectively. Therefore, an in-depth understanding of immune landscapes among them is essential for identifying novel immune markers of GBM. Methods and results In the present study, based on collecting the largest number of 109 immune signatures, we aim to achieve a precise diagnosis, prognosis, and immunotherapy prediction for GBM by performing a comprehensive immunogenomic analysis. Firstly, machine-learning (ML) methods were proposed to evaluate the diagnostic values of these immune signatures, and the optimal classifier was constructed for accurate recognition of three GBM subtypes with robust and promising performance. The prognostic values of these signatures were then confirmed, and a risk score was established to divide all GBM patients into high-, medium-, and low-risk groups with a high predictive accuracy for overall survival (OS). Therefore, complete differential analysis across GBM subtypes was performed in terms of the immune characteristics along with clinicopathological and molecular features, which indicates that MES shows much higher immune heterogeneity compared to CL and PN but has significantly better immunotherapy responses, although MES patients may have an immunosuppressive microenvironment and be more proinflammatory and invasive. Finally, the MES subtype is proved to be more sensitive to 17-AAG, docetaxel, and erlotinib using drug sensitivity analysis and three compounds of AS-703026, PD-0325901, and MEK1-2-inhibitor might be potential therapeutic agents. Conclusion Overall, the findings of this research could help enhance our understanding of the tumor immune microenvironment and provide new insights for improving the prognosis and immunotherapy of GBM patients.
Collapse
|
38
|
García-García S, García-Galindo M, Arrese I, Sarabia R, Cepeda S. Current Evidence, Limitations and Future Challenges of Survival Prediction for Glioblastoma Based on Advanced Noninvasive Methods: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121746. [PMID: 36556948 PMCID: PMC9786785 DOI: 10.3390/medicina58121746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives: Survival estimation for patients diagnosed with Glioblastoma (GBM) is an important information to consider in patient management and communication. Despite some known risk factors, survival estimation remains a major challenge. Novel non-invasive technologies such as radiomics and artificial intelligence (AI) have been implemented to increase the accuracy of these predictions. In this article, we reviewed and discussed the most significant available research on survival estimation for GBM through advanced non-invasive methods. Materials and Methods: PubMed database was queried for articles reporting on survival prognosis for GBM through advanced image and data management methods. Articles including in their title or abstract the following terms were initially screened: ((glioma) AND (survival)) AND ((artificial intelligence) OR (radiomics)). Exclusively English full-text articles, reporting on humans, published as of 1 September 2022 were considered. Articles not reporting on overall survival, evaluating the effects of new therapies or including other tumors were excluded. Research with a radiomics-based methodology were evaluated using the radiomics quality score (RQS). Results: 382 articles were identified. After applying the inclusion criteria, 46 articles remained for further analysis. These articles were thoroughly assessed, summarized and discussed. The results of the RQS revealed some of the limitations of current radiomics investigation on this field. Limitations of analyzed studies included data availability, patient selection and heterogeneity of methodologies. Future challenges on this field are increasing data availability, improving the general understanding of how AI handles data and establishing solid correlations between image features and tumor's biology. Conclusions: Radiomics and AI methods of data processing offer a new paradigm of possibilities to tackle the question of survival prognosis in GBM.
Collapse
Affiliation(s)
- Sergio García-García
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
- Correspondence:
| | - Manuel García-Galindo
- Faculty of Medicine, University of Valladolid, Avenida Ramón y Cajal 7, 47003 Valladolid, Spain
| | - Ignacio Arrese
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| | - Rosario Sarabia
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| | - Santiago Cepeda
- Department of Neurosurgery, University Hospital Río Hortega, Dulzaina 2, 47012 Valladolid, Spain
| |
Collapse
|
39
|
Cost Matrix of Molecular Pathology in Glioma-Towards AI-Driven Rational Molecular Testing and Precision Care for the Future. Biomedicines 2022; 10:biomedicines10123029. [PMID: 36551786 PMCID: PMC9775648 DOI: 10.3390/biomedicines10123029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
Gliomas are the most common and aggressive primary brain tumors. Gliomas carry a poor prognosis because of the tumor's resistance to radiation and chemotherapy leading to nearly universal recurrence. Recent advances in large-scale genomic research have allowed for the development of more targeted therapies to treat glioma. While precision medicine can target specific molecular features in glioma, targeted therapies are often not feasible due to the lack of actionable markers and the high cost of molecular testing. This review summarizes the clinically relevant molecular features in glioma and the current cost of care for glioma patients, focusing on the molecular markers and meaningful clinical features that are linked to clinical outcomes and have a realistic possibility of being measured, which is a promising direction for precision medicine using artificial intelligence approaches.
Collapse
|
40
|
Lam LHT, Do DT, Diep DTN, Nguyet DLN, Truong QD, Tri TT, Thanh HN, Le NQK. Molecular subtype classification of low-grade gliomas using magnetic resonance imaging-based radiomics and machine learning. NMR IN BIOMEDICINE 2022; 35:e4792. [PMID: 35767281 DOI: 10.1002/nbm.4792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 05/22/2023]
Abstract
In 2016, the World Health Organization (WHO) updated the glioma classification by incorporating molecular biology parameters, including low-grade glioma (LGG). In the new scheme, LGGs have three molecular subtypes: isocitrate dehydrogenase (IDH)-mutated 1p/19q-codeleted, IDH-mutated 1p/19q-noncodeleted, and IDH-wild type 1p/19q-noncodeleted entities. This work proposes a model prediction of LGG molecular subtypes using magnetic resonance imaging (MRI). MR images were segmented and converted into radiomics features, thereby providing predictive information about the brain tumor classification. With 726 raw features obtained from the feature extraction procedure, we developed a hybrid machine learning-based radiomics by incorporating a genetic algorithm and eXtreme Gradient Boosting (XGBoost) classifier, to ascertain 12 optimal features for tumor classification. To resolve imbalanced data, the synthetic minority oversampling technique (SMOTE) was applied in our study. The XGBoost algorithm outperformed the other algorithms on the training dataset by an accuracy value of 0.885. We continued evaluating the XGBoost model, then achieved an overall accuracy of 0.6905 for the three-subtype classification of LGGs on an external validation dataset. Our model is among just a few to have resolved the three-subtype LGG classification challenge with high accuracy compared with previous studies performing similar work.
Collapse
Affiliation(s)
- Luu Ho Thanh Lam
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Duyen Thi Do
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Doan Thi Ngoc Diep
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | | | | | - Huynh Ngoc Thanh
- Department of Pediatrics, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Khanh Le
- Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center for Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan
- Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
41
|
Chung H, Seo H, Choi SH, Park CK, Kim TM, Park SH, Won JK, Lee JH, Lee ST, Lee JY, Hwang I, Kang KM, Yun TJ. Cluster Analysis of DSC MRI, Dynamic Contrast-Enhanced MRI, and DWI Parameters Associated with Prognosis in Patients with Glioblastoma after Removal of the Contrast-Enhancing Component: A Preliminary Study. AJNR Am J Neuroradiol 2022; 43:1559-1566. [PMID: 36175084 PMCID: PMC9731243 DOI: 10.3174/ajnr.a7655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE No report has been published on the use of DSC MR imaging, DCE MR imaging, and DWI parameters in combination to create a prognostic prediction model in glioblastoma patients. The aim of this study was to develop a machine learning-based model to find preoperative multiparametric MR imaging parameters associated with prognosis in patients with glioblastoma. Normalized CBV, volume transfer constant, and ADC of the nonenhancing T2 high-signal-intensity lesions were evaluated using K-means clustering. MATERIALS AND METHODS A total of 142 patients with glioblastoma who underwent preoperative MR imaging and total resection were included in this retrospective study. From the normalized CBV, volume transfer constant, and ADC maps, the parametric data were sorted using the K-means clustering method. Patients were divided into training and test sets (ratio, 1:1), and the optimal number of clusters was determined using receiver operating characteristic analysis. Kaplan-Meier survival analysis and log-rank tests were performed to identify potential parametric predictors. A multivariate Cox proportional hazard model was conducted to adjust for clinical predictors. RESULTS The nonenhancing T2 high-signal-intensity lesions were divided into 6 clusters. The cluster (class 4) with the relatively low normalized CBV and volume transfer constant value and the lowest ADC values was most associated with predicting glioblastoma prognosis. The optimal cutoff of the class 4 volume fraction of nonenhancing T2 high-signal-intensity lesions predicting 1-year progression-free survival was 9.70%, below which the cutoff was associated with longer progression-free survival. Two Kaplan-Meier curves based on the cutoff value showed a statistically significant difference (P = .037). When we adjusted for all clinical predictors, the cluster with the relatively low normalized CBV and volume transfer constant values and the lowest ADC value was an independent prognostic marker (hazard ratio, 3.04; P = .048). The multivariate Cox proportional hazard model showed a concordance index of 0.699 for progression-free survival. CONCLUSIONS Our model showed that nonenhancing T2 high-signal-intensity lesions with the relatively low normalized CBV, low volume transfer constant values, and the lowest ADC values could serve as useful prognostic imaging markers for predicting survival outcomes in patients with glioblastoma.
Collapse
Affiliation(s)
- H Chung
- From the Seoul National University College of Medicine (H.C., H.S.), Seoul, Korea
| | - H Seo
- From the Seoul National University College of Medicine (H.C., H.S.), Seoul, Korea
| | - S H Choi
- Department of Radiology (S.H.C., J.Y.L., I.H., K.M.K., T.J.Y.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Center for Nanoparticle Research (S.H.C.), Institute for Basic Science, Seoul, Korea
- School of Chemical and Biological Engineering (S.H.C.), Seoul National University, Seoul, Korea
| | - C-K Park
- Department of Neurosurgery (C.-K.P.), Internal Medicine
| | - T M Kim
- Cancer Research Institute (T.M.K.)
| | - S-H Park
- Departments of Pathology (S.-H.P., J.K.W.), Radiation Oncology
| | - J K Won
- Departments of Pathology (S.-H.P., J.K.W.), Radiation Oncology
| | - J H Lee
- Cancer Research Institute (J.H.L.)
| | - S-T Lee
- Neurology (S.-T.L.), Seoul National University Hospital, Seoul, Korea
| | - J Y Lee
- Department of Radiology (S.H.C., J.Y.L., I.H., K.M.K., T.J.Y.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - I Hwang
- Department of Radiology (S.H.C., J.Y.L., I.H., K.M.K., T.J.Y.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - K M Kang
- Department of Radiology (S.H.C., J.Y.L., I.H., K.M.K., T.J.Y.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - T J Yun
- Department of Radiology (S.H.C., J.Y.L., I.H., K.M.K., T.J.Y.), Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
42
|
Pati S, Baid U, Edwards B, Sheller MJ, Foley P, Reina GA, Thakur S, Sako C, Bilello M, Davatzikos C, Martin J, Shah P, Menze B, Bakas S. The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research. Phys Med Biol 2022; 67:10.1088/1361-6560/ac9449. [PMID: 36137534 PMCID: PMC9592188 DOI: 10.1088/1361-6560/ac9449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
Objective.De-centralized data analysis becomes an increasingly preferred option in the healthcare domain, as it alleviates the need for sharing primary patient data across collaborating institutions. This highlights the need for consistent harmonized data curation, pre-processing, and identification of regions of interest based on uniform criteria.Approach.Towards this end, this manuscript describes theFederatedTumorSegmentation (FeTS) tool, in terms of software architecture and functionality.Main results.The primary aim of the FeTS tool is to facilitate this harmonized processing and the generation of gold standard reference labels for tumor sub-compartments on brain magnetic resonance imaging, and further enable federated training of a tumor sub-compartment delineation model across numerous sites distributed across the globe, without the need to share patient data.Significance.Building upon existing open-source tools such as the Insight Toolkit and Qt, the FeTS tool is designed to enable training deep learning models targeting tumor delineation in either centralized or federated settings. The target audience of the FeTS tool is primarily the computational researcher interested in developing federated learning models, and interested in joining a global federation towards this effort. The tool is open sourced athttps://github.com/FETS-AI/Front-End.
Collapse
Affiliation(s)
- Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Ujjwal Baid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | - Siddhesh Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Bjoern Menze
- Department of Informatics, Technical University of Munich, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
43
|
Wang S, Lin C, Kolomaya A, Ostdiek-Wille GP, Wong J, Cheng X, Lei Y, Liu C. Compute Tomography Radiomics Analysis on Whole Pancreas Between Healthy Individual and Pancreatic Ductal Adenocarcinoma Patients: Uncertainty Analysis and Predictive Modeling. Technol Cancer Res Treat 2022; 21:15330338221126869. [PMID: 36184987 PMCID: PMC9530578 DOI: 10.1177/15330338221126869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Radiomics is a rapidly growing field that quantitatively extracts image features
in a high-throughput manner from medical imaging. In this study, we analyzed the
radiomics features of the whole pancreas between healthy individuals and
pancreatic cancer patients, and we established a predictive model that can
distinguish cancer patients from healthy individuals based on these radiomics
features. Methods: We retrospectively collected venous-phase scans
of contrast-enhanced computed tomography (CT) images from 181 control subjects
and 85 cancer case subjects for radiomics analysis and predictive modeling. An
attending radiation oncologist delineated the pancreas for all the subjects in
the Varian Eclipse system, and we extracted 924 radiomics features using
PyRadiomics. We established a feature selection pipeline to exclude redundant or
unstable features. We randomly selected 189 cases (60 cancer and 129 control) as
the training set. The remaining 77 subjects (25 cancer and 52 control) as a test
set. We trained a Random Forest model utilizing the stable features to
distinguish the cancer patients from the healthy individuals on the training
dataset. We analyzed the performance of our best model by running 5-fold
cross-validations on the training dataset and applied our best model to the test
set. Results: We identified that 91 radiomics features are stable
against various uncertainty sources, including bin width, resampling, image
transformation, image noise, and segmentation uncertainty. Eight of the 91
features are nonredundant. Our final predictive model, using these 8 features,
has achieved a mean area under the receiver operating characteristic curve (AUC)
of 0.99 ± 0.01 on the training dataset (189 subjects) by cross-validation. The
model achieved an AUC of 0.910 on the independent test set (77 subjects) and an
accuracy of 0.935. Conclusion: CT-based radiomics analysis based on
the whole pancreas can distinguish cancer patients from healthy individuals, and
it could potentially become an early detection tool for pancreatic cancer.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Radiation Oncology, University of Nebraska Medical
Center, Omaha, NE, USA,Shuo Wang, PhD, Department of Radiation
Oncology, University of Nebraska Medical Center, 986861 Nebraska Medical Center,
Omaha, NE 68198, USA. Chi Lin, MD, PhD,
Department of Radiation Oncology, University of Nebraska Medical Center, 986861
Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical
Center, Omaha, NE, USA
| | - Alexander Kolomaya
- College of Medicine, University of Nebraska Medical
Center, Omaha, NE, USA
| | | | - Jeffrey Wong
- Department of Radiation Oncology, University of Nebraska Medical
Center, Omaha, NE, USA
| | - Xiaoyue Cheng
- Department of Mathematics, University of Nebraska
Omaha, Omaha, NE, USA
| | - Yu Lei
- Department of Radiation Oncology, Barrow Neurological
Institute, Phoenix, AZ, USA
| | | |
Collapse
|
44
|
Singh NM, Harrod JB, Subramanian S, Robinson M, Chang K, Cetin-Karayumak S, Dalca AV, Eickhoff S, Fox M, Franke L, Golland P, Haehn D, Iglesias JE, O'Donnell LJ, Ou Y, Rathi Y, Siddiqi SH, Sun H, Westover MB, Whitfield-Gabrieli S, Gollub RL. How Machine Learning is Powering Neuroimaging to Improve Brain Health. Neuroinformatics 2022; 20:943-964. [PMID: 35347570 PMCID: PMC9515245 DOI: 10.1007/s12021-022-09572-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/31/2022]
Abstract
This report presents an overview of how machine learning is rapidly advancing clinical translational imaging in ways that will aid in the early detection, prediction, and treatment of diseases that threaten brain health. Towards this goal, we aresharing the information presented at a symposium, "Neuroimaging Indicators of Brain Structure and Function - Closing the Gap Between Research and Clinical Application", co-hosted by the McCance Center for Brain Health at Mass General Hospital and the MIT HST Neuroimaging Training Program on February 12, 2021. The symposium focused on the potential for machine learning approaches, applied to increasingly large-scale neuroimaging datasets, to transform healthcare delivery and change the trajectory of brain health by addressing brain care earlier in the lifespan. While not exhaustive, this overview uniquely addresses many of the technical challenges from image formation, to analysis and visualization, to synthesis and incorporation into the clinical workflow. Some of the ethical challenges inherent to this work are also explored, as are some of the regulatory requirements for implementation. We seek to educate, motivate, and inspire graduate students, postdoctoral fellows, and early career investigators to contribute to a future where neuroimaging meaningfully contributes to the maintenance of brain health.
Collapse
Affiliation(s)
- Nalini M Singh
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jordan B Harrod
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sandya Subramanian
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mitchell Robinson
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ken Chang
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | | | - Simon Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7) Research Centre Jülich, Jülich, Germany
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital and Harvard Medical School, 02115, Boston, USA
| | - Loraine Franke
- University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel Haehn
- University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Juan Eugenio Iglesias
- Centre for Medical Image Computing, University College London, London, UK
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, MA, 02115, Boston, USA
| | - Yangming Ou
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | - Shan H Siddiqi
- Department of Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, 02115, USA
| | - Haoqi Sun
- Department of Neurology and McCance Center for Brain Health / Harvard Medical School, Massachusetts General Hospital, Boston, 02114, USA
| | - M Brandon Westover
- Department of Neurology and McCance Center for Brain Health / Harvard Medical School, Massachusetts General Hospital, Boston, 02114, USA
| | | | - Randy L Gollub
- Department of Psychiatry and Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
45
|
di Noia C, Grist JT, Riemer F, Lyasheva M, Fabozzi M, Castelli M, Lodi R, Tonon C, Rundo L, Zaccagna F. Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI. Diagnostics (Basel) 2022; 12:diagnostics12092125. [PMID: 36140526 PMCID: PMC9497964 DOI: 10.3390/diagnostics12092125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases, have promoted this rapid development. This narrative review of the current state-of-the-art aimed to survey current applications of AI in predicting survival in patients with brain tumors, with a focus on Magnetic Resonance Imaging (MRI). An extensive search was performed on PubMed and Google Scholar using a Boolean research query based on MeSH terms and restricting the search to the period between 2012 and 2022. Fifty studies were selected, mainly based on Machine Learning (ML), Deep Learning (DL), radiomics-based methods, and methods that exploit traditional imaging techniques for survival assessment. In addition, we focused on two distinct tasks related to survival assessment: the first on the classification of subjects into survival classes (short and long-term or eventually short, mid and long-term) to stratify patients in distinct groups. The second focused on quantification, in days or months, of the individual survival interval. Our survey showed excellent state-of-the-art methods for the first, with accuracy up to ∼98%. The latter task appears to be the most challenging, but state-of-the-art techniques showed promising results, albeit with limitations, with C-Index up to ∼0.91. In conclusion, according to the specific task, the available computational methods perform differently, and the choice of the best one to use is non-univocal and dependent on many aspects. Unequivocally, the use of features derived from quantitative imaging has been shown to be advantageous for AI applications, including survival prediction. This evidence from the literature motivates further research in the field of AI-powered methods for survival prediction in patients with brain tumors, in particular, using the wealth of information provided by quantitative MRI techniques.
Collapse
Affiliation(s)
- Christian di Noia
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
| | - James T. Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford Centre for Clinical Magnetic Research Imaging, University of Oxford, Oxford OX3 9DU, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Maria Lyasheva
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Miriana Fabozzi
- Centro Medico Polispecialistico (CMO), 80058 Torre Annunziata, Italy
| | - Mauro Castelli
- NOVA Information Management School (NOVA IMS), Universidade NOVA de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Leonardo Rundo
- Department of Information and Electrical Engineering and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy
| | - Fulvio Zaccagna
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, 40125 Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
- Correspondence: ; Tel.: +39-0514969951
| |
Collapse
|
46
|
Yu X, Wu Y, Bai Y, Han H, Chen L, Gao H, Wei H, Wang M. A lightweight 3D UNet model for glioma grading. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7d33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Glioma is one of the most fatal cancers in the world which has been divided into low grade glioma (LGG) and high grade glioma (HGG), and its image grading has become a hot topic of contemporary research. Magnetic resonance imaging (MRI) is a vital diagnostic tool for brain tumor detection, analysis, and surgical planning. Accurate and automatic glioma grading is crucial for speeding up diagnosis and treatment planning. Aiming at the problems of (1) large number of parameters, (2) complex calculation, and (3) poor speed of the current glioma grading algorithms based on deep learning, this paper proposes a lightweight 3D UNet deep learning framework, which can improve classification accuracy in comparison with the existing methods. Approach. To improve efficiency while maintaining accuracy, existing 3D UNet has been excluded, and depthwise separable convolution has been applied to 3D convolution to reduce the number of network parameters. The weight of parameters on the basis of space and channel compression & excitation module has been strengthened to improve the model in the feature map, reduce the weight of redundant parameters, and strengthen the performance of the model. Main results. A total of 560 patients with glioma were retrospectively reviewed. All patients underwent MRI before surgery. The experiments were carried out on T1w, T2w, fluid attenuated inversion recovery, and CET1w images. Additionally, a way of marking tumor area by cube bounding box is presented which has no significant difference in model performance with the manually drawn ground truth. Evaluated on test datasets using the proposed model has shown good results (with accuracy of 89.29%). Significance. This work serves to achieve LGG/HGG grading by simple, effective, and non-invasive diagnostic approaches to provide diagnostic suggestions for clinical usage, thereby facilitating hasten treatment decisions.
Collapse
|
47
|
Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach. Sci Rep 2022; 12:13412. [PMID: 35927323 PMCID: PMC9352871 DOI: 10.1038/s41598-022-17707-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
O6-Methylguanine-DNA-methyltransferase (MGMT) promoter methylation was shown in many studies to be an important predictive biomarker for temozolomide (TMZ) resistance and poor progression-free survival in glioblastoma multiforme (GBM) patients. However, identifying the MGMT methylation status using molecular techniques remains challenging due to technical limitations, such as the inability to obtain tumor specimens, high prices for detection, and the high complexity of intralesional heterogeneity. To overcome these difficulties, we aimed to test the feasibility of using a novel radiomics-based machine learning (ML) model to preoperatively and noninvasively predict the MGMT methylation status. In this study, radiomics features extracted from multimodal images of GBM patients with annotated MGMT methylation status were downloaded from The Cancer Imaging Archive (TCIA) public database for retrospective analysis. The radiomics features extracted from multimodal images from magnetic resonance imaging (MRI) had undergone a two-stage feature selection method, including an eXtreme Gradient Boosting (XGBoost) feature selection model followed by a genetic algorithm (GA)-based wrapper model for extracting the most meaningful radiomics features for predictive purposes. The cross-validation results suggested that the GA-based wrapper model achieved the high performance with a sensitivity of 0.894, specificity of 0.966, and accuracy of 0.925 for predicting the MGMT methylation status in GBM. Application of the extracted GBM radiomics features on a low-grade glioma (LGG) dataset also achieved a sensitivity 0.780, specificity 0.620, and accuracy 0.750, indicating the potential of the selected radiomics features to be applied more widely on both low- and high-grade gliomas. The performance indicated that our model may potentially confer significant improvements in prognosis and treatment responses in GBM patients.
Collapse
|
48
|
Zhu M, Li S, Kuang Y, Hill VB, Heimberger AB, Zhai L, Zhai S. Artificial intelligence in the radiomic analysis of glioblastomas: A review, taxonomy, and perspective. Front Oncol 2022; 12:924245. [PMID: 35982952 PMCID: PMC9379255 DOI: 10.3389/fonc.2022.924245] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area.
Collapse
Affiliation(s)
- Ming Zhu
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Sijia Li
- Kirk Kerkorian School of Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Yu Kuang
- Medical Physics Program, Department of Health Physics, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Virginia B. Hill
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lijie Zhai
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| | - Shengjie Zhai
- Department of Electrical and Computer Engineering, University of Nevada Las Vegas, Las Vegas, NV, United States
- *Correspondence: Lijie Zhai, ; Shengjie Zhai,
| |
Collapse
|
49
|
Bakas S, Sako C, Akbari H, Bilello M, Sotiras A, Shukla G, Rudie JD, Santamaría NF, Kazerooni AF, Pati S, Rathore S, Mamourian E, Ha SM, Parker W, Doshi J, Baid U, Bergman M, Binder ZA, Verma R, Lustig RA, Desai AS, Bagley SJ, Mourelatos Z, Morrissette J, Watt CD, Brem S, Wolf RL, Melhem ER, Nasrallah MP, Mohan S, O'Rourke DM, Davatzikos C. The University of Pennsylvania glioblastoma (UPenn-GBM) cohort: advanced MRI, clinical, genomics, & radiomics. Sci Data 2022; 9:453. [PMID: 35906241 PMCID: PMC9338035 DOI: 10.1038/s41597-022-01560-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/12/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is the most common aggressive adult brain tumor. Numerous studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of: a) number of subjects, b) lack of consistent acquisition protocol, c) data quality, or d) accompanying clinical, demographic, and molecular information. Toward alleviating these limitations, we contribute the "University of Pennsylvania Glioblastoma Imaging, Genomics, and Radiomics" (UPenn-GBM) dataset, which describes the currently largest publicly available comprehensive collection of 630 patients diagnosed with de novo glioblastoma. The UPenn-GBM dataset includes (a) advanced multi-parametric magnetic resonance imaging scans acquired during routine clinical practice, at the University of Pennsylvania Health System, (b) accompanying clinical, demographic, and molecular information, (d) perfusion and diffusion derivative volumes, (e) computationally-derived and manually-revised expert annotations of tumor sub-regions, as well as (f) quantitative imaging (also known as radiomic) features corresponding to each of these regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.
Collapse
Affiliation(s)
- Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michel Bilello
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aristeidis Sotiras
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology and Institute for Informatics, Washington University, School of Medicine, St. Louis, MO, USA
| | - Gaurav Shukla
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, Christiana Care Health System, Philadelphia, PA, USA
| | - Jeffrey D Rudie
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Natali Flores Santamaría
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Rathore
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sung Min Ha
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology and Institute for Informatics, Washington University, School of Medicine, St. Louis, MO, USA
| | - William Parker
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ujjwal Baid
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Bergman
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ragini Verma
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arati S Desai
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Bagley
- Division of Hematology Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher D Watt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald L Wolf
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elias R Melhem
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Chitalia R, Pati S, Bhalerao M, Thakur SP, Jahani N, Belenky V, McDonald ES, Gibbs J, Newitt DC, Hylton NM, Kontos D, Bakas S. Expert tumor annotations and radiomics for locally advanced breast cancer in DCE-MRI for ACRIN 6657/I-SPY1. Sci Data 2022; 9:440. [PMID: 35871247 PMCID: PMC9308769 DOI: 10.1038/s41597-022-01555-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer is one of the most pervasive forms of cancer and its inherent intra- and inter-tumor heterogeneity contributes towards its poor prognosis. Multiple studies have reported results from either private institutional data or publicly available datasets. However, current public datasets are limited in terms of having consistency in: a) data quality, b) quality of expert annotation of pathology, and c) availability of baseline results from computational algorithms. To address these limitations, here we propose the enhancement of the I-SPY1 data collection, with uniformly curated data, tumor annotations, and quantitative imaging features. Specifically, the proposed dataset includes a) uniformly processed scans that are harmonized to match intensity and spatial characteristics, facilitating immediate use in computational studies, b) computationally-generated and manually-revised expert annotations of tumor regions, as well as c) a comprehensive set of quantitative imaging (also known as radiomic) features corresponding to the tumor regions. This collection describes our contribution towards repeatable, reproducible, and comparative quantitative studies leading to new predictive, prognostic, and diagnostic assessments.
Collapse
Affiliation(s)
- Rhea Chitalia
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sarthak Pati
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Megh Bhalerao
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Siddhesh Pravin Thakur
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nariman Jahani
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Belenky
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica Gibbs
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - David C Newitt
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - Nola M Hylton
- University of California San Francisco (UCSF), San Francisco, CA, 94115, USA
| | - Despina Kontos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|