1
|
Huang Y, Li G, Li D, Liu C, Chen M, Cai L, Sun M, Xu Q. Ethyl caffeate alleviates inflammatory response and promotes recovery in septic-acute lung injury via the TNF-α/NF-κB/MMP9 Axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156700. [PMID: 40220405 DOI: 10.1016/j.phymed.2025.156700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Septic acute lung injury (Septic-ALI, SA) is a severe complication of sepsis with limited clinical treatment options. Ethyl Caffeate (EC) is a phenolic compound isolated from Ilex latifolia Thunb (I. latifolia) of the Aquifoliaceae family. PURPOSE This study aimed to investigate the potential mechanisms of EC in treating SA by integrating network pharmacology and transcriptomics. METHODS We used network pharmacology to predict the potential pathways and targets of EC and validated these predictions using the GEO database, molecular docking and MDS. Subsequently, LPS-induced inflammation models in RAW cells and a mouse model of SA were established to evaluate the therapeutic effects of EC. Cell transcriptomic sequencing, along with ELISA, qRT-PCR, and Western blot analyses, were performed on both cellular and animal models to validate the key pathways and targets. RESULTS EC targeted TNF-α and MMP9, significantly alleviating LPS-induced SA through the TNF-α/NF-κB/MMP9 axis. Specifically, network pharmacology and molecular docking suggested that EC may target TNF, MMP9, EGFR, PRKACA, and MAPK3. Transcriptomic analyses, MDS and in vitro and in vivo experiments showed that EC primarily reduced the expression of p-p65 and p-IκBα in the TNF pathway by inhibiting TNF-α, thereby downregulating the expression of downstream effector molecules MMP9 and MMP14, and improving lung tissue damage, cell apoptosis, and inflammation levels in mice. CONCLUSION This study was the first to integrate network pharmacology and transcriptomic results, revealing the mechanism by which EC ameliorated SA through the TNF-α/NF-κB/MMP9 axis. Furthermore, experimental validation identified TNF-α and MMP9 as two core targets of EC, providing a valuable reference for the clinical treatment of SA.
Collapse
Affiliation(s)
- Yuanlan Huang
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Gang Li
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China.
| | - Dan Li
- Special Food Equipment Research Laboratory, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Chang Liu
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Mengying Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Linli Cai
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai 200050, PR China
| | - Mingxue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, PR China.
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, PR China; Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai 200433, PR China.
| |
Collapse
|
2
|
Lee C, Lee J, Jeong M, Nam D, Rhee I. Emerging strategies for targeting tumor-associated macrophages in glioblastoma: A focus on chemotaxis blockade. Life Sci 2025; 376:123762. [PMID: 40419107 DOI: 10.1016/j.lfs.2025.123762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/14/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis for affected patients. A key player in the GBM tumor microenvironment is the tumor-associated macrophage (TAM), which promotes tumor progression, immune evasion, and therapeutic resistance. The recruitment of TAMs to the tumor site is driven by specific chemotactic signals, including CSF-1/CSF-1R, CXCR4/CXCL12, and HGF/MET pathways. This review explores the current understanding of these chemotaxis mechanisms and their role in GBM progression. It highlights the potential therapeutic benefits of targeting TAM chemotaxis pathways to disrupt TAM infiltration, reduce immunosuppression, and enhance the efficacy of conventional treatments. Additionally, we discuss the preclinical and clinical evidence surrounding key inhibitors, such as PLX3397, AMD3100, and Crizotinib, which have shown promise in reprogramming TAMs and improving treatment outcomes in GBM. While these strategies offer hope for overcoming some of the challenges of GBM therapy, the review also addresses the limitations and obstacles in clinical translation, emphasizing the need for further research and the development of combination therapies to achieve sustained therapeutic benefit.
Collapse
Affiliation(s)
- Chaelin Lee
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea
| | - Jaehyun Lee
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea
| | - Moongyu Jeong
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea
| | - Dayoung Nam
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea
| | - Inmoo Rhee
- Department of Biotechnology and Bioscience, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Zhang L, Wang K, Li F, Zhang L, Wu L, Tie R, Litifu K, Fu Y, Liu S, Ni J, Chang P, Xu J, Zhao H, Liu L. Ribosomal protein S3A (RPS3A), as a transcription regulator of colony-stimulating factor 1 (CSF1), promotes glioma progression through regulating the recruitment and autophagy-mediated M2 polarization of tumor-associated macrophages. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5437-5452. [PMID: 39560749 DOI: 10.1007/s00210-024-03601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
Dysregulated expression of ribosomal protein S3A (RPS3A) is associated with the tissue infiltration of immune-related cells in a variety of cancers. However, the role of RPS3A in immune cell infiltration in glioma remains unclear. This study aimed to explore the role of RPS3A in the glioma immune microenvironment. RPS3A expression was detected in tumor tissues from patients with glioma. U251 cells were transfected with RPS3A shRNA (sh-RPS3A) and overexpression vector (pcDNA-RPS3A) and then co-cultured with PMA-induced THP-1 cells. Cell viability, invasion, and apoptosis were detected by Edu staining, Transwell, and flow cytometry, respectively. The expression of tumor-associated macrophage (TAM) M1 and M2 markers was detected with RT-qPCR. Next, the interaction between RPS3A and E4 transcription factor 1 (E4F1) was verified by Co-IP analysis, and the binding of E4F1 to colony-stimulating factor 1 (CSF1) promoter was verified by ChIP analysis. Overexpression vectors of CSF1 and E4F1 were used to treat sh-RPS3A-transfected U251 cells for reversal experiments. Finally, U251 cells transfected with sh-RPS3A adenovirus vectors were subcutaneously injected into nude mice to construct a xenograft tumor model, and the growth and metastasis of glioma in vivo were monitored. RPS3A was significantly upregulated in glioma tissues. Overexpression of RPS3A promoted glioma cell proliferation and invasion and inhibited apoptosis. Moreover, overexpression of RPS3A promoted TAM proliferation, invasion, and M2 polarization. Silencing RPS3A had the opposite effect. Silencing RPS3A inhibited autophagy in U251 cells, whereas rapamycin, an activator of autophagy, reversed the inhibitory effect of RPS3A silencing on TAM M2 polarization. Meanwhile, RPS3A promoted its expression by interacting with E4F1, and E4F1 promoted CSF1 transcriptional activation. Overexpression of CSF1 promoted the proliferation and invasion of U251 cells and reversed the inhibitory effect of RPS3A silencing on TAM proliferation and invasion, but had no effect on TAM M2 polarization. The results of in vivo experiments showed that knockdown of RPS3A significantly inhibited glioma tumor growth and metastasis in vivo. This study revealed that RPS3A recruited TAMs by upregulating E4F1-mediated transcription activation of CSF1, and promoted the M2 polarization of TAMs through autophagy, promoting glioma cell malignant growth and tumor progression.
Collapse
Affiliation(s)
- Liang Zhang
- Northwest University, Guodu Education and Technology Industrial Zone, No. 1 Xuefu Street, Chang'an District, Xi'an, 710127, China
- Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an, 710016, China
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Kun Wang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Fei Li
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Lingxue Zhang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Lin Wu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Ru Tie
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Kamulan Litifu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Yujie Fu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Simeng Liu
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Jiaxin Ni
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Pan Chang
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China
| | - Jun Xu
- Xi'an Daxing Hospital, No. 353 Laodong North Road, Lianhu District, Xi'an, 710016, China
| | - Haikang Zhao
- Second Affiliated Hospital of Xi'an Medical University, No. 167 Fangdong Street, Xi'an, 710038, China.
| | - Lingtong Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No.32 West Second Section First Ring Road, Chengdu, 610072, China.
| |
Collapse
|
4
|
Zhang Y, He H, Fu X, Liu G, Wang H, Zhong W, Xu X, Chen B, Mei L. Glioblastoma-associated macrophages in glioblastoma: from their function and mechanism to therapeutic advances. Cancer Gene Ther 2025:10.1038/s41417-025-00905-9. [PMID: 40307579 DOI: 10.1038/s41417-025-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults and has high mortality rates worldwide. GBM progression, treatment, and prognosis are influenced by the tumor microenvironment (TME), which includes immune, stromal, and tumor cells. Among them, glioblastoma-associated macrophages (GAMs) act as key regulators of GBM pathobiology. GAMs exhibit remarkable plasticity, as they can exhibit both protumor and antitumor effects. However, their function is determined by polarization and the TME. In this review, we provide a comprehensive overview of the current understanding of the biology of GAMs in GBM, including their origins, phenotypic diversity, and functional roles. We discuss the intricate crosstalk between GAMs and tumor cells, as well as other immune and stromal components, and highlight the mechanisms underlying GAM-mediated tumor progression, invasion, angiogenesis, and immune system evasion. Furthermore, we explore the therapeutic implications of targeting GAMs in GBM and discuss emerging strategies aimed at reprogramming GAMs toward an antitumorigenic phenotype or selectively depleting protumorigenic subsets. The final aim is to develop innovative therapeutic approaches that disrupt GBMs. By leveraging our increased understanding of GAM biology, we lay the foundation for transformative advances in GBM treatment to improve patient prognosis.
Collapse
Affiliation(s)
- Yuqin Zhang
- Department of General Practice, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hanxing He
- Department of Orthopedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China
| | - Xin Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ganzhi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiying Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen Zhong
- Department of General Practice, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xia Xu
- Department of General Practice, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | - Lin Mei
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Biomedical Engineering, Tianjin, China.
| |
Collapse
|
5
|
Fuse H, Zheng Y, Alzoubi I, Graeber MB. TAMing Gliomas: Unraveling the Roles of Iba1 and CD163 in Glioblastoma. Cancers (Basel) 2025; 17:1457. [PMID: 40361384 PMCID: PMC12070867 DOI: 10.3390/cancers17091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Gliomas, the most common type of primary brain tumor, are a significant cause of morbidity and mortality worldwide. Glioblastoma, a highly malignant subtype, is particularly common, aggressive, and resistant to treatment. The tumor microenvironment (TME) of gliomas, especially glioblastomas, is characterized by a distinct presence of tumor-associated macrophages (TAMs), which densely infiltrate glioblastomas, a hallmark of these tumors. This macrophage population comprises both tissue-resident microglia as well as macrophages derived from the walls of blood vessels and the blood stream. Ionized calcium-binding adapter molecule 1 (Iba1) and CD163 are established cellular markers that enable the identification and functional characterization of these cells within the TME. This review provides an in-depth examination of the roles of Iba1 and CD163 in malignant gliomas, with a focus on TAM activation, migration, and immunomodulatory functions. Additionally, we will discuss how recent advances in AI-enhanced cell identification and visualization techniques have begun to transform the analysis of TAMs, promising unprecedented precision in their characterization and providing new insights into their roles within the TME. Iba1 and CD163 appear to have both unique and shared roles in glioma pathobiology, and both have the potential to be targeted through different molecular and cellular mechanisms. We discuss the therapeutic potential of Iba1 and CD163 based on available preclinical (experimental) and clinical (human tissue-based) evidence.
Collapse
Affiliation(s)
- Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Sydney, NSW 2010, Australia;
| | - Yuqi Zheng
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumor Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Zhang Y, Pan J, Zeng D, Wang Y, Hu C, Chen M. Transcriptomics of Various Diseases Reveals the Core Role of Immune System Pathways in Retinal Damage Repair and Nerve Regeneration. Mol Neurobiol 2025:10.1007/s12035-025-04929-y. [PMID: 40244560 DOI: 10.1007/s12035-025-04929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Retinal ganglion cells (RGCs) are the only neuronal bridges connecting retinal inputs to the brain's visual processing centers, enabling visual perception. The axon of RGCs forms the optic nerve, which transmits visual information to the visual cortex. Damage to RGCs and their axons results in irreversible visual impairment. Acute retinal damage is commonly induced by conditions such as optic nerve compression, glaucoma, and optic neuritis, for which effective clinical treatments are currently unavailable. Therefore, understanding the response of RGCs and their axons to injury is crucial for the development of potential treatments. This study utilizes multiple models including optic nerve crush (ONC), acute intraocular pressure (IOP) elevation, and local lipopolysaccharide (LPS) injection into the optic nerve to mimic eye diseases. Three days post-surgery, mice underwent retinal isolation followed by bulk-RNA sequencing to analyze differential gene expression among models. Using thresholds of |Log2 fold change (FC)|> 2 and p-value < 0.05, the significant gene expression changes observed in each model were as follows: ONC (upregulated, 456; downregulated, 84), IOP (upregulated, 1946; downregulated, 655), and LPS (upregulated, 219; downregulated, 94). Gene ontology (GO) analysis of the upregulated genes unexpectedly revealed that immune system pathways were the primary shared targets across all three models. In contrast, the downregulated genes exhibited model-specific enrichment: synaptic components and functions in IOP, neurogenesis and neuronal development in ONC, and inflammation and antioxidant in LPS. These findings were further confirmed by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. This suggests that managing immune activation is essential for treating acute retinal injury, and therapeutic strategies should address model-specific targets as well. Notably, 39 genes intersected across the models, and the protein-protein interaction (PPI) network identified Ccl5 as a key hub gene, underscoring its critical role in the pathophysiology of all three diseases.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Junjia Pan
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Deqin Zeng
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Yifan Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China, Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| | - Meilan Chen
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| |
Collapse
|
7
|
Huang W, Li W, Chen X, Xiang C, Luo K. APOE Drives Glioma Progression by Modulating CCL5/CCR5 Signaling in the Tumor Microenvironment and Inducing M2 Macrophage Polarization. Immunobiology 2025; 230:152895. [PMID: 40203505 DOI: 10.1016/j.imbio.2025.152895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are pivotal in shaping the tumor microenvironment (TME) during cancer progression. Emerging evidence indicates that dysregulation of key signaling pathways in cancer cells drives the secretion of various cytokines, modulating TAMs function. This study aimed to explore how glioblastoma cells regulate macrophages and establish a TME conducive to tumor immune escape. METHODS In previous bioinformatics studies, we identified abnormally expressed genes in glioblastoma patients. Among them, the metabolism-related protein APOE garnered particular attention. We generated U87 and U251 cell lines with altered APOE expression to evaluate cancer cell invasion, migration, and inflammatory cytokine secretion through scratch assays, Transwell assays, and ELISA, respectively. Additionally, we established a co-culture system of cancer cells and monocytes THP-1 to assess the impact of shAPOE tumor cells on macrophage polarization using flow cytometry, Western blot, and immunofluorescence techniques. RESULT Knockdown of APOE significantly reduced the viability, invasion, and migration capabilities of U87 and U251 cells. ELISA results also showed that APOE knockdown cells secreted higher levels of IL-6, IL-12, and TNF-α, while CCL5 and TGF-β secretion was markedly reduced. In macrophage studies, we observed that APOE knockdown altered the M1/M2 polarization ratio in THP-1 monocytes, with CCR5 inhibition further decreasing M2 macrophage proportions. Immunofluorescence analysis revealed that the reduction of M2 macrophages was dependent on APOE and CCL5. CONCLUSION Our findings indicate that APOE knockdown suppresses glioblastoma cell migration, invasion, and CCL5 secretion, while enhancing the production of tumor-suppressive cytokines.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China
| | - Weimin Li
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China
| | - Xingyu Chen
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China
| | - Chengwei Xiang
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China
| | - Ke Luo
- Department of Neurosurgery, Suining Central Hospital, Suining city, Sichuan Province, China.
| |
Collapse
|
8
|
Li X, Chen S, Ding M, Ding H, Yang K. Mapping glioma progression: single-cell RNA sequencing illuminates cell-cell interactions and immune response variability. Discov Oncol 2025; 16:302. [PMID: 40072722 PMCID: PMC11903997 DOI: 10.1007/s12672-025-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Glioma, the most common primary cancer of the central nervous system, characterizes significant heterogeneity, presenting major challenges for therapeutic approaches and prognosis. In this study, the interactions between malignant glioma cells and macrophages/monocytes, as well as their influence on tumor progression and treatment responses, were explored using comprehensive single-cell RNA sequencing analysis. METHODS RNA-seq data from the TCGA and CGGA databases were integrated and an in-depth analysis of glioma samples was performed using single-cell RNA sequencing, functional enrichment analysis, developmental trajectory analysis, cell-cell communication analysis, and gene regulatory network analysis. Furthermore, a prognostic model based on risk scores was developed, and its predictive performance was assessed through immune cell infiltration analysis and immune treatment response evaluation. RESULTS Fourteen distinct glioma cellular subpopulations, seven primary cell types, and four macrophage/monocyte subtypes were identified. Developmental trajectory analysis offered insights into the origins and heterogeneity of malignant cells as well as macrophages/monocytes. Cell communication analysis revealed the interaction of macrophages and monocytes with malignant cells through several pathways, including the macrophage migration inhibitory factor and secreted phosphoprotein 1 pathways, engaging in key ligand-receptor interactions that influence tumor behavior. Categorization based on these communication characteristics was significantly correlated with overall survival. Immune cell infiltration analysis highlighted variations in immune cell abundance across different subgroups, possibly linked to differing responses to immunotherapy. This predictive model, comprising 29 prognostic genes, demonstrated high accuracy and robustness across multiple independent cohorts. CONCLUSION This study reveals the complex heterogeneity of the glioma microenvironment and enhances the understanding of diverse characteristics of glioma cell subsets. At the same time, it lays a foundation for the development of therapeutic strategies and prognostic models targeting the glioma microenvironment.
Collapse
Affiliation(s)
- Xia Li
- Department of Neurosurgery, Wanning People's Hospital, Wanning, 571500, China
| | - Shenbo Chen
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China
| | - Ming Ding
- School of Stomatology, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Ding
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| | - Kun Yang
- Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, China.
| |
Collapse
|
9
|
Li J, Pan H, Wang Y, Chen H, Song Z, Wang Z, Li J. Construction of an Extracellular Matrix-Related Risk Model to Analyze the Correlation Between Glioblastoma and Tumor Immunity. BIOMED RESEARCH INTERNATIONAL 2025; 2025:2004975. [PMID: 40224547 PMCID: PMC11991793 DOI: 10.1155/bmri/2004975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/30/2025] [Indexed: 04/15/2025]
Abstract
Background: Abnormalities in the extracellular matrix (ECM) have been shown to play a crucial role in promoting the formation, progression, and metastasis of glioblastoma multiforme (GBM). Therefore, our study is aimed at constructing a prognostic model based on ECM-related factors, to predict the prognosis of patients with GBM. Methods: We employed single-sample gene set enrichment analysis (ssGSEA) to establish the ECM index of GBM. The identification of candidate genes was achieved by differential analysis conducted between ECM index groups, as well as through the utilization of weighted gene coexpression network analysis (WGCNA) and gene enrichment analysis. We conducted functional validation to confirm the significance of five biomarkers that were tested in the U251 cell line. The screening of prognostic genes was conducted using least absolute shrinkage and selection operator (LASSO) and univariate Cox analysis. The predictive relevance of the risk score model was assessed by using Kaplan-Meier (KM) survival curves in both The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) cohorts. In addition, we conducted immunological studies, created and verified a nomogram, and constructed a network involving long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA). Results: We identified 45 candidate genes by overlapping the 59 WGCNA core genes with the 855 differentially expressed genes (DEGs) between ECM index groups. These candidate genes were significantly enriched in 254 biological processes (BPs), 18 cellular components (CCs), 27 molecular functions (MFs), and 11 KEGG pathways. We identified a prognostic ECM-related five-gene signature using these candidate genes and constructed a risk model. Furthermore, we generated a nomogram model with excellent predictive ability. We also found significant differences between risk groups in six cell types and 29 immune checkpoints. Finally, we constructed a lncRNA-miRNA-mRNA network consisting of 27 lncRNAs, 73 miRNAs, and 5 model mRNAs. Conclusion: Our study developed a prognostic model based on the ECM-related five-gene signature, which can serve as a valuable reference for the treatment and prophetic prediction of GBM.
Collapse
Affiliation(s)
- Jian Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Hong Pan
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yangyang Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Haixin Chen
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhaopeng Song
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, Shandong, China
| | - Jinxing Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
10
|
He Y, Li W, Zhang X, Cui Z. Oncolytic Virus Targeted Therapy for Glioma via Intravenous Delivery. Adv Healthc Mater 2025; 14:e2404965. [PMID: 39801205 DOI: 10.1002/adhm.202404965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Indexed: 03/18/2025]
Abstract
Glioma, the deadly primary intracranial tumor, poses challenges in clinical treatment due to its infiltrative growth and resistance to radiation. Oncolytic virus therapy holds potential for the treatment of malignant gliomas, but its application is impeded by the requirement for intracranial injections due to the presence of blood-brain barrier (BBB). In this study, to overcome this limitation, the study develops a nanocapsule encapsulating the recombinant oncolytic virus EV-A71-miR124T, enabling the treatment of glioma through intravenous administration. It is demonstrated that the nanocapsule can cross the BBB and selectively release oncolytic virus at the tumor site, resulting in targeted and specific killing of glioma cells. In mice with implanted intracranial orthotopic gliomas, intravenous administration of the nanocapsule suppresses tumor growth and significantly extends survival time. Consequently, the study establishes an effective treatment method for malignant gliomas using an oncolytic virus nanocapsule through intravenous administration. These findings provide a new strategy for oncolytic virus therapy in glioma treatment and offer perspectives for targeted therapies of other brain tumors and diseases.
Collapse
Affiliation(s)
- Yechenxing He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Chen IC, Lin HY, Liu ZY, Cheng WJ, Yeh TY, Yang WB, Tran HY, Lai MJ, Wang CH, Kao TY, Hung CY, Huang YL, Liou KC, Hsieh CM, Hsu TI, Liou JP. Repurposing Linezolid in Conjunction with Histone Deacetylase Inhibitor Access in the Realm of Glioblastoma Therapies. J Med Chem 2025; 68:2779-2803. [PMID: 39836457 PMCID: PMC11831592 DOI: 10.1021/acs.jmedchem.4c02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery. The results indicated that the histone deacetylase modification, referred to as compound 1, demonstrated promising cytotoxic effects in various brain tumor cell lines. Further comprehensive mechanism studies indicated that compound 1 induced acetylation, leading to DNA double-strand breaks, and induced the ubiquitination of RAD51, disrupting the DNA repair process. Furthermore, compound 1 also exhibited dramatic improvement in the orthotopic GBM mouse model, demonstrating its efficacy and satisfying BBB penetration. Therefore, the reported compound 1, provided with an independent therapeutic pathway, satisfying elongation in survival and tumor size reduction, and the ability to penetrate the BBB, was potent to achieve further development.
Collapse
Affiliation(s)
- I-Chung Chen
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Hong-Yi Lin
- Taipei
Neuroscience Institute, New Taipei
City 235, Taiwan
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Taiwan Brain Disease Foundation, Taipei 100, Taiwan
| | - Zheng-Yang Liu
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Wei-Jie Cheng
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Tzu-Yi Yeh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Wen-Bin Yang
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University Taipei 110, Taiwan
- TMU Research
Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Hoang Yen Tran
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho 902342, Vietnam
| | - Mei-Jung Lai
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Chung-Han Wang
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Tzu-Yuan Kao
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Chia-Yang Hung
- Department
of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, California 91010, United States
| | - Ya-Lin Huang
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Ke-Chi Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Chien-Ming Hsieh
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmaceutics,
School of Pharmacy, University College, London WC1N 1AX, U.K.
| | - Tsung-I Hsu
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University Taipei 110, Taiwan
- TMU Research
Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational
Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jing-Ping Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational
Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
12
|
Rosito M, Maqbool J, Reccagni A, Mangano M, D'Andrea T, Rinaldi A, Peruzzi G, Silvestri B, Rosa A, Trettel F, D'Alessandro G, Catalano M, Fucile S, Limatola C. Ketogenic diet induces an inflammatory reactive astrocytes phenotype reducing glioma growth. Cell Mol Life Sci 2025; 82:73. [PMID: 39921723 PMCID: PMC11807044 DOI: 10.1007/s00018-025-05600-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/23/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
The use of a ketogenic diet (KD) in glioma is currently tested as an adjuvant treatment in standard chemotherapy regimens. The metabolic shift induced by the KD leads to the generation of ketone bodies that can influence glioma cells and the surrounding microenvironment, but the mechanisms have not yet been fully elucidated. Here, we investigated the potential involvement of glial cells as mediators of the KD-induced effects on tumor growth and survival rate in glioma-bearing mice. Specifically, we describe that exposing glioma-bearing mice to a KD or to β-hydroxybutyrate (β-HB), one of the main KD metabolic products, reduced glioma growth in vivo, induced a pro-inflammatory phenotype in astrocytes and increased functional glutamate transporters. Moreover, we described increased intracellular basal Ca2+ levels in GL261 glioma cells treated with β-HB or co-cultured with astrocytes. These data suggest that pro-inflammatory astrocytes triggered by β-HB can be beneficial in counteracting glioma proliferation and neuronal excitotoxicity, thus protecting brain parenchyma.
Collapse
Affiliation(s)
- Maria Rosito
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy.
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy.
| | - Javeria Maqbool
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Alice Reccagni
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Micol Mangano
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | | | - Arianna Rinaldi
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
| | - Beatrice Silvestri
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nanoscience & Neuroscience, Istituto Italiano di Tecnologia@Sapienza, Rome, Italy
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Flavia Trettel
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Physiology and Pharmacology, Laboratory Affiliated to Institute Pasteur Italia, Sapienza University, P.Le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
13
|
Wang H, Liu Z, Peng Z, Lv P, Fu P, Jiang X. Identification and validation of TSPAN13 as a novel temozolomide resistance-related gene prognostic biomarker in glioblastoma. PLoS One 2025; 20:e0316552. [PMID: 39903772 PMCID: PMC11793784 DOI: 10.1371/journal.pone.0316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/12/2024] [Indexed: 02/06/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal primary tumor of the central nervous system, with its resistance to treatment posing significant challenges. This study aims to develop a comprehensive prognostic model to identify biomarkers associated with temozolomide (TMZ) resistance. We employed a multifaceted approach, combining differential expression and univariate Cox regression analyses to screen for TMZ resistance-related differentially expressed genes (TMZR-RDEGs) in GBM. Using LASSO Cox analysis, we selected 12 TMZR-RDEGs to construct a risk score model, which was evaluated for performance through survival analysis, time-dependent ROC, and stratified analyses. Functional enrichment and mutation analyses were conducted to explore the underlying mechanisms of the risk score and its relationship with immune cell infiltration levels in GBM. The prognostic risk score model, based on the 12 TMZR-RDEGs, demonstrated high efficacy in predicting GBM patient outcomes and emerged as an independent predictive factor. Additionally, we focused on the molecule TSPAN13, whose role in GBM is not well understood. We assessed cell proliferation, migration, and invasion capabilities through in vitro assays (including CCK-8, Edu, wound healing, and transwell assays) and quantitatively analyzed TSPAN13 expression levels in clinical glioma samples using tissue microarray immunohistochemistry. The impact of TSPAN13 on TMZ resistance in GBM cells was validated through in vitro experiments and a mouse orthotopic xenograft model. Notably, TSPAN13 was upregulated in GBM and correlated with poorer patient prognosis. Knockdown of TSPAN13 inhibited GBM cell proliferation, migration, and invasion, and enhanced sensitivity to TMZ treatment. This study provides a valuable prognostic tool for GBM and identifies TSPAN13 as a critical target for therapeutic intervention.
Collapse
Affiliation(s)
- Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zesheng Peng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Yan Q, Huang S, Zhou M, Deng X, Han F, Yin H, Xu T, Wang C, Li Y, Long Y, Tang X, Gao Y, Dai T, Hu Z, Han B, Wu J. SND1-SMARCA5 interaction strengthened by PIM promotes the proliferation, metastasis, and chemoresistance of esophageal squamous cell carcinoma. Int J Biol Macromol 2025; 291:139152. [PMID: 39725102 DOI: 10.1016/j.ijbiomac.2024.139152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Chromatin remodeling plays a pivotal role in the progression of esophageal squamous cell carcinoma (ESCC), but the precise mechanisms remain poorly understood. Here, we elucidated the critical function of staphylococcal nuclease and tudor domain-containing 1 (SND1) in modulating chromatin dynamics, thereby driving ESCC progression in both in vitro and in vivo models. Our data revealed that SND1 was markedly overexpressed in ESCC cell lines. Silencing SND1 disrupted histone modifications, attenuated RNA polymerase II activity, and precipitated increased chromosomal aberrations and DNA damage, particularly following camptothecin treatment. These molecular perturbations culminated in diminished cellular proliferation, metastasis, and chemoresistance. We further identified that the regulatory effects of SND1 on chromatin were mediated through its interaction with SMARCA5, a process potentiated by PIM1-catalyzed phosphorylation of SND1 at serine 426. This SND1-SMARCA5 interaction was essential for the transcriptional activation of CUX1, a key oncogene implicated in ESCC progression. Notably, disruption of SND1S426 phosphorylation impaired the SND1-SMARCA5 interaction, leading to significant inhibition of ESCC tumor growth and metastatic potential in vivo. Our findings unveil a novel mechanistic axis involving SND1 and SMARCA5 in chromatin remodeling and oncogenesis, offering promising therapeutic targets for ESCC intervention.
Collapse
Affiliation(s)
- QunLun Yan
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Shan Huang
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou 215000, China
| | - Min Zhou
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, China
| | - Xin Deng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China
| | - Fei Han
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Hui Yin
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tao Xu
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chao Wang
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yuan Li
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yang Long
- Medical Experiment Center, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - XiaoPing Tang
- Medical Experiment Center, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yan Gao
- The Department of Immunology, Southwest Medical University, Luzhou 646000, China
| | - TianYang Dai
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Zhi Hu
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Bin Han
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; GCP Center/Institute of Drug Clinical Trials, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Jian Wu
- Department of Thoracic Surgery, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
15
|
Wang X, Hu J, Xie S, Li W, Zhang H, Huang L, Qian Z, Zhao C, Zhang L. Hidden role of microglia during neurodegenerative disorders and neurocritical care: A mitochondrial perspective. Int Immunopharmacol 2024; 142:113024. [PMID: 39217875 DOI: 10.1016/j.intimp.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The incidence of aging-related neurodegenerative disorders and neurocritical care diseases is increasing worldwide. Microglia, the main inflammatory cells in the brain, could be potential viable therapeutic targets for treating neurological diseases. Interestingly, mitochondrial functions, including energy metabolism, mitophagy and transfer, fission and fusion, and mitochondrial DNA expression, also change in activated microglia. Notably, mitochondria play an active and important role in the pathophysiology of neurodegenerative disorders and neurocritical care diseases. This review briefly summarizes the current knowledge on mitochondrial dysfunction in microglia in neurodegenerative disorders and neurocritical care diseases and comprehensively discusses the prospects of the application of neurological injury prevention and treatment targets by mitochondria.
Collapse
Affiliation(s)
- Xinrun Wang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Jiyun Hu
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Shucai Xie
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Wenchao Li
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Haisong Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Li Huang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Zhaoxin Qian
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China
| | - Chunguang Zhao
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Hunan Provincial Clinical Research Center for Critical Care Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
16
|
Kricha A, Bouchmaa N, Ben Mkaddem S, Abbaoui A, Ben Mrid R, El Fatimy R. Glioblastoma-associated macrophages: A key target in overcoming glioblastoma therapeutic resistance. Cytokine Growth Factor Rev 2024; 80:97-108. [PMID: 39510901 DOI: 10.1016/j.cytogfr.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Glioblastoma multiforme (GBM) is recognized as the most aggressive and malignant form of brain cancer, characterized by a highly heterogeneous phenotype, poor prognosis, and a median survival time of less than 16 months. Recent studies have highlighted the critical role of glioblastoma-associated macrophages (GAMs) in promoting tumor progression and resistance not only to immunotherapy but also to radiotherapy and chemotherapy. GAMs actively suppress immune responses, promote angiogenesis, facilitate tumor metastasis, and induce therapy resistance, through various mechanisms such as cytokines production, signaling pathways regulation, and angiogenesis. In this context, understanding these regulatory mechanisms is essential for developing efficient therapies. Preclinical studies have investigated diverse approaches to target these cells, both as monotherapies or in combination with other treatments. While these approaches have shown promise in strengthening antitumor immune responses in animal models, their clinical success remains to be fully determined. Herein, we provide a comprehensive overview of GAMs's role in GBM therapeutic resistance and summarizes existing approaches to target GAMs in overcoming tumor resistance.
Collapse
Affiliation(s)
- Aymane Kricha
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Najat Bouchmaa
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Abdellatif Abbaoui
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Reda Ben Mrid
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Rachid El Fatimy
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| |
Collapse
|
17
|
Yang Y, Cui H, Li D, Chen L, Liu Y, Zhou C, Li L, Feng M, Chen X, Cao Y, Gao Y. S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:369-381. [PMID: 39735438 PMCID: PMC11674433 DOI: 10.1016/j.jncc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 12/31/2024] Open
Abstract
Background S100A8 is a member of the S100 protein family and plays a pivotal role in regulating inflammation and tumor progression. This study aimed to comprehensively assess the expression patterns and functional roles of S100A8 in glioma progression. Methods Glioma tissues were collected from 98 patients who underwent surgical treatment at Fudan University Shanghai Cancer Center. S100A8 expression in glioma tissues was analyzed using immunohistochemistry (IHC) to establish its correlation with clinicopathological features in patients. The expression and prognostic effect of S100A8 in glioma were analyzed using TCGA and CGGA public databases. Then, we investigated the role of S100A8 in glioma through a series of in vivo and in vitro experiments including Transwell, wound healing, CCK8, and intracranial tumor models. Subsequently, bioinformatics analysis, single-cell sequencing and coimmunoprecipitation (Co-IP) were used to explore the underlying mechanism. Results S100A8 was upregulated in gliomas compared to paracancerous tissues, and this phenotype was significantly correlated with poor prognosis. Subgroup analysis showed that S100A8 expression was higher in the high-grade glioma (HGG) group than that in the low-grade glioma (LGG) group. S100A8 overexpression in glioma cell lines promoted cell proliferation, migration and invasion, while silencing S100A8 reversed these effects. In vivo experiments showed that S100A8 knockdown can significantly reduce the tumor burden of glioma cells. Notably, S100A8 was observed to stimulate microglial M2 polarization by interacting with TLR4, which subsequently induced NF-κB signaling and IL-10 secretion within the tumor microenvironment. Conclusions S100A8 promotes tumor progression by inducing phenotypic polarization of microglia through the TLR4/IL-10 signaling pathway in glioma. It might represent a therapeutic target for further basic research or clinical management of glioma.
Collapse
Affiliation(s)
- Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huanhuan Cui
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Liu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Percuoco V, Herlin E, Prada F, Riva M, Pessina F, Staartjes VE, Della Pepa GM, Menna G. Glioblastoma invasion patterns from a clinical perspective-a systematic review. Neurosurg Rev 2024; 47:864. [PMID: 39570467 PMCID: PMC11582338 DOI: 10.1007/s10143-024-02944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Despite advances in treatment, mechanisms underlying GBM invasion remain incompletely understood. This systematic review synthesizes findings from laboratory and clinical studies to elucidate the molecular mechanisms driving GBM invasion and their implications for prognosis and therapy. This review adhered to PRISMA guidelines, conducting a comprehensive search of PubMed/Medline for studies published up to October 16, 2023. Inclusion criteria focused on studies investigating molecular mechanisms of GBM invasiveness with reported clinical outcomes (overall survival (OS) and progression-free survival (PFS). Exclusion criteria included systematic reviews, case reports, small case series, and studies limited to preclinical data. Risk of bias was assessed using the ROBINS-I tool. From 831 records, 21 studies (2198 patients) met the criteria. Key GBM invasion mechanisms included ECM degradation, vascular invasion, EMT, apoptotic regulation, cytoskeletal organization, and RNA sequencing. Vascular mechanisms were most studied. Bevacizumab resistance linked to poorer outcomes. EMT markers like TWIST and ECM degradation via MMPs such as CD147 correlated with decreased survival. Cytoskeletal and RNA studies highlighted the prognostic significance of tumor subtypes and microenvironmental interactions. This systematic review elucidates the molecular mechanisms underlying GBM invasiveness and their clinical implications. Integrating molecular profiling into routine clinical assessment may enhance prognostic accuracy and therapeutic efficacy, paving the way for personalized treatment strategies.
Collapse
Affiliation(s)
- Veronica Percuoco
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| | - Erica Herlin
- Faculty of Medicine and Surgery, University of Milan, Via Festa del Perdono, 7, 20122, Milan, Italy
| | - Francesco Prada
- Focused Ultrasound Foundation, 1230 Cedars Ct Suite 206, Charlottesville, VA, 22903, USA
| | - Marco Riva
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano Via Alessandro Manzoni, 56, 20089, Rozzano (MI), Italy
| | - Federico Pessina
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano Via Alessandro Manzoni, 56, 20089, Rozzano (MI), Italy
| | - Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Grazia Menna
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
19
|
Reiche L, Plaack B, Lehmkuhl M, Weyers V, Gruchot J, Picard D, Perron H, Remke M, Knobbe-Thomsen C, Reifenberger G, Küry P, Kremer D. HERV-W envelope protein is present in microglial cells of the human glioma tumor microenvironment and differentially modulates neoplastic cell behavior. Microbes Infect 2024:105460. [PMID: 39577621 DOI: 10.1016/j.micinf.2024.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Gliomas are the most common parenchymal tumors of the central nervous system (CNS). With regard to their still unclear etiology, several recent studies have provided evidence of a new category of pathogenic elements called human endogenous retroviruses (HERVs) which seem to contribute to the evolution and progression of many neurological diseases such as amyotrophic lateral sclerosis (ALS), schizophrenia, chronic inflammatory polyneuropathy (CIDP) and, particularly, multiple sclerosis (MS). In these diseases, HERVs exert effects on cellular processes such as inflammation, proliferation, and migration. In previous studies, we demonstrated that in MS, the human endogenous retrovirus type-W envelope protein (HERV-W ENV) interferes with lesion repair through the activation of microglia (MG), the innate myeloid immune cells of the CNS. Here, we now show that HERV-W ENV is also present in the microglial cells (MG) of the tumor microenvironment (TME) in gliomas. It modulates the behavior of glioblastoma (GBM) cell lines in GBM/MG cocultures by altering their gene expression, secreted cytokines, morphology, proliferation, and migration properties and could thereby contribute to key tumor properties.
Collapse
Affiliation(s)
- Laura Reiche
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Benedikt Plaack
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Maike Lehmkuhl
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Joel Gruchot
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Hervé Perron
- R&D Division, GeNeuro Innovation, Lyon, France; GeNeuro, Plan-les-Ouates, Switzerland
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Christiane Knobbe-Thomsen
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; ViraTherapeutics GmbH, Rum, Austria
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Patrick Küry
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - David Kremer
- Department of Neurology and Neurorehabilitation, Hospital Zum Heiligen Geist, Academic Teaching Hospital of the Heinrich-Heine-University Düsseldorf, Kempen, Germany.
| |
Collapse
|
20
|
Xu L, Wang H, Sun C, Zhao Q, Wang L, Yan Q, Wang J, Lin N, Liu C. GZMK Facilitates Experimental Rheumatoid Arthritis Progression by Interacting with CCL5 and Activating the ERK Signaling. Inflammation 2024:10.1007/s10753-024-02166-4. [PMID: 39489858 DOI: 10.1007/s10753-024-02166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
Synovial over-proliferation is a key event in the progression of rheumatoid arthritis (RA) disease. Ferroptosis may be essential for maintaining the balance between synovial proliferation and death. This study aimed to investigate the molecular mechanisms mediating the activation and ferroptosis of collagen-induced arthritis (CIA)-synovial fibroblasts (SFs). Differentially expressed genes (DEGs) in the synovial tissues of CIA rats and normal rats were screened through sequencing. The GSE115662 dataset from the GEO database was analyzed and screened for DEGs. The viability, proliferation, migration, invasion, cell cycle, and apoptosis of CIA-SFs were analyzed by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, flow cytometry, transwell migration, and invasion assays. The ferroptosis of CIA-SFs was assessed using matching reagent kits to detect indicators like reactive oxygen species, ferrous iron, malondialdehyde, glutathione, and superoxide dismutase. The interaction between Granzyme K (GZMK) and C-C motif chemokine 5 (CCL5) was determined by coimmunoprecipitation assay. We found abnormal GZMK expression in the GSE115662 database and mRNA sequencing data. GZMK was overexpressed in CIA-SFs, and GZMK promoted cell proliferation, migration, invasion, inflammation, and decreased cell apoptosis and ferroptosis in CIA-SFs. GZMK could interact with CCL5 to activate the ERK signaling. GZMK and CCL5 knockdown improved by reducing arthritis scores, redness and swelling of paws, and pathological changes in joint synovium of CIA rats. CCL5 overexpression reversed the effects of GZMK silencing on CIA-SFs cell proliferation, migration, invasion, apoptosis, and ferroptosis. We confirmed that GZMK accelerated experimental rheumatoid arthritis progression by interacting with CCL5 and activating the ERK signaling.
Collapse
Affiliation(s)
- Liting Xu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hui Wang
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China
| | - Congcong Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Qingyu Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Lili Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Qianqian Yan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Jialin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Na Lin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
21
|
Ning N, Li X, Nan Y, Chen G, Huang S, Du Y, Gu Q, Li W, Yuan L. Molecular mechanism of Saikosaponin-d in the treatment of gastric cancer based on network pharmacology and in vitro experimental verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8943-8959. [PMID: 38864908 DOI: 10.1007/s00210-024-03214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The study aimed to utilize network pharmacology combined with cell experiments to research the mechanism of action of Saikosaponin-d in the treatment of gastric cancer. Drug target genes were obtained from the PubChem database and the Swiss Target Prediction database. Additionally, target genes for gastric cancer were obtained from the GEO database and the Gene Cards database. The core targets were then identified and further analyzed through gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GESA enrichment. The clinical relevance of the core targets was assessed using the GEPIA and HPA databases. Molecular docking of drug monomers and core target proteins was performed using Auto Duck Tools and Pymol software. Finally, in vitro cellular experiments including cell viability, apoptosis, cell scratch, transwell invasion, transwell migration, qRT-PCR, and Western blot were conducted to verify these findings of network pharmacology. The network pharmacology analysis predicted that the drug monomers interacted with 54 disease targets. Based on clinical relevance analysis, six core targets were selected: VEGFA, IL2, CASP3, BCL2L1, MMP2, and MMP1. Molecular docking results showed binding activity between the Saikosaponin-d monomer and these core targets. Saikosaponin-d could inhibit gastric cancer cell proliferation, induce apoptosis, and inhibit cell migration and invasion.
Collapse
Affiliation(s)
- Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi Nan
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, TCM Hospital of Ningxia Medical University, Wuzhong, 751100, China.
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
22
|
Wang Y, Gao B, Jiao T, Zhang W, Shi H, Jiang H, Li X, Li J, Ge X, Pan K, Li C, Mao G, Lu S. CCL5/CCR5/CYP1A1 pathway prompts liver cancer cells to survive in the combination of targeted and immunological therapies. Cancer Sci 2024; 115:3552-3569. [PMID: 39183447 PMCID: PMC11531955 DOI: 10.1111/cas.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Combination therapy of anti-programmed cell death protein-1 (PD-1) antibodies and tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis for hepatocellular carcinoma (HCC), but many patients still have unsatisfactory outcomes. CD8 T cells are known to exert a pivotal function in the immune response against tumors. Nevertheless, most CD8 T cells in HCC tissues are in a state of exhaustion, losing the cytotoxic activity against malignant cells. Cytokines, mainly secreted by immune cells, play an important role in the occurrence and development of tumors. Here, we demonstrated the changes in exhausted CD8T cells during combination therapy by single-cell RNA sequencing (scRNA-seq) analysis on tumor samples before and after treatment. Combination therapy exerted a substantial impact on the exhausted CD8T cells, particularly in terms of cytokine expression. CCL5 was the most abundantly expressed cytokine in CD8T cells and exhausted CD8T cells, and its expression increased further after treatment. Subsequently, we discovered the CCL5/CCR5/CYP1A1 pathway through RNA sequencing (RNA-seq) on CCL5-stimulated Huh7 cells and verified through a series of experiments that this pathway can mediate the resistance of liver cancer cells to lenvatinib. Tissue experiments showed that after combination therapy, the CCL5/CCR5/CYP1A1 pathway was activated, which can benefit the residual tumor cells to survive treatment. Tumor-bearing mouse experiments demonstrated that bergamottin (BGM), a competitive inhibitor of CYP1A1, can enhance the efficacy of both lenvatinib and combination therapy. Our research revealed one mechanism by which hepatoma cells can survive the combination therapy, providing a theoretical basis for the refined treatment of HCC.
Collapse
Affiliation(s)
- Yafei Wang
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Biao Gao
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Tianyu Jiao
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Wenwen Zhang
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Huizhong Shi
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Hao Jiang
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Xuerui Li
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Junfeng Li
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Xinlan Ge
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Ke Pan
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Chonghui Li
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Guankun Mao
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Shichun Lu
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| |
Collapse
|
23
|
Li M, Li Y, Zheng J, Ma Z, Zhang J, Wu H, Zhu Y, Li P, Nie F. Ultrasound-responsive nanocarriers with siRNA and Fe 3O 4 regulate macrophage polarization and phagocytosis for augmented non-small cell lung cancer immunotherapy. J Nanobiotechnology 2024; 22:605. [PMID: 39375761 PMCID: PMC11460142 DOI: 10.1186/s12951-024-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
The immunosuppressive tumor microenvironment (TME) significantly inhibits the effective anti-tumor immune response, greatly affecting the efficacy of immunotherapy. Most tumor-associated macrophages (TAMs) belong to the M2 phenotype, which contributes significantly to the immunosuppressive effects in non-small cell lung cancer (NSCLC) TME. The interaction between signal regulatory protein α (SIRPα) expressed on macrophages and CD47, a transmembrane protein overexpressed on cancer cells, activates the "eat-me-not" signaling pathway, inhibiting phagocytosis. In this study, a folic acid (FA)-modified ultrasound responsive gene/drugs delivery system, named FA@ PFP @ Fe3O4 @LNB-SIRPα siRNA (FA-PFNB-SIRPα siRNA), was developed using 1,2-dioleoacyl-3-trimethylammonium-propane (DOTAP), FA-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [amino (polyethylene glycol)2000] (DSPE-PEG2000-FA), cholesterol, and perfluoropentane (PFP), for the delivery of siRNA encoding SIRPα mRNA and immune adjuvant Fe3O4 nanoparticles. Under ultrasound conditions, the nanobubbles effectively transfected macrophages, inhibiting SIRPα mRNA and protein expression, promoting the phagocytosis of TAMs, and synergistically reversing M2 polarization. This system promotes the infiltration of T cells, enhances the proliferation and activation of cytotoxic T cells, and inhibits the infiltration of immunosuppressive cells in tumor tissues. Administration of FA-PFNB-SIRPα siRNA combined with ultrasound significantly inhibits NSCLC progression. The study highlights the potential of ultrasound nanotechnology-enabled delivery of SIRPα siRNA and Fe3O4 as an effective strategy for macrophage-based immunotherapy to reshape the immunosuppressive TME for cancer therapy.
Collapse
Affiliation(s)
- Ming Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yuanyuan Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jun Zheng
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhen Ma
- Peking University Third Hospital, Beijing, 100191, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Hao Wu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yangyang Zhu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Pan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| | - Fang Nie
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
24
|
Ke JP, He BD, Gong ML, Yan ZZ, Du HZ, Teng ZQ, Liu CM. Loss of microglial Arid1a exacerbates microglial scar formation via elevated CCL5 after traumatic brain injury. Cell Commun Signal 2024; 22:467. [PMID: 39350161 PMCID: PMC11443815 DOI: 10.1186/s12964-024-01852-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Traumatic brain injury (TBI) is an acquired insult to the brain caused by an external mechanical force, potentially resulting in temporary or permanent impairment. Microglia, the resident immune cells of the central nervous system, are activated in response to TBI, participating in tissue repair process. However, the underlying epigenetic mechanisms in microglia during TBI remain poorly understood. ARID1A (AT-Rich Interaction Domain 1 A), a pivotal subunit of the multi-protein SWI/SNF chromatin remodeling complex, has received little attention in microglia, especially in the context of brain injury. In this study, we generated a Arid1a cKO mouse line to investigate the potential roles of ARID1A in microglia in response to TBI. We found that glial scar formation was exacerbated due to increased microglial migration and a heightened inflammatory response in Arid1a cKO mice following TBI. Mechanistically, loss of ARID1A led to an up-regulation of the chemokine CCL5 in microglia upon the injury, while the CCL5-neutralizing antibody reduced migration and inflammatory response of LPS-stimulated Arid1a cKO microglia. Importantly, administration of auraptene (AUR), an inhibitor of CCL5, repressed the microglial migration and inflammatory response, as well as the glial scar formation after TBI. These findings suggest that ARID1A is critical for microglial response to injury and that AUR has a therapeutic potential for the treatment of TBI.
Collapse
Affiliation(s)
- Jin-Peng Ke
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Bao-Dong He
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Mao-Lei Gong
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zhong-Ze Yan
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
25
|
Zhao Q, Wang K, Hou L, Guo L, Liu X. Based on network pharmacology and molecular docking to explore the potential mechanism of shikonin in periodontitis. BMC Oral Health 2024; 24:839. [PMID: 39048977 PMCID: PMC11270799 DOI: 10.1186/s12903-024-04618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVES To investigate the potential mechanisms of shikonin in preventing and treating periodontitis using network pharmacology and molecular docking methods. MATERIALS AND METHODS The targets of shikonin were obtained in TCMSP and SEA databases, and targets of periodontitis were gathered from the OMIM, GeneCards and Drugbank Databases. The intersecting targets were entered into the DAVID database to obtain the relevant biological functions and pathways by GO and KEGG enrichment analysis. The obtained targets were analysed the protein-protein interaction (PPI) in STRING platform. In Cytoscape 3.8.0, the network analysis function with the MCODE plug-in were used to obtain the key targets, of shikonin and periodontitis. Molecular docking and molecular dynamics simulation (MD) were used to assess the affinity between the shikonin and the key targets. RESULTS Shikonin was screened for 22 targets and periodontitis was screened for 944 targets, the intersecting targets were considered as potential therapeutic targets. The targets played important roles in cellular response to hypoxia, response to xenobiotic stimulus and positive regulates of apoptotic process by GO enrichment analysis. 10 significant pathways were analyzed by KEGG, such as human cytomegalovirus infection and PI3K-Akt signaling pathway, etc. Cytoscape software screened the key genes including AKT1, CCL5, CXCR4, PPARG, PTEN, PTGS2 and TP53. Molecular docking and MD results showed that shikonin could bind stably to the targets. CONCLUSIONS The present study enriched the molecular mechanisms in periodontitis with shikonin, providing potential therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Qingliang Zhao
- Department of Stomatology, Harbin the First Hospital, Harbin, 150010, China
| | - Kun Wang
- Department of Central Sterile Supply, the First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Lin Hou
- Department of Stomatology, Harbin the First Hospital, Harbin, 150010, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town,Jinghai District, Tianjin, 301617, China.
| | - Xiangyan Liu
- Department of Stomatology, Harbin the First Hospital, Harbin, 150010, China.
| |
Collapse
|
26
|
Song M, Yuan H, Zhang J, Wang J, Yu J, Wang W. Inhibitory effect of human interleukin-24 on the proliferation, migration, and invasion of cervical cancer cells. J Int Med Res 2024; 52:3000605241259655. [PMID: 39068529 PMCID: PMC11287727 DOI: 10.1177/03000605241259655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/20/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVE This study aimed to identify significantly differentially expressed genes (DEGs) related to cervical cancer by exploring extensive gene expression datasets to unveil new therapeutic targets. METHODS Gene expression profiles were extracted from the Gene Expression Omnibus, The Cancer Genome Atlas, and the Genotype-Tissue Expression platforms. A differential expression analysis identified DEGs in cervical cancer cases. Weighted gene co-expression network analysis (WGCNA) was implemented to locate genes closely linked to the clinical traits of diseases. Machine learning algorithms, including LASSO regression and the random forest algorithm, were applied to pinpoint key genes. RESULTS The investigation successfully isolated DEGs pertinent to cervical cancer. Interleukin-24 was recognized as a pivotal gene via WGCNA and machine learning techniques. Experimental validations demonstrated that human interleukin (hIL)-24 inhibited proliferation, migration, and invasion, while promoting apoptosis, in SiHa and HeLa cervical cancer cells, affirming its role as a therapeutic target. CONCLUSION The multi-database analysis strategy employed herein emphasized hIL-24 as a principal gene in cervical cancer pathogenesis. The findings suggest hIL-24 as a promising candidate for targeted therapy, offering a potential avenue for innovative treatment modalities. This study enhances the understanding of molecular mechanisms of cervical cancer and aids in the pursuit of novel oncological therapies.
Collapse
Affiliation(s)
- Min Song
- Qilu Medical University, Zibo, P. R. China
| | | | - Jie Zhang
- Qilu Medical University, Zibo, P. R. China
| | - Jing Wang
- Qilu Medical University, Zibo, P. R. China
| | - Jianhua Yu
- Qilu Medical University, Zibo, P. R. China
| | - Wei Wang
- Qilu Medical University, Zibo, P. R. China
| |
Collapse
|
27
|
Song N, Cui K, Zeng L, Fan Y, Wang Z, Shi P, Su W, Wang H. Calpain 8 as a potential biomarker regulates the progression of pancreatic cancer via EMT and AKT/ERK pathway. J Proteomics 2024; 301:105182. [PMID: 38697284 DOI: 10.1016/j.jprot.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Calpain is a non-lysozyme, calcium-dependent intracellular cysteine protease that has been shown to play a role in tumor proliferation, survival, migration, invasion, and apoptosis. Dysregulation of calpain expression is closely related to tumorigenesis. However, the role of calpain-8 (CAPN8), as a member of the calpain family, in pancreatic cancer (PC) is remains unclear. In elucidating the mechanism of CAPN8 in PC, a comprehensive bioinformatics analysis and in vitro experiments were conducted. The TCGA database was used to explore the expression level of CAPN8, and the results in PC tissues and cell lines were verified. Then, the correlation between CAPN8 and clinicopathological features was analyzed. Additionaly, promoter methylation, immune infiltration, and GO/KEGG enrichment analyses were performed. Lastly, the molecular mechanism of CAPN8 in PC was investigated by using cell counting kit (CCK) 8, transwell, wound healing, Western blot assays, and so on. Results indicate that CAPN8 was highly expressed in PC and correlated with poor prognosis and advanced TNM stage. In addition, a low level of immune infiltration was closely associated with the high expression level of CAPN8. Based on these findings, we hypothesized that CAPN8 is a potential biomarker that regulates progression of PC via EMT and the AKT/ERK pathway. SIGNIFICANCE: Through comprehensive biological information and in vitro experiments, CAPN8 has been confirmed to play an important role in regulating pancreatic cancer (PC) proliferation, migration and invasion. CAPN8 is found to be closely related to the diagnosis, survival and prognosis of PC. Above all, CAPN8 may be a potential biomarker for the diagnosis and prognosis of PC.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Liqun Zeng
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Yanwu Fan
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Ziwei Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Pingyu Shi
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China.
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China.
| |
Collapse
|
28
|
Liu M, Ren Y, Zhou Z, Yang J, Shi X, Cai Y, Arreola AX, Luo W, Fung KM, Xu C, Nipp RD, Bronze MS, Zheng L, Li YP, Houchen CW, Zhang Y, Li M. The crosstalk between macrophages and cancer cells potentiates pancreatic cancer cachexia. Cancer Cell 2024; 42:885-903.e4. [PMID: 38608702 PMCID: PMC11162958 DOI: 10.1016/j.ccell.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.
Collapse
Affiliation(s)
- Mingyang Liu
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yu Ren
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhijun Zhou
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xiuhui Shi
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yang Cai
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alex X Arreola
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wenyi Luo
- Department of Pathology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ryan D Nipp
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael S Bronze
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yi-Ping Li
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Courtney W Houchen
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yuqing Zhang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
29
|
Li D, Zhang Q, Yang X, Zhang G, Wang J, Zhang R, Liu Y. Microglial AT1R Conditional Knockout Ameliorates Hypoperfusive Cognitive Impairment by Reducing Microglial Inflammatory Responses. Neuroscience 2024; 545:125-140. [PMID: 38484837 DOI: 10.1016/j.neuroscience.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/24/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) can cause vascular cognitive impairment and dementia. AT1R, angiotensin II type I receptor, plays a vital role in central nervous system pathologies, but its concrete function in vascular dementia is still unclear. Herein, we investigated the effects of AT1R during CCH by conditional knockout of the microglial AT1R and candesartan treatment. Using the bilateral carotid artery stenosis (BCAS) model, we found that the AT1R is crucial in exacerbating CCH-induced cognitive impairment via regulating microglial activation. The levels of AT1R were increased in the hippocampus and the hippocampal microglia after CCH induction. Microglial AT1R conditional knockout ameliorated cognitive impairment by reducing inflammatory responses and microglial activation, and so did candesartan treatment. However, we observed restoration of cerebral blood flow (CBF) but no significant neuronal loss in the hippocampus at 28 days after BCAS. Finally, we screened three hub genes (Ctss, Fcer1g, Tyrobp) associated with CCH. Our findings indicated that microglial expression of AT1R is critical for regulating neuroinflammation in CCH, and AT1R antagonism may be a feasible and promising method for ameliorating CCH-caused cognitive impairment.
Collapse
Affiliation(s)
- Deyue Li
- Department of Pharmacy, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China
| | - Qiao Zhang
- Department of Pain and Rehabilitation, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China
| | - Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, The Third Affiliated (Daping) Hospital, The Army (Third Military) Medical University, Chongqing, China
| | - Guoqing Zhang
- Department of Neurology, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China
| | - Jinping Wang
- Department of Neurology, The Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China.
| | - Yong Liu
- Department of Pain and Rehabilitation, The Second Affiliated (Xinqiao) Hospital, The Army (Third Military) Medical University, Chongqing, China.
| |
Collapse
|
30
|
Huang J, Wang X, Li N, Fan W, Li X, Zhou Q, Liu J, Li W, Zhang Z, Liu X, Zeng S, Yang H, Tian M, Yang P, Hou S. YY1 Lactylation Aggravates Autoimmune Uveitis by Enhancing Microglial Functions via Inflammatory Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308031. [PMID: 38493498 PMCID: PMC11109619 DOI: 10.1002/advs.202308031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/02/2024] [Indexed: 03/19/2024]
Abstract
Activated microglia in the retina are essential for the development of autoimmune uveitis. Yin-Yang 1 (YY1) is an important transcription factor that participates in multiple inflammatory and immune-mediated diseases. Here, an increased YY1 lactylation in retinal microglia within in the experimental autoimmune uveitis (EAU) group is observed. YY1 lactylation contributed to boosting microglial activation and promoting their proliferation and migration abilities. Inhibition of lactylation suppressed microglial activation and attenuated inflammation in EAU. Mechanistically, cleavage under targets & tagmentation (CUT&Tag) analysis revealed that YY1 lactylation promoted microglial activation by regulating the transcription of a set of inflammatory genes, including STAT3, CCL5, IRF1, IDO1, and SEMA4D. In addition, p300 is identified as the writer of YY1 lactylation. Inhibition of p300 decreased YY1 lactylation and suppressed microglial inflammation in vivo and in vitro. Collectively, the results showed that YY1 lactylation promoted microglial dysfunction in autoimmune uveitis by upregulating inflammatory cytokine secretion and boosting cell migration and proliferation. Therapeutic effects can be achieved by targeting the lactate/p300/YY1 lactylation/inflammatory genes axis.
Collapse
Affiliation(s)
- Jiaxing Huang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiaotang Wang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Na Li
- Department of Laboratory Medicine, Beijing Tongren HospitalCapital Medical UniversityBeijing100005China
| | - Wei Fan
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xingran Li
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Qian Zhou
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jiangyi Liu
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Wanqian Li
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Zhi Zhang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiaoyan Liu
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shuhao Zeng
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Hui Yang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Meng Tian
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| | - Peizeng Yang
- Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute; Chongqing Branch of National Clinical Research Center for Ocular DiseasesThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Shengping Hou
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Tongren HospitalCapital Medical UniversityBeijing100730China
| |
Collapse
|
31
|
Zhang L, Li W, Chen X, Cao D, You S, Shi F, Luo Z, Li H, Zeng X, Song Y, Li N, Akimoto Y, Rui G, Chen Y, Wu Z, Xu R. Morusin inhibits breast cancer-induced osteolysis by decreasing phosphatidylinositol 3-kinase (PI3K)-mTOR signalling. Chem Biol Interact 2024; 394:110968. [PMID: 38522564 DOI: 10.1016/j.cbi.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Bone metastases caused by breast cancer pose a major challenge to the successful treatment of breast cancer patients. Many researchers have suggested that herbal medicines are extremely effective at preventing and treating cancer-associated osteolysis. Previous studies have revealed that Morusin (MOR) is cytotoxic to many cancer cells ex vivo. Nevertheless, how MOR contributes to osteolysis induced by breast cancer is still unknown, and the potential mechanism of action against osteolysis is worthy of further study. The protective effect and molecular mechanism of MOR in inhibiting breast cancer cell-induced osteolysis were verified by experiments and network pharmacology. Cell function was assessed by cell proliferation, osteoclast (OC) formation, bone resorption, and phalloidin staining. Tumour growth was examined by micro-CT scanning in vivo. To identify potential MOR treatments, the active ingredient-target pathway of breast cancer was screened using network pharmacology and molecular docking approaches. This study is the first to report that MOR can prevent osteolysis induced by breast cancer cells. Specifically, our results revealed that MOR inhibits RANKL-induced osteoclastogenesis and restrains the proliferation, invasion and migration of MDA-MB-231 breast cells through restraining the PI3K/AKT/MTOR signalling pathway. Notably, MOR prevented bone loss caused by breast cancer cell-induced osteolysis in vivo, indicating that MOR inhibited the development of OCs and the resorption of bone, which are essential for cancer cell-associated bone distraction. This study showed that MOR treatment inhibited osteolysis induced by breast cancer in vivo. MOR inhibited OC differentiation and bone resorption ex vivo and in vivo and might be a potential drug candidate for treating breast cancer-induced osteolysis.
Collapse
Affiliation(s)
- Long Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Weibin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; The Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, The Cancer Centre and the Department of Breast-Thyroid Surgery, Xiang' an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaohui Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Dongmin Cao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Zhongshan, Guangdong, 528437, China
| | - Siyuan You
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Fan Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengqiong Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hongyu Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangchen Zeng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yabin Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Na Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | | | - Gang Rui
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Zuoxing Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Ren Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China; The Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, The Cancer Centre and the Department of Breast-Thyroid Surgery, Xiang' an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
32
|
Zhang Z, Luo X, Xue X, Pang M, Wang X, Yu L, Qian J, Li X, Tian M, Lu A, Lu C, Liu Y. Engineered Exosomes Carrying miR-588 for Treatment of Triple Negative Breast Cancer Through Remodeling the Immunosuppressive Microenvironment. Int J Nanomedicine 2024; 19:743-758. [PMID: 38283199 PMCID: PMC10821654 DOI: 10.2147/ijn.s440619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Background The morbidity and mortality of triple-negative breast cancer (TNBC) are still high, causing a heavy medical burden. CCL5, as a chemokine, can be involved in altering the composition of the tumor microenvironment (TME) as well as the immunosuppressive degree, and has become a very promising target for the treatment of TNBC. Dysregulation of microRNAs (miRNAs) in tumor tissues is closely related to tumor progression, and its utilization can be used to achieve therapeutic purposes. Engineered exosomes can avoid the shortcomings of miRNAs and also enhance their targeting and anti-tumor effects through engineering. Therefore, we aimed to create a cRGD-modified exosome for targeted delivery of miR-588 and to investigate its effect in remodeling immunosuppressive TME by anchoring CCL5 in TNBC. Methods In this study, we loaded miR-588 into exosomes using electroporation and modified it with cRGD using post insertion to obtain cRGD-Exos/miR-588. Transmission electron microscopy (TEM), nanoparticle tracking assay technique (NTA), Western Blots, qPCR, and flow cytometry were applied for its characterization. CCK-8, qPCR and enzyme-linked immunosorbent assay (ELISA), in vivo fluorescence imaging system, immunohistochemistry and H&E staining were used to explore the efficacy as well as the mechanism at the cellular level as well as in subcutaneous graft-tumor nude mouse model. Results The cRGD-Exos/miR-588 was successfully constructed and had strong TNBC tumor targeting in vitro and in vivo. Meanwhile, it has significant efficacy on TME components affected by CCL5 and the degree of immunosuppression, which can effectively control TNBC with good safety. Conclusion In this experiment, cRGD-Exos/miR-588 was prepared to remodel immunosuppressive TME by anchoring CCL5, which is affected by the vicious cycle of immune escape. Overall, cRGD-Exos/miR-588 explored the feasibility of targeting TME for the TNBC treatment, and provided a competitive delivery system for the engineered exosomes to deliver miRNAs for antitumor therapy drug.
Collapse
Affiliation(s)
- Zhengjia Zhang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinyi Luo
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaoxia Xue
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Mingshi Pang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiangpeng Wang
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Liuchunyang Yu
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jinxiu Qian
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xiaoyu Li
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Meng Tian
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, People’s Republic of China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yuanyan Liu
- School of Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
33
|
Zhang X, Dai Y, Ma F, Ma Y, Wang J, Li X, Qin W. Effect of electroacupuncture on global cerebral ischemia-reperfusion injury in rats: A urine proteome analysis. Brain Behav 2024; 14:e3382. [PMID: 38376040 PMCID: PMC10772847 DOI: 10.1002/brb3.3382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/20/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND This study aimed to investigate dynamic urinary proteome changes of electroacupuncture (EP) on cerebral ischemia-reperfusion (CI/R) injured rats and to explore the therapeutic biological mechanisms of EP. METHODS First, changed urinary proteins were found in EP stimulation in healthy rats. Then, we used a CI/R injury rat model induced by Pulsinelli's four-vessel occlusion (4-VO) method to explore the function of EP on urinary proteome in CI/R injury. Urine samples were collected for proteome analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics analysis. RESULTS In total, 384 proteins were identified, among which 47 proteins (23 upregulated, 24 downregulated) were differentially expressed with 0.6-log FC and p < .05. Gene ontology analysis revealed that the cell redox homeostasis, acute-phase response, response to lipopolysaccharide, and cellular response to glucocorticoid stimulus were significantly enriched. The partially biologically connected differential proteins were found by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in the EP group. With the CI/R rat model, 80 proteins (27 upregulated, 53 downregulated) were significantly changed in the CI/R rats compared to the controls. Among these differentially expressed proteins (DEPs), 23 proteins (17 upregulated, six downregulated) showed significant changes after EP treatment (0.6-log FC change, p < .05). The main related biological processes were aging, immune response, acute-phase response, liver regeneration, protein catabolic process, and response to oxidative stress. Many metabolic pathways were enriched by KEGG analysis. CONCLUSION Our results indicate that the EP could alleviate cerebral damage induced by ischemia-reperfusion through an anti-inflammatory and metabolism regulation mechanism. The urinary proteome might reflect the pathophysiological changes in EP pretreatment in the treatment and prevention of CI/R injury.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of AnesthesiologyQingdao HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Municipal Hospital)QingdaoChina
| | - Yuting Dai
- Department of AnesthesiologyQingdao HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Municipal Hospital)QingdaoChina
| | - Fuguo Ma
- Department of AnesthesiologyQingdao HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Municipal Hospital)QingdaoChina
| | - Yuan Ma
- Department of AnesthesiologyQingdao HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Municipal Hospital)QingdaoChina
| | - Jiajia Wang
- Department of AnesthesiologyQingdao HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Municipal Hospital)QingdaoChina
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical CollegeQingdao UniversityQingdaoChina
| | - Weiwei Qin
- Department of AnesthesiologyQingdao HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Municipal Hospital)QingdaoChina
- Department of Genetics and Cell Biology, Basic Medical CollegeQingdao UniversityQingdaoChina
| |
Collapse
|
34
|
Su C, Zhang H, Mo J, Liao Z, Zhang B, Zhu P. SP1-activated USP27X-AS1 promotes hepatocellular carcinoma progression via USP7-mediated AKT stabilisation. Clin Transl Med 2024; 14:e1563. [PMID: 38279869 PMCID: PMC10819096 DOI: 10.1002/ctm2.1563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to pose a significant threat to patient survival. Emerging evidence underscores the pivotal involvement of long non-coding RNAs (lncRNAs) in the cancer process. Nevertheless, our understanding of the roles and processes of lncRNAs in HCC remains limited. METHODS The expression level of USP27X-AS1 was assessed in an HCC patient cohort through a combination of bioinformatics analysis and qRT-PCR. Subsequent biological experiments were conducted to delve into the functional aspects of USP27X-AS1. Additional molecular biology techniques, including RNA pulldown and RNA immunoprecipitation (RIP), were employed to elucidate the potential mechanisms involving USP27X-AS1 in HCC. Finally, CUT-RUN assay and other investigations were carried out to determine the factors contributing to the heightened expression of USP27X-AS1 in HCC. RESULTS High expression of the novel oncogene USP27X-AS1 predicted poor prognosis in HCC patients. Further investigation confirmed that USP27X-AS1 promoted the proliferation and metastasis of HCC by enabling USP7 to interact with AKT, which reduced level of AKT poly-ubiquitylation and enhanced AKT protein stability, which improves protein stabilisation of AKT and promotes the progression of HCC. Moreover, we also revealed that SP1 binds to USP27X-AS1 promoter to activate its transcription. CONCLUSIONS Novel oncogenic lncRNA USP27X-AS1 promoted HCC progression via recruiting USP7 to deubiquitinate AKT. SP1 transcriptionally activated USP27X-AS1 expression. These findings shed light on HCC and pointed to USP27X-AS1 as a potential predictive biomarker and treatment target for the malignancy.
Collapse
Affiliation(s)
- Chen Su
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Haoquan Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Jie Mo
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Zhibin Liao
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
| | - Bixiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiPeople's Republic of China
| | - Peng Zhu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiPeople's Republic of China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanHubeiPeople's Republic of China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanHubeiPeople's Republic of China
| |
Collapse
|
35
|
Li JP, Liu YJ, Yin Y, Li RN, Huang W, Zou X. Stroma-associated FSTL3 is a factor of calcium channel-derived tumor fibrosis. Sci Rep 2023; 13:21317. [PMID: 38044354 PMCID: PMC10694158 DOI: 10.1038/s41598-023-48574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most widespread histological form of primary liver cancer, and it faces great diagnostic and therapeutic difficulties owing to its tumor diversity. Herein, we aim to establish a unique prognostic molecular subtype (MST) and based on this to find potential therapeutic targets to develop new immunotherapeutic strategies. Using calcium channel molecules expression-based consensus clustering, we screened 371 HCC patients from The Cancer Genome Atlas to screen for possible MSTs. We distinguished core differential gene modules between varying MSTs, and Tumor Immune Dysfunction and Exclusion scores were employed for the reliable assessment of HCC patient immunotherapeutic response rate. Immunohistochemistry and Immunofluorescence staining were used for validation of predicted immunotherapy outcomes and underlying biological mechanisms, respectively. We identified two MSTs with different clinical characteristics and prognoses. Based on the significant differences between the two MSTs, we further identified Follistatin-like 3 (FSTL3) as a potential indicator of immunotherapy resistance and validated this result in our own cohort. Finally, we found that FSTL3 is predominantly expressed in HCC stromal components and that it is a factor in enhancing fibroblast-M2 macrophage signaling crosstalk, the function of which is relevant to the pathogenesis of HCC. The presence of two MSTs associated with the calcium channel phenotype in HCC patients may provide promising directions for overcoming immunotherapy resistance in HCC, and the promotion of FSTL3 expressed in stromal components for HCC hyperfibrosis may be responsible for the poor response rate to immunotherapy in Cluster 2 (C2) patients.
Collapse
Affiliation(s)
- Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- Key Laboratory of Tumor System Biology of Traditional Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Yi Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Ruo-Nan Li
- Shihezi Labor Personnel Dispute Arbitration Committee, Shihezi, 832000, China
| | - Wei Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, Jiangsu, China.
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing, 210023, China.
| |
Collapse
|
36
|
Shi DD, Zhang YD, Zhang S, Liao BB, Chu MY, Su S, Zhuo K, Hu H, Zhang C, Wang Z. Stress-induced red nucleus attenuation induces anxiety-like behavior and lymph node CCL5 secretion. Nat Commun 2023; 14:6923. [PMID: 37903803 PMCID: PMC10616295 DOI: 10.1038/s41467-023-42814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Previous studies have speculated that brain activity directly controls immune responses in lymphoid organs. However, the upstream brain regions that control lymphoid organs and how they interface with lymphoid organs to produce stress-induced anxiety-like behavior remain elusive. Using stressed human participants and rat models, we show that CCL5 levels are increased in stressed individuals compared to controls. Stress-inducible CCL5 is mainly produced from cervical lymph nodes (CLN). Retrograde tracing from CLN identifies glutamatergic neurons in the red nucleus (RN), the activities of which are tightly correlated with CCL5 levels and anxiety-like behavior in male rats. Ablation or chemogenetic inhibition of RN glutamatergic neurons increases anxiety levels and CCL5 expression in the serum and CLNs, whereas pharmacogenetic activation of these neurons reduces anxiety levels and CCL5 synthesis after restraint stress exposure. Chemogenetic inhibition of the projection from primary motor cortex to RN elicits anxiety-like behavior and CCL5 synthesis. This brain-lymph node axis provides insights into lymph node tissue as a stress-responsive endocrine organ.
Collapse
Affiliation(s)
- Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing-Bing Liao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Chu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiming Zhuo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
37
|
Hou Y, Qiu W, Ling Y, Qi X, Liu J, Yang H, Chu L. The role of tumor-associated macrophages in glioma cohort: through both traditional RNA sequencing and single cell RNA sequencing. Front Oncol 2023; 13:1249448. [PMID: 37781198 PMCID: PMC10539593 DOI: 10.3389/fonc.2023.1249448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas are the leading cause in more than 50% of malignant brain tumor cases. Prognoses, recurrences, and mortality are usually poor for gliomas that have malignant features. In gliomas, there are four grades, with grade IV gliomas known as glioblastomas (GBM). Currently, the primary methods employed for glioma treatment include surgical removal, followed by chemotherapy after the operation, and targeted therapy. However, the outcomes of these treatments are unsatisfactory. Gliomas have a high number of tumor-associated macrophages (TAM), which consist of brain microglia and macrophages, making them the predominant cell group in the tumor microenvironment (TME). The glioma cohort was analyzed using single-cell RNA sequencing to quantify the genes related to TAMs in this study. Furthermore, the ssGSEA analysis was utilized to assess the TAM-associated score in the glioma group. In the glioma cohort, we have successfully developed a prognostic model consisting of 12 genes, which is derived from the TAM-associated genes. The glioma cohort demonstrated the predictive significance of the TAM-based risk model through survival analysis and time-dependent ROC curve. Furthermore, the correlation analysis revealed the significance of the TAM-based risk model in the application of immunotherapy for individuals diagnosed with GBM. Ultimately, the additional examination unveiled the prognostic significance of PTX3 in the glioma group, establishing it as the utmost valuable prognostic indicator in patients with GBM. The PCR assay revealed the PTX3 is significantly up-regulated in GBM cohort. Additionally, the assessment of cell growth further confirms the involvement of PTX3 in the GBM group. The analysis of cell proliferation showed that the increased expression of PTX3 enhanced the ability of glioma cells to proliferate. The prognosis of glioblastomas and glioma is influenced by the proliferation of tumor-associated macrophages.
Collapse
Affiliation(s)
- Yunan Hou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjin Qiu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanguo Ling
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
38
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
39
|
Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Macrophage's role in solid tumors: two edges of a sword. Cancer Cell Int 2023; 23:150. [PMID: 37525217 PMCID: PMC10391843 DOI: 10.1186/s12935-023-02999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
Collapse
Affiliation(s)
- Arian Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Yarizadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Ahmadvand
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nogol Ghalamkarpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rajan Kumar Pandey
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
40
|
Kumari S, Kumar P. Identification and characterization of putative biomarkers and therapeutic axis in Glioblastoma multiforme microenvironment. Front Cell Dev Biol 2023; 11:1236271. [PMID: 37538397 PMCID: PMC10395518 DOI: 10.3389/fcell.2023.1236271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023] Open
Abstract
Non-cellular secretory components, including chemokines, cytokines, and growth factors in the tumor microenvironment, are often dysregulated, impacting tumorigenesis in Glioblastoma multiforme (GBM) microenvironment, where the prognostic significance of the current treatment remains unsatisfactory. Recent studies have demonstrated the potential of post-translational modifications (PTM) and their respective enzymes, such as acetylation and ubiquitination in GBM etiology through modulating signaling events. However, the relationship between non-cellular secretory components and post-translational modifications will create a research void in GBM therapeutics. Therefore, we aim to bridge the gap between non-cellular secretory components and PTM modifications through machine learning and computational biology approaches. Herein, we highlighted the importance of BMP1, CTSB, LOX, LOXL1, PLOD1, MMP9, SERPINE1, and SERPING1 in GBM etiology. Further, we demonstrated the positive relationship between the E2 conjugating enzymes (Ube2E1, Ube2H, Ube2J2, Ube2C, Ube2J2, and Ube2S), E3 ligases (VHL and GNB2L1) and substrate (HIF1A). Additionally, we reported the novel HAT1-induced acetylation sites of Ube2S (K211) and Ube2H (K8, K52). Structural and functional characterization of Ube2S (8) and Ube2H (1) have identified their association with protein kinases. Lastly, our results found a putative therapeutic axis HAT1-Ube2S(K211)-GNB2L1-HIF1A and potential predictive biomarkers (CTSB, HAT1, Ube2H, VHL, and GNB2L1) that play a critical role in GBM pathogenesis.
Collapse
|
41
|
Vadla R, Miki S, Taylor B, Kawauchi D, Jones BM, Nathwani N, Pham P, Tsang J, Nathanson DA, Furnari FB. Glioblastoma Mesenchymal Transition and Invasion are Dependent on a NF-κB/BRD2 Chromatin Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.546613. [PMID: 37461511 PMCID: PMC10349949 DOI: 10.1101/2023.07.03.546613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Glioblastoma (GBM) represents the most aggressive subtype of glioma, noted for its profound invasiveness and molecular heterogeneity. The mesenchymal (MES) transcriptomic subtype is frequently associated with therapy resistance, rapid recurrence, and increased tumor-associated macrophages. Notably, activation of the NF-κB pathway and alterations in the PTEN gene are both associated with this malignant transition. Although PTEN aberrations have been shown to be associated with enhanced NF-κB signaling, the relationships between PTEN, NF-κB and MES transition are poorly understood in GBM. Here, we show that PTEN regulates the chromatin binding of bromodomain and extraterminal (BET) family proteins, BRD2 and BRD4, mediated by p65/RelA localization to the chromatin. By utilizing patient-derived glioblastoma stem cells and CRISPR gene editing of the RELA gene, we demonstrate a crucial role for RelA lysine 310 acetylation in recruiting BET proteins to chromatin for MES gene expression and GBM cell invasion upon PTEN loss. Remarkably, we found that BRD2 is dependent on chromatin associated acetylated RelA for its recruitment to MES gene promoters and their expression. Furthermore, loss of BRD2 results in the loss of MES signature, accompanied by an enrichment of proneural signature and enhanced therapy responsiveness. Finally, we demonstrate that disrupting the NFκB/BRD2 interaction with a brain penetrant BET-BD2 inhibitor reduces mesenchymal gene expression, GBM invasion, and therapy resistance in GBM models. This study uncovers the role of hitherto unexplored PTEN-NF-κB-BRD2 pathway in promoting MES transition and suggests inhibiting this complex with BET-BD2 specific inhibitors as a therapeutic approach to target the MES phenotype in GBM.
Collapse
Affiliation(s)
- Raghavendra Vadla
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Shunichiro Miki
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Brett Taylor
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Daisuke Kawauchi
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Brandon M Jones
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nidhi Nathwani
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Philip Pham
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jonathan Tsang
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States
| | - David A Nathanson
- Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States
| | - Frank B Furnari
- Division of Regenerative Medicine, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
Toedebusch RG, Wei NW, Simafranca KT, Furth-Jacobus JA, Brust-Mascher I, Stewart SL, Dickinson PJ, Woolard KD, Li CF, Vernau KM, Meyers FJ, Toedebusch CM. Intra- and Intertumoral Microglia/Macrophage Infiltration and Their Associated Molecular Signature Is Highly Variable in Canine Oligodendroglioma: A Preliminary Evaluation. Vet Sci 2023; 10:403. [PMID: 37368789 PMCID: PMC10303632 DOI: 10.3390/vetsci10060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The goal of this study was to define the glioma-associated microglia/macrophage (GAM) response and associated molecular landscape in canine oligodendrogliomas. Here, we quantified the intratumoral GAM density of low- and high-grade oligodendrogliomas compared to that of a normal brain, as well as the intratumoral concentration of several known GAM-derived pro-tumorigenic molecules in high-grade oligodendrogliomas compared to that in a normal brain. Our analysis demonstrated marked intra- and intertumoral heterogeneity of GAM infiltration. Correspondingly, we observed significant variability in the intratumoral concentrations of several GAM-associated molecules, unlike what we previously observed in high-grade astrocytomas. However, high-grade oligodendroglioma tumor homogenates (n = 6) exhibited an increase in the pro-tumorigenic molecules hepatocyte growth factor receptor (HGFR) and vascular endothelial growth factor (VEGF), as we observed in high-grade astrocytomas. Moreover, neoplastic oligodendrocytes displayed robust expression of GAL-3, a chimeric galectin implicated in driving immunosuppression in human glioblastoma. While this work identifies shared putative therapeutic targets across canine glioma subtypes (HGFR, GAL-3), it highlights several key differences in the immune landscape. Therefore, a continued effort to develop a comprehensive understanding of the immune microenvironment within each subtype is necessary to inform therapeutic strategies going forward.
Collapse
Affiliation(s)
- Ryan G. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Ning-Wei Wei
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Kulani T. Simafranca
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Jennie A. Furth-Jacobus
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Susan L. Stewart
- Division of Biostatistics, School of Medicine, University of California, Davis, CA 95616, USA;
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| | - Kevin D. Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Chai-Fei Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Karen M. Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Frederick J. Meyers
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, Center for Precision Medicine, Microbiology, and Immunology, School of Medicine, University of California, Sacramento, CA 95817, USA
| | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| |
Collapse
|
43
|
Higginbottom SL, Tomaskovic-Crook E, Crook JM. Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer Metastasis Rev 2023; 42:507-541. [PMID: 37004686 PMCID: PMC10348989 DOI: 10.1007/s10555-023-10100-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Diffuse high-grade gliomas contain some of the most dangerous human cancers that lack curative treatment options. The recent molecular stratification of gliomas by the World Health Organisation in 2021 is expected to improve outcomes for patients in neuro-oncology through the development of treatments targeted to specific tumour types. Despite this promise, research is hindered by the lack of preclinical modelling platforms capable of recapitulating the heterogeneity and cellular phenotypes of tumours residing in their native human brain microenvironment. The microenvironment provides cues to subsets of glioma cells that influence proliferation, survival, and gene expression, thus altering susceptibility to therapeutic intervention. As such, conventional in vitro cellular models poorly reflect the varied responses to chemotherapy and radiotherapy seen in these diverse cellular states that differ in transcriptional profile and differentiation status. In an effort to improve the relevance of traditional modelling platforms, recent attention has focused on human pluripotent stem cell-based and tissue engineering techniques, such as three-dimensional (3D) bioprinting and microfluidic devices. The proper application of these exciting new technologies with consideration of tumour heterogeneity and microenvironmental interactions holds potential to develop more applicable models and clinically relevant therapies. In doing so, we will have a better chance of translating preclinical research findings to patient populations, thereby addressing the current derisory oncology clinical trial success rate.
Collapse
Affiliation(s)
- Sarah L Higginbottom
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - Eva Tomaskovic-Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Jeremy M Crook
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Fairy Meadow, NSW, 2519, Australia.
- Arto Hardy Family Biomedical Innovation Hub, Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
44
|
Wang J, Xu L, Ding Q, Li X, Wang K, Xu S, Liu B. Siglec15 is a prognostic indicator and a potential tumor-related macrophage regulator that is involved in the suppressive immunomicroenvironment in gliomas. Front Immunol 2023; 14:1065062. [PMID: 37325664 PMCID: PMC10266207 DOI: 10.3389/fimmu.2023.1065062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/20/2023] [Indexed: 06/17/2023] Open
Abstract
Background Siglec15 is rising as a promising immunotherapeutic target in bladder, breast, gastric, and pancreatic cancers. The aim of the present study is to explore the prognostic value and immunotherapeutic possibilities of Siglec15 in gliomas using bioinformatics and clinicopathological methods. Methods The bioinformatics approach was used to examine Siglec15 mRNA expression in gliomas based on TCGA, CGGA, and GEO datasets. Then, the predictive value of Siglec15 expression on progression-free survival time (PFST) and overall survival time (OST) in glioma patients was comprehensively described.The TCGA database was screened for differentially expressed genes (DEGs) between the high and low Siglec15 expression groups, and enrichment analysis of the DEGs was performed. The Siglec15 protein expression and its prognostic impact in 92 glioma samples were explored using immunohistochemistry Next, the relationships between Siglec15 expression and infiltrating immune cells, immune regulators and multiple immune checkpoints were analysed. Results Bioinformatics analyses showed that high Siglec15 levels predicted poor clinical prognosis and adverse recurrence time in glioma patients. In the immunohistochemical study serving as a validation set, Siglec15 protein overexpression was found in 33.3% (10/30) of WHO grade II, 56% (14/25) of WHO grade III, and 70.3% (26/37) of WHO grade IV gliomas respectively. Siglec15 protein overexpression was also found to be an independent prognostic indicator detrimental to the PFST and OST of glioma patients. Enrichment analysis showed that the DEGs were mainly involved in pathways associated with immune function, including leukocyte transendothelial migration, focal adhesion, ECM receptor interaction, and T-cell receptor signaling pathways. In addition, high Siglec15 expression was related to M2 tumor-associated macrophages (TAMs), N2 tumor-infiltrating neutrophils, suppressive tumor immune microenvironment, and multiple immune checkpoint molecules. Immunofluorescence analysis confirmed the colocalization of Siglec15 and CD163 on TAMs. Conclusion Siglec15 overexpression is common in gliomas and predicts an adverse recurrence time and overall survival time. Siglec15 is a potential target for immunotherapy and a potential TAMs regulator that is involved in the suppressed immunomicroenvironment in gliomas.
Collapse
Affiliation(s)
- Jinchao Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
- Graduate School of Medicine, Shandong First Medical University, Jinan, China
| | - Linzong Xu
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qian Ding
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Xiaoru Li
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
- Graduate School of Medicine, Shandong First Medical University, Jinan, China
| | - Kai Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
- Graduate School of Medicine, Shandong First Medical University, Jinan, China
| | - Shangchen Xu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| | - Bin Liu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, China
| |
Collapse
|
45
|
Dai X, Ye L, Li H, Dong X, Tian H, Gao P, Dong J, Cheng H. Crosstalk between microglia and neural stem cells influences the relapse of glioblastoma in GBM immunological microenvironment. Clin Immunol 2023; 251:109333. [PMID: 37088298 DOI: 10.1016/j.clim.2023.109333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/02/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
Interactions between immunocytes and Neural Stem Cells (NSCs) in glioblastoma multiforme still remains unclear. Here, microglial cells and NSCs in peri-tumoral tissue were analyzed via single-cell whole-transcriptome sequencing. Results showed that two clusters of putative NSCs (the EGFR+BCAN+ cell cluster, and the FABPT+H19+ cell cluster) exhibited immune-related functions. Two clusters of putative microglia (the XIST+PDK4+ and APOC1+CCL3+ cell clusters) exhibited the function of glial cell activation. The results of ligand receptor network analysis disclosed significant interactions between the APOC1+CCL3+ microglia and the NSCs. Correlation analysis on the overall survival (OS) and relapse-free survival (RFS) with 102 potential molecular targets in the TCGA database showed that a much larger number of molecules were correlated with RFS than with OS (34.31% vs. 8.82%), nine of them were validated in clinical specimens. In conclusion, crosstalk between APOC1+CCL3+ microglia and multiple molecule-labeled NSCs distal to the tumor core play certain roles on the recurrence of GBM.
Collapse
Affiliation(s)
- Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Huaixu Li
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Xuchen Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China
| | - Haotiao Tian
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Peng Gao
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China.
| | - Jun Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou 215004, PR China.
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China.
| |
Collapse
|
46
|
Luo H, Zhang H, Mao J, Cao H, Tao Y, Zhao G, Zhang Z, Zhang N, Liu Z, Zhang J, Luo P, Xia Y, Cheng Y, Xie Z, Cheng Q, Liu G. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma. Cell Death Dis 2023; 14:235. [PMID: 37012233 PMCID: PMC10070666 DOI: 10.1038/s41419-023-05753-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
Exosomes, the cell-derived small extracellular vehicles, play a vital role in intracellular communication by reciprocally transporting DNA, RNA, bioactive protein, chains of glucose, and metabolites. With great potential to be developed as targeted drug carriers, cancer vaccines and noninvasive biomarkers for diagnosis, treatment response evaluation, prognosis prediction, exosomes show extensive advantages of relatively high drug loading capacity, adjustable therapeutic agents release, enhanced permeation and retention effect, striking biodegradability, excellent biocompatibility, low toxicity, etc. With the rapid progression of basic exosome research, exosome-based therapeutics are gaining increasing attention in recent years. Glioma, the standard primary central nervous system (CNS) tumor, is still up against significant challenges as current traditional therapies of surgery resection combined with radiotherapy and chemotherapy and numerous efforts into new drugs showed little clinical curative effect. The emerging immunotherapy strategy presents convincing results in many tumors and is driving researchers to exert its potential in glioma. As the crucial component of the glioma microenvironment, tumor-associated macrophages (TAMs) significantly contribute to the immunosuppressive microenvironment and strongly influence glioma progression via various signaling molecules, simultaneously providing new insight into therapeutic strategies. Exosomes would substantially assist the TAMs-centered treatment as drug delivery vehicles and liquid biopsy biomarkers. Here we review the current potential exosome-mediated immunotherapeutics targeting TAMs in glioma and conclude the recent investigation on the fundamental mechanisms of diversiform molecular signaling events by TAMs that promote glioma progression.
Collapse
Affiliation(s)
- Hong Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinning Mao
- Health management center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiwen Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
47
|
Liu L, Zhou X, Cheng S, Ge Y, Chen B, Shi J, Li H, Li S, Li Y, Yuan J, Wu A, Liu X, Huang S, Xu Z, Dong J. RNA-binding protein DHX9 promotes glioma growth and tumor-associated macrophages infiltration via TCF12. CNS Neurosci Ther 2023; 29:988-999. [PMID: 36377508 PMCID: PMC10018109 DOI: 10.1111/cns.14031] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glioma is the most common malignant tumor of the central nervous system, with high heterogeneity, strong invasiveness, high therapeutic resistance, and poor prognosis, comprehending a serious challenge in neuro-oncology. Until now, the mechanisms underlying glioma progression have not been fully elucidated. METHODS The expression of DExH-box helicase 9 (DHX9) in tissues and cells was detected by qRT-PCR and western blot. EdU and transwell assays were conducted to assess the effect of DHX9 on proliferation, migration and invasion of glioma cells. Cocultured model was used to evaluate the role of DHX9 on macrophages recruitment and polarization. Animal study was performed to explore the role of DHX9 on macrophages recruitment and polarization in vivo. Bioinformatics analysis, dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP)-qPCR assay was used to explore the relation between DHX9 and TCF12/CSF1. RESULTS DHX9 was elevated in gliomas, especially in glioblastoma multiforme (GBM). Besides promoting the proliferation, migration, and invasion of glioma cells, DHX9 facilitated the infiltration of macrophages into glioma tissues and polarization to M2-like macrophages, known as tumor-associated macrophages (TAMs). DHX9 silencing decreased the expression of colony-stimulating factor 1 (CSF1), which partially restored the inhibitory effect on malignant progress of glioma and infiltration of TAMs caused by DHX9 knockdown by targeting the transcription factor 12 (TCF12). Moreover, TCF12 could directly bind to the promoter region of CSF1. CONCLUSION DHX9/TCF12/CSF1 axis regulated the increases in the infiltration of TAMs to promote glioma progression and might be a novel potential target for future immune therapies against gliomas.
Collapse
Affiliation(s)
- Liang Liu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xuelan Zhou
- Department of AnesthesiologySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shan Cheng
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yuyuan Ge
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Baomin Chen
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jia Shi
- Department of NeurosurgeryThird Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Haoran Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Suwen Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Yongdong Li
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jiaqi Yuan
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Anyi Wu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xinglei Liu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shilu Huang
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Zhipeng Xu
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jun Dong
- Department of NeurosurgerySecond Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
48
|
Caverzán MD, Beaugé L, Oliveda PM, Cesca González B, Bühler EM, Ibarra LE. Exploring Monocytes-Macrophages in Immune Microenvironment of Glioblastoma for the Design of Novel Therapeutic Strategies. Brain Sci 2023; 13:brainsci13040542. [PMID: 37190507 DOI: 10.3390/brainsci13040542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Gliomas are primary malignant brain tumors. These tumors seem to be more and more frequent, not only because of a true increase in their incidence, but also due to the increase in life expectancy of the general population. Among gliomas, malignant gliomas and more specifically glioblastomas (GBM) are a challenge in their diagnosis and treatment. There are few effective therapies for these tumors, and patients with GBM fare poorly, even after aggressive surgery, chemotherapy, and radiation. Over the last decade, it is now appreciated that these tumors are composed of numerous distinct tumoral and non-tumoral cell populations, which could each influence the overall tumor biology and response to therapies. Monocytes have been proved to actively participate in tumor growth, giving rise to the support of tumor-associated macrophages (TAMs). In GBM, TAMs represent up to one half of the tumor mass cells, including both infiltrating macrophages and resident brain microglia. Infiltrating macrophages/monocytes constituted ~ 85% of the total TAM population, they have immune functions, and they can release a wide array of growth factors and cytokines in response to those factors produced by tumor and non-tumor cells from the tumor microenvironment (TME). A brief review of the literature shows that this cell population has been increasingly studied in GBM TME to understand its role in tumor progression and therapeutic resistance. Through the knowledge of its biology and protumoral function, the development of therapeutic strategies that employ their recruitment as well as the modulation of their immunological phenotype, and even the eradication of the cell population, can be harnessed for therapeutic benefit. This revision aims to summarize GBM TME and localization in tumor niches with special focus on TAM population, its origin and functions in tumor progression and resistance to conventional and experimental GBM treatments. Moreover, recent advances on the development of TAM cell targeting and new cellular therapeutic strategies based on monocyte/macrophages recruitment to eradicate GBM are discussed as complementary therapeutics.
Collapse
|
49
|
Marino S, Menna G, Di Bonaventura R, Lisi L, Mattogno P, Figà F, Bilgin L, D’Alessandris QG, Olivi A, Della Pepa GM. The Extracellular Matrix in Glioblastomas: A Glance at Its Structural Modifications in Shaping the Tumoral Microenvironment-A Systematic Review. Cancers (Basel) 2023; 15:1879. [PMID: 36980765 PMCID: PMC10046791 DOI: 10.3390/cancers15061879] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND AND AIM While many components of the ECM have been isolated and characterized, its modifications in the specific setting of GBMs have only been recently explored in the literature. The aim of this paper is to provide a systematic review on the topic and to assess the ECM's role in shaping tumoral development. METHODS An online literature search was launched on PubMed/Medline and Scopus using the research string "((Extracellular matrix OR ECM OR matrix receptor OR matrix proteome) AND (glioblastoma OR GBM) AND (tumor invasion OR tumor infiltration))", and a systematic review was conducted in accordance with the PRISMA-P guidelines. RESULTS The search of the literature yielded a total of 693 results. The duplicate records were then removed (n = 13), and the records were excluded via a title and abstract screening; 137 studies were found to be relevant to our research question and were assessed for eligibility. Upon a full-text review, 59 articles were finally included and were summarized as follows based on their focus: (1) proteoglycans; (2) fibrillary proteins, which were further subdivided into the three subcategories of collagen, fibronectin, and laminins; (3) glycoproteins; (4) degradative enzymes; (5) physical forces; (6) and glioma cell and microglia migratory and infiltrative patterns. CONCLUSIONS Our systematic review demonstrates that the ECM should not be regarded anymore as a passive scaffold statically contributing to mechanical support in normal and pathological brain tissue but as an active player in tumor-related activity.
Collapse
Affiliation(s)
- Salvatore Marino
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | - Grazia Menna
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | - Rina Di Bonaventura
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucia Lisi
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, IRCSS-Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy
| | - Pierpaolo Mattogno
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Figà
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | - Lal Bilgin
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | | | - Alessandro Olivi
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (A.O.)
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
50
|
Lin C, Wang N, Xu C. Glioma-associated microglia/macrophages (GAMs) in glioblastoma: Immune function in the tumor microenvironment and implications for immunotherapy. Front Immunol 2023; 14:1123853. [PMID: 36969167 PMCID: PMC10034134 DOI: 10.3389/fimmu.2023.1123853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Glioma is a mixed solid tumor composed of neoplastic and non-neoplastic components. Glioma-associated macrophages and microglia (GAMs) are crucial elements of the glioma tumor microenvironment (TME), regulating tumor growth, invasion, and recurrence. GAMs are also profoundly influenced by glioma cells. Recent studies have revealed the intricate relationship between TME and GAMs. In this updated review, we provide an overview of the interaction between glioma TME and GAMs based on previous studies. We also summarize a series of immunotherapies targeting GAMs, including clinical trials and preclinical studies. Specifically, we discuss the origin of microglia in the central nervous system and the recruitment of GAMs in the glioma background. We also cover the mechanisms through which GAMs regulate various processes associated with glioma development, such as invasiveness, angiogenesis, immunosuppression, recurrence, etc. Overall, GAMs play a significant role in the tumor biology of glioma, and a better understanding of the interaction between GAMs and glioma could catalyze the development of new and effective immunotherapies for this deadly malignancy.
Collapse
|