1
|
Gjoni K, Zhang S, Yan RE, Zhang B, Miller D, Resnick A, Dahmane N, Pollard KS. Machine learning-predicted chromatin organization landscape across pediatric tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645984. [PMID: 40236019 PMCID: PMC11996386 DOI: 10.1101/2025.03.28.645984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Structural variants (SVs) are increasingly recognized as important contributors to oncogenesis through their effects on 3D genome folding. Recent advances in whole-genome sequencing have enabled large-scale profiling of SVs across diverse tumors, yet experimental characterization of their individual impact on genome folding remains infeasible. Here, we leveraged a convolutional neural network, Akita, to predict disruptions in genome folding caused by somatic SVs identified in 61 tumor types from the Children's Brain Tumor Network dataset. Our analysis reveals significant variability in SV-induced disruptions across tumor types, with the most disruptive SVs coming from lymphomas and sarcomas, metastatic tumors, and germline cell tumors. Dimensionality reduction of disruption scores identified five recurrently disrupted regions enriched for high-impact SVs across multiple tumors. Some of these regions are highly disrupted despite not being highly mutated, and harbor tumor-associated genes and transcriptional regulators. To further interpret the functional relevance of high-scoring SVs, we integrated epigenetic data and developed a modified Activity-by-Contact scoring approach to prioritize SVs with disrupted genome contacts at active enhancers. This method highlighted highly disruptive SVs near key oncogenes, as well as novel candidate loci potentially implicated in tumorigenesis. These findings highlight the utility of machine learning for identifying novel SVs, loci, and genetic mechanisms contributing to pediatric cancers. This framework provides a foundation for future studies linking SV-driven regulatory changes to cancer pathogenesis.
Collapse
|
2
|
Inoue S, Takami H, Tanaka S, Nomura M, Takayanagi S, Saito Y, Kikuta S, Kondo K, Matsuura R, Ikemura M, Yamazawa S, Matsutani M, Nishikawa R, Matsushita Y, Ichimura K, Saito N. Nasal immature teratoma in an elderly patient: Clinicopathological and epigenetic analogies with central nervous system counterparts, alongside genomic divergences. Neuropathology 2025; 45:100-108. [PMID: 39359021 PMCID: PMC11962582 DOI: 10.1111/neup.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Germ cell tumors (GCTs) are categorized as gonadal or extra-gonadal, based on the origin. Extra-gonadal GCTs predominantly manifest within the central nervous system (CNS), mediastinum, retroperitoneum, and sacrococcygeal region. These malignancies are most frequently diagnosed in the pediatric, adolescent, and young adult demographics. Incidences of GCT within the nasal cavity are notably scarce, with only six cases documented. This report details the case of a 70-year-old man who presented with a left nasal mass ultimately diagnosed as immature teratoma. A remarkable aspect of this case was the detection of SMARCA4 (BRG1) loss through immunohistochemical analysis. In addition, methylation profiling aligned this case with CNS GCTs, specifically those classified as non-germinomatous GCTs. This molecular characterization informed a tailored therapeutic strategy incorporating carboplatin and etoposide, alongside localized irradiation. This individualized treatment regimen achieved favorable outcomes, with the patient remaining recurrence free for over three years. This highlights the need for precise therapeutic approaches in the management of extragonadal GCTs, particularly those arising in atypical anatomical locations. The present case accentuates the significance of thorough diagnostic evaluations and customized treatment plans for rare GCT presentations. Further empirical and clinical investigations are warranted to enhance our understanding of and refine therapeutic protocols for such exceptional cases.
Collapse
Affiliation(s)
- Shintaro Inoue
- Department of NeurosurgeryThe University of Tokyo HospitalTokyoJapan
| | - Hirokazu Takami
- Department of NeurosurgeryThe University of Tokyo HospitalTokyoJapan
| | - Shota Tanaka
- Department of NeurosurgeryThe University of Tokyo HospitalTokyoJapan
| | - Masashi Nomura
- Department of NeurosurgeryThe University of Tokyo HospitalTokyoJapan
| | | | - Yuki Saito
- Department Otolaryngology, Head and Neck SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Shu Kikuta
- Department Otolaryngology, Head and Neck SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Kenji Kondo
- Department Otolaryngology, Head and Neck SurgeryThe University of Tokyo HospitalTokyoJapan
| | - Reiko Matsuura
- Department of NeurosurgeryThe University of Tokyo HospitalTokyoJapan
| | - Masako Ikemura
- Department PathologyThe University of Tokyo HospitalTokyoJapan
| | - Sho Yamazawa
- Department PathologyThe University of Tokyo HospitalTokyoJapan
| | - Masao Matsutani
- Department of Neuro‐Oncology/NeurosurgerySaitama Medical University International Medical CenterSaitamaJapan
| | - Ryo Nishikawa
- Department of Neuro‐Oncology/NeurosurgerySaitama Medical University International Medical CenterSaitamaJapan
| | - Yuko Matsushita
- Department of Brain Disease Translational ResearchJuntendo University Faculty of MedicineTokyoJapan
| | - Koichi Ichimura
- Department of Brain Disease Translational ResearchJuntendo University Faculty of MedicineTokyoJapan
| | - Nobuhito Saito
- Department of NeurosurgeryThe University of Tokyo HospitalTokyoJapan
| |
Collapse
|
3
|
Cheng S, Cacciotti C, Yan CLS, Lafay-Cousin L. What Have We Learnt from the Recent Multimodal Managements of Young Patients with ATRT? Cancers (Basel) 2025; 17:1116. [PMID: 40227618 PMCID: PMC11987908 DOI: 10.3390/cancers17071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Atypical teratoid rhabdoid tumors are rare embryonal tumors of the nervous system mainly seen in very young children with aggressive behavior and dismal prognosis when treated with conventional chemotherapy only. More recent multimodal strategies combining, variably, high dose chemotherapy, radiotherapy and or intrathecal chemotherapy have led to some stride in survival. We present the results of the most recent clinical trials and registry data for patients treated with these multimodal approaches with survival ranging from 37.1% to 88.9%. We review the current consensus of the molecular characterization of these tumors into 3 subgroups (ATRT-TYR, ATRT-SHH and ATRT-MYC) and discuss the potential clinical impact of molecular subgrouping on survival. We explore other therapeutic tools including intrathecal chemotherapy and maintenance and possible new targeted agents for patients failing multimodal strategies.
Collapse
Affiliation(s)
- Sylvia Cheng
- British Columbia Women and Children’s Hospital, Vancouver, BC V6H 3N1, Canada
| | | | - Carol L. S. Yan
- British Columbia Women and Children’s Hospital, Vancouver, BC V6H 3N1, Canada
| | | |
Collapse
|
4
|
Lee K, Jeon J, Park JW, Yu S, Won JK, Kim K, Park CK, Park SH. SNUH methylation classifier for CNS tumors. Clin Epigenetics 2025; 17:47. [PMID: 40075518 PMCID: PMC11905536 DOI: 10.1186/s13148-025-01824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Methylation profiling of central nervous system (CNS) tumors, pioneered by the German Cancer Research Center, has significantly improved diagnostic accuracy. This study aimed to further enhance the performance of methylation classifiers by leveraging publicly available data and innovative machine-learning techniques. RESULTS Seoul National University Hospital Methylation Classifier (SNUH-MC) addressed data imbalance using the Synthetic Minority Over-sampling Technique (SMOTE) algorithm and incorporated OpenMax within a Multi-Layer Perceptron to prevent labeling errors in low-confidence diagnoses. Compared to two published CNS tumor methylation classification models (DKFZ-MC: Deutsches Krebsforschungszentrum Methylation Classifier v11b4: RandomForest, 767-MC: Multi-Layer Perceptron), our SNUH-MC showed improved performance in F1-score. For 'Filtered Test Data Set 1,' the SNUH-MC achieved higher F1-micro (0.932) and F1-macro (0.919) scores compared to DKFZ-MC v11b4 (F1-micro: 0.907, F1-macro: 0.627). We evaluated the performance of three classifiers; SNUH-MC, DKFZ-MC v11b4, and DKFZ-MC v12.5, using specific criteria. We set established 'Decisions' categories based on histopathology, clinical information, and next-generation sequencing to assess the classification results. When applied to 193 unknown SNUH methylation data samples, SNUH-MC notably improved diagnosis compared to DKFZ-MC v11b4. Specifically, 17 cases were reclassified as 'Match' and 34 cases as 'Likely Match' when transitioning from DKFZ-MC v11b4 to SNUH-MC. Additionally, SNUH-MC demonstrated similar results to DKFZ-MC v12.5 for 23 cases that were unclassified by v11b4. CONCLUSIONS This study presents SNUH-MC, an innovative methylation-based classification tool that significantly advances the field of neuropathology and bioinformatics. Our classifier incorporates cutting-edge techniques such as the SMOTE and OpenMax resulting in improved diagnostic accuracy and robustness, particularly when dealing with unknown or noisy data.
Collapse
Affiliation(s)
- Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Jaemin Jeon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suwan Yu
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Kwangsoo Kim
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Wang Z, Yang J, Liu X, Liu W. Clinical characteristics of patients with atypical teratoid/rhabdoid tumors: a monocentric retrospective analysis. Front Pediatr 2025; 13:1463510. [PMID: 40115317 PMCID: PMC11922728 DOI: 10.3389/fped.2025.1463510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
Purpose Atypical teratoid/rhabdoid tumors (ATRTs) are very rare, highly malignant embryonal neoplasms in central nervous system. The aim of this study was to conduct a retrospective analysis of ATRT patient survival and investigate the prognostic factors associated with ATRT. Methods A retrospective study was conducted using information of patients who received treatment between 2016 and 2021 in Beijing Tiantan Hospital. Kaplan-Meier curves were used for overall survival (OS) analysis. Univariate and multivariate COX analyses were applied for OS predicting. Results 20 histologically confirmed ATRT patients were included. The majority were male (75%) and aged over 3 years (65%). 71.4% of patients under 3 years and 46.2% of above 3 years had supratentorial tumors. All patients underwent surgery, with 60% having total resections, primarily in the supratentorial region. Subsequent treatment involved varying chemotherapy and radiation combinations, with 40% of patients receiving it, and 87.5% of those were older than 3 years, The median overall survival for ATRT patients was 180 days. Survival differed significantly between patients under and above 3 years. Radiotherapy increased overall survival for all patients. Univariate and multivariate analysis showed better survival for those diagnosed above age 3 and with adjuvant radiation. Conclusions Patients older than 3 years old had better prognosis and radiotherapy had a significant effect on improving patient prognosis.
Collapse
Affiliation(s)
- Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingchen Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neuropathology Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Neuropathology Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Cyrta J, Masliah‐Planchon J, Hoare O, Brillet R, Andrianteranagna M, Sohier P, Cardoen L, Bouchoucha Y, Filser M, Goncalves A, Caly M, Fréneaux P, Stefanaki K, Pefkianaki M, Moschovi M, Matet A, Cassoux N, Lumbroso‐Le Rouic L, Gauthier‐Villars M, Stern M, Vincent‐Salomon A, Rodrigues M, Bourdeaut F. SMARCB1-deficient malignant melanocytic uveal tumours: a new neural crest-derived tumour entity with SMARCB1-related germline predisposition. J Pathol 2025; 265:357-371. [PMID: 39853675 PMCID: PMC11794973 DOI: 10.1002/path.6390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 01/26/2025]
Abstract
Rhabdoid tumours (RT) are an aggressive malignancy affecting <2-year-old infants, characterised by biallelic loss-of-function alterations in SWI/SNF-related BAF chromatin remodelling complex subunit B1 (SMARCB1) in nearly all cases. Germline SMARCB1 alterations are found in ~30% of patients and define the RT Predisposition Syndrome type 1 (RTPS1). Uveal melanoma (UVM), the most common primary intraocular cancer in adults, does not harbour SMARCB1 alterations. We report two cases of a previously undescribed intraocular malignancy that shared some features with UVM and RT, but was also distinct from these entities. Both female patients, aged 23 and 14 years, underwent enucleation, and the tumours were subjected to comprehensive genomic, DNA methylation, and transcriptomic profiling. Pathological examination showed large, amelanotic intraocular tumours with epithelioid features, expressing melanocytic markers [S100P, SOX10, Melan-A, PMEL (HMB45), TYR] as seen using immunohistochemistry (IHC), but with little or no melanin production. Both tumours harboured biallelic loss-of-function SMARCB1 alterations, associated with loss of SMARCB1 (BAF47/INI1) expression on IHC. Their genomic profiles were atypical both for UVM and for RT, and no pathogenic variants were found in other genes tested, including those recurrently altered in UVM. In both patients, a germline SMARCB1 variant was found. However, there was no relevant family history of cancer. Transcriptome and methylome profiling suggested that these tumours were distinct from RT, UVM, and skin melanomas. RNAseq confirmed expression of early and late genes related to melanocytic differentiation. The first patient died of metastatic disease 16 months after diagnosis, the second was disease-free 10 months after completion of treatment. In summary, we report two cases of a previously undescribed, aggressive SMARCB1-deficient intraocular malignancy with melanocytic differentiation, which occurs in young patients, is distinct from UVM and RT, and expands the RTPS1 spectrum. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | | | - Owen Hoare
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Riwan Brillet
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
| | - Mamy Andrianteranagna
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Pierre Sohier
- Department of Pathology, Hôpital Cochin, AP‐HPUniversité Paris CitéParisFrance
| | | | - Yassine Bouchoucha
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| | - Mathilde Filser
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
| | - Andreia Goncalves
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | - Martial Caly
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | - Paul Fréneaux
- Department of Pathology, Institut CuriePSL Research UniversityParisFrance
| | | | | | - Maria Moschovi
- Pediatric Hematology/Oncology Unit, First Department of PediatricsNational and Kapodistrian University of Athens, Agia Sofia Children's HospitalAthensGreece
| | - Alexandre Matet
- Department of Ocular Oncology, Institut CurieUniversité Paris CitéParisFrance
| | - Nathalie Cassoux
- Department of Ocular Oncology, Institut CurieUniversité Paris CitéParisFrance
| | | | | | - Marc‐Henri Stern
- Department of Genetics, Institut CuriePSL Research UniversityParisFrance
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut CuriePSL Research UniversityParisFrance
| | | | - Manuel Rodrigues
- INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Institut CuriePSL Research UniversityParisFrance
- Department of Medical OncologyInstitut CurieParisFrance
| | - Franck Bourdeaut
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut CurieUniversité Paris CitéParisFrance
| |
Collapse
|
7
|
Kang X, Zhou Y, Shen F, Feng J, Wang Y, Ma J, Qiang Q, Wang X. Development of a Nomogram and Risk Grouping System for Predicting 1-Year Overall Survival of Patients With Atypical Teratoid/Rhabdoid Tumors. J Child Neurol 2025; 40:153-161. [PMID: 39865908 DOI: 10.1177/08830738241281393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
PurposeAtypical teratoid/rhabdoid tumor (AT/RT) is a kind of central nervous system malignant tumor in children. In this study, we aimed to develop a practically clinical nomogram and risk grouping system to predict 1-year overall survival for patients with atypical teratoid/rhabdoid tumor.MethodsThe nomogram was constructed based on the pediatric tumor registry of Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine. Fifty-four information-integrated patients with atypical teratoid/rhabdoid tumor were included from the database. Cox regression analyses were used to select independent prognostic factors. Based on the fitted multivariate Cox regression model, a nomogram of 1-year overall survival for atypical teratoid/rhabdoid tumor patients was generated. Moreover, the nomogram was validated by assessing its discrimination and calibration.ResultsIn these patients, age at diagnosis, the extent of tumor resection, radiotherapy, and chemotherapy were included in the multivariate Cox regression model. Based on this multivariate Cox regression model, a nomogram of 1-year overall survival for atypical teratoid/rhabdoid tumor patients was generated. The nomogram had good discrimination (the concordance index was 0.781) and calibration curves showed no deviation from reference lines. Decision curve analysis demonstrated this nomogram was useful for clinical practice. The risk grouping system was built based on nomogram-derived risk scores, which could classify patients into 3 risk groups. Compared with the low-risk group, the risk of 1-year death was significantly higher in the intermediate-risk group (hazard ratio = 1.42, 95%, confidence intervals = 0.49-4.11) and high-risk group (hazard ratio = 9.78, 95% confidence intervals = 3.53-27.1).ConclusionA nomogram and risk grouping system were built to predict for the 1-year overall survival of atypical teratoid/rhabdoid tumor patients. The nomogram could facilitate a personalized prognostic evaluation for atypical teratoid/rhabdoid tumor patients and help medical practitioners make better treatment.
Collapse
Affiliation(s)
- Xu Kang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yabing Zhou
- Department of Traditional Chinese Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangjie Shen
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaqi Feng
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunkun Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Ma
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Qiang
- Department of Neurology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Wang
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Geng Z, Wafula E, Corbett RJ, Zhang Y, Jin R, Gaonkar KS, Shukla S, Rathi KS, Hill D, Lahiri A, Miller DP, Sickler A, Keith K, Blackden C, Chroni A, Brown MA, Kraya AA, Rood BR, Resnick AC, Van Kuren N, Maris JM, Farrel A, Koptyra MP, Trooskin GR, Coleman N, Zhu Y, Stefankiewicz S, Abdullaev Z, Chinwalla AT, Santi M, Naqvi AS, Mason JL, Koschmann CJ, Huang X, Diskin SJ, Aldape K, Farrow BK, Ma W, Zhang B, Ennis BM, Tasian S, Phul S, Lueder MR, Zhong C, Dybas JM, Wang P, Taylor D, Rokita JL. The Open Pediatric Cancer Project. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.09.599086. [PMID: 39026781 PMCID: PMC11257555 DOI: 10.1101/2024.07.09.599086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Background In 2019, the Open Pediatric Brain Tumor Atlas (OpenPBTA) was created as a global, collaborative open-science initiative to genomically characterize 1,074 pediatric brain tumors and 22 patient-derived cell lines. Here, we present an extension of the OpenPBTA called the Open Pediatric Cancer (OpenPedCan) Project, a harmonized open-source multi-omic dataset from 6,112 pediatric cancer patients with 7,096 tumor events across more than 100 histologies. Combined with RNA-Seq from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA), OpenPedCan contains nearly 48,000 total biospecimens (24,002 tumor and 23,893 normal specimens). Findings We utilized Gabriella Miller Kids First (GMKF) workflows to harmonize WGS, WXS, RNA-seq, and Targeted Sequencing datasets to include somatic SNVs, InDels, CNVs, SVs, RNA expression, fusions, and splice variants. We integrated summarized CPTAC whole cell proteomics and phospho-proteomics data, miRNA-Seq data, and have developed a methylation array harmonization workflow to include m-values, beta-vales, and copy number calls. OpenPedCan contains reproducible, dockerized workflows in GitHub, CAVATICA, and Amazon Web Services (AWS) to deliver harmonized and processed data from over 60 scalable modules which can be leveraged both locally and on AWS. The processed data are released in a versioned manner and accessible through CAVATICA or AWS S3 download (from GitHub), and queryable through PedcBioPortal and the NCI's pediatric Molecular Targets Platform. Notably, we have expanded PBTA molecular subtyping to include methylation information to align with the WHO 2021 Central Nervous System Tumor classifications, allowing us to create research-grade integrated diagnoses for these tumors. Conclusions OpenPedCan data and its reproducible analysis module framework are openly available and can be utilized and/or adapted by researchers to accelerate discovery, validation, and clinical translation.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Eric Wafula
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ryan J Corbett
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yuanchao Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sangeeta Shukla
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Dave Hill
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Aditya Lahiri
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Daniel P Miller
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Alex Sickler
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kelsey Keith
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christopher Blackden
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Antonia Chroni
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Miguel A Brown
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Adam A Kraya
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brian R Rood
- Children's National Research Institute, Washington, D.C.; George Washington University School of Medicine and Health Sciences, Washington, D.C., 20052, USA
| | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA · Funded by Children's Brain Tumor Network; NIH 3P30 CA016520-44S5, U2C HL138346-03, U24 CA220457-03; NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003; Children's Hospital of Philadelphia Division of Neurosurgery
| | - Nicholas Van Kuren
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alvin Farrel
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA · Funded by NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003
| | - Mateusz P Koptyra
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Gerri R Trooskin
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Noel Coleman
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stephanie Stefankiewicz
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Asif T Chinwalla
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ammar S Naqvi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jennifer L Mason
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Carl J Koschmann
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI, 48105, USA
- Pediatric Hematology Oncology, Mott Children's Hospital, Ann Arbor, MI, 48109, USA
| | - Xiaoyan Huang
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sharon J Diskin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Bailey K Farrow
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Brian M Ennis
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sarah Tasian
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saksham Phul
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew R Lueder
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Chuwei Zhong
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Joseph M Dybas
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman Medical School, Philadelphia, PA, 19104, USA · Funded by NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003
| | - Jo Lynne Rokita
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, 20010, USA
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA · Funded by NCI/NIH Contract No. 75N91019D00024, Task Order No. 75N91020F00003
| |
Collapse
|
9
|
Sias F, Zoroddu S, Migheli R, Bagella L. Untangling the Role of MYC in Sarcomas and Its Potential as a Promising Therapeutic Target. Int J Mol Sci 2025; 26:1973. [PMID: 40076599 PMCID: PMC11900228 DOI: 10.3390/ijms26051973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
MYC plays a pivotal role in the biology of various sarcoma subtypes, acting as a key regulator of tumor growth, proliferation, and metabolic reprogramming. This oncogene is frequently dysregulated across different sarcomas, where its expression is closely intertwined with the molecular features unique to each subtype. MYC interacts with critical pathways such as cell cycle regulation, apoptosis, and angiogenesis, amplifying tumor aggressiveness and resistance to standard therapies. Furthermore, MYC influences the tumor microenvironment by modulating cell-extracellular matrix interactions and immune evasion mechanisms, further complicating therapeutic management. Despite its well-established centrality in sarcoma pathogenesis, targeting MYC directly remains challenging due to its "undruggable" protein structure. However, emerging therapeutic strategies, including indirect MYC inhibition via epigenetic modulators, transcriptional machinery disruptors, and metabolic pathway inhibitors, offer new hope for sarcoma treatment. This review underscores the importance of understanding the intricate roles of MYC across sarcoma subtypes to guide the development of effective targeted therapies. Given MYC's central role in tumorigenesis and progression, innovative approaches aiming at MYC inhibition could transform the therapeutic landscape for sarcoma patients, providing a much-needed avenue to overcome therapeutic resistance and improve clinical outcomes.
Collapse
Affiliation(s)
- Fabio Sias
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
| | - Rossana Migheli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
10
|
Hernandez-Rovira MA, Connor M, Osorio RC, Russler-Germain E, Schmidt R, Johnson GW, Silverstein J, Dahiya S, Farrell NF, Weiss MC, Zipfel GJ, Huang J, Mathios D. Case report: Molecular characterization of adult atypical teratoid rhabdoid tumor and review of the literature. Front Oncol 2025; 15:1510439. [PMID: 40052132 PMCID: PMC11882417 DOI: 10.3389/fonc.2025.1510439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/20/2025] [Indexed: 03/09/2025] Open
Abstract
Background and importance Atypical teratoid rhabdoid tumors (ATRTs) are typically aggressive pediatric tumors with a median survival of 11 months. Due to the paucity of cases in adults, the clinical behavior of these pathologies is not well understood. Here we present the case of a 41-year-old female patient with postoperative hyperprogression of a sellar ATRT and provide a detailed description of the molecular composition of this tumor, the protocol used to treat this patient, and the ultimate outcome of this patient. Clinical presentation The patient is a 41-year-old woman who presented with headaches and double vision. MRI revealed a sellar/suprasellar mass with involvement of bilateral cavernous sinuses. Following the quick symptom progression, resection of the tumor with exploration of the bilateral cavernous sinuses was performed, with a final pathologic diagnosis of ATRT-MYC, a known subtype of ATRT. The tumor recurred within 1 month of surgery, attaining a size equivalent to its preoperative state. Postoperatively, the patient received craniospinal radiation and adjuvant chemotherapy with an excellent response but had a recurrence of the tumor in the brainstem 1 year after her diagnosis and died 13 months after presentation. Discussion Sellar ATRT in adults is an exceedingly rare entity. The detailed description of our case highlights the aggressiveness of these tumors and the utility of postoperative chemotherapy and radiation, but also the inevitable progression of these tumors along the craniospinal axis. Conclusion Sellar ATRTs should be considered in the differential diagnosis of a sellar/suprasellar mass, especially in women in their 40s. Emphasis should be placed on accurate diagnosis and quick postoperative recovery with early initiation of adjuvant radiation and chemotherapy.
Collapse
Affiliation(s)
| | - Michelle Connor
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, ;United States
| | - Robert C. Osorio
- School of Medicine, University of California, San Francisco, San Francisco, CA, ;United States
| | - Emilie Russler-Germain
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, ;United States
| | - Robert Schmidt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, ;United States
| | - Gabrielle W. Johnson
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, ;United States
| | - Julie Silverstein
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, ;United States
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University in St. Louis, St. Louis, MO, ;United States
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, ;United States
| | - Nyssa Fox Farrell
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, ;United States
| | - Mia C. Weiss
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, ;United States
| | - Gregory J. Zipfel
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, ;United States
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, ;United States
| | - Jiayi Huang
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, ;United States
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, ;United States
| | - Dimitrios Mathios
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, ;United States
- Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, ;United States
| |
Collapse
|
11
|
Fleischmann LS, Nemes K, Glaser S, Kouroukli AG, Boros M, Bens S, Dahlum S, Kretzmer H, Oyen F, Gerss J, Hasselblatt M, Frühwald MC, Siebert R. Constitutional mosaicism of pathogenic variants in SMARCB1 in a subset of patients with sporadic rhabdoid tumors. Neuro Oncol 2025; 27:533-544. [PMID: 39288268 PMCID: PMC11812048 DOI: 10.1093/neuonc/noae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Malignant rhabdoid tumors (RT) are aggressive malignancies predominantly affecting very young children. The characteristic genetic alteration is the biallelic inactivation of SMARCB1. In approximately 30% of patients, one SMARCB1 allele is constitutionally altered conferring a particularly unfavorable prognosis. Constitutional mosaicism for pathogenic SMARCB1 mutations has recently been reported in distinct cases of allegedly sporadic RT. We aimed to systematically investigate the frequency and clinical impact of constitutional mosaicism in patients with sporadic RT included in the EU-RHAB registry. METHODS We selected 29 patients with RT displaying at least one pathogenic small variant in SMARCB1 in the tumor DNA and the absence of a germline mutation. We re-screened blood-derived patients and controlled DNA for the respective small variant by polymerase chain reaction with unique molecular identifiers and ultra-deep next-generation sequencing. Clinical data in patients with and without mosaicism and 174 EU-RHAB controls were compared. RESULTS Employing an ultra-deep sequencing approach, we detected tumor-associated SMARCB1 variants in blood-derived DNA in 9/29 patients. In 6/29 patients (21%), whose variant allele frequency (VAF) exceeded 2%, constitutional mosaicism was assumed whereas tumor DNA contamination was documented in 1/3 of patients with VAF below 1%. No significant differences were observed between 6 mosaic-positive and 20 -negative patients regarding age at diagnosis, presence of metastases, event-free or overall survival. CONCLUSIONS Constitutional mosaicism for pathogenic small SMARCB1 variants is recurrent in patients with allegedly sporadic RT. The clinical implications of such variants need to be determined in larger, prospective cohorts also including detection of structural variants of SMARCB1.
Collapse
Affiliation(s)
- Lara S Fleischmann
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Karolina Nemes
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- Swabian Children’s Cancer Center, Pediatrics and Adolescent Medicine, University Medical Center Augsburg, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Alexandra G Kouroukli
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Matej Boros
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Florian Oyen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- Swabian Children’s Cancer Center, Pediatrics and Adolescent Medicine, University Medical Center Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Stivaros SM, Parkes LM, Bedir R, Cheesman E, Ram D, Leung L, Huang A, Kilday JP. Primary diffuse leptomeningeal atypical teratoid/rhabdoid tumours (ATRT) of childhood: a molecularly characterised case report and literature review. Childs Nerv Syst 2025; 41:93. [PMID: 39841265 PMCID: PMC11754338 DOI: 10.1007/s00381-024-06698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/27/2024] [Indexed: 01/23/2025]
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumours (ATRTs) are malignant central nervous system tumours, typically presenting in the posterior fossa of very young children. Prognosis remains poor despite current therapy, while tumorigenesis implicates both genomic and epigenetic dysregulation. Primary diffuse leptomeningeal (PDL) ATRT, characterised by the absence of an intraparenchymal mass lesion, is seldom reported but appears associated with a dismal outcome. CASE PRESENTATION We describe a 7-year-old male presenting with a PDL MYC-subgroup ATRT. The patient received multimodal upfront therapy, including high-dose craniospinal radiotherapy, embedded within a chemotherapy backbone. An unexpected clinical and radiological improvement was also observed upon cessation of all therapy for presumed disease progression. Although the patient eventually succumbed to the disease at 30 months, he demonstrated the longest survival for any PDL ATRT patient reported (median 8 months). CONCLUSION Exhaustive literature review identified seven preceding published cases of PDL ATRT. Ours is the only one to have molecular subgrouping assigned. Perfusion imaging, within a multi-parametric diagnostic package, may be a sensitive marker for malignancy against other aetiologies in challenging presentations. Acknowledging the scarcity of the entity, we cautiously suggest a combination of chemotherapy and upfront high-dose craniospinal radiotherapy, if appropriate, may prolong survival for older children with PDL ATRT compared to exclusive chemotherapy or focal irradiation-based strategies. Our patient's recovery during palliation following a radiological diagnosis of disseminated relapse highlights the importance of confirming disease recurrence by tissue extraction where feasible.
Collapse
Affiliation(s)
- S M Stivaros
- The Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - L M Parkes
- School of Health Sciences Faculty of Biology Medicine and Health University of Manchester, Manchester, UK
| | - R Bedir
- Children's Brain Tumour Research Network (CBTRN), Royal Manchester Children's Hospital, Oxford Road, Manchester University NHS Foundation Trust, Manchester, UK
| | - E Cheesman
- Children's Brain Tumour Research Network (CBTRN), Royal Manchester Children's Hospital, Oxford Road, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Histopathology, Royal Manchester Children's Hospital, Oxford Road, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - D Ram
- Children's Brain Tumour Research Network (CBTRN), Royal Manchester Children's Hospital, Oxford Road, Manchester University NHS Foundation Trust, Manchester, UK
| | - L Leung
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Toronto, Canada
| | - A Huang
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, The Hospital for Sick Children, Toronto, Canada
| | - J P Kilday
- The Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
- Children's Brain Tumour Research Network (CBTRN), Royal Manchester Children's Hospital, Oxford Road, Manchester University NHS Foundation Trust, Manchester, UK.
- The Centre for Paediatric Teenage and Young Adult Cancer, Institute of Cancer Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
13
|
Kes MMG, Morales-Rodriguez F, Zaal EA, de Souza T, Proost N, van de Ven M, van den Heuvel-Eibrink MM, Jansen JWA, Berkers CR, Drost J. Metabolic profiling of patient-derived organoids reveals nucleotide synthesis as a metabolic vulnerability in malignant rhabdoid tumors. Cell Rep Med 2025; 6:101878. [PMID: 39708810 PMCID: PMC11866552 DOI: 10.1016/j.xcrm.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/27/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Malignant rhabdoid tumor (MRT) is one of the most aggressive childhood cancers for which no effective treatment options are available. Reprogramming of cellular metabolism is an important hallmark of cancer, with various metabolism-based drugs being approved as a cancer treatment. In this study, we use patient-derived tumor organoids (tumoroids) to map the metabolic landscape of several pediatric cancers. Combining gene expression analyses and metabolite profiling using mass spectrometry, we find nucleotide biosynthesis to be a particular vulnerability of MRT. Treatment of MRT tumoroids with de novo nucleotide synthesis inhibitors methotrexate (MTX) and BAY-2402234 lowers nucleotide levels in MRT tumoroids and induces apoptosis. Lastly, we demonstrate in vivo efficacy of MTX in MRT patient-derived xenograft (PDX) mouse models. Our study reveals nucleotide biosynthesis as an MRT-specific metabolic vulnerability, which can ultimately lead to better treatment options for children suffering from this lethal pediatric malignancy.
Collapse
Affiliation(s)
- Marjolein M G Kes
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands; Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Francisco Morales-Rodriguez
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Esther A Zaal
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Terezinha de Souza
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA), Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit of the Mouse Clinic for Cancer and Ageing (MCCA), Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Division of Child Health, Wilhelmina Children's Hospital, Utrecht University, Utrecht, the Netherlands
| | - Jeroen W A Jansen
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Celia R Berkers
- Division Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Golbourn B, Ho B, Bondoc A, Luck A, Fan X, Richardson E, Marcellus R, Prakesch M, Halbert M, Agrawal N, Smith C, Huang A, Rutka JT. A kinome drug screen identifies multi-TKI synergies and ERBB2 signaling as a therapeutic vulnerability in MYC/TYR subgroup atypical teratoid rhabdoid tumors. Neuro Oncol 2024; 26:1895-1911. [PMID: 38981018 PMCID: PMC11448967 DOI: 10.1093/neuonc/noae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (ATRT) is a rare, devastating, and largely incurable pediatric brain tumor. Although recent studies have uncovered 3 molecular subgroups of ATRTs with distinct disease patterns, and signaling features, the therapeutic profiles of ATRT subgroups remain incompletely elucidated. METHODS We examined the effect of 465 kinase inhibitors on a panel of ATRT subgroup-specific cell lines. We then applied multiomics analyses to investigate the underlying molecular mechanism of kinase inhibitor efficacy in ATRT subgroups. RESULTS We observed that ATRT cell lines are broadly sensitive to inhibitors of the PI3K and MAPK signaling pathways, as well as CDKs, AURKA/B kinases, and polo-like kinase 1. We identified 2 classes of multikinase inhibitors predominantly targeting receptor tyrosine kinases including PDGFR and EGFR/ERBB2 in MYC/TYR ATRT cells. The PDGFRB inhibitor, Dasatinib, synergistically affected MYC/TYR ATRT cell growth when combined with broad-acting PI3K and MAPK pathway inhibitors, including Rapamycin and Trametinib. We observed that MYC/TYR ATRT cells were also distinctly sensitive to various inhibitors of ERBB2 signaling. Transcriptional, H3K27Ac ChIPSeq, ATACSeq, and HiChIP analyses of primary MYC/TYR ATRTs revealed ERBB2 expression, which correlated with differential methylation and activation of a distinct enhancer element by DNA looping. Significantly, we show the brain penetrant EGFR/ERBB2 inhibitor, Afatinib, specifically inhibited in vitro and in vivo growth of MYC/TYR ATRT cells. CONCLUSIONS Taken together, our studies suggest combined treatments with PDGFR and ERBB2-directed TKIs with inhibitors of the PI3K and MAPK pathways as an important new therapeutic strategy for the MYC/TYR subgroup of ATRTs.
Collapse
Affiliation(s)
- Brian Golbourn
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ben Ho
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Andrew Bondoc
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Luck
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xiaolian Fan
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Richardson
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Michael Prakesch
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mathew Halbert
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nishant Agrawal
- John G. Rangos Sr. Research Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian Smith
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - James T Rutka
- Cell Biology Research Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Metselaar DS, Meel MH, Goulding JR, du Chatinier A, Rigamonti L, Waranecki P, Geisemeyer N, de Gooijer MC, Breur M, Koster J, Veldhuijzen van Zanten SEM, Bugiani M, Franke NE, Reddy A, Wesseling P, Kaspers GJL, Hulleman E. Gemcitabine therapeutically disrupts essential SIRT1-mediated p53 repression in atypical teratoid/rhabdoid tumors. Cell Rep Med 2024; 5:101700. [PMID: 39208799 PMCID: PMC11524974 DOI: 10.1016/j.xcrm.2024.101700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/13/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Atypical teratoid/rhabdoid tumors (ATRTs) are highly malignant embryonal tumors of the central nervous system with a dismal prognosis. Using a newly developed and validated patient-derived ATRT culture and xenograft model, alongside a panel of primary ATRT models, we found that ATRTs are selectively sensitive to the nucleoside analog gemcitabine. Gene expression and protein analyses indicate that gemcitabine treatment causes the degradation of sirtuin 1 (SIRT1), resulting in cell death through activation of nuclear factor κB (NF-κB) and p53. Furthermore, we discovered that gemcitabine-induced loss of SIRT1 results in a nucleus-to-cytoplasm translocation of the sonic hedgehog (SHH) signaling activator GLI2, explaining the observed additional gemcitabine sensitivity in SHH-subtype ATRT. Treatment of ATRT xenograft-bearing mice with gemcitabine resulted in a >30% increase in median survival and yielded long-term survivors in two independent patient-derived xenograft models. These findings demonstrate that ATRTs are highly sensitive to gemcitabine treatment and may form part of a future multimodal treatment strategy for ATRTs.
Collapse
Affiliation(s)
- Dennis S Metselaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Michaël H Meel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Joshua R Goulding
- Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Leyla Rigamonti
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Piotr Waranecki
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Neal Geisemeyer
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Mark C de Gooijer
- Division of Pharmacology/Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marjolein Breur
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jan Koster
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Niels E Franke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Alyssa Reddy
- Departments of Neurology and Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pathology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Gertjan J L Kaspers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Departments of Pediatric Oncology/Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Tsuchiya T, Ohno M, Watanabe Y, Fujita S, Miyazaki B, Sugino H, Igaki H, Yoshida A, Takahashi M, Yanagisawa S, Osawa S, Ogawa C, Narita Y. Pediatric atypical teratoid/rhabdoid tumor in the cauda equina with rapid tumor progression: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2024; 8:CASE24219. [PMID: 39133940 PMCID: PMC11323848 DOI: 10.3171/case24219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumor (AT/RT) is an uncommon malignant neoplasm and rarely occurs in the spinal space, especially in the cauda equina. Only 8 cases of pediatric AT/RT of the cauda equina have been reported. Therefore, its clinical behavior and optimal treatment remain unclear. OBSERVATIONS The authors describe the case of a 9-year-old boy who presented with progressive back and left leg pain. Initial magnetic resonance imaging showed an intradural extramedullary lesion at the L3-4 level, which progressed rapidly to the L2-5 level within a month. He underwent partial resection of the tumor with an L2-5 laminectomy. The histopathological diagnosis was AT/RT. He received adjuvant chemotherapy and radiotherapy, and his gait disturbance improved postoperatively. At 6 months' follow-up, disease recurrence was not observed. LESSONS Although extremely rare, AT/RT should be included in the differential diagnosis for prompt therapeutic intervention. Safe resection with minimal functional impairment, followed by postoperative chemoradiation, can lead to tumor control and improve neurological function. https://thejns.org/doi/10.3171/CASE24219.
Collapse
Affiliation(s)
- Takahiro Tsuchiya
- Departments of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Makoto Ohno
- Departments of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuko Watanabe
- Departments of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shohei Fujita
- Departments of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Bunpei Miyazaki
- Departments of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Sugino
- Departments of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroshi Igaki
- Departments of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiko Yoshida
- Departments of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Masamichi Takahashi
- Departments of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shunsuke Yanagisawa
- Departments of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Sho Osawa
- Departments of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Chitose Ogawa
- Departments of Pediatric Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshitaka Narita
- Departments of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
17
|
Lorca MC, Huang J, Schafernak K, Biyyam D, Stanescu AL, Hull NC, Katzman PJ, Ellika S, Chaturvedi A. Malignant Rhabdoid Tumor and Related Pediatric Tumors: Multimodality Imaging Review with Pathologic Correlation. Radiographics 2024; 44:e240015. [PMID: 39088359 DOI: 10.1148/rg.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Malignant rhabdoid tumors (MRTs) are rare but lethal solid neoplasms that overwhelmingly affect infants and young children. While the central nervous system is the most common site of occurrence, tumors can develop at other sites, including the kidneys and soft tissues throughout the body. The anatomic site of involvement dictates tumor nomenclature and nosology. While the clinical and imaging manifestations of MRTs and other more common entities may overlap, there are some site-specific distinctive imaging characteristics. Irrespective of the site of occurrence, somatic and germline mutations in SMARCB1, and rarely in SMARCA4, underlie the entire spectrum of rhabdoid tumors. MRTs have a simple and remarkably stable genome but can demonstrate considerable molecular and biologic heterogeneity. Related neoplasms encompass an expanding category of phenotypically dissimilar (nonrhabdoid tumors driven by SMARC-related alterations) entities. US, CT, MRI, and fluorodeoxyglucose PET/CT or PET/MRI facilitate diagnosis, initial staging, and follow-up, thus informing therapeutic decision making. Multifocal synchronous or metachronous rhabdoid tumors occur predominantly in the context of underlying rhabdoid tumor predisposition syndromes (RTPSs). These autosomal dominant disorders are driven in most cases by pathogenic variants in SMARCB1 (RTPS type 1) and rarely by pathogenic variants in SMARCA4 (RTPS type 2). Genetic testing and counseling are imperative in RTPS. Guidelines for imaging surveillance in cases of RTPS are based on age at diagnosis. ©RSNA, 2024 Supplemental material is available for this article.
Collapse
Affiliation(s)
- Maria Clara Lorca
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Jessie Huang
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Kristian Schafernak
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Deepa Biyyam
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - A Luana Stanescu
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Nathan C Hull
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Philip J Katzman
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Shehanaz Ellika
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| | - Apeksha Chaturvedi
- From the Department of Imaging Sciences (M.C.L., S.E., A.C.) and Department of Pathology and Laboratory Medicine (P.J.K.), University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642; University of Rochester School of Medicine and Dentistry, Rochester, NY (J.H.); Departments of Pathology (K.S.) and Radiology (D.B.), Phoenix Children's Hospital, Phoenix, Ariz; Department of Radiology, Seattle Children's Hospital, Seattle, Wash (A.L.S.); and Department of Radiology, Mayo Clinic, Rochester, Minn (N.C.H.)
| |
Collapse
|
18
|
Zahid S, Bashir F, Minhas K, Anwar SS, Javed G, Hawkins C, Bouffet E, Mushtaq N. Spinal Atypical Teratoid Rhabdoid Tumor in a 14-Year-old Child With Down Syndrome: A Case Report. J Pediatr Hematol Oncol 2024; 46:e433-e438. [PMID: 38980914 DOI: 10.1097/mph.0000000000002919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/09/2024] [Indexed: 07/11/2024]
Abstract
Individuals with 21 trisomy or Down syndrome (DS) are known to have an increased risk of acute leukemia, while they rarely develop solid or central nervous system (CNS) tumors. Atypical teratoid rhabdoid tumor (ATRT) is a highly aggressive CNS-WHO grade 4 neoplasm, which has never been reported in association with Down syndrome. We present a case study of a 14-year-old female with Down syndrome, diagnosed with intradural-extramedullary spinal ATRT. The chief complaints included bilateral lower limb weakness, constipation, and urinary incontinence for 2 weeks. Surgery was scheduled, and a biopsy was taken. The histopathology, immunohistochemistry, and molecular analysis confirmed the diagnosis of the ATRT-MYC/group 2B subgroup. This report highlights the challenges of managing a patient with complex medical conditions. Moreover, it adds to the existing literature on CNS tumors in patients with Down syndrome.
Collapse
Affiliation(s)
| | | | - Khurram Minhas
- Pathology and Laboratory Medicine, Aga Khan University Hospital
| | | | - Gohar Javed
- Surgery, Aga Khan University, Karachi, Pakistan
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | |
Collapse
|
19
|
Sepulveda F, Scotto Opipari R, Coppola F, Ramaglia A, Mankad K, Alves CAP, Bison B, Löbel U. Approaches to supratentorial brain tumours in children. Neuroradiology 2024:10.1007/s00234-024-03398-9. [PMID: 38953989 DOI: 10.1007/s00234-024-03398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024]
Abstract
The differential diagnosis of supratentorial brain tumours in children can be challenging, especially considering the recent changes to the WHO classification of CNS tumours published in 2021. Many new tumour types have been proposed which frequently present in children and young adults and their imaging features are currently being described by the neuroradiology community. The purpose of this article is to provide guidance to residents and fellows new to the field of paediatric neuroradiology on how to evaluate an MRI of a patient with a newly diagnosed supratentorial tumour. Six different approaches are discussed including: 1. Tumour types, briefly discussing the main changes to the recent WHO classification of CNS tumours, 2. Patient age and its influence on incidence rates of specific tumour types, 3. Growth patterns, 4. Tumour location and how defining the correct location helps in narrowing down the differential diagnoses and 5. Imaging features of the tumour on DWI, SWI, FLAIR and post contrast sequences.
Collapse
Affiliation(s)
- Francisco Sepulveda
- Departamento de Imagenología, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | | | - Fiorenza Coppola
- Department of Diagnostic and Interventional Radiology, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
| | - Antonia Ramaglia
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Cesar A P Alves
- Radiology Department, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brigitte Bison
- Diagnostic and Interventional Neuroradiology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Ulrike Löbel
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK.
| |
Collapse
|
20
|
Timmermann B, Alapetite C, Dieckmann K, Kortmann RD, Lassen-Ramshad Y, Maduro JH, Ramos Albiac M, Ricardi U, Weber DC. ESTRO-SIOPE guideline: Clinical management of radiotherapy in atypical teratoid/rhabdoid tumors (AT/RTs). Radiother Oncol 2024; 196:110227. [PMID: 38492671 DOI: 10.1016/j.radonc.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND AND PURPOSE Treatment of patients with atypical teratoid/rhabdoid (AT/RT) is challenging, especially when very young (below the age of three years). Radiotherapy (RT) is part of a complex trimodality therapy. The purpose of this guideline is to provide appropriate recommendations for RT in the clinical management of patients not enrolled in clinical trials. MATERIALS AND METHODS Nine European experts were nominated to form a European Society for Radiotherapy and Oncology (ESTRO) guideline committee. A systematic literature search was conducted in PubMed/MEDLINE and Web of Science. They discussed and analyzed the evidence concerning the role of RT in the clinical management of AT/RT. RESULTS Recommendations on diagnostic imaging, therapeutic principles, RT considerations regarding timing, dose, techniques, target volume definitions, dose constraints of radiation-sensitive organs at risk, concomitant chemotherapy, and follow-up were considered. Treating children with AT/RT within the framework of prospective trials or prospective registries is of utmost importance. CONCLUSION The present guideline summarizes the evidence and clinical-based recommendations for RT in patients with AT/RT. Prospective clinical trials and international, large registries evaluating modern treatment approaches will contribute to a better understanding of the best treatment for these children in future.
Collapse
Affiliation(s)
- Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium (DKTK), Germany.
| | - Claire Alapetite
- Department of Radiation Oncology and Proton Therapy Center, Institut Curie, Paris-Orsay, France
| | - Karin Dieckmann
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Rolf-Dieter Kortmann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium (DKTK), Germany; University of Leipzig Medical Center, Leipzig, Germany
| | | | - John H Maduro
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, ETH Domain, Villigen-PSI, Switzerland; Department of Radiation Oncology. Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
21
|
Kim SS, Moghe M, Rait A, Donaldson K, Harford JB, Chang EH. SMARCB1 Gene Therapy Using a Novel Tumor-Targeted Nanomedicine Enhances Anti-Cancer Efficacy in a Mouse Model of Atypical Teratoid Rhabdoid Tumors. Int J Nanomedicine 2024; 19:5973-5993. [PMID: 38895149 PMCID: PMC11185260 DOI: 10.2147/ijn.s458323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose Atypical teratoid rhabdoid tumor (ATRT) is a deadly, fast-growing form of pediatric brain cancer with poor prognosis. Most ATRTs are associated with inactivation of SMARCB1, a subunit of the chromatin remodeling complex, which is involved in developmental processes. The recent identification of SMARCB1 as a tumor suppressor gene suggests that restoration of SMARCB1 could be an effective therapeutic approach. Methods We tested SMARCB1 gene therapy in SMARCB1-deficient rhabdoid tumor cells using a novel tumor-targeted nanomedicine (termed scL-SMARCB1) to deliver wild-type SMARCB1. Our nanomedicine is a systemically administered immuno-lipid nanoparticle that can actively cross the blood-brain barrier via transferrin receptor-mediated transcytosis and selectively target tumor cells via transferrin receptor-mediated endocytosis. We studied the antitumor activity of the scL-SMARCB1 nanocomplex either as a single agent or in combination with traditional treatment modalities in preclinical models of SMARCB1-deficient ATRT. Results Restoration of SMARCB1 expression by the scL-SMARCB1 nanocomplex blocked proliferation, and induced senescence and apoptosis in ATRT cells. Systemic administration of the scL-SMARCB1 nanocomplex demonstrated antitumor efficacy as monotherapy in mice bearing ATRT xenografts, where the expression of exogenous SMARCB1 modulates MYC-target genes. scL-SMARCB1 demonstrated even greater antitumor efficacy when combined with either cisplatin-based chemotherapy or radiation therapy, resulting in significantly improved survival of ATRT-bearing mice. Conclusion Collectively, our data suggest that restoring SMARCB1 function via the scL-SMARCB1 nanocomplex may lead to therapeutic benefits in ATRT patients when combined with traditional chemoradiation therapies.
Collapse
Affiliation(s)
- Sang-Soo Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
- SynerGene Therapeutics, Inc, Potomac, MD, USA
| | - Manish Moghe
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Antonina Rait
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kathryn Donaldson
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Esther H Chang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
22
|
Andres S, Huang K, Shatara M, Abdelbaki MS, Ranalli M, Finlay J, Gupta A. Rhabdoid tumor predisposition syndrome: A historical review of treatments and outcomes for associated pediatric malignancies. Pediatr Blood Cancer 2024; 71:e30979. [PMID: 38553892 PMCID: PMC11039352 DOI: 10.1002/pbc.30979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/12/2024] [Accepted: 03/14/2024] [Indexed: 04/24/2024]
Abstract
Rhabdoid tumor predisposition syndrome (RTPS) is a rare disorder associated with malignant rhabdoid tumor of the kidney (RTK), atypical teratoid rhabdoid tumor (ATRT), and/or other extracranial, extrarenal rhabdoid tumors (EERT), and these pediatric malignancies are difficult to treat. Presently, most of the information regarding clinical manifestations, treatment, and outcomes of rhabdoid tumors comes from large data registries and case series. Our current understanding of treatments for patients with rhabdoid tumors may inform how we approach patients with RTPS. In this manuscript, we review the genetic and clinical features of RTPS and, using known registry data and clinical reports, review associated tumor types ATRT, RTK, and EERT, closing with potential new approaches to treatment. We propose collaborative international efforts to study the use of SMARC (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin)-targeting agents, high-dose consolidative therapy, and age-based irradiation of disease sites in RTPS.
Collapse
Affiliation(s)
- Sarah Andres
- Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, New York
| | - Karen Huang
- Jacobs School of Medicine and Biomedical Sciences at the University at Buffalo, Buffalo, New York
| | - Margaret Shatara
- The Division of Hematology and Oncology, St. Louis Children’s Hospital, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mohamed S. Abdelbaki
- The Division of Hematology and Oncology, St. Louis Children’s Hospital, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mark Ranalli
- Division of Hematology/Oncology/Bone Marrow Transplant, Nationwide Children’s Hospital, Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Jonathan Finlay
- Departments of Pediatrics and Radiation Oncology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ajay Gupta
- Division of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York
| |
Collapse
|
23
|
Cordier F, Schouten JW, Geurts M, Kros JM, Dubbink HJ, Verlinden V, Federico A, Kool M, Maas SLN. Diffuse infiltrating tumour with the molecular profile of an atypical teratoid rhabdoid tumour (AT/RT SHH-1B) in an adult patient. Neuropathol Appl Neurobiol 2024; 50:e12983. [PMID: 38708554 DOI: 10.1111/nan.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
We describe a 46-year-old patient with an IDH-wildtype diffusely infiltrating atypical teratoid/rhabdoid tumour (AT/RT), SHH-1B molecular subtype. The unusual histology and subsequent diagnosis in an adult patient will be discussed.
Collapse
Affiliation(s)
- Fleur Cordier
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, University Hospital Ghent, Ghent, Belgium
| | - Joost W Schouten
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjolein Geurts
- Department of Neurology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Vincent Verlinden
- Department of Radiology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Aniello Federico
- Hopp Childrens Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Childrens Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sybren L N Maas
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Bielamowicz KJ, Littrell MB, Albert GW, Parker LS, Jayappa S, Aldape K, Gokden M. Central nervous system embryonal tumors with EWSR1-PLAGL1 rearrangements reclassified as INI-1 deficient tumors at relapse. J Neurooncol 2024; 168:367-373. [PMID: 38639853 PMCID: PMC11147842 DOI: 10.1007/s11060-024-04667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
PURPOSE Central nervous system (CNS) embryonal tumors are a diverse group of malignant tumors typically affecting pediatric patients that recently have been better defined, and this paper describes evolution of a unique type of embryonal tumor at relapse. METHODS Two pediatric patients with CNS embryonal tumors with EWSR1-PLAGL1 rearrangements treated at Arkansas Children's Hospital with histopathologic and molecular data are described. RESULTS These two patients at diagnosis were classified as CNS embryonal tumors with EWSR1-PLAGL1 rearrangements based on histologic appearance and molecular data. At relapse both patient's disease was reclassified as atypical teratoid rhabdoid tumor (ATRT) based on loss of INI-1, presence of SMARCB1 alterations, and methylation profiling results. CONCLUSION CNS embryonal tumors with EWSR1-PLAGL1 rearrangements acquire or include a population of cells with SMARCB1 alterations that are the component that predominate at relapse, suggesting treatment aimed at this disease component at diagnosis should be considered.
Collapse
Affiliation(s)
- Kevin J Bielamowicz
- Division of Pediatrics, The University of Arkansas for Medical Sciences (UAMS), 1 Children's Way Slot 512-10, 72223, Little Rock, AR, USA.
- Section of Pediatric Hematology/Oncology, UAMS, Little Rock, AR, USA.
- Arkansas Children's Hospital, Little Rock, AR, USA.
| | - Mary Beth Littrell
- Division of Pediatrics, The University of Arkansas for Medical Sciences (UAMS), 1 Children's Way Slot 512-10, 72223, Little Rock, AR, USA
- Section of Pediatric Hematology/Oncology, UAMS, Little Rock, AR, USA
- Arkansas Children's Hospital, Little Rock, AR, USA
| | - Gregory W Albert
- Department of Neurosurgery, UAMS, Little Rock, AR, USA
- Division of Neurosurgery, ACH, Little Rock, AR, USA
| | | | - Sateesh Jayappa
- Division of Radiology, UAMS, Little Rock, AR, USA
- Arkansas Children's Hospital, Little Rock, AR, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Murat Gokden
- Division of Pathology, UAMS, Little Rock, AR, USA
| |
Collapse
|
25
|
Margol AS, Molinaro AM, Onar-Thomas A, Resnick A, Hanson D, Kieran M, Mishra-Kalyani P, Rivera D, Barone A, Arons D, Meehan C, Prados M. Use of External Control Cohorts in Pediatric Brain Tumor Clinical Trials. J Clin Oncol 2024; 42:1340-1343. [PMID: 38394473 DOI: 10.1200/jco.23.01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/18/2023] [Accepted: 01/03/2024] [Indexed: 02/25/2024] Open
Abstract
Why, when, and how to consider external control cohorts in pediatric brain tumor clinical trials.
Collapse
Affiliation(s)
- Ashley S Margol
- Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute at Children's Hospital Los Angeles, Los Angeles, CA
| | - Annette M Molinaro
- Division of Biomedical Statistics and Informatics, Department of Neurosurgery, University of California, San Francisco, San Francisco, CA
| | | | - Adam Resnick
- Center for Data Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Derek Hanson
- Joseph M. Sanzari Children's Hospital at Hackensack University Medical Center, Hackensack, NJ
| | | | | | | | - Amy Barone
- US Food and Drug Administration, Washington, DC
| | | | | | - Michael Prados
- Departments of Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
26
|
d’Amati A, Bargiacchi L, Rossi S, Carai A, Bertero L, Barresi V, Errico ME, Buccoliero AM, Asioli S, Marucci G, Del Baldo G, Mastronuzzi A, Miele E, D’Antonio F, Schiavello E, Biassoni V, Massimino M, Gessi M, Antonelli M, Gianno F. Pediatric CNS tumors and 2021 WHO classification: what do oncologists need from pathologists? Front Mol Neurosci 2024; 17:1268038. [PMID: 38544524 PMCID: PMC10966132 DOI: 10.3389/fnmol.2024.1268038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.
Collapse
Affiliation(s)
- Antonio d’Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Lavinia Bargiacchi
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica D’Antonio
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
27
|
Chen S, He Y, Liu J, Wu R, Wang M, Jin A. Dynamic Survival Risk Prognostic Model and Genomic Landscape for Atypical Teratoid/Rhabdoid Tumors: A Population-Based, Real-World Study. Cancers (Basel) 2024; 16:1059. [PMID: 38473416 DOI: 10.3390/cancers16051059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND An atypical teratoid/rhabdoid tumor (AT/RT) is an uncommon and aggressive pediatric central nervous system neoplasm. However, a universal clinical consensus or reliable prognostic evaluation system for this malignancy is lacking. Our study aimed to develop a risk model based on comprehensive clinical data to assist in clinical decision-making. METHODS We conducted a retrospective study by examining data from the Surveillance, Epidemiology, and End Results (SEER) repository, spanning 2000 to 2019. The external validation cohort was sourced from the Children's Hospital Affiliated to Chongqing Medical University, China. To discern independent factors affecting overall survival (OS) and cancer-specific survival (CSS), we applied Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest (RF) regression analyses. Based on these factors, we structured nomogram survival predictions and initiated a dynamic online risk-evaluation system. To contrast survival outcomes among diverse treatments, we used propensity score matching (PSM) methodology. Molecular data with the most common mutations in AT/RT were extracted from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. RESULTS The annual incidence of AT/RT showed an increasing trend (APC, 2.86%; 95% CI:0.75-5.01). Our prognostic study included 316 SEER database participants and 27 external validation patients. The entire group had a median OS of 18 months (range 11.5 to 24 months) and median CSS of 21 months (range 11.7 to 29.2). Evaluations involving C-statistics, DCA, and ROC analysis underscored the distinctive capabilities of our prediction model. An analysis via PSM highlighted that individuals undergoing triple therapy (integrating surgery, radiotherapy, and chemotherapy) had discernibly enhanced OS and CSS. The most common mutations of AT/RT identified in the COSMIC database were SMARCB1, BRAF, SMARCA4, NF2, and NRAS. CONCLUSIONS In this study, we devised a predictive model that effectively gauges the prognosis of AT/RT and briefly analyzed its genomic features, which might offer a valuable tool to address existing clinical challenges.
Collapse
Affiliation(s)
- Sihao Chen
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing 400010, China
| | - Yi He
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing 400010, China
| | - Jiao Liu
- Children's Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Ruixin Wu
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing 400010, China
| | - Menglei Wang
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing 400010, China
- Department of Pediatrics, Chongqing Health Center for Women and Children, Chongqing 400010, China
| | - Aishun Jin
- Department of Immunology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Tumor Immune Regulation and Immune Intervention, Chongqing 400010, China
| |
Collapse
|
28
|
Matsumoto F, Yokogami K, Yamada A, Moritake H, Watanabe T, Yamashita S, Sato Y, Takeshima H. Targeting cholesterol biosynthesis for AT/RT: comprehensive expression analysis and validation in newly established AT/RT cell line. Hum Cell 2024; 37:523-530. [PMID: 38329694 DOI: 10.1007/s13577-023-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/16/2023] [Indexed: 02/09/2024]
Abstract
Atypical teratoid/rhabdoid (AT/RT) is a rare and highly malignant tumor of the central nervous system (CNS). It is most commonly found in children less than 5 years of age and is associated with inactivation of loss of function of SMARCB1/INI1. An experimental model for AT/RT is necessary to develop new and effective therapies. We established a patient-derived new cell line (MZ611ATRT), which showed loss of BAF-47. MZ611ATRT genetically features somatic heterozygous deletion of SMARCB1 and single nucleotide deletion of the residual allele, exon 5 ([c.541delC]), resulting in a stop codon at codon 954 by frameshift. We assessed the RNA-sequencing data of the other two AT/RT cell lines with forced expression of SMARCB1 available from public databases. We found SMARCB1 overexpression significantly down-regulates the expression of a group of enzymes related to cholesterol biosynthesis. Simvastatin was highly sensitive against MZ611ATRT cells and induced apoptosis (IC50 was 3.098 µM for MZ611ATRT, 41.88uM for U-87 MG, 23.34uM for IOMM-Lee, and 18.12uM for U-251 MG.). Pathways involved in cholesterol biosynthesis may be new targets for adjuvant therapy of AT/RT.
Collapse
Affiliation(s)
- Fumitaka Matsumoto
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
| | - Kiyotaka Yokogami
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Watanabe
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shinji Yamashita
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki, Miyazaki, Japan
| | - Hideo Takeshima
- Department of Neurosurgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
29
|
Yaguchi A, Fujimura J, Maruyama K, Fujiwara M, Ishibashi T, Tomita O, Shimizu T. Recurrent spinal atypical teratoid/rhabdoid tumor with pulmonary metastasis. Cancer Rep (Hoboken) 2024; 7:e1975. [PMID: 38217390 PMCID: PMC10850004 DOI: 10.1002/cnr2.1975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumors (ATRT) are aggressive pediatric central nervous system malignancies that predominantly affect the brain and have poor survival outcomes. However, spinal ATRT is an uncommon subset of ATRT, and its clinical course and management are poorly understood. CASE We describe a case of spinal ATRT in a previously healthy 5-year-old girl who initially presented with rapid-onset gait disturbance. Magnetic resonance imaging (MRI) revealed an extramedullary tumor at thoracic level 5 (T5) without bony destruction or metastasis. The patient partially recovered after surgical resection. One month was required for a definitive diagnosis, and the pathology confirmed ATRT characterized by the loss of INI-1 protein expression. Chemoradiotherapy with local irradiation and high-dose chemotherapy with autologous peripheral blood stem cell transplantation led to complete remission and functional recovery for 5 months. However, the condition exhibited progression in the cerebrospinal fluid (CSF) region, resulting in cerebellar, cerebral, and spinal tumor development. Eventually, the disease metastasized to the lungs and disseminated to the entire cerebrospinal cord and fluid. The patient died 15 months after the initial diagnosis. CONCLUSION This case emphasizes the importance of considering ATRT as a potential diagnostic modality for pediatric spinal cord tumors, enabling prompt multidisciplinary intervention. The heterogeneous appearance of spinal ATRT may make distinguishing it from other spinal tumors difficult, resulting in delayed diagnosis and treatment. The treatment approach for ATRT remains challenging with no established standards. Local irradiation may be preferable to minimize neurodevelopmental effects, and initial craniospinal irradiation may potentially prevent recurrence. Our case emphasizes the likelihood of extracranial metastasis in ATRT, thereby highlighting the importance of a comprehensive assessment of both genetic and epigenetic profiles to identify any factors that may influence the clinical course of this disease. Prompt diagnosis and comprehensive therapeutic strategies are critical for improving outcomes in spinal ATRT patients.
Collapse
Affiliation(s)
- Akinori Yaguchi
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Junya Fujimura
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Kazutaka Maruyama
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Megumi Fujiwara
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Takeshi Ishibashi
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Osamu Tomita
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| | - Toshiaki Shimizu
- Department of PediatricsJuntendo University Faculty of MedicineTokyoJapan
| |
Collapse
|
30
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
31
|
Ho B, Arnoldo A, Zhong Y, Lu M, Torchia J, Yao F, Hawkins C, Huang A. Rapid, economical diagnostic classification of ATRT molecular subgroup using NanoString nCounter platform. Neurooncol Adv 2024; 6:vdae004. [PMID: 38292239 PMCID: PMC10825849 DOI: 10.1093/noajnl/vdae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Background Despite genomic simplicity, recent studies have reported at least 3 major atypical teratoid rhabdoid tumor (ATRT) subgroups with distinct molecular and clinical features. Reliable ATRT subgrouping in clinical settings remains challenging due to a lack of suitable biological markers, sample rarity, and the relatively high cost of conventional subgrouping methods. This study aimed to develop a reliable ATRT molecular stratification method to implement in clinical settings. Methods We have developed an ATRT subgroup predictor assay using a custom genes panel for the NanoString nCounter System and a flexible machine learning classifier package. Seventy-one ATRT primary tumors with matching gene expression array and NanoString data were used to construct a multi-algorithms ensemble classifier. Additional validation was performed using an independent gene expression array against the independently generated dataset. We also analyzed 11 extra-cranial rhabdoid tumors with our classifier and compared our approach against DNA methylation classification to evaluate the result consistency with existing methods. Results We have demonstrated that our novel ensemble classifier has an overall average of 93.6% accuracy in the validation dataset, and a striking 98.9% accuracy was achieved with the high-prediction score samples. Using our classifier, all analyzed extra-cranial rhabdoid tumors are classified as MYC subgroups. Compared with the DNA methylation classification, the results show high agreement, with 84.5% concordance and up to 95.8% concordance for high-confidence predictions. Conclusions Here we present a rapid, cost-effective, and accurate ATRT subgrouping assay applicable for clinical use.
Collapse
Affiliation(s)
- Ben Ho
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Arnoldo
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yvonne Zhong
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Lu
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Fupan Yao
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Division of Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Pathology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Annie Huang
- Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Crotty EE, Paulson VA, Ronsley R, Vitanza NA, Lee A, Hauptman J, Goldstein HE, Lockwood CM, Leary SES, Cole BL. Cerebrospinal fluid liquid biopsy by low-pass whole genome sequencing for clinical disease monitoring in pediatric embryonal tumors. Neurooncol Adv 2024; 6:vdae126. [PMID: 39290875 PMCID: PMC11407906 DOI: 10.1093/noajnl/vdae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Background Liquid biopsy assays that detect cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) are a promising tool for disease monitoring in pediatric patients with primary central nervous system (CNS) tumors. As a compliment to tissue-derived molecular analyses, CSF liquid biopsy has the potential to transform risk stratification, prognostication, and precision medicine approaches. Methods In this pilot study, we evaluated a clinical pipeline to determine feasibility and sensitivity of low-pass whole genome sequencing (LP-WGS) of CSF-derived cfDNA from patients with CNS embryonal tumors. Thirty-two longitudinal CSF samples collected from 17 patients with molecularly characterized medulloblastoma (12), embryonal tumor with multilayered rosettes (2), CNS embryonal tumor, not elsewhere classified (NEC) (2), and atypical teratoid/rhabdoid tumor (1) were analyzed. Results Adequate CSF-derived cfDNA for LP-WGS analysis was obtained in 94% of samples (30/32). Copy number variants compatible with neoplasia were detected in 90% (27/30) and included key alterations, such as isodicentric ch17, monosomy 6, and MYCN amplification, among others. Compared to tissue specimens, LP-WGS detected additional aberrations in CSF not previously identified in corresponding primary tumor specimens, suggesting a more comprehensive profile of tumor heterogeneity or evolution of cfDNA profiles over time. Among the 12 CSF samples obtained at initial staging, only 2 (17%) were cytologically positive, compared to 11 (92%) that were copy number positive by LP-WGS. Conclusions LP-WGS of CSF-derived cfDNA is feasible using a clinical platform, with greater sensitivity for tumor detection compared to conventional CSF cytologic analysis at initial staging. Large prospective studies are needed to further evaluate LP-WGS as a predictive biomarker.
Collapse
Affiliation(s)
- Erin E Crotty
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Vera A Paulson
- Genetics and Solid Tumors Laboratory, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rebecca Ronsley
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Nicholas A Vitanza
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Amy Lee
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Jason Hauptman
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Hannah E Goldstein
- Division of Neurosurgery, Department of Neurological Surgery, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Christina M Lockwood
- Genetics and Solid Tumors Laboratory, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Sarah E S Leary
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Bonnie L Cole
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| |
Collapse
|
33
|
Hua T, Xue Y, Sarker DB, Kiran S, Li Y, Sang QXA. Modeling human brain rhabdoid tumor by inactivating tumor suppressor genes in induced pluripotent stem cells. Bioact Mater 2024; 31:136-150. [PMID: 37637078 PMCID: PMC10448240 DOI: 10.1016/j.bioactmat.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Atypical teratoid/rhabdoid tumor (ATRT) is a rare childhood malignancy that originates in the central nervous system. Over ninety-five percent of ATRT patients have biallelic inactivation of the tumor suppressor gene SMARCB1. ATRT has no standard treatment, and a major limiting factor in therapeutic development is the lack of reliable ATRT models. We employed CRISPR/Cas9 gene-editing technology to knock out SMARCB1 and TP53 genes in human episomal induced pluripotent stem cells (Epi-iPSCs), followed by brief neural induction, to generate an ATRT-like model. The dual knockout Epi-iPSCs retained their stemness with the capacity to differentiate into three germ layers. High expression of OCT4 and NANOG in neurally induced knockout spheroids was comparable to that in two ATRT cell lines. Beta-catenin protein expression was higher in SMARCB1-deficient cells and spheroids than in normal Epi-iPSC-derived spheroids. Nucleophosmin, Osteopontin, and Ki-67 proteins were also expressed by the SMARCB1-deficient spheroids. In summary, the tumor model resembled embryonal features of ATRT and expressed ATRT biomarkers at mRNA and protein levels. Ribociclib, PTC-209, and the combination of clofilium tosylate and pazopanib decreased the viability of the ATRT-like cells. This disease modeling scheme may enable the establishment of individualized tumor models with patient-specific mutations and facilitate high-throughput drug testing.
Collapse
Affiliation(s)
- Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| |
Collapse
|
34
|
Blackburn PR, McGee RB, Mostafavi R, Carroll AJ, Mikhail FM, Armstrong GT, Furtado LV, Chiang J, Wheeler DA, Carey SS, Nichols KE, Upadhyaya SA. Constitutional balanced translocations involving SMARCB1: A rare cause of rhabdoid tumor predisposition syndrome. Genes Chromosomes Cancer 2024; 63:e23195. [PMID: 37548271 DOI: 10.1002/gcc.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023] Open
Abstract
Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.
Collapse
Affiliation(s)
- Patrick R Blackburn
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rose B McGee
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Roya Mostafavi
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fady M Mikhail
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Larissa V Furtado
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jason Chiang
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David A Wheeler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Steven S Carey
- Department of Hospitalist Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Kim E Nichols
- Division of Cancer Predisposition, St Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Santhosh A Upadhyaya
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
35
|
Gastberger K, Fincke VE, Mucha M, Siebert R, Hasselblatt M, Frühwald MC. Current Molecular and Clinical Landscape of ATRT - The Link to Future Therapies. Cancer Manag Res 2023; 15:1369-1393. [PMID: 38089834 PMCID: PMC10712249 DOI: 10.2147/cmar.s379451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
ATRT is a highly aggressive and rare pediatric CNS tumor of very young children. Its genetic hallmark is bi-allelic inactivation of SMARCB1 encoding INI1. Rarely SMARCA4 encoding BRG1 is affected. Up to 30% are associated with constitutional heterozygous pathogenic variants in one of the two genes, giving rise to the Rhabdoid-Tumor-Predisposition-Syndromes (RTPS) 1 and 2. Characteristic DNA methylation profiles distinguish ATRT from other SMARCB1-deficient entities. Three distinct subtypes ATRT-MYC, -TYR, and -SHH are on record. ATRT-SHH may be further divided into the subgroups ATRT-SHH1A, -SHH1B, and -SHH2. The cure of ATRT remains challenging, notwithstanding an increasing understanding of molecular pathomechanisms and genetic background. The implementation of multimodal institutional treatment protocols has improved prognosis. Regardless of treatment approaches, clinical risk factors such as age, metastases, and DNA methylation subtype affect survival probability. We provide a critical appraisal of current conventional multimodal regimens and emerging targeted treatment approaches investigated in clinical trials and entity-specific registries. Intense treatment approaches featuring radiotherapy (RT) and high-dose chemotherapy (HDCT) face the difficulty of balancing tumor control and treatment-related toxicity. Current approaches focus on minimizing radiation fields by proton beam therapy or to withhold RT in HDCT-only approaches. Still, a 40-75% relapse rate upon first-line treatment reveals the need for novel treatment strategies in primary and even more in recurrent/refractory (r/r) disease. Among targeted treatments, immune checkpoint inhibitors and epigenetically active agents appear most promising. Success remains limited in single agent approaches. We hypothesize that mechanism-informed combination therapy will enhance response, as the low mutational burden of ATRT may contribute to acquiring resistance to single targeted agents. As DNA methylation group-specific gene expression profiles appear to influence response to distinct agents, the future treatment of ATRT should respect clinical and biological heterogeneity in risk group adjusted treatment protocols.
Collapse
Affiliation(s)
- Katharina Gastberger
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Victoria E Fincke
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Marlena Mucha
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Pediatrics and Adolescent Medicine, Swabian Children’s Cancer Center, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| |
Collapse
|
36
|
Malbari F. Pediatric Neuro-oncology. Continuum (Minneap Minn) 2023; 29:1680-1709. [PMID: 38085894 DOI: 10.1212/con.0000000000001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
OBJECTIVE This article reviews the most common pediatric brain tumors, neurocutaneous syndromes, treatment-related neurotoxicities, and the long-term outcomes of survivors. LATEST DEVELOPMENTS In the era of molecular diagnostics, the classification, management, and prognostication of pediatric brain tumors and neurocutaneous syndromes has been refined, resulting in advancements in patient management. Molecular diagnostics have been incorporated into the most recent World Health Organization 2021 classification. This knowledge has allowed for novel therapeutic approaches targeting the biology of these tumors with the intent to improve overall survival, decrease treatment-related morbidity, and improve quality of life. Advances in management have led to better survival, but mortality remains high and significant morbidity persists. Current clinical trials focus on tumor biology targeted therapy, deescalation of therapy, and multimodal intensified approaches with targeted therapy in more high-risk tumors. ESSENTIAL POINTS Molecular diagnostics for pediatric brain tumors and neurocutaneous syndromes have led to novel therapeutic approaches targeting the biology of these tumors with the goals of improving overall survival and decreasing treatment-related morbidity. Further understanding will lead to continued refinement and improvement of tumor classification, management, and prognostication.
Collapse
|
37
|
Banaszek N, Kurpiewska D, Kozak K, Rutkowski P, Sobczuk P. Hedgehog pathway in sarcoma: from preclinical mechanism to clinical application. J Cancer Res Clin Oncol 2023; 149:17635-17649. [PMID: 37815662 PMCID: PMC10657326 DOI: 10.1007/s00432-023-05441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Sarcomas are a diverse group of malignant neoplasms of mesenchymal origin. They develop rarely, but due to poor prognosis, they are a challenging and significant clinical problem. Currently, available therapeutic options have very limited activity. A better understating of sarcomas' pathogenesis may help develop more effective therapies in the future. The Sonic hedgehog (Shh) signaling pathway is involved in both embryonic development and mature tissue repair and carcinogenesis. Shh pathway inhibitors are presently used in the treatment of basal cell carcinoma. Its increased activity has been demonstrated in many sarcomas, including osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma, leiomyosarcoma, and malignant rhabdoid tumor. In vitro studies have demonstrated the effectiveness of inhibitors of the Hedgehog pathway in inhibiting proliferation in those sarcomas in which the components of the pathway are overexpressed. These results were confirmed by in vivo studies, which additionally proved the influence of Shh pathway inhibitors on limiting the metastatic potential of sarcoma cells. However, until now, the efficacy of sarcomas treatment with Shh pathway inhibitors has not been established in clinical trials. The reason for that may be the non-canonical activation of the pathway or interactions with other signaling pathways, such as Wnt or Notch. In this review, we present the Shh signaling pathway's role in the pathogenesis of sarcomas, including both canonical and non-canonical signaling. We also propose how this knowledge could be potentially translated into clinics.
Collapse
Affiliation(s)
- Natalia Banaszek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dominika Kurpiewska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
- Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kozak
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Paweł Sobczuk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland.
| |
Collapse
|
38
|
Park JW, Lee K, Kim EE, Kim SI, Park SH. Brain Tumor Classification by Methylation Profile. J Korean Med Sci 2023; 38:e356. [PMID: 37935168 PMCID: PMC10627723 DOI: 10.3346/jkms.2023.38.e356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
The goal of the methylation classifier in brain tumor classification is to accurately classify tumors based on their methylation profiles. Accurate brain tumor diagnosis is the first step for healthcare professionals to predict tumor prognosis and establish personalized treatment plans for patients. The methylation classifier can be used to perform classification on tumor samples with diagnostic difficulties due to ambiguous histology or mismatch between histopathology and molecular signatures, i.e., not otherwise specified (NOS) cases or not elsewhere classified (NEC) cases, aiding in pathological decision-making. Here, the authors elucidate upon the application of a methylation classifier as a tool to mitigate the inherent complexities associated with the pathological evaluation of brain tumors, even when pathologists are experts in histopathological diagnosis and have access to enough molecular genetic information. Also, it should be emphasized that methylome cannot classify all types of brain tumors, and it often produces erroneous matches even with high matching scores, so, excessive trust is prohibited. The primary issue is the considerable difficulty in obtaining reference data regarding the methylation profile of each type of brain tumor. This challenge is further amplified when dealing with recently identified novel types or subtypes of brain tumors, as such data are not readily accessible through open databases or authors of publications. An additional obstacle arises from the fact that methylation classifiers are primarily research-based, leading to the unavailability of charging patients. It is important to note that the application of methylation classifiers may require specialized laboratory techniques and expertise in DNA methylation analysis.
Collapse
Affiliation(s)
- Jin Woo Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Eric Eunshik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Neuroscience, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
39
|
Corvino S, Del Basso De Caro M, Franca RA, Corazzelli G, Della Monica R, Chiariotti L, Maiuri F. Atypical Teratoid/Rhabdoid Tumor of the Nervous System in Adults: Location-Related Features and Outcome. World Neurosurg 2023; 179:e404-e415. [PMID: 37659753 DOI: 10.1016/j.wneu.2023.08.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Atypical teratoid/rhabdoid tumor (AT/RT) of the nervous system is a rare and highly malignant neoplasm, mainly affecting children, first recognized as a pathologic entity in 1996 and added to the World Health Organization Classification of the Tumors of the Central Nervous System in 2000. AT/RT is even rarer among adults and is associated with a worse prognosis. The aim of the present study was to analyze the different tumor features according to the location in adults. METHODS A comprehensive and detailed literature review of AT/RTs in adults was made. The demographic, management, and outcome data associated with tumor location were analyzed and compared; histopathologic and molecular features were also discussed. Furthermore, we added our personal case with brain hemispheric localization and reported a progression-free survival of 103 months after gross total resection and adjuvant radiotherapy showing a peculiar histopathologic pattern. RESULTS Female sex is mainly affected by AT/RT on median localizations, both intracranial and spinal, and by all sellar region cases. Gross total resection is mainly achieved among lateral compared with median localizations. Combined radiotherapy and chemotherapy is the most adopted adjuvant treatment in all tumor localizations and is related to better outcome. Postoperative death is reported only among sellar region localizations, whereas brain hemispheric cases show the best overall survival. CONCLUSIONS AT/RTs show different and peculiar features according to their location, which significantly affects the outcome; precise knowledge of them helps the neurosurgeon in planning the best strategy for treatment.
Collapse
Affiliation(s)
- Sergio Corvino
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Marialaura Del Basso De Caro
- Department of Advanced Biomedical Sciences, Section of Pathology, University of Naples "Federico II", Naples, Italy
| | - Raduan Ahmed Franca
- Department of Advanced Biomedical Sciences, Section of Pathology, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Corazzelli
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Rosa Della Monica
- Department of Molecular Medicine and Medical Biotechnology, University "Federico II" of Naples, Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University "Federico II" of Naples, Naples, Italy
| | - Francesco Maiuri
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Neurosurgical Clinic, School of Medicine, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
40
|
Formentin C, Joaquim AF, Ghizoni E. Posterior fossa tumors in children: current insights. Eur J Pediatr 2023; 182:4833-4850. [PMID: 37679511 DOI: 10.1007/s00431-023-05189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
While in adults most intracranial tumors develop around the cerebral hemispheres, 45 to 60% of pediatric lesions are found in the posterior fossa, although this anatomical region represents only 10% of the intracranial volume. The latest edition of the WHO classification for CNS tumors presented some fundamental paradigm shifts that particularly affected the classification of pediatric tumors, also influencing those that affect posterior fossa. Molecular biomarkers play an important role in the diagnosis, prognosis, and treatment of childhood posterior fossa tumors and can be used to predict patient outcomes and response to treatment and monitor its effectiveness. Although genetic studies have identified several posterior fossa tumor types, differing in terms of their location, cell of origin, genetic mechanisms, and clinical behavior, recent management strategies still depend on uniform approaches, mainly based on the extent of resection. However, significant progress has been made in guiding therapy decisions with biological or molecular stratification criteria and utilizing molecularly targeted treatments that address specific tumor biological characteristics. The primary focus of this review is on the latest advances in the diagnosis and treatment of common subtypes of posterior fossa tumors in children, as well as potential therapeutic approaches in the future. Conclusion: Molecular biomarkers play a central role, not only in the diagnosis and prognosis of posterior fossa tumors in children but also in customizing treatment plans. They anticipate patient outcomes, measure treatment responses, and assess therapeutic effectiveness. Advances in neuroimaging and treatment have significantly enhanced outcomes for children with these tumors. What is Known: • Central nervous system tumors are the most common solid neoplasms in children and adolescents, with approximately 45 to 60% of them located in the posterior fossa. • Multimodal approaches that include neurosurgery, radiation therapy, and chemotherapy are typically used to manage childhood posterior fossa tumors What is New: • Notable progress has been achieved in the diagnosis, categorization and management of posterior fossa tumors in children, leading to improvement in survival and quality of life.
Collapse
Affiliation(s)
- Cleiton Formentin
- Division of Neurosurgery, Department of Neurology, University of Campinas, Tessalia Vieira de Camargo St., 126. 13083-887, Campinas, SP, Brazil.
- Centro Infantil Boldrini, Campinas, SP, Brazil.
| | - Andrei Fernandes Joaquim
- Division of Neurosurgery, Department of Neurology, University of Campinas, Tessalia Vieira de Camargo St., 126. 13083-887, Campinas, SP, Brazil
- Centro Infantil Boldrini, Campinas, SP, Brazil
| | - Enrico Ghizoni
- Division of Neurosurgery, Department of Neurology, University of Campinas, Tessalia Vieira de Camargo St., 126. 13083-887, Campinas, SP, Brazil
- Centro Infantil Boldrini, Campinas, SP, Brazil
| |
Collapse
|
41
|
Syed H, Teferi N, Hanson A, Challa M, Eschbacher K, Hitchon P. Clinical diagnostic and radiographic features of primary spinal atypical teratoid rhabdoid tumors tumor in a pediatric patient: A case report and review of the literature. J Cent Nerv Syst Dis 2023; 15:11795735231209199. [PMID: 37876767 PMCID: PMC10591496 DOI: 10.1177/11795735231209199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRTs) are rare embryonal tumors comprising 1-2% of all pediatric CNS neoplasms. Spinal ATRTs are even more uncommon, accounting for 2% of all reported ATRT cases. Despite their rarity, ATRTs affect young children disproportionately and are characterized by a high malignant potential due to a heterogeneous cellular composition and inactivating mutations in the SMARCB1 (90%) and SMARCA4 (10%) genes. A 15-month-old female presented with a 2-week history of decreased lower extremity movement and new-onset need for assistance with ambulation. MRI lumbar spine revealed a contrast-enhancing intradural mass at the L3-L4 level with iso-intensity on T1 and T2 sequences. The patient subsequently underwent subtotal tumor resection (∼80%) given concerns for maintaining neurological function. Final pathology was consistent with spinal ATRT, and she later underwent adjuvant chemoradiation therapy per ACNS0333 protocol. She has since remained in remission with age-appropriate developmental milestones over the past 2 years. ATRTs should be considered in the differential diagnosis of intradural spinal lesions, especially in the pediatric patient population. Clinical course, presentation, and diagnosis is often delayed due to the rarity of these tumors, but contrasted craniospinal MRI is key for diagnosis and histopathology with IHC staining showing loss of INI is confirmatory. While gross total resection is the goal, maximal safe tumor resection should be prioritized in order to preserve neurological function. Adjuvant chemoradiation following gross total/subtotal resection has been shown to significantly improve overall survival.
Collapse
Affiliation(s)
- Hashim Syed
- Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Nahom Teferi
- Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Alec Hanson
- University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Meron Challa
- University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Kathryn Eschbacher
- Department of Pathology, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| | - Patrick Hitchon
- Department of Neurosurgery, University of Iowa Hospital and Clinics, Iowa City, IA, USA
| |
Collapse
|
42
|
Lobón-Iglesias MJ, Andrianteranagna M, Han ZY, Chauvin C, Masliah-Planchon J, Manriquez V, Tauziede-Espariat A, Turczynski S, Bouarich-Bourimi R, Frah M, Dufour C, Blauwblomme T, Cardoen L, Pierron G, Maillot L, Guillemot D, Reynaud S, Bourneix C, Pouponnot C, Surdez D, Bohec M, Baulande S, Delattre O, Piaggio E, Ayrault O, Waterfall JJ, Servant N, Beccaria K, Dangouloff-Ros V, Bourdeaut F. Imaging and multi-omics datasets converge to define different neural progenitor origins for ATRT-SHH subgroups. Nat Commun 2023; 14:6669. [PMID: 37863903 PMCID: PMC10589300 DOI: 10.1038/s41467-023-42371-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Atypical teratoid rhabdoid tumors (ATRT) are divided into MYC, TYR and SHH subgroups, suggesting diverse lineages of origin. Here, we investigate the imaging of human ATRT at diagnosis and the precise anatomic origin of brain tumors in the Rosa26-CreERT2::Smarcb1flox/flox model. This cross-species analysis points to an extra-cerebral origin for MYC tumors. Additionally, we clearly distinguish SHH ATRT emerging from the cerebellar anterior lobe (CAL) from those emerging from the basal ganglia (BG) and intra-ventricular (IV) regions. Molecular characteristics point to the midbrain-hindbrain boundary as the origin of CAL SHH ATRT, and to the ganglionic eminence as the origin of BG/IV SHH ATRT. Single-cell RNA sequencing on SHH ATRT supports these hypotheses. Trajectory analyses suggest that SMARCB1 loss induces a de-differentiation process mediated by repressors of the neuronal program such as REST, ID and the NOTCH pathway.
Collapse
Affiliation(s)
- María-Jesús Lobón-Iglesias
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Mamy Andrianteranagna
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
- INSERM U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, Mines Paris Tech, PSL Research University, Institut Curie Research Center, Paris, France
| | - Zhi-Yan Han
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Céline Chauvin
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Julien Masliah-Planchon
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Valeria Manriquez
- INSERM U932, Immunity and Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | - Arnault Tauziede-Espariat
- Department of Neuropathology, GHU Paris-Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
- Paris Psychiatry and Neurosciences Institute (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
| | - Sandrina Turczynski
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Rachida Bouarich-Bourimi
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Magali Frah
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France
| | - Christelle Dufour
- Department of Children and Adolescents Oncology, Gustave Roussy, Paris Saclay University, Villejuif, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery-AP-HP, Necker Sick Kids Hospital, Université de Paris, Paris, France
| | | | - Gaelle Pierron
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Laetitia Maillot
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Delphine Guillemot
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Stéphanie Reynaud
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Christine Bourneix
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
| | - Célio Pouponnot
- CNRS UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Didier Surdez
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Mylene Bohec
- Institut Curie, PSL University, Single Cell Initiative, ICGex Next-Generation Sequencing Platform, PSL University, 75005, Paris, France
| | - Sylvain Baulande
- Institut Curie, PSL University, Single Cell Initiative, ICGex Next-Generation Sequencing Platform, PSL University, 75005, Paris, France
| | - Olivier Delattre
- Somatic Genetic Unit, Department of Pathology and Diagnostic and Theranostic Medecine, Institut Curie Hospital, Paris, France
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France
| | - Eliane Piaggio
- INSERM U932, Immunity and Cancer, PSL Research University, Institut Curie Research Center, Paris, France
| | - Olivier Ayrault
- CNRS UMR 3347, INSERM U1021, Institut Curie, PSL Research University, Université Paris-Saclay, Orsay, France
| | - Joshua J Waterfall
- INSERM U830, Integrative Functional Genomics of Cancer Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Translational Research, PSL Research University, Institut Curie Research Center, Paris, France
| | - Nicolas Servant
- INSERM U900, Bioinformatics, Biostatistics, Epidemiology and Computational Systems Unit, Institut Curie, Mines Paris Tech, PSL Research University, Institut Curie Research Center, Paris, France
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery-AP-HP, Necker Sick Kids Hospital, Université de Paris, Paris, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Necker Sick Kids Hospital and Paris Cite Universiy INSERM 1299 and UMR 1163, Institut Imagine, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research In Pediatric Oncology, PSL Research University, SIREDO Oncology center, Institut Curie Research Center, Paris, France.
- Department of Pediatric Oncology, SIREDO Oncology Center, Institut Curie Hospital, Paris, and Université de Paris, Paris, France.
| |
Collapse
|
43
|
Tam OCH, Ho RSL, Chan S, Li KKW, Lam TL, Cheung ETY, Cheung OY, Ho WWS, Cheng KKF, Shing MMK, Ku DTL, Chung BHY, Yang W, Chan GCF, Ng HK, Liu APY. Genome-Wide DNA Methylation Profiling as Frontline Diagnostics for Central Nervous System Embryonal Tumors in Hong Kong. Cancers (Basel) 2023; 15:4880. [PMID: 37835574 PMCID: PMC10571663 DOI: 10.3390/cancers15194880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
This paper examines the link between CNS tumor biology and heterogeneity and the use of genome-wide DNA methylation profiling as a clinical diagnostic platform. CNS tumors are the most common solid tumors in children, and their prognosis remains poor. This study retrospectively analyzed pediatric patients with CNS embryonal tumors in Hong Kong between 1999 and 2017, using data from the territory-wide registry and available formalin-fixed paraffin-embedded tumor tissue. After processing archival tumor tissue via DNA extraction, quantification, and methylation profiling, the data were analyzed by using the web-based DKFZ classifier (Molecular Neuropathology (MNP) 2.0 v11b4) and t-SNE analysis. Methylation profiles were deemed informative in 85 samples. Epigenetic data allowed molecular subgrouping and confirmed diagnosis in 65 samples, verified histologic diagnosis in 8, and suggested an alternative diagnosis in 12. This study demonstrates the potential of DNA methylation profiling in characterizing pediatric CNS embryonal tumors in a large cohort from Hong Kong, which should enable regional and international collaboration in future pediatric neuro-oncology research.
Collapse
Affiliation(s)
- Otto C. H. Tam
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; (O.C.H.T.)
| | - Ronnie S. L. Ho
- Department of Pathology, Gleneagles Hospital, Wong Chuk Hang, Hong Kong
| | - Shing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; (O.C.H.T.)
| | - Kay K. W. Li
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Tit-Leung Lam
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | | | - Oi-Yee Cheung
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Wilson W. S. Ho
- Department of Neurosurgery, Queen Mary Hospital, Pok Fu Lam, Hong Kong
- Department of Neurosurgery, Hong Kong Children’s Hospital, Kowloon, Hong Kong
| | - Kevin K. F. Cheng
- Department of Neurosurgery, Queen Mary Hospital, Pok Fu Lam, Hong Kong
- Department of Neurosurgery, Hong Kong Children’s Hospital, Kowloon, Hong Kong
| | - Matthew M. K. Shing
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Kowloon, Hong Kong
| | - Dennis T. L. Ku
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Kowloon, Hong Kong
| | - Brian H. Y. Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; (O.C.H.T.)
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; (O.C.H.T.)
| | - Godfrey C. F. Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; (O.C.H.T.)
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Kowloon, Hong Kong
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Anthony P. Y. Liu
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; (O.C.H.T.)
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Kowloon, Hong Kong
| |
Collapse
|
44
|
Nemes K, Benesch M, Kolarova J, Johann P, Hasselblatt M, Thomas C, Bens S, Glaser S, Ammerpohl O, Liaugaudiene O, Sadeghipour A, von der Weid N, Schmid I, Gidding C, Erdreich-Epstein A, Khurana C, Ebetsberger-Dachs G, Lemmer A, Khatib Z, Hernández Marqués C, Pears J, Quehenberger F, Kordes U, Vokuhl C, Gerss J, Schwarz H, Bison B, Biegel JA, Siebert R, Frühwald MC. Rhabdoid tumors in patients conceived following ART: is there an association? Hum Reprod 2023; 38:2028-2038. [PMID: 37553222 DOI: 10.1093/humrep/dead154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/14/2023] [Indexed: 08/10/2023] Open
Abstract
STUDY QUESTION In children affected by rhabdoid tumors (RT), are there clinical, therapeutic, and/or (epi-)genetic differences between those conceived following ART compared to those conceived without ART? SUMMARY ANSWER We detected a significantly elevated female predominance, and a lower median age at diagnosis, of children with RT conceived following ART (RT_ART) as compared to other children with RT. WHAT IS KNOWN ALREADY Anecdotal evidence suggests an association of ART with RT. STUDY DESIGN, SIZE, DURATION This was a multi-institutional retrospective survey. Children with RT conceived by ART were identified in our EU-RHAB database (n = 11/311 children diagnosed between January 2010 and January 2018) and outside the EU-RHAB database (n = 3) from nine different countries. A population-representative German EU-RHAB control cohort of children with RTs conceived without ART (n = 211) (EU-RHAB control cohort) during the same time period was used as a control cohort for clinical, therapeutic, and survival analyses. The median follow-up time was 11.5 months (range 0-120 months) for children with RT_ART and 18.5 months (range 0-153 months) for the EU-RHAB control cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS We analyzed 14 children with RT_ART diagnosed from January 2010 to January 2018. We examined tumors and matching blood samples for SMARCB1 mutations and copy number alterations using FISH, multiplex ligation-dependent probe amplification, and DNA sequencing. DNA methylation profiling of tumor and/or blood samples was performed using DNA methylation arrays and compared to respective control cohorts of similar age (n = 53 tumors of children with RT conceived without ART, and n = 38 blood samples of children with no tumor born small for gestational age). MAIN RESULTS AND THE ROLE OF CHANCE The median age at diagnosis of 14 individuals with RT_ART was 9 months (range 0-66 months), significantly lower than the median age of patients with RT (n = 211) in the EU-RHAB control cohort (16 months (range 0-253), P = 0.03). A significant female predominance was observed in the RT_ART cohort (M:F ratio: 2:12 versus 116:95 in EU-RHAB control cohort, P = 0.004). Eight of 14 RT_ART patients were diagnosed with atypical teratoid rhabdoid tumor, three with extracranial, extrarenal malignant rhabdoid tumor, one with rhabdoid tumor of the kidney and two with synchronous tumors. The location of primary tumors did not differ significantly in the EU-RHAB control cohort (P = 0.27). Six of 14 RT_ART patients presented with metastases at diagnosis. Metastatic stage was not significantly different from that within the EU-RHAB control cohort (6/14 vs 88/211, P = 1). The incidence of pathogenic germline variants was five of the 12 tested RT_ART patients and, thus, not significantly different from the EU-RHAB control cohort (5/12 versus 36/183 tested, P = 0.35). The 5-year overall survival (OS) and event free survival (EFS) rates of RT_ART patients were 42.9 ± 13.2% and 21.4 ± 11%, respectively, and thus comparable to the EU-RHAB control cohort (OS 41.1 ± 3.5% and EFS 32.1 ± 3.3). We did not find other clinical, therapeutic, outcome factors distinguishing patients with RT_ART from children with RTs conceived without ART (EU-RHAB control cohort). DNA methylation analyses of 10 tumors (atypical teratoid RT = 6, extracranial, extrarenal malignant RT = 4) and six blood samples from RT_ART patients showed neither evidence of a general DNA methylation difference nor underlying imprinting defects, respectively, when compared to a control group (n = 53 RT samples of patients without ART, P = 0.51, n = 38 blood samples of patients born small for gestational age, P = 0.1205). LIMITATIONS, REASONS FOR CAUTION RTs are very rare malignancies and our results are based on a small number of children with RT_ART. WIDER IMPLICATIONS OF THE FINDINGS This cohort of patients with RT_ART demonstrated a marked female predominance, and a rather low median age at diagnosis even for RTs. Other clinical, treatment, outcome, and molecular factors did not differ from those conceived without ART (EU-RHAB control cohort) or reported in other series, and there was no evidence for imprinting defects. Long-term survival is achievable even in cases with pathogenic germline variants, metastatic disease at diagnosis, or relapse. The female preponderance among RT_ART patients is not yet understood and needs to be evaluated, ideally in larger international series. STUDY FUNDING/COMPETING INTEREST(S) M.C.F. is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.10, by the 'Deutsche Forschungsgemeinschaft' DFG FR 1516/4-1 and by the Deutsche Krebshilfe 70113981. R.S. received grant support by Deutsche Krebshilfe 70114040 and for infrastructure by the KinderKrebsInitiative Buchholz/Holm-Seppensen. P.D.J. is supported by the Else-Kroener-Fresenius Stiftung and receives a Max-Eder scholarship from the Deutsche Krebshilfe. M.H. is supported by DFG (HA 3060/8-1) and IZKF Münster (Ha3/017/20). BB is supported by the 'Deutsche Kinderkrebsstiftung' DKS 2020.05. We declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Karolina Nemes
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center, Germany
| | - Martin Benesch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Pascal Johann
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Olga Liaugaudiene
- Department of Genetics and Molecular Medicine, Hospital of Lithuanian University of Health Sciences, Kauno Klinikos, Kaunas, Lithuania
| | - Alireza Sadeghipour
- Department of Pathology, Rasoul Akram Medical Complex, Iran University of Medical Sciences, Tehran, Iran
| | - Nicolas von der Weid
- Department of Pediatric Hematology and Oncology, University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Irene Schmid
- Bavarian Cancer Research Center, Germany
- Department of Pediatric Hematology and Oncology, Dr. von Haunersches Kinderspital, München, Germany
| | - Corrie Gidding
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Anat Erdreich-Epstein
- Departments of Pediatrics and Pathology, Cancer and Blood Diseases Institute, Children's Hospital Los Angeles and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claudia Khurana
- Children's Center, Evangelisches Krankenhaus Bielefeld, Bielefeld, Germany
| | | | - Andreas Lemmer
- Children's Hospital, HELIOS Klinikum Erfurt, Erfurt, Germany
| | - Ziad Khatib
- Department of Pediatric Hematology and Oncology, Miami Children's Hospital, Miami, FL, USA
| | | | - Jane Pears
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Franz Quehenberger
- Institute for Medical Statistics, Medical University of Graz, Graz, Austria
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University of Münster, Münster, Germany
| | - Heike Schwarz
- Bavarian Cancer Research Center, Germany
- Diagnostic and Interventional Radiology, University Medical Center Augsburg, Augsburg, Germany
| | - Brigitte Bison
- Bavarian Cancer Research Center, Germany
- Faculty of Medicine, Diagnostic and Interventional Neuroradiology, Neuroradiological Reference Center for the Pediatric Brain Tumor (HIT) Studies of the German Society of Pediatric Oncology and Hematology, University of Augsburg, Augsburg, Germany
| | - Jaclyn A Biegel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Michael C Frühwald
- Swabian Children's Cancer Center, Paediatric and Adolescent Medicine, University Medical Center Augsburg, Augsburg, Germany
- Bavarian Cancer Research Center, Germany
| |
Collapse
|
45
|
Tran QT, Upadhyaya SA, Billups CA, Onar-Thomas A, Alom MZ, Carey SS, Robinson GW, Ellison DW, Gajjar A, Orr BA. DNA-methylation subgroups carry no prognostic significance in ATRT-SHH patients in clinical trial cohorts. Acta Neuropathol 2023; 146:543-545. [PMID: 37522896 PMCID: PMC10412479 DOI: 10.1007/s00401-023-02614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Affiliation(s)
- Quynh T Tran
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 250, Memphis, TN, 38105, USA
| | - Santhosh A Upadhyaya
- Department of Pediatrics and Communicable Diseases, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine A Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Md Zahangir Alom
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 250, Memphis, TN, 38105, USA
| | - Steven S Carey
- Department of Hospitalist Medicine, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Giles W Robinson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 250, Memphis, TN, 38105, USA
| | - Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 250, Memphis, TN, 38105, USA.
| |
Collapse
|
46
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
47
|
Johann PD, Altendorf L, Efremova EM, Holsten T, Steinbügl M, Nemes K, Eckhardt A, Kresbach C, Bockmayr M, Koch A, Haberler C, Antonelli M, DeSisto J, Schuhmann MU, Hauser P, Siebert R, Bens S, Kool M, Green AL, Hasselblatt M, Frühwald MC, Schüller U. Recurrent atypical teratoid/rhabdoid tumors (AT/RT) reveal discrete features of progression on histology, epigenetics, copy number profiling, and transcriptomics. Acta Neuropathol 2023; 146:527-541. [PMID: 37450044 PMCID: PMC10412492 DOI: 10.1007/s00401-023-02608-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Atypical teratoid/rhabdoid tumors (AT/RT) are the most common malignant brain tumors manifesting in infancy. They split into four molecular types. The major three (AT/RT-SHH, AT/RT-TYR, and AT/RT-MYC) all carry mutations in SMARCB1, the fourth quantitatively smaller type is characterized by SMARCA4 mutations (AT/RT-SMARCA4). Molecular characteristics of disease recurrence or metastatic spread, which go along with a particularly dismal outcome, are currently unclear. Here, we investigated tumor tissue from 26 patients affected by AT/RT to identify signatures of recurrences in comparison with matched primary tumor samples. Microscopically, AT/RT recurrences demonstrated a loss of architecture and significantly enhanced mitotic activity as compared to their related primary tumors. Based on DNA methylation profiling, primary tumor and related recurrence were grossly similar, but three out of 26 tumors belonged to a different molecular type or subtype after second surgery compared to related primary lesions. Copy number variations (CNVs) differed in six cases, showing novel gains on chromosome 1q or losses of chromosome 10 in recurrences as the most frequent alterations. To consolidate these observations, our cohort was combined with a data set of unmatched primary and recurrent AT/RT, which demonstrated chromosome 1q gain and 10 loss in 18% (n = 7) and 11% (n = 4) of the recurrences (n = 38) as compared to 7% (n = 3) and 0% (n = 0) in the primary tumors (n = 44), respectively. Similar to the observations made by DNA methylation profiling, RNA sequencing of our cohort revealed AT/RT primary tumors and matched recurrences clustering closely together. However, a number of genes showed significantly altered expression in AT/RT-SHH recurrences. Many of them are known tumor driving growth factors, involved in embryonal development and tumorigenesis, or are cell-cycle-associated. Overall, our work identifies subtle molecular changes that occur in the course of the disease and that may help define novel therapeutic targets for AT/RT recurrences.
Collapse
Affiliation(s)
- Pascal D Johann
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center Augsburg, EU-RHAB Trial Center, Germany and Bavarian Cancer Research Center (BZKF), Augsburg, Germany
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Lea Altendorf
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistraße 52, N63, 20251, Hamburg, Germany
| | - Emma-Maria Efremova
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistraße 52, N63, 20251, Hamburg, Germany
| | - Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistraße 52, N63, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mona Steinbügl
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center Augsburg, EU-RHAB Trial Center, Germany and Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Karolina Nemes
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center Augsburg, EU-RHAB Trial Center, Germany and Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Alicia Eckhardt
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistraße 52, N63, 20251, Hamburg, Germany
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistraße 52, N63, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Martinistraße 52, N63, 20251, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arend Koch
- Institute of Neuropathology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Christine Haberler
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomic Pathology Sciences, Università Sapienza, Rome, Italy
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Martin U Schuhmann
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Eberhard Karl's University Hospital of Tübingen, Tübingen, Germany
| | - Peter Hauser
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University & Ulm University Medical Center, Ulm, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, USA
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Michael C Frühwald
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center Augsburg, EU-RHAB Trial Center, Germany and Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center Hamburg, Martinistraße 52, N63, 20251, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
48
|
Fountain DM, Sauka-Spengler T. The SWI/SNF Complex in Neural Crest Cell Development and Disease. Annu Rev Genomics Hum Genet 2023; 24:203-223. [PMID: 37624665 DOI: 10.1146/annurev-genom-011723-082913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
While the neural crest cell population gives rise to an extraordinary array of derivatives, including elements of the craniofacial skeleton, skin pigmentation, and peripheral nervous system, it is today increasingly recognized that Schwann cell precursors are also multipotent. Two mammalian paralogs of the SWI/SNF (switch/sucrose nonfermentable) chromatin-remodeling complexes, BAF (Brg1-associated factors) and PBAF (polybromo-associated BAF), are critical for neural crest specification during normal mammalian development. There is increasing evidence that pathogenic variants in components of the BAF and PBAF complexes play central roles in the pathogenesis of neural crest-derived tumors. Transgenic mouse models demonstrate a temporal window early in development where pathogenic variants in Smarcb1 result in the formation of aggressive, poorly differentiated tumors, such as rhabdoid tumors. By contrast, later in development, homozygous inactivation of Smarcb1 requires additional pathogenic variants in tumor suppressor genes to drive the development of differentiated adult neoplasms derived from the neural crest, which have a comparatively good prognosis in humans.
Collapse
Affiliation(s)
- Daniel M Fountain
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom; ,
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| |
Collapse
|
49
|
Bhutada AS, Adhikari S, Cuoco JA, Rogers CM, Marvin EA. Survival Benefit from Multimodal Treatment for Patients with Atypical Teratoid Rhabdoid Tumor in a Surveillance, Epidemiology, and End Results Database Analysis. Oncology 2023; 102:183-194. [PMID: 37634491 DOI: 10.1159/000533508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Atypical teratoid rhabdoid tumor (ATRT) is among the most aggressive central nervous system malignancies. Although rare, this tumor typically afflicts young children and results in mortality within months. Here, we aim to determine key clinical features and treatment options that impact the survival of patients with ATRT. METHODS From the year 2000 to 2019, 363 patients with ATRT were identified from the Surveillance, Epidemiology, and End Results database. Univariate analysis was used to identify variables that had a significant impact on the primary endpoint of overall survival (OS). Multivariable analysis was then used to identify independent predictors of survival. RESULTS The median OS of the entire cohort was 13 months. Univariate analysis identified ages between 1 and 3 years, ages between 4 and 17 years, years of diagnosis between 2010 and 2019, and the receipt of treatment to have a significant impact on survival. In multivariable analysis, ages between 1 and 3 years and receipt of treatment were the only significant independent predictors of survival. The median OS was significantly greater in patients who received surgical treatment, chemotherapy, or radiation when compared to those who did not receive any treatment. In general, the receipt of any combination of therapies improved the median OS significantly. The receipt of triple therapy had the greatest impact on survival. DISCUSSION This study highlights the survival benefit of a multimodal approach in the treatment of ATRT. The use of triple therapy, including surgery, radiation, and chemotherapy, was found to have the greatest survival benefit for patients. Overall, these findings may guide future care for patients with ATRT.
Collapse
Affiliation(s)
| | - Srijan Adhikari
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Carilion Clinic, Section of Neurosurgery, Department of Surgery, Roanoke, Virginia, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Joshua A Cuoco
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Carilion Clinic, Section of Neurosurgery, Department of Surgery, Roanoke, Virginia, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Cara M Rogers
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Carilion Clinic, Section of Neurosurgery, Department of Surgery, Roanoke, Virginia, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Eric A Marvin
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Carilion Clinic, Section of Neurosurgery, Department of Surgery, Roanoke, Virginia, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
50
|
Tauziède-Espariat A, Masliah-Planchon J, Andrianteranagna M, Sievers P, Sahm F, von Deimling A, Hasty L, Delattre O, Beccaria K, Métais A, Chrétien F, Varlet P, Bourdeaut F. Diagnostic accuracy of a minimal immunohistochemical panel in at/rt molecular subtyping, correlated to dna-methylation profiling. Acta Neuropathol Commun 2023; 11:136. [PMID: 37605249 PMCID: PMC10440909 DOI: 10.1186/s40478-023-01630-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France.
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France.
- Université de Paris Cité, Paris, France.
| | - Julien Masliah-Planchon
- Laboratory of Somatic Genetics, Institut Curie, PMDT, Paris Sciences Lettres Research University, Paris, France
| | - Mamy Andrianteranagna
- Research In Pediatric, Adolescent and Young Adult Oncology, Laboratory of Translationnal Research in Pediatric Oncology, Institut Curie Institute, SIREDO Center Care, INSERM U830, Paris Sciences Lettres Research University, Innovation, Paris, France
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
| | | | - Kévin Beccaria
- Department of Pediatric Neurosurgery, APHP, Necker Hospital, Université Paris Descartes, Sorbonne Paris Cite, Paris, 75015, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
| | - Fabrice Chrétien
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
- Université de Paris Cité, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris - Psychiatry and Neuroscience, Sainte-Anne Hospital, 1, rue Cabanis, Paris, 75014, France
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, IMA-BRAIN, Paris, France
- Université de Paris Cité, Paris, France
| | - Franck Bourdeaut
- Research In Pediatric, Adolescent and Young Adult Oncology, Laboratory of Translationnal Research in Pediatric Oncology, Institut Curie Institute, SIREDO Center Care, INSERM U830, Paris Sciences Lettres Research University, Innovation, Paris, France
| |
Collapse
|