1
|
Wei FH, Xie WY, Zhao PS, Ji ZH, Gao F, Chen CZ, Zhang Z, Gao W, Yuan B. Crataegus pinnatifida polysaccharide alleviates DSS-induced colitis in mice by regulating the intestinal microbiota and enhancing arginine biosynthesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156794. [PMID: 40315641 DOI: 10.1016/j.phymed.2025.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND The development of effective and safe dietary supplements is essential for both the prevention and management of ulcerative colitis (UC), as its pathogenesis is intricate and difficult to completely resolve. Crataegus pinnatifida, a medicinal food with a long history of use, has broad medicinal value. Recent research has revealed promising insights into the role of polysaccharide derived from Crataegus pinnatifida on modulating short-chain fatty acids (SCFAs) to alleviate UC inflammation. However, the mechanisms by which CPP regulates the intestinal microbiota and key metabolites during the antagonistic phase of UC have yet to be elucidated. OBJECTIVE This research elucidated the protective role of CPP in relation to UC, highlighted the mechanisms through which CPP operates, particularly regarding gut microbiota and metabolism, and offered a theoretical foundation for the potential use of CPP as a dietary supplement aimed at preventing UC. METHODS The impact of CPP on acute UC induced by 3 % DSS in mice was examined through the evaluation of the disease activity index, measurement of colon length, and observation of body weight changes. Enzyme-linked immunosorbent assay (ELISA) was used to measure inflammatory factor levels in both serum and colon, as well as to assess oxidative stress mediators. The intestinal histological damage, mucus layer damage and the level of tight junction protein were analyzed by histopathological staining and western blot (WB). The impact of gut microbiota on CPP in colitis was evaluated using 16S rRNA sequencing, microbiota depletion experiments, and fecal microbiota transplantation (FMT) studies. The key metabolic pathways and key metabolites affected by CPP in the treatment of UC were analyzed through untargeted metabolomics sequencing, ELISA, and WB assays. RESULTS Prophylactic dietary supplementation with Crataegus pinnatifida polysaccharide (CPP) notably reduced the fundamental clinical manifestations of UC induced by DSS, including DAI score, reduced colon length, and weight loss, as well as inflammation and oxidative stress. CPP promoted the expression of Claudin-1, ZO-1 and Occludin and promoted mucin secretion, which contributed to the mitigation of intestinal barrier damage caused by DSS. 16S sequencing results and metabolomics results revealed that CPP intervention upregulated the relative abundance of Lactobacillus, thereby reshaping the intestinal microbiota and activate the arginine biosynthesis pathway. The results of fecal microbiota transplantation and antibiotic clearance experiments indicated that the alleviating effect of CPP on UC was dependent on the intestinal microbiota and this alleviating effect was transferred through fecal microbiota transplantation. Mechanistically, CPP indirectly promoted the expression of the rate-limiting enzyme argininosuccinate synthase 1 (ASS1) in the intestinal Arginine biosynthesis pathway by reshaping the intestinal microbiota, thereby increasing intestinal Arginine level and alleviating the inflammatory response and oxidative stress induced by DSS and intestinal barrier damage. CONCLUSION Our research findings demonstrate that CPP is a plant-derived polysaccharide that alleviates UC by modulating the gut microbiota and enhancing arginine biosynthesis.
Collapse
Affiliation(s)
- Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Wen-Yin Xie
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Zhong-Hao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Cheng-Zhen Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Zhe Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China.
| |
Collapse
|
2
|
Dimeji IY, Abass KS, Audu NM, Ayodeji AS. L-Arginine and immune modulation: A pharmacological perspective on inflammation and autoimmune disorders. Eur J Pharmacol 2025; 997:177615. [PMID: 40216179 DOI: 10.1016/j.ejphar.2025.177615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
L- Arginine (2-Amino-5-guanidinovaleric acid, L-Arg) is a semi-essential amino acid that is mainly produced within the urea cycle. It acts as a key precursor in the synthesis of proteins, urea, creatine, prolamines (including putrescine, spermine, and spermidine), proline, and nitric oxide (NO). WhenL-Arg is metabolized, it produces NO, glutamate, and prolamines, which all play important regulatory roles in various physiological functions. In addition to its metabolic roles,L-Arg significantly influences immune responses, especially in the context of inflammation and autoimmune diseases. It affects the activity of immune cells by modulating T-cell function, the polarization of macrophages, and the release of cytokines. Importantly,L-Arg plays a dual role in immune regulation, functioning as both an immunostimulatory and immunosuppressive agent depending on the specific cellular and biochemical environments. This review examines the immunopharmacological mechanisms of L-Arg, emphasizing its involvement in inflammatory responses and its potential therapeutic uses in autoimmune conditions like rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. By influencing the pathways of nitric oxide synthase (NOS) and arginase (ARG), L-Arg helps maintain immune balance and contributes to the pathophysiology of diseases. Gaining a better understanding of the pharmacological effects of L-Arg on immune regulation could yield new perspectives on targeted treatments for immune-related diseases. Exploring its impact on immune signaling and metabolic pathways may result in novel therapeutic approaches for chronic inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Igbayilola Yusuff Dimeji
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Nigeria.
| | - Kasim Sakran Abass
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, University of Kirkuk, Kirkuk 36001, Iraq
| | - Ngabea Murtala Audu
- Department of Medicine Maitama District Hospital/ College of Medicine Baze University, Abuja, Nigeria
| | - Adekola Saheed Ayodeji
- Department of Chemical Pathology, Medical Laboratory Science Program, Faculty of Nursing and Allied Health Sciences, University of Abuja, Abuja, Nigeria.
| |
Collapse
|
3
|
Karimianghadim R, Satokari R, Yeo S, Arkkila P, Kao D, Pakpour S. Prolonged effect of antibiotic therapy on the gut microbiota composition, functionality, and antibiotic resistance genes' profiles in healthy stool donors. Front Microbiol 2025; 16:1589704. [PMID: 40415928 PMCID: PMC12098650 DOI: 10.3389/fmicb.2025.1589704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Fecal microbiota transplantation (FMT) is highly effective in preventing Clostridioides difficile recurrence by restoring gut microbiota composition and function. However, the impact of recent antibiotic use, a key exclusion criterion for stool donors, on gut microbiota recovery is poorly understood. Methods We investigated microbial recovery dynamics following antibiotic use in three long-term stool donors from Canada and Finland. Using longitudinal stool sampling, metagenomic sequencing, and qPCR, we assessed changes in bacterial diversity, community composition, microbial functions, the gut phageome, and the risk of transmitting antibiotic-resistant genes (ARGs). Results Antibiotics caused lasting disruption to bacterial communities, significantly reducing important taxa like Bifidobacterium bifidum, Blautia wexlerae, Akkermansia muciniphila, Eubacterium sp. CAG 180, and Eubacterium hallii, with effects persisting for months. Functional analyses revealed alterations in housekeeping genes critical for energy production and biosynthesis, with no direct links to key health-related pathways. Antibiotics also disrupted viral populations, decreasing diversity and increasing crAssphage abundance, reflecting disrupted host-bacteriophage dynamics. No significant increase in clinically important ARGs was detected. Discussion These findings highlight the unpredictable and complex recovery of gut microbiota post-antibiotics. Individualized suspension periods in donor programs, guided by metagenomic analyses, are recommended to optimize FMT outcomes in various indications by considering antibiotic spectrum, duration, and host-specific factors.
Collapse
Affiliation(s)
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sam Yeo
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Perttu Arkkila
- Department of Gastroenterology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sepideh Pakpour
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
4
|
Higueras C, Ruiz-Capillas C, Herrero A, Sainz A, García-Sancho M, Rodríguez-Franco F, Larrosa M, Rey AI. Differentiating Canine Chronic Inflammatory Enteropathies Using Faecal Amino Acid Profiles: Potential and Limitations. Animals (Basel) 2025; 15:1185. [PMID: 40282019 PMCID: PMC12024043 DOI: 10.3390/ani15081185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
The aims of this study were to characterise the faecal amino acid profile of dogs with different chronic digestive diseases (food-responsive enteropathy (FRE), immunosuppressant-responsive enteropathy (IRE)) prior to dietary change, and Giardia infection (GIA), compared to healthy control (HC), and to evaluate their discriminating potential. The HC group presented lower faecal tyrosine (Tyr) and aromatic amino acids (AAAs) compared to FRE or IRE dogs (p = 0.0001). Additionally, the HC group had lower levels of threonine (Thr) (p = 0.0005) than the IRE group, while FRE dogs showed intermediate values. No statistically significant differences in faecal amino acids were observed between FRE and IRE dogs. In contrast, the GIA group had higher faecal amino acid values (except glutamic acid (Glu)) compared to the other dogs. The most determinant variables contributing to the discriminant functions were Tyr, Glu, arginine, and phenylalanine. Validation results of the discriminant functions showed that 44% of stool samples were misclassified, resulting in a 56% success rate. The faecal amino acid profile did not accurately distinguish FRE from IRE dogs; however, faecal excretion of AAs was generally higher in dogs with GIA.
Collapse
Affiliation(s)
- Cristina Higueras
- Animal Nutrition, Department of Animal Production, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain;
| | - Claudia Ruiz-Capillas
- Institute of Science and Technology of Food and Nutrition, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Ana Herrero
- Institute of Science and Technology of Food and Nutrition, Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Angel Sainz
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Mercedes García-Sancho
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Fernando Rodríguez-Franco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Mar Larrosa
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n., 28040 Madrid, Spain
| | - Ana I. Rey
- Animal Nutrition, Department of Animal Production, Faculty of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain;
| |
Collapse
|
5
|
Chulkina M, Tran H, Uribe G, McAninch SB, McAninch C, Seideneck A, He B, Lanza M, Khanipov K, Golovko G, Powell DW, Davenport ER, Pinchuk IV. MyD88-mediated signaling in intestinal fibroblasts regulates macrophage antimicrobial defense and prevents dysbiosis in the gut. Cell Rep 2025; 44:115553. [PMID: 40257864 DOI: 10.1016/j.celrep.2025.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/03/2025] [Accepted: 03/20/2025] [Indexed: 04/23/2025] Open
Abstract
Fibroblasts that reside in the gut mucosa are among the key regulators of innate immune cells, but their role in the regulation of the defense functions of macrophages remains unknown. MyD88 is suggested to shape fibroblast responses in the intestinal microenvironment. We found that mice lacking MyD88 in fibroblasts showed a decrease in the colonic antimicrobial defense, developing dysbiosis and aggravated dextran sulfate sodium (DSS)-induced colitis. These pathological changes were associated with the accumulation of Arginase 1+ macrophages with low antimicrobial defense capability. Mechanistically, the production of interleukin (IL)-6 and CCL2 downstream of MyD88 was critically involved in fibroblast-mediated support of macrophage antimicrobial function, and IL-6/CCL2 neutralization resulted in the generation of macrophages with decreased production of the antimicrobial peptide cathelicidin and impaired bacterial clearance. Collectively, these findings revealed a critical role of fibroblast-intrinsic MyD88 signaling in regulating macrophage antimicrobial defense under colonic homeostasis, and its disruption results in dysbiosis, predisposing the host to the development of intestinal inflammation.
Collapse
Affiliation(s)
- Marina Chulkina
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Hanh Tran
- The Pennsylvania State University, Department of Biology, Huck Institute of the Life Sciences, University Park, PA, USA
| | - Gabriela Uribe
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Steven Bruce McAninch
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Christina McAninch
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Ashley Seideneck
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Bing He
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA
| | - Matthew Lanza
- The Pennsylvania State University, College of Medicine, Department of Comparative Medicine, Hershey, PA, USA
| | - Kamil Khanipov
- The University of Texas Medical Branch, Department of Pharmacology, Galveston, TX, USA
| | - Georgiy Golovko
- The University of Texas Medical Branch, Department of Pharmacology, Galveston, TX, USA
| | - Don W Powell
- The University of Texas Medical Branch, Department of Internal Medicine, Galveston, TX, USA
| | - Emily R Davenport
- The Pennsylvania State University, Department of Biology, Huck Institute of the Life Sciences, University Park, PA, USA
| | - Irina V Pinchuk
- The Pennsylvania State University, College of Medicine, Department of Medicine, Hershey, PA, USA.
| |
Collapse
|
6
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2025; 89:e0008123. [PMID: 39714182 PMCID: PMC11948497 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M. Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Park G, Johnson K, Miller K, Kadyan S, Singar S, Patoine C, Hao F, Lee Y, Patterson AD, Arjmandi B, Kris-Etherton PM, Berryman CE, Nagpal R. Almond snacking modulates gut microbiome and metabolome in association with improved cardiometabolic and inflammatory markers. NPJ Sci Food 2025; 9:35. [PMID: 40113782 PMCID: PMC11926229 DOI: 10.1038/s41538-025-00403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
Western-style dietary patterns have been linked with obesity and associated metabolic disorders and gut dysbiosis, whereas prudent dietary and snacking choices mitigate these predispositions. Using a multi-omics approach, we investigated how almond snacking counters gut imbalances linked to adiposity and an average American Diet (AAD). Fifteen adults with overweight or obesity underwent a randomized, crossover-controlled feeding trial comparing a 4-week AAD with a similar isocaloric diet supplemented with 42.5 g/day of almonds (ALD). Almond snacking increases functional gut microbes, including Faecalibacterium prausnitzii, while suppressing opportunistic pathogens, thereby favorably modulating gut microecological niches through symbiotic and microbe-metabolite interactions. Moreover, ALD elevates health-beneficial monosaccharides and fosters bacterial consumption of amino acids, owing to enhanced microbial homeostasis. Additionally, ALD enhances metabolic homeostasis through a ketosis-like effect, reduces inflammation, and improves satiety-regulating hormones. The findings suggest that prudent dietary choices, such as almond snacking, promote gut microbial homeostasis while modulating immune metabolic state.
Collapse
Affiliation(s)
- Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Katelyn Johnson
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Katelyn Miller
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Saiful Singar
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
- Center for Advancing Exercise and Nutrition Research on Aging, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Cole Patoine
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yujin Lee
- Department of Food and Nutrition, Myongji University, Yongin, South Korea
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Bahram Arjmandi
- Center for Advancing Exercise and Nutrition Research on Aging, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Claire E Berryman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Guggeis MA, Harris DM, Welz L, Rosenstiel P, Aden K. Microbiota-derived metabolites in inflammatory bowel disease. Semin Immunopathol 2025; 47:19. [PMID: 40032666 PMCID: PMC11876236 DOI: 10.1007/s00281-025-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
Understanding the role of the gut microbiota in the pathogenesis of inflammatory bowel diseases (IBD) has been an area of intense research over the past decades. Patients with IBD exhibit alterations in their microbial composition compared to healthy controls. However, studies focusing solely on taxonomic analyses have struggled to deliver replicable findings across cohorts regarding which microbial species drive the distinct patterns in IBD. The focus of research has therefore shifted to studying the functionality of gut microbes, especially by investigating their effector molecules involved in the immunomodulatory functions of the microbiota, namely metabolites. Metabolic profiles are altered in IBD, and several metabolites have been shown to play a causative role in shaping immune functions in animal models. Therefore, understanding the complex communication between the microbiota, metabolites, and the host bears great potential to unlock new biomarkers for diagnosis, disease course and therapy response as well as novel therapeutic options in the treatment of IBD. In this review, we primarily focus on promising classes of metabolites which are thought to exert beneficial effects and are generally decreased in IBD. Though results from human trials are promising, they have not so far provided a large-scale break-through in IBD-therapy improvement. We therefore propose tailored personalized supplementation of microbiota and metabolites based on multi-omics analysis which accounts for the individual microbial and metabolic profiles in IBD patients rather than one-size-fits-all approaches.
Collapse
Affiliation(s)
- Martina A Guggeis
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Danielle Mm Harris
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Division Nutriinformatics, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Lina Welz
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
- Department of Internal Medicine I, Kiel University and University Medical Center Schleswig-Holstein, Rosalind Franklin Straße 11, Campus Kiel, 24105, Kiel, Germany.
| |
Collapse
|
9
|
Chen LK, Chang SJ, Chen CL, Yan JH, Cherng JH, Fan GY, Meng E, Hsu YC. Dextrose Prolotherapy's Impact on the Urinary Microbiome in Interstitial Cystitis/Bladder Pain Syndrome. Int J Med Sci 2025; 22:1516-1527. [PMID: 40093799 PMCID: PMC11905267 DOI: 10.7150/ijms.104028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 01/09/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a debilitating chronic condition affecting millions globally. Dextrose prolotherapy, a minimally invasive and safe treatment, has emerged as a potential way to promote tissue healing in these patients. This study investigates how dextrose prolotherapy impacts the urinary microbiome, aiming to uncover the underlying mechanisms involved in its effectiveness. Methods: Midstream urine samples from healthy controls and IC/BPS patients were collected before and after administering intravesical 10% dextrose injections. Microbiome profiling was conducted using 16S rRNA gene sequencing to analyze bacterial composition. Results: Significant differences in urinary microbiome diversity were observed between healthy controls and IC/BPS patients. Proteobacteria, Firmicutes, and Bacteroidota were more abundant in IC/BPS patients. Importantly, dextrose prolotherapy led to a decrease in harmful bacteria (Subgroup_22, Chryseolinea, and Ureaplasma) while enriching beneficial species such as Luteolibacter, Lactococcus, and L. lactis, correlating with improved clinical symptoms. Conclusions: Dextrose prolotherapy (DP) not only reduces the presence of harmful bacteria but also fosters the growth of beneficial microbes in IC/BPS patients. These findings suggest that the modulation of the urinary microbiome may be a key factor in its therapeutic success.
Collapse
Affiliation(s)
- Liang-Kun Chen
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan R.O.C
| | - Shu-Jen Chang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan R.O.C
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan R.O.C
| | - Jing-Heng Yan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan R.O.C
- Department of Urology, SongShan Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan R.O.C
| | - Juin-Hong Cherng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan R.O.C
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan R.O.C
| | - Gang-Yi Fan
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei City, Taiwan R.O.C
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan R.O.C
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei City, Taiwan R.O.C
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan R.O.C
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan, 320, Taiwan R.O.C
- Department of Medical Research, Cathay General Hospital, Taipei, Taiwan R.O.C
| |
Collapse
|
10
|
Liao Y, Wu S, Zhou G, Mei S, Ou B, Wen M, Yang Y, Wen G. Probiotic Bacillus cereus regulates metabolic disorders and activates the cholic acid-FXR axis to alleviate DSS-induced colitis. J Proteomics 2025; 312:105360. [PMID: 39631667 DOI: 10.1016/j.jprot.2024.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Inflammatory bowel disease is characterized by severe imbalance of intestinal flora and metabolic disorders. Recent studies have demonstrated that probiotics can effectively alleviate inflammatory bowel disease by restoring the intestinal flora structure and modulating the immune response. However, the role of probiotics in regulating intestinal metabolism disorders is still unclear. This study explores the role of probiotic B. cereus in alleviating DSS-induced colitis. The findings indicated probiotic B. cereus treatment mitigated tissue damage and apoptosis during inflammation. Metabolome and transcriptome analysis revealed B. cereus activated the cholic acid-FXR axis by increasing cholic acid levels, which promoted the gene expression level of NF-κB inhibitor α, reduced the IL-1β, IL-6, IL-18 and TNF-α concentrations. Furthermore, it effectively mitigated the DSS-induced disruption of bile acid metabolism, arginine metabolism, and linoleic acid metabolism. This study explores the effect and mechanisms of probiotic B. cereus on alleviating DSS-induced colitis. It aims to provide a theoretical basis for microbial therapy in inflammatory bowel disease. SIGNIFICANCE: This study used metabolome and transcriptome to reveal the roles and mechanisms, which probiotic Bacillus cereus modulates metabolic disorders and alleviate DSS-induced colitis. We identified the cholic acid-FXR axis as an important target for alleviating DSS-induced colitis. These findings provide new insights into microbial treatment strategies for IBD.
Collapse
Affiliation(s)
- Yixiao Liao
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Shihui Wu
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Guixian Zhou
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China
| | - Bingmin Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing 526000, China
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China; Engineering Research Center of Animal Biological Products, Guiyang 550025, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China; Engineering Research Center of Animal Biological Products, Guiyang 550025, China.
| | - Guilan Wen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Institute of Animal Diseases, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
11
|
Fraser K, James SC, Young W, Gearry RB, Heenan PE, Keenan JI, Talley NJ, McNabb WC, Roy NC. Characterisation of the Plasma and Faecal Metabolomes in Participants with Functional Gastrointestinal Disorders. Int J Mol Sci 2024; 25:13465. [PMID: 39769229 PMCID: PMC11677738 DOI: 10.3390/ijms252413465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
There is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal (n = 221) and plasma (n = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies. Discriminant analysis separated patients with the 'all constipation' group (FC and IBS-C) from the healthy control group and 'all diarrhoea' group (FD and IBS-D) from the healthy control group in both sample types. In plasma, almost all multimodal metabolite analyses separated the 'all constipation' or 'all diarrhoea' group from the healthy controls, and the IBS-C or IBS-D group from the healthy control group. Plasma phospholipids and metabolites linked to several amino acid and nucleoside pathways differed (p < 0.05) between healthy controls and IBS-C. In contrast, metabolites involved in bile acid and amino acid metabolism were the key differentiating classes in the plasma of subjects with IBS-D from healthy controls. Faecal lipids, particularly ceramides, diglycerides, and triglycerides, varied (p < 0.05) between healthy controls and the 'all constipation' group and between healthy controls and 'all diarrhoea' group. The faecal and plasma metabolomes showed perturbations between constipation, diarrhoea and healthy control groups that may reflect processes and mechanisms linked to FGIDs.
Collapse
Affiliation(s)
- Karl Fraser
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Shanalee C. James
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North 4472, New Zealand
| | - Wayne Young
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Richard B. Gearry
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Phoebe E. Heenan
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | | | - Nicholas J. Talley
- School of Medicine and Public Health, The University of Newcastle, Callaghan, Newcastle 2308, Australia
| | - Warren C. McNabb
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Nicole C. Roy
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
12
|
Ma H, Mueed A, Ma Y, Ibrahim M, Su L, Wang Q. Fecal Microbiota Transplantation Activity of Floccularia luteovirens Polysaccharides and Their Protective Effect on Cyclophosphamide-Induced Immunosuppression and Intestinal Injury in Mice. Foods 2024; 13:3881. [PMID: 39682952 DOI: 10.3390/foods13233881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Floccularia luteovirens polysaccharides (FLP1s) have potential biological activities. Our previous study showed that FLP1s positively regulated gut immunity and microbiota. However, it is still unclear whether FLP1s mediate gut microbiota in immunosuppressed mice. This research aims to explore the relationship between FLP1-mediated gut microbes and intestinal immunity in immunosuppressed mice through fecal microbiota transplantation (FMT). The results demonstrated that FLP1s exhibited prebiotic and anti-immunosuppressive effects on CTX-induced immunosuppressed mice. FFLP1 treatment (microbiota transplantation from the fecal sample) remarkably elevated the production of sIgA and secretion of the anti-inflammatory cytokines IL-4, TNF-α, and IFN-γ in the intestine of CTX-treated mice, inducing activation of the MAPK pathway. Moreover, FFLP1s mitigated oxidative stress by activating the Nrf2/Keap1 signaling pathway and strengthened the intestinal barrier function by upregulating the expression level of tight junction proteins (occludin, claudin-1, MUC-2, and ZO-1). Furthermore, FFPL1s restored gut dysbiosis in CTX-treated immunosuppressed mice by increasing the abundance of Alloprevotella, Lachnospiraceae, and Bacteroides. They also modified the composition of fecal metabolites, leading to enhanced regulation of lipolysis in adipocytes, the cGMP-PKG pathway, the Rap1 signaling pathway, and ovarian steroidogenesis, as indicated by KEGG pathway analysis. These findings indicate that FLP1s could modulate the response of the intestinal immune system through regulation of the gut microbiota, thus promoting immune activation in CTX-treated immunosuppressed mice. FLP1s can serve as a natural protective agent against CTX-induced immune injury.
Collapse
Affiliation(s)
- He Ma
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yanxu Ma
- Jilin Sericulture Science Research Institute, Changchun 130012, China
| | - Muhammad Ibrahim
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Ling Su
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- College of Plant Protection, Jilin Agricultural University, Changchun 130012, China
| | - Qi Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
13
|
Jaiswal A, Kaushik N, Acharya TR, Uhm HS, Choi EH, Kaushik NK. Antiaging in a Bottle: Bioactive Competency of Plasma-Generated Nitric Oxide Water for Modulation of Aging-Related Signature in Human Dermal Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59991-60007. [PMID: 39437326 DOI: 10.1021/acsami.4c14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Nitric oxide (NO), a potential therapeutic antiaging molecule, modulates various physiological and cellular processes. However, alterations in endogenous NO levels brought on by aging impact multiple organ systems and heighten susceptibility to age-related skin diseases. This correlation underscores the importance of investigating NO-based antiaging interventions. Nonthermal plasma-generated NO is a promising avenue for cosmetic and regenerative medicine due to its capacity to stimulate cellular growth. Herein, we examine the potential of plasma-generated nitric oxide water (NOW) as a bioactive agent in human dermal fibroblasts, emphasizing gene expression patterns linked to extracellular matrix (ECM) breakdown and cellular senescence. The findings of our study indicate that administering NOW at lower dosages enhances cell migration and proliferation. Moreover, the genetic signatures associated with ECM synthesis, antioxidant defense, and antisenescence pathways have been analyzed in NOW-exposed cells. Notably, the downregulation of ECM-degrading enzyme transcripts─collagenase, elastase, and hyaluronidase─suggests NOW's potential in mitigating the intrinsic skin aging phenomena, emphasizing the promise of NO-based interventions in advancing antiaging strategies within regenerative medicine.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Korea
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Han Sup Uhm
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| |
Collapse
|
14
|
Yuan Y, Hu H, Sun Z, Wang W, Wang Z, Zheng M, Xing Y, Zhang W, Wang M, Lu X, Li Y, Liang C, Lin Z, Xie C, Li J, Mao T. Combining Metagenomics, Network Pharmacology and RNA-Seq Strategies to Reveal the Therapeutic Effects and Mechanisms of Qingchang Wenzhong Decoction on Inflammatory Bowel Disease in Mice. Drug Des Devel Ther 2024; 18:4273-4289. [PMID: 39347539 PMCID: PMC11438451 DOI: 10.2147/dddt.s473688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disease that lacks effective treatments. Qingchang Wenzhong Decoction (QCWZD) is a clinically effective herbal prescription that has been proven to attenuate intestinal inflammation in IBD. However, its molecular mechanism of action has not been clearly elucidated. Purpose We aimed to probe the mechanism of QCWZD for the treatment of IBD. Methods The dextran sulfate sodium (DSS)-induced mouse model of IBD was used to identify the molecular targets involved in the mechanism of action of QCWZD. Metagenomics sequencing was utilized to analyze the differences in gut microbiota and the functional consequences of these changes. Network pharmacology combined with RNA sequencing (RNA-seq) were employed to predict the molecular targets and mechanism of action of QCWZD, and were validated through in vivo experiments. Results Our results demonstrated that QCWZD treatment alleviated intestinal inflammation and accelerated intestinal mucosal healing that involved restoration of microbial homeostasis. This hypothesis was supported by the results of bacterial metagenomics sequencing that showed attenuation of gut dysbiosis by QCWZD treatment, especially the depletion of the pathogenic bacterial genus Bacteroides, while increasing the beneficial microorganism Akkermansia muciniphila that led to altered bacterial gene functions, such as metabolic regulation. Network pharmacology and RNA-seq analyses showed that Th17 cell differentiation plays an important role in QCWZD-based treatment of IBD. This was confirmed by in vivo experiments showing a marked decrease in the percentage of CD3+CD4+IL-17+ (Th17) cells. Furthermore, our results also showed that the key factors associated with Th17 cell differentiation (IL-17, NF-κB, TNF-α and IL-6) in the colon were significantly reduced in QCWZD-treated colitis mice. Conclusion QCWZD exerted beneficial effects in the treatment of IBD by modulating microbial homeostasis while inhibiting Th17 cell differentiation and its associated pathways, providing a novel and promising therapeutic strategy for the treatment of IBD.
Collapse
Affiliation(s)
- Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Hebei North University, Zhangjiakou, Hebei, People’s Republic of China
| | - Hairong Hu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhongmei Sun
- Tianjin Nankai Hospital, Tianjin, People’s Republic of China
| | - Wenting Wang
- Beitaipingzhuang Community Health Service Center, Beijing, People’s Republic of China
| | - Zhibin Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | | | - Yunqi Xing
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chengtao Liang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Zhengdao Lin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Chune Xie
- Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
15
|
Flores JA, Antonio JM, Suntornsaratoon P, Meadows V, Bandyopadhyay S, Han J, Singh R, Balasubramanian I, Upadhyay R, Liu Y, Bonder EM, Kiela P, Su X, Ferraris R, Gao N. The arginine and nitric oxide metabolic pathway regulate the gut colonization and expansion of Ruminococcous gnavus. J Biol Chem 2024; 300:107614. [PMID: 39089585 PMCID: PMC11387683 DOI: 10.1016/j.jbc.2024.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Ruminococcus gnavus is a mucolytic commensal bacterium whose increased gut colonization has been associated with chronic inflammatory and metabolic diseases in humans. Whether R. gnavus metabolites can modulate host intestinal physiology remains largely understudied. We performed untargeted metabolomic and bulk RNA-seq analyses using R. gnavus monocolonization in germ-free mice. Based on transcriptome-metabolome correlations, we tested the impact of specific arginine metabolites on intestinal epithelial production of nitric oxide (NO) and examined the effect of NO on the growth of various strains of R. gnavus in vitro and in nitric oxide synthase 2 (Nos2)-deficient mice. R. gnavus produces specific arginine, tryptophan, and tyrosine metabolites, some of which are regulated by the environmental richness of sialic acid and mucin. R. gnavus colonization promotes expression of amino acid transporters and enzymes involved in metabolic flux of arginine and associated metabolites into NO. R. gnavus induced elevated levels of NOS2, while Nos2 ablation resulted in R. gnavus expansion in vivo. The growth of various R. gnavus strains can be inhibited by NO. Specific R. gnavus metabolites modulate intestinal epithelial cell NOS2 abundance and reduce epithelial barrier function at higher concentrations. Intestinal colonization and interaction with R. gnavus are partially regulated by an arginine-NO metabolic pathway, whereby a balanced control by the gut epithelium may restrain R. gnavus growth in healthy individuals. Disruption in this arginine metabolic regulation will contribute to the expansion and blooming of R. gnavus.
Collapse
Affiliation(s)
- Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vik Meadows
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | | | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
16
|
Li F, Wang Z, Tang T, Zhao Q, Wang Z, Han X, Xu Z, Chang Y, Li H, Hu S, Yu C, Chang S, Liu Y, Li Y. From serum metabolites to the gut: revealing metabolic clues to susceptibility to subtypes of Crohn's disease and ulcerative colitis. Front Endocrinol (Lausanne) 2024; 15:1375896. [PMID: 39175573 PMCID: PMC11338916 DOI: 10.3389/fendo.2024.1375896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Background and aims Inflammatory bowel disease (IBD) is a common chronic inflammatory bowel disease characterized by diarrhea and abdominal pain. Recently human metabolites have been found to help explain the underlying biological mechanisms of diseases of the intestinal system, so we aimed to assess the causal relationship between human blood metabolites and susceptibility to IBD subtypes. Methods We selected a genome-wide association study (GWAS) of 275 metabolites as the exposure factor, and the GWAS dataset of 10 IBD subtypes as the outcome, followed by univariate and multivariate analyses using a two-sample Mendelian randomization study (MR) to study the causal relationship between exposure and outcome, respectively. A series of sensitivity analyses were also performed to ensure the robustness of the results. Results A total of 107 metabolites were found to be causally associated on univariate analysis after correcting for false discovery rate (FDR), and a total of 9 metabolites were found to be significantly causally associated on subsequent multivariate and sensitivity analyses. In addition we found causal associations between 7 metabolite pathways and 6 IBD subtypes. Conclusion Our study confirms that blood metabolites and certain metabolic pathways are causally associated with the development of IBD subtypes and their parenteral manifestations. The exploration of the mechanisms of novel blood metabolites on IBD may provide new therapeutic ideas for IBD patients.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhaodi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Qi Zhao
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Xiaoping Han
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Zifeng Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Hongyan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Sileng Hu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Chanjiao Yu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Shiyu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yue Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center, Jilin University, Changchun, China
| |
Collapse
|
17
|
Coutinho LL, Femino EL, Gonzalez AL, Moffat RL, Heinz WF, Cheng RYS, Lockett SJ, Rangel MC, Ridnour LA, Wink DA. NOS2 and COX-2 Co-Expression Promotes Cancer Progression: A Potential Target for Developing Agents to Prevent or Treat Highly Aggressive Breast Cancer. Int J Mol Sci 2024; 25:6103. [PMID: 38892290 PMCID: PMC11173351 DOI: 10.3390/ijms25116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Nitric oxide (NO) and reactive nitrogen species (RNS) exert profound biological impacts dictated by their chemistry. Understanding their spatial distribution is essential for deciphering their roles in diverse biological processes. This review establishes a framework for the chemical biology of NO and RNS, exploring their dynamic reactions within the context of cancer. Concentration-dependent signaling reveals distinctive processes in cancer, with three levels of NO influencing oncogenic properties. In this context, NO plays a crucial role in cancer cell proliferation, metastasis, chemotherapy resistance, and immune suppression. Increased NOS2 expression correlates with poor survival across different tumors, including breast cancer. Additionally, NOS2 can crosstalk with the proinflammatory enzyme cyclooxygenase-2 (COX-2) to promote cancer progression. NOS2 and COX-2 co-expression establishes a positive feed-forward loop, driving immunosuppression and metastasis in estrogen receptor-negative (ER-) breast cancer. Spatial evaluation of NOS2 and COX-2 reveals orthogonal expression, suggesting the unique roles of these niches in the tumor microenvironment (TME). NOS2 and COX2 niche formation requires IFN-γ and cytokine-releasing cells. These niches contribute to poor clinical outcomes, emphasizing their role in cancer progression. Strategies to target these markers include direct inhibition, involving pan-inhibitors and selective inhibitors, as well as indirect approaches targeting their induction or downstream effectors. Compounds from cruciferous vegetables are potential candidates for NOS2 and COX-2 inhibition offering therapeutic applications. Thus, understanding the chemical biology of NO and RNS, their spatial distribution, and their implications in cancer progression provides valuable insights for developing targeted therapies and preventive strategies.
Collapse
Affiliation(s)
- Leandro L. Coutinho
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Elise L. Femino
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Ana L. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Rebecca L. Moffat
- Optical Microscopy and Analysis Laboratory, Office of Science and Technology Resources, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - Robert Y. S. Cheng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - Stephen J. Lockett
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; (W.F.H.); (S.J.L.)
| | - M. Cristina Rangel
- Center for Translational Research in Oncology, ICESP/HC, Faculdade de Medicina da Universidade de São Paulo and Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, SP, Brazil;
| | - Lisa A. Ridnour
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| | - David A. Wink
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; (L.L.C.); (E.L.F.); (A.L.G.); (R.Y.S.C.)
| |
Collapse
|
18
|
Santilli A, Shapiro D, Han Y, Sangwan N, Cresci GAM. Tributyrin Supplementation Rescues Chronic-Binge Ethanol-Induced Oxidative Stress in the Gut-Lung Axis in Mice. Antioxidants (Basel) 2024; 13:472. [PMID: 38671919 PMCID: PMC11047693 DOI: 10.3390/antiox13040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Excessive alcohol consumption increases the severity and worsens outcomes of pulmonary infections, often due to oxidative stress and tissue damage. While the mechanism behind this relationship is multifaceted, recent evidence suggests ethanol-induced changes to the gut microbiome impact the gut-lung axis. To assess this, a chronic-binge ethanol feeding mouse model was used to determine how ethanol altered the gut microbiome, small intestinal epithelial barrier, and immune responses, as well as neutrophil abundance and oxidative stress in the lungs, and how supporting gut health with tributyrin supplementation during chronic-binge ethanol exposure affected these responses. We found that ethanol consumption altered gut bacterial taxa and metabolic processes, distorted small intestinal immune responses, and induced both bacteria and endotoxin translocation into the lymphatic and circulatory systems. These changes were associated with increased neutrophil (Ly6G) presence and markers of oxidative stress, lipocalin-2 and myeloperoxidase, in the lungs. Importantly, tributyrin supplementation during ethanol exposure rescued gut bacterial function (p < 0.05), small intestinal barrier integrity, and immune responses, as well as reducing both Ly6G mRNA (p < 0.05) and lipocalin-2 mRNA (p < 0.01) in the lungs. These data suggest ethanol-associated disruption of gut homeostasis influenced the health of the lungs, and that therapeutics supporting gut health may also support lung health.
Collapse
Affiliation(s)
- Anthony Santilli
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (A.S.)
| | - David Shapiro
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (A.S.)
| | - Yingchun Han
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (A.S.)
| | - Naseer Sangwan
- Microbial Sequencing & Analytics Resource (MSAAR) Facility, Shared Laboratory Resources (SLR), Lerner Research Institute, Cleveland, OH 44195, USA;
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Gail A. M. Cresci
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH 44195, USA; (A.S.)
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland, OH 44195, USA
| |
Collapse
|
19
|
Gao Y, Lu J, Wang Z, Sun N, Wu B, Han X, Liu Y, Yu R, Xu Y, Han X, Miao J. L-arginine attenuates Streptococcus uberis-induced inflammation by decreasing miR155 level. Int Immunopharmacol 2024; 130:111638. [PMID: 38373387 DOI: 10.1016/j.intimp.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
L-arginine, as an essential substance of the immune system, plays a vital role in innate immunity. MiR155, a multi-functional microRNA, has gained importance as a regulator of homeostasis in immune cells. However, the immunoregulatory mechanism between L-arginine and miR155 in bacterial infections is unknown. Here, we investigated the potential role of miR155 in inflammation and the molecular regulatory mechanisms of L-arginine in Streptococcus uberis (S. uberis) infections. And we observed that miR155 was up-regulated after infection, accompanying the depletion of L-arginine, leading to metabolic disorders of amino acids and severe tissue damage. Mechanically, the upregulated miR155 mediated by the p65 protein played a pro-inflammatory role by suppressing the suppressor of cytokine signaling 6 (SOCS6)-mediated p65 ubiquitination and degradation. This culminated in a violently inflammatory response and tissue damage. Interestingly, a significant anti-inflammatory effect was revealed in L-arginine supplementation by reducing miR155 production via inhibiting p65. This work firstly uncovers the pro-inflammatory role of miR155 and an anti-inflammatory mechanism of L-arginine in S.uberis infection with a mouse mastitis model. Collectively, we provide new insights and strategies for the prevention and control of this important pathogen, which is of great significance for ensuring human food health and safety.
Collapse
Affiliation(s)
- Yabing Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinye Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Binfeng Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinru Han
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yuzhen Liu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Rui Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Jean Wilson E, Sirpu Natesh N, Ghadermazi P, Pothuraju R, Prajapati DR, Pandey S, Kaifi JT, Dodam JR, Bryan JN, Lorson CL, Watrelot AA, Foster JM, Mansell TJ, Joshua Chan SH, Batra SK, Subbiah J, Rachagani S. Red Cabbage Juice-Mediated Gut Microbiota Modulation Improves Intestinal Epithelial Homeostasis and Ameliorates Colitis. Int J Mol Sci 2023; 25:539. [PMID: 38203712 PMCID: PMC10778654 DOI: 10.3390/ijms25010539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Gut microbiota plays a crucial role in inflammatory bowel diseases (IBD) and can potentially prevent IBD through microbial-derived metabolites, making it a promising therapeutic avenue. Recent evidence suggests that despite an unclear underlying mechanism, red cabbage juice (RCJ) alleviates Dextran Sodium Sulfate (DSS)-induced colitis in mice. Thus, the study aims to unravel the molecular mechanism by which RCJ modulates the gut microbiota to alleviate DSS-induced colitis in mice. Using C57BL/6J mice, we evaluated RCJ's protective role in DSS-induced colitis through two cycles of 3% DSS. Mice were daily gavaged with PBS or RCJ until the endpoint, and gut microbiota composition was analyzed via shotgun metagenomics. RCJ treatment significantly improved body weight (p ≤ 0.001), survival in mice (p < 0.001) and reduced disease activity index (DAI) scores. Further, RCJ improved colonic barrier integrity by enhancing the expression of protective colonic mucins (p < 0.001) and tight junction proteins (p ≤ 0.01) in RCJ + DSS-treated mice compared to the DSS group. Shotgun metagenomic analysis revealed an enrichment of short-chain fatty acids (SCFAs)-producing bacteria (p < 0.05), leading to increased Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ) activation (p ≤ 0.001). This, in turn, resulted in repression of the nuclear factor κB (NFκB) signaling pathway, causing decreased production of inflammatory cytokines and chemokines. Our study demonstrates colitis remission in a DSS-induced mouse model, showcasing RCJ as a potential modulator for gut microbiota and metabolites, with promising implications for IBD prevention and treatment.
Collapse
Affiliation(s)
- Emily Jean Wilson
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Nagabhishek Sirpu Natesh
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| | - Parsa Ghadermazi
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; (P.G.)
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dipakkumar R. Prajapati
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sanjit Pandey
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Jussuf T. Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - John R. Dodam
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
| | - Jeffrey N. Bryan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
| | - Christian L. Lorson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Aude A. Watrelot
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA;
| | - Jason M. Foster
- Department of Surgery, Division of Surgical Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Thomas J. Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; (P.G.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65201, USA; (N.S.N.); (J.R.D.); (J.N.B.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
21
|
Gorreja F, Bendix M, Rush STA, Maasfeh L, Savolainen O, Dige A, Agnholt J, Öhman L, Magnusson MK. Fecal Supernatants from Patients with Crohn's Disease Induce Inflammatory Alterations in M2 Macrophages and Fibroblasts. Cells 2023; 13:60. [PMID: 38201264 PMCID: PMC10777926 DOI: 10.3390/cells13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Intestinal macrophages and fibroblasts act as microenvironmental sentinels mediating inflammation and disease progression in Crohn's disease (CD). We aimed to establish the effects of fecal supernatants (FSs) from patients with CD on macrophage and fibroblast phenotype and function. FS were obtained by ultracentrifugation, and the metabolites were analyzed. Monocyte-derived M2 macrophages and fibroblasts were conditioned with FS, and secreted proteins, surface proteins and gene expression were analyzed. M2 macrophage efferocytosis was evaluated. Patients with CD (n = 15) had a skewed fecal metabolite profile compared to healthy subjects (HS, n = 10). FS from CD patients (CD-FS) induced an anti-inflammatory response in M2 macrophages with higher expression of IL-10, IL1RA and CD206 as compared to healthy FS (HS-FS) while the efferocytotic capacity was unaltered. CD-FS did not affect extracellular matrix production from fibroblasts, but increased expression of the pro-inflammatory proteins IL-6 and MCP-1. Conditioned media from M2 macrophages treated with CD-FS modulated gene expression in fibroblasts for TGFβ superfamily members and reduced IL-4 expression compared to HS-FS. We show that M2 macrophages and fibroblasts react abnormally to the fecal microenvironment of CD patients, resulting in altered protein expression related to inflammation but not fibrosis. This implies that the gut microbiota and its metabolites have an important role in the generation and/or perpetuation of inflammation in CD.
Collapse
Affiliation(s)
- Frida Gorreja
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| | - Mia Bendix
- Medical Department, Randers Regional Hospital, 8930 Randers, Denmark;
| | - Stephen T. A. Rush
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| | - Lujain Maasfeh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| | - Otto Savolainen
- Chalmers Mass Spectrometry Infrastructure, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Anders Dige
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.D.); (J.A.)
| | - Jorgen Agnholt
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, 8200 Aarhus, Denmark; (A.D.); (J.A.)
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden; (F.G.); (S.T.A.R.); (L.M.); (L.Ö.)
| |
Collapse
|
22
|
Poeggeler B, Singh SK, Sambamurti K, Pappolla MA. Nitric Oxide as a Determinant of Human Longevity and Health Span. Int J Mol Sci 2023; 24:14533. [PMID: 37833980 PMCID: PMC10572643 DOI: 10.3390/ijms241914533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The master molecular regulators and mechanisms determining longevity and health span include nitric oxide (NO) and superoxide anion radicals (SOR). L-arginine, the NO synthase (NOS) substrate, can restore a healthy ratio between the dangerous SOR and the protective NO radical to promote healthy aging. Antioxidant supplementation orchestrates protection against oxidative stress and damage-L-arginine and antioxidants such as vitamin C increase NO production and bioavailability. Uncoupling of NO generation with the appearance of SOR can be induced by asymmetric dimethylarginine (ADMA). L-arginine can displace ADMA from the site of NO formation if sufficient amounts of the amino acid are available. Antioxidants such as ascorbic acids can scavenge SOR and increase the bioavailability of NO. The topics of this review are the complex interactions of antioxidant agents with L-arginine, which determine NO bioactivity and protection against age-related degeneration.
Collapse
Affiliation(s)
- Burkhard Poeggeler
- Department of Physiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Faculty of Biology and Psychology, Georg August University Göttingen, Zappenburg 2, D-38524 Sassenburg, Germany
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India;
| | - Kumar Sambamurti
- Department of Neurobiology, Medical University of South Carolina, 173 Ashley Avenue, BSB 403, Charleston, SC 29425, USA;
| | - Miguel A. Pappolla
- Department of Neurology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA;
| |
Collapse
|
23
|
Xu X, Ocansey DKW, Pei B, Zhang Y, Wang N, Wang Z, Mao F. Resveratrol alleviates DSS-induced IBD in mice by regulating the intestinal microbiota-macrophage-arginine metabolism axis. Eur J Med Res 2023; 28:319. [PMID: 37660064 PMCID: PMC10474707 DOI: 10.1186/s40001-023-01257-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a global disease with a growing public health concern and is associated with a complex interplay of factors, including the microbiota and immune system. Resveratrol, a natural anti-inflammatory and antioxidant agent, is known to relieve IBD but the mechanism involved is largely unexplored. METHODS This study examines the modulatory effect of resveratrol on intestinal immunity, microbiota, metabolites, and related functions and pathways in the BALB/c mice model of IBD. Mouse RAW264.7 macrophage cell line was used to further explore the involvement of the macrophage-arginine metabolism axis. The treatment outcome was assessed through qRT-PCR, western blot, immunofluorescence, immunohistochemistry, and fecal 16S rDNA sequencing and UHPLC/Q-TOF-MS. RESULTS Results showed that resveratrol treatment significantly reduced disease activity index (DAI), retained mice weight, repaired colon and spleen tissues, upregulated IL-10 and the tight junction proteins Occludin and Claudin 1, and decreased pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Resveratrol reduced the number of dysregulated metabolites and improved the gut microbial community structure and diversity, including reversing changes in the phyla Bacteroidetes, Proteobacteria, and Firmicutes, increasing 'beneficial' genera, and decreasing potential pathogens such as Lachnoclostridium, Acinobacter, and Serratia. Arginine-proline metabolism was significantly different between the colitis-treated and untreated groups. In the colon mucosa and RAW264.7 macrophage, resveratrol regulated arginine metabolism towards colon protection by increasing Arg1 and Slc6a8 and decreasing iNOS. CONCLUSION This uncovers a previously unknown mechanism of resveratrol treatment in IBD and provides the microbiota-macrophage-arginine metabolism axis as a potential therapeutic target for intestinal inflammation.
Collapse
Affiliation(s)
- Xinwei Xu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Bing Pei
- The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, People's Republic of China
| | - Yaqin Zhang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zengxu Wang
- Zhenjiang Hospital of Chinese Traditional And Western Medicine, 18 Tuanshan Road, Runzhou District, Zhenjiang, 212000, Jiangsu, People's Republic of China.
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Jean Wilson E, Sirpu Natesh N, Ghadermazi P, Pothuraju R, Shanmugam M, Prajapati DR, Pandey S, Kaifi JT, Dodam JR, Bryan J, Lorson CL, Watrelot AA, Foster JM, Mansel TJ, Joshua Chan SH, Batra SK, Subbiah J, Rachagani S. Red cabbage juice-mediated gut microbiota modulation improves intestinal epithelial homeostasis and ameliorates colitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554560. [PMID: 37662255 PMCID: PMC10473712 DOI: 10.1101/2023.08.23.554560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Gut microbiota plays a crucial role in inflammatory bowel disease (IBD) and has therapeutic benefits. Thus, targeting the gut microbiota is a promising therapeutic approach for IBD treatment. We recently found that red cabbage juice (RCJ) ameliorates dextran sulfate sodium (DSS)-induced colitis in mice. However, the underlying mechanisms remain unknown. The current study investigated the modulation of gut microbiota in response to treatment with RCJ to ameliorate the DSS colitis. The initial results demonstrated that mice treated with DSS + RCJ showed increased body weight and decreased diarrhea and blood in feces compared to the DSS alone group. RCJ ameliorated colitis by regulating the intestinal barrier function by reducing the number of apoptotic cells, improving colonic protective mucin, and increasing tight junction protein in RCJ + DSS groups compared to the DSS group. Short-gun metagenomic analysis revealed significant enrichment of short-chain fatty acid (SCFAs)-producing bacteria (Butyrivibrio, Ruminococcaceae, Acetatifactor muris, Rosburia Sp. CAG:303 , Dorea Sp. 5-2) increased PPAR-© activation, leading to repression of the nuclear factor κB (NFκB) signaling pathway, thus decreasing the production of crucial inflammatory cytokines and chemokines in the RCJ + DSS groups compared to the DSS group. Pathway abundance analysis showed an increased abundance of the SCFA pathway, reduced histidine degradation ( Bacteroides sartorii, and Bacteroides caecimuris ), and LCFA production in the RCJ+DSS treated group, suggesting the promotion of good colonic health. Furthermore, increased T-reg (FOXP3+) cells in the colon were due to SCFAs produced by the gut microbiota, which was corroborated by an increase in IL-10, a vital anti-inflammatory cytokine. Thus, our study provides the first evidence that RCJ ameliorates colonic inflammation by modulating the gut microbiota.
Collapse
|
25
|
Rehman S, Gora AH, Abdelhafiz Y, Dias J, Pierre R, Meynen K, Fernandes JMO, Sørensen M, Brugman S, Kiron V. Potential of algae-derived alginate oligosaccharides and β-glucan to counter inflammation in adult zebrafish intestine. Front Immunol 2023; 14:1183701. [PMID: 37275890 PMCID: PMC10235609 DOI: 10.3389/fimmu.2023.1183701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Alginate oligosaccharides (AOS) are natural bioactive compounds with anti-inflammatory properties. We performed a feeding trial employing a zebrafish (Danio rerio) model of soybean-induced intestinal inflammation. Five groups of fish were fed different diets: a control (CT) diet, a soybean meal (SBM) diet, a soybean meal+β-glucan (BG) diet and 2 soybean meal+AOS diets (alginate products differing in the content of low molecular weight fractions - AL, with 31% < 3kDa and AH, with 3% < 3kDa). We analyzed the intestinal transcriptomic and plasma metabolomic profiles of the study groups. In addition, we assessed the expression of inflammatory marker genes and histological alterations in the intestine. Dietary algal β-(1, 3)-glucan and AOS were able to bring the expression of certain inflammatory genes altered by dietary SBM to a level similar to that in the control group. Intestinal transcriptomic analysis indicated that dietary SBM changed the expression of genes linked to inflammation, endoplasmic reticulum, reproduction and cell motility. The AL diet suppressed the expression of genes related to complement activation, inflammatory and humoral response, which can likely have an inflammation alleviation effect. On the other hand, the AH diet reduced the expression of genes, causing an enrichment of negative regulation of immune system process. The BG diet suppressed several immune genes linked to the endopeptidase activity and proteolysis. The plasma metabolomic profile further revealed that dietary SBM can alter inflammation-linked metabolites such as itaconic acid, taurochenodeoxycholic acid and enriched the arginine biosynthesis pathway. The diet AL helped in elevating one of the short chain fatty acids, namely 2-hydroxybutyric acid while the BG diet increased the abundance of a vitamin, pantothenic acid. Histological evaluation revealed the advantage of the AL diet: it increased the goblet cell number and length of villi of the intestinal mucosa. Overall, our results indicate that dietary AOS with an appropriate amount of < 3kDa can stall the inflammatory responses in zebrafish.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Yousri Abdelhafiz
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Ronan Pierre
- CEVA (Centre d’Etude et de Valorisation des Algues), Pleubian, France
| | - Koen Meynen
- Kemin Aquascience, Division of Kemin Europa N.V., Herentals, Belgium
| | | | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Sylvia Brugman
- Animal Sciences Group, Host Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
26
|
Venneri T, Giorgini G, Leblanc N, Flamand N, Borrelli F, Silvestri C, Di Marzo V. Altered endocannabinoidome bioactive lipid levels accompany reduced DNBS-induced colonic inflammation in germ-free mice. Lipids Health Dis 2023; 22:63. [PMID: 37189092 DOI: 10.1186/s12944-023-01823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Gut microbiota are involved in the onset and development of chronic intestinal inflammation. The recently described endocannabinoidome (eCBome), a diverse and complex system of bioactive lipid mediators, has been reported to play a role in various physio-pathological processes such as inflammation, immune responses and energy metabolism. The eCBome and the gut microbiome (miBIome) are closely linked and form the eCBome - miBIome axis, which may be of special relevance to colitis. METHODS Colitis was induced in conventionally raised (CR), antibiotic-treated (ABX) and germ-free (GF) mice with dinitrobenzene sulfonic acid (DNBS). Inflammation was assessed by Disease Activity Index (DAI) score, body weight change, colon weight-length ratio, myeloperoxidase (MPO) activity and cytokine gene expression. Colonic eCBome lipid mediator concentrations were measured by HPLC-MS /MS. RESULTS GF mice showed increased levels of anti-inflammatory eCBome lipids (LEA, OEA, DHEA and 13- HODE-EA) in the healthy state and higher MPO activity. DNBS elicited reduced inflammation in GF mice, having lower colon weight/length ratios and lower expression levels of Il1b, Il6, Tnfa and neutrophil markers compared to one or both of the other DNBS-treated groups. Il10 expression was also lower and the levels of several N-acyl ethanolamines and 13-HODE-EA levels were higher in DNBS-treated GF mice than in CR and ABX mice. The levels of these eCBome lipids negatively correlated with measures of colitis and inflammation. CONCLUSIONS These results suggest that the depletion of the gut microbiota and subsequent differential development of the gut immune system in GF mice is followed by a compensatory effect on eCBome lipid mediators, which may explain, in part, the observed lower susceptibility of GF mice to develop DNBS-induced colitis.
Collapse
Affiliation(s)
- Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giada Giorgini
- Joint International Research Unit (JIRU) for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (MicroMeNu) between Université Laval and the Consiglio Nazionale delle Ricerche (CNR), Institute of Biomolecular Chemistry, Pozzuoli, NA, Italy
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Nadine Leblanc
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Cristoforo Silvestri
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada.
- Centre NUTRISS, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada.
| | - Vincenzo Di Marzo
- Joint International Research Unit (JIRU) for Chemical and Biomolecular Research on the Microbiome and its impact on Metabolic Health and Nutrition (MicroMeNu) between Université Laval and the Consiglio Nazionale delle Ricerche (CNR), Institute of Biomolecular Chemistry, Pozzuoli, NA, Italy.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de Médecine, Université Laval, Québec, Canada.
- Centre NUTRISS, École de nutrition, Faculté des sciences de l'agriculture et de l'alimentation (FSAA), Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Québec, Canada.
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, Canada.
| |
Collapse
|
27
|
Feng Y, Li D, Ma C, Hu X, Chen F. Barley Leaf Ameliorates Citrobacter-rodentium-Induced Colitis through Arginine Enrichment. Nutrients 2023; 15:nu15081890. [PMID: 37111109 PMCID: PMC10145403 DOI: 10.3390/nu15081890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) has become a global public health challenge. Our previous study showed that barley leaf (BL) significantly reduces Citrobacter-rodentium (CR)-induced colitis, but its mechanism remains elusive. Thus, in this study, we used non-targeted metabolomics techniques to search for potentially effective metabolites. Our results demonstrated that dietary supplementation with BL significantly enriched arginine and that arginine intervention significantly ameliorated CR-induced colitis symptoms such as reduced body weight, shortened colon, wrinkled cecum, and swollen colon wall in mice; in addition, arginine intervention dramatically ameliorated CR-induced histopathological damage to the colon. The gut microbial diversity analysis showed that arginine intervention significantly decreased the relative abundance of CR and significantly increased the relative abundance of Akkermansia, Blautia, Enterorhabdus, and Lachnospiraceae, which modified the CR-induced intestinal flora disorder. Notably, arginine showed a dose-dependent effect on the improvement of colitis caused by CR.
Collapse
Affiliation(s)
- Yu Feng
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Chen Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetables Processing Ministry of Agriculture, Engineering Research Centre for Engineering Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| |
Collapse
|
28
|
Grüner N, Ortlepp AL, Mattner J. Pivotal Role of Intestinal Microbiota and Intraluminal Metabolites for the Maintenance of Gut-Bone Physiology. Int J Mol Sci 2023; 24:5161. [PMID: 36982235 PMCID: PMC10048911 DOI: 10.3390/ijms24065161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Intestinal microbiota, and their mutual interactions with host tissues, are pivotal for the maintenance of organ physiology. Indeed, intraluminal signals influence adjacent and even distal tissues. Consequently, disruptions in the composition or functions of microbiota and subsequent altered host-microbiota interactions disturb the homeostasis of multiple organ systems, including the bone. Thus, gut microbiota can influence bone mass and physiology, as well as postnatal skeletal evolution. Alterations in nutrient or electrolyte absorption, metabolism, or immune functions, due to the translocation of microbial antigens or metabolites across intestinal barriers, affect bone tissues, as well. Intestinal microbiota can directly and indirectly alter bone density and bone remodeling. Intestinal dysbiosis and a subsequently disturbed gut-bone axis are characteristic for patients with inflammatory bowel disease (IBD) who suffer from various intestinal symptoms and multiple bone-related complications, such as arthritis or osteoporosis. Immune cells affecting the joints are presumably even primed in the gut. Furthermore, intestinal dysbiosis impairs hormone metabolism and electrolyte balance. On the other hand, less is known about the impact of bone metabolism on gut physiology. In this review, we summarized current knowledge of gut microbiota, metabolites and microbiota-primed immune cells in IBD and bone-related complications.
Collapse
Affiliation(s)
- Niklas Grüner
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Lisa Ortlepp
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut—Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
29
|
Rizzello F, Gionchetti P, Spisni E, Saracino IM, Bellocchio I, Spigarelli R, Collini N, Imbesi V, Dervieux T, Alvisi P, Valerii MC. Dietary Habits and Nutrient Deficiencies in a Cohort of European Crohn's Disease Adult Patients. Int J Mol Sci 2023; 24:ijms24021494. [PMID: 36675009 PMCID: PMC9865585 DOI: 10.3390/ijms24021494] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Wrong dietary habits, such as the Western-style diet, are considered important risk factors for the development of Inflammatory Bowel Diseases (IBDs). Nevertheless, the role of dietary patterns in the clinical management of IBD patients has not been fully investigated yet. Fifty-four patients diagnosed with active Crohn's disease (CD) were enrolled and subjected to nutritional intake analysis through a weekly food diary. Nutritional patterns were analyzed, and nutrient intake was compared with those of 30 healthy subjects (HS). Blood levels of cholesterol, folic acid, minerals (K, Mg, Fe) and amino acids, were measured in CD patients to assess the presence of nutritional deficiencies. CD patients, with respect to HS, consumed significantly lower amounts of fiber, vitamins (A, E, C, B6, folic acid) and β-carotene. Their calcium, potassium, phosphorus, iron, magnesium, copper and iodine intake were also found to be significantly lower. In blood, CD patients had significantly lower concentrations of total cholesterol, potassium, iron, and amino acids. Active CD patient diet was significantly different from those of HS and may contribute to the establishment of nutritional deficiencies. Intestinal malabsorption was evidenced in these patients. Correction of the diet with specific nutritional plans is a necessary therapeutic step for these patients. ClinicalTrials.gov: NCT02580864.
Collapse
Affiliation(s)
- Fernando Rizzello
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Paolo Gionchetti
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-209-4147
| | - Ilaria Maria Saracino
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine, St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Irene Bellocchio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Noemi Collini
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Veronica Imbesi
- IBD Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Thierry Dervieux
- Prometheus Laboratories, 9410 Carroll Park Dr., San Diego, CA 92121, USA
| | - Patrizia Alvisi
- Pediatric Gastroenterology Unit, Maggiore Hospital, Largo Nigrisoli, 2, 40133 Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
30
|
Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes 2023; 15:2222961. [PMID: 37358082 PMCID: PMC10294761 DOI: 10.1080/19490976.2023.2222961] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
L-arginine (L-arg) is a versatile amino acid and a central intestinal metabolite in mammalian and microbial organisms. Thus, L-arg participates as precursor of multiple metabolic pathways in the regulation of cell division and growth. It also serves as a source of carbon, nitrogen, and energy or as a substrate for protein synthesis. Consequently, L-arg can simultaneously modify mammalian immune functions, intraluminal metabolism, intestinal microbiota, and microbial pathogenesis. While dietary intake, protein turnover or de novo synthesis usually supply L-arg in sufficient amounts, the expression of several key enzymes of L-arg metabolism can change rapidly and dramatically following inflammation, sepsis, or injury. Consequently, the availability of L-arg can be restricted due to increased catabolism, transforming L-arg into an essential amino acid. Here, we review the enzymatic pathways of L-arg metabolism in microbial and mammalian cells and their role in immune function, intraluminal metabolism, colonization resistance, and microbial pathogenesis in the gut.
Collapse
Affiliation(s)
- Björn Nüse
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Holland
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAUErlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|