1
|
Chung YL, Lin MH, Liaw YP, Guo HR. Dose-response relationship between arsenic in drinking water and mortality of urinary cancers in Taiwan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:299. [PMID: 38990421 DOI: 10.1007/s10653-024-02069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
Ingested arsenic is carcinogenic to the human urinary tract, but uncertainties remain regarding the dose-response relationship. To assess dose-response relationships between arsenic ingestion and urinary cancers, we evaluated the associations between the arsenic level in drinking water and mortality of cancers of the bladder, kidney, and prostate in Taiwan. We utilized the 1971-2000 Taiwan death registry data and calculated the age-standardized mortality rates (ASMRs) using the 1976 world standard population as the reference group. We used the data from a 1974-1976 census survey of wells on the arsenic levels in drinking water conducted by the government to assess exposure levels, which had been divided into three categories: below 0.05 ppm, 0.05-0.35 ppm, and above 0.35 ppm. The data were analyzed using multiple linear regression models and geographical information system. We found no increase in ASMR for all, or any, of the urinary cancers at exposure levels of 0.05-0.35 ppm arsenic, but at exposure levels > 0.35 ppm arsenic was associated with increased ASMR in both males and females for bladder cancer, kidney cancer, and all urinary cancers combined. There was no increased ASMR associated with prostate cancer observed for either exposure category.
Collapse
Affiliation(s)
- Ya-Ling Chung
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
| | - Ming-Hsien Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yung-Po Liaw
- Department of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, 70428, Taiwan.
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan.
- Department of Occupational and Environmental Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Issanov A, Adewusi B, Saint-Jacques N, Dummer TJB. Arsenic in drinking water and lung cancer: A systematic review of 35 years of evidence. Toxicol Appl Pharmacol 2024; 483:116808. [PMID: 38218206 DOI: 10.1016/j.taap.2024.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
The association between higher arsenic concentrations in drinking water and lung cancer is well-established. However, the risk associated with lower levels of arsenic exposure remains uncertain. This systematic review and meta-analysis summarizes the evidence on the relationship between exposure to arsenic in drinking water and lung cancer outcomes as measured over a broad range of exposures, including lower levels. A total of 51 studies were included in the review and 15 met criteria for inclusion in meta-analysis. Risk estimates for lung cancer incidence and mortality were pooled and analyzed separately using Bayesian hierarchical random-effects models with a Gaussian observation submodel for log(Risk), computed using the "brms" R package. For lung cancer incidence, the predicted posterior mean relative risks (RRs) at arsenic concentrations of 10, 50 and 150 μg/L were 1.11 (0.86-1.43), 1.67 (1.27-2.17) and 2.21 (1.61-3.02), respectively, with posterior probabilities of 79%, 100% and 100%, respectively, for the RRs to be >1. The posterior mean mortality ratios at 20, 50 and 150 μg/L were 1.22 (0.83-1.78), 2.10 (1.62-2.71) and 2.41 (1.88-3.08), respectively, with posterior probabilities being above 80%. In addition to observing the dose-response relationship, these findings demonstrate that individuals exposed to low to moderate levels of arsenic (<150 μg/L) were at an elevated risk of developing or dying from lung cancer. Given the widespread exposure to lower levels of arsenic, there is an urgent need for vigilance and potential revisions to regulatory guidelines to protect people from the cancer risks associated with arsenic exposure.
Collapse
Affiliation(s)
- Alpamys Issanov
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Betty Adewusi
- Nova Scotia Health Cancer Care Program, Nova Scotia Health, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Nathalie Saint-Jacques
- Nova Scotia Health Cancer Care Program, Nova Scotia Health, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada; Department of Medicine, Dalhousie University, 1276 South Park St., Halifax, Nova Scotia B3H 2Y9, Canada
| | - Trevor J B Dummer
- School of Population and Public Health, University of British Columbia, 2206 East Mall, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
3
|
Baghery F, Lau LDW, Mohamadi M, Vazirinejad R, Ahmadi Z, Javedani H, Eslami H, Nazari A. Risk of urinary tract cancers following arsenic exposure and tobacco smoking: a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5579-5598. [PMID: 37248359 DOI: 10.1007/s10653-023-01627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Bladder cancer, prostate cancer, and kidney cancer, due to their high morbidity and mortality rates, result in significant economic and health care costs. Arsenic exposure affects the drinking water of millions of people worldwide. Long-term exposure to arsenic, even in low concentrations, increases the risk of developing various cancers. Smoking is also one of the leading causes of bladder, prostate and kidney cancers. Accordingly, this research reviews the relationship between arsenic exposure and smoking with three kinds of urinary tract cancers (bladder cancer, prostate cancer, and kidney cancer) due to their widespread concern for their negative impact on public health globally. In this review, we have gathered the most current information from scientific databases [PubMed, Scopus, Google Scholar, ISI web of science] regarding the relationship between arsenic exposure and tobacco smoking with the risk of bladder, prostate, and kidney cancer. In several studies, a significant relationship was determined between the incidence and mortality rate of the above-mentioned cancers in humans with arsenic exposure and tobacco smoking. The decrease or cessation of smoking and consumption of arsenic-free water significantly declined the incidence of bladder, prostate, and kidney cancers.
Collapse
Affiliation(s)
- Fatemeh Baghery
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Maryam Mohamadi
- Occupational Safety and Health Research Center, NICICO, WorldSafety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Vazirinejad
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Ahmadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Javedani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hadi Eslami
- Occupational Safety and Health Research Center, NICICO, WorldSafety Organization and Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Alireza Nazari
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Surgery, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
4
|
Iwasaki M, Itoh H, Sawada N, Tsugane S. Exposure to environmental chemicals and cancer risk: epidemiological evidence from Japanese studies. Genes Environ 2023; 45:10. [PMID: 36949525 PMCID: PMC10031963 DOI: 10.1186/s41021-023-00268-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/24/2023] Open
Abstract
Exposure to certain chemicals in the environment may contribute to the risk of developing cancer. Although cancer risk from environmental chemical exposure among general populations is considered low compared to that in occupational settings, many people may nevertheless be chronically exposed to relatively low levels of environmental chemicals which vary by such various factors as residential area, lifestyle, and dietary habits. It is therefore necessary to assess population-specific exposure levels and examine their association with cancer risk. Here, we reviewed epidemiological evidence on cancer risk and exposure to dichlorodiphenyltrichloroethane (DDT), hexachlorocyclohexane (HCH), polychlorinated biphenyls (PCBs), per- and polyfluoroalkyl substances (PFASs), cadmium, arsenic, and acrylamide. Japanese are widely exposed to these chemicals, mainly through the diet, and an association with increased cancer risk is suspected. Epidemiological evidence from Japanese studies to date does not support a positive association between blood concentrations of DDT, HCH, PCBs, and PFASs and risk of breast or prostate cancer. We established assessment methods for dietary intake of cadmium, arsenic, and acrylamide using a food frequency questionnaire. Overall, dietary intakes of cadmium, arsenic, and acrylamide were not significantly associated with increased risk of total cancer and major cancer sites in the Japan Public Health Center-based Prospective Study. However, statistically significant positive associations were observed between dietary cadmium intake and risk of estrogen receptor-positive breast cancer among postmenopausal women, and dietary arsenic intake and risk of lung cancer among male smokers. In addition, studies using biomarkers as exposure assessment revealed statistically significant positive associations between urinary cadmium concentration and risk of breast cancer, and between ratio of hemoglobin adducts of acrylamide and glycidamide and risk of breast cancer. Epidemiological studies of general populations in Japan are limited and further evidence is required. In particular, studies of the association of organochlorine and organofluorine compounds with risk of cancer sites other than breast and prostate cancer are warranted, as are large prospective studies of the association between biomarkers of exposure and risk of cancer.
Collapse
Affiliation(s)
- Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan.
| | - Hiroaki Itoh
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Epidemiology and Environmental Health, , Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| |
Collapse
|
5
|
Dodson M, Chen J, Shakya A, Anandhan A, Zhang DD. The dark side of NRF2 in arsenic carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:47-69. [PMID: 36858779 DOI: 10.1016/bs.apha.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is an environmental toxicant that significantly enhances the risk of developing disease, including several cancers. While the epidemiological evidence supporting increased cancer risk due to chronic arsenic exposure is strong, therapies tailored to treat exposed populations are lacking. This can be accredited in large part to the chronic nature and pleiotropic pathological effects associated with prolonged arsenic exposure. Despite this fact, several putative mediators of arsenic promotion of cancer have been identified. Among these, the critical transcription factor NRF2 has been shown to be a key mediator of arsenic's pro-carcinogenic effects. Importantly, the dependence of arsenic-transformed cancer cells on NRF2 upregulation exposes a targetable liability that could be utilized to treat arsenic-promoted cancers. In this chapter, we briefly introduce the "light" vs "dark" side of the NRF2 pathway. We then give a brief overview of arsenic metabolism, and discuss the epidemiological and experimental evidence that support arsenic promotion of different cancers, with a specific emphasis on mechanisms mediated by chronic, non-canonical activation of NRF2 (i.e., the "dark" side). Finally, we briefly highlight how the non-canonical NRF2 pathway plays a role in other arsenic-promoted diseases, as well as research directions that warrant further investigation.
Collapse
Affiliation(s)
- Matthew Dodson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Jinjing Chen
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Aryatara Shakya
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Annadurai Anandhan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States; Arizona Cancer Center, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
6
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 PMCID: PMC10860672 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
7
|
Zhang H, He Z, Deng P, Lu M, Zhou C, Yang L, Yu Z. PIN1-mediated ROS production is involved in antagonism of N-acetyl-L-cysteine against arsenic-induced hepatotoxicity. Toxicol Res (Camb) 2022; 11:628-643. [PMID: 36051664 PMCID: PMC9424717 DOI: 10.1093/toxres/tfac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 08/26/2023] Open
Abstract
Arsenic, a widely existing environmental contaminant, is recognized to be toxic to multiple organs. Exposure to arsenic results in liver damage via excessive production of reactive oxidative species (ROS). PIN1 regulates the levels of ROS. N-acetyl-L-cysteine (NAC) is an ROS scavenger that protects the hepatic functions. Whether PIN1 plays a regulatory role in NAC-mediated antagonism against arsenic hepatotoxicity remains largely unknown. In our study, the protective effects of NAC against arsenic (NaAsO2)-induced hepatotoxicity were evaluated in vitro and in vivo. Arsenic exposure induced cytotoxicity by increasing the intracellular ROS production, impairing mitochondrial function and inducing apoptosis in L02 hepatocytes. Overexpression of PIN1 markedly protected against arsenic cytotoxicity, decreased ROS levels, and mitigated mitochondrial dysfunction and apoptosis in L02 cells. However, loss of PIN1 further aggravated arsenic-induced cytotoxicity and abolished the protective effects of NAC in L02 cells. An in vivo study showed that pretreatment with NAC rescued arsenic-induced liver injury by restoring liver function and suppressing hepatic oxidative stress. Overexpression of PIN1 in mice transfected with AAV-Pin1 relieved arsenic-induced liver dysfunction and hepatic oxidative stress. Taken together, our study identified PIN1 as a novel intervention target for antagonizing arsenic-induced hepatotoxicity, highlighting a new pharmacological mechanism of NAC targeting PIN1 in antagonism against arsenic toxicity.
Collapse
Affiliation(s)
- Huijie Zhang
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Zhixin He
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Muxue Lu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, 30 Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, P. R. China
| | - Zhengping Yu
- Medical College, Guangxi University, 100 University East Road, Xixiangtang District, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
8
|
Samuel MS, Selvarajan E, Sarswat A, Muthukumar H, Jacob JM, Mukesh M, Pugazhendhi A. Nanomaterials as adsorbents for As(III) and As(V) removal from water: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127572. [PMID: 34810009 DOI: 10.1016/j.jhazmat.2021.127572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/07/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Freshwater demand will rise in the next couple of decades, with an increase in worldwide population growth and industrial development. The development activities, on one side, have increased the freshwater demand. However, the ground water has been degraded. Among the various organic and inorganic contaminants, arsenic is one of the most toxic elements. Arsenic contamination in ground waters is a major issue worldwide, especially in South and Southeast Asia. Various methods have been applied to provide a remedy to arsenic contamination, including adsorption, ion exchange, oxidation, coagulation-precipitation and filtration, and membrane filtration. Out of these methods, adsorption of As(III)/As(V) using nanomaterials and biopolymers has been used on a wide scale. The present review focuses on recently used nanomaterials and biopolymer composites for As(III)/As(V) sorptive removal. As(III)/As(V) adsorption mechanisms have been explored for various sorbents. The impacts of environmental factors such as pH and co-existing ions on As(III)/As(V) removal, have been discussed. Comparison of various nanosorbents and biopolymer composites for As(III)/As(V) adsorption and regeneration of exhausted materials has been included. Overall, this review will be useful to understand the sorption mechanisms involved in As(III)/As(V) removal by nanomaterials and biopolymer composites and their comparative sorption performances.
Collapse
Affiliation(s)
- Melvin S Samuel
- Department of Materials Science and Engineering, CEAS, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States
| | - E Selvarajan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ankur Sarswat
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Harshiny Muthukumar
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, India
| | - Jaya Mary Jacob
- Department of Biotechnology & Biochemical Engineering, Sree Buddha College of Engineering Pattoor, Alappuzha, Kerala, India
| | - Malavika Mukesh
- Department of Biotechnology & Biochemical Engineering, Sree Buddha College of Engineering Pattoor, Alappuzha, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
9
|
Association between Arsenic Level, Gene Expression in Asian Population, and In Vitro Carcinogenic Bladder Tumor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3459855. [PMID: 35039759 PMCID: PMC8760535 DOI: 10.1155/2022/3459855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022]
Abstract
The IARC classified arsenic (As) as "carcinogenic to humans." Despite the health consequences of arsenic exposure, there is no molecular signature available yet that can predict when exposure may lead to the development of disease. To understand the molecular processes underlying arsenic exposure and the risk of disease development, this study investigated the functional relationship between high arsenic exposure and disease risk using gene expression derived from human exposure. In this study, a three step analysis was employed: (1) the gene expression profiles obtained from two diverse arsenic-exposed Asian populations were utilized to identify differentially expressed genes associated with arsenic exposure in human subjects, (2) the gene expression profiles induced by arsenic exposure in four different myeloma cancer cell lines were used to define common genes and pathways altered by arsenic exposure, and (3) the genetic profiles of two publicly available human bladder cancer studies were used to test the significance of the common association of genes, identified in step 1 and step 2, to develop and validate a predictive model of primary bladder cancer risk associated with arsenic exposure. Our analysis shows that arsenic exposure to humans is mainly associated with organismal injury and abnormalities, immunological disease, inflammatory disease, gastrointestinal disease, and increased rates of a wide variety of cancers. In addition, arsenic exerts its toxicity by generating reactive oxygen species (ROS) and increasing ROS production causing the imbalance that leads to cell and tissue damage (oxidative stress). Oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell specifically; there is significant evidence of the advancing changes in oxidative/nitrative stress during the progression of bladder cancer. Therefore, we examined the relation of differentially expressed genes due to exposure of arsenic in human and bladder cancer and developed a bladder cancer risk prediction model. In this study, integrin-linked kinase (ILK) was one of the most significant pathways identified between both arsenic exposed population which plays a key role in eliciting a protective response to oxidative damage in epidermal cells. On the other hand, several studies showed that arsenic trioxide (ATO) is useful for anticancer therapy although the mechanisms underlying its paradoxical effects are still not well understood. ATO has shown remarkable efficacy for the treatment of multiple myeloma; therefore, it will be helpful to understand the underlying cancer biology by which ATO exerts its inhibitory effect on the myeloma cells. Our study found that MAPK is one of the most active network between arsenic gene and ATO cell line which is involved in indicative of oxidative/nitrosative damage and well associated with the development of bladder cancer. The study identified a unique set of 147 genes associated with arsenic exposure and linked to molecular mechanisms of cancer. The risk prediction model shows the highest prediction ability for recurrent bladder tumors based on a very small subset (NKIRAS2, AKTIP, and HLA-DQA1) of the 147 genes resulting in AUC of 0.94 (95% CI: 0.744-0.995) and 0.75 (95% CI: 0.343-0.933) on training and validation data, respectively.
Collapse
|
10
|
Kim C, Chen J, Ceresa BP. Chronic arsenic increases cell migration in BEAS-2B cells by increasing cell speed, cell persistence, and cell protrusion length. Exp Cell Res 2021; 408:112852. [PMID: 34599931 DOI: 10.1016/j.yexcr.2021.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
There is a strong association between arsenic exposure and lung cancer development, however, the mechanism by which arsenic exposure leads to carcinogenesis is not clear. In our previous study, we observed that when BEAS-2B cells are chronically exposed to arsenic, there is an increase in secreted TGFα, as well as an increase in EGFR expression and activity. Further, these changes were broadly accompanied with an increase in cell migration. The overarching goal of this study was to acquire finer resolution of the arsenic-dependent changes in cell migration, as well as to understand the role of increased EGFR expression and activity levels in the underlying mechanisms of cell migration. To do this, we used a combination of biochemical and single cell assays, and observed chronic arsenic treatment enhancing cell migration by increasing cell speed, cell persistence and cell protrusion length. All three parameters were further increased by the addition of TGFα, indicating EGFR activity is sufficient to enhance those aspects of cell migration. In contrast, EGFR activity was necessary for the increase in cell speed, as it was reversed with an EGFR inhibitor, AG1478, but was not necessary to enhance persistence and protrusion length. From these data, we were able to isolate both EGFR-dependent and -independent features of cell migration that were enhanced by chronic arsenic exposure.
Collapse
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, USA
| | - Joseph Chen
- Department of Pharmacology and Toxicology, University of Louisville, USA; Department of Bioengineering, University of Louisville, USA
| | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, USA.
| |
Collapse
|
11
|
Stewart ED, Stewart EK, Bradbury KR, Fitzpatrick W. Correlating Bedrock Folds to Higher Rates of Arsenic Detection in Groundwater, Southeast Wisconsin, USA. GROUND WATER 2021; 59:829-838. [PMID: 33860938 DOI: 10.1111/gwat.13102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Arsenic in private drinking water wells is a significant problem across much of eastern Wisconsin, USA. The release mechanism and stratigraphic distribution of sulfide and iron (hydr)oxide sources of arsenic in bedrock aquifers are well understood for northeastern Wisconsin. However, recent geologic mapping has identified numerous small bedrock folds to the south, and the impact of these geologic structures on local groundwater flow and well contamination has been little studied. This paper examines the hydrologic and structural effects of the Beaver Dam anticline, southeast Wisconsin, on arsenic in groundwater in the region. Multivariate logistic regression shows wells near the Beaver Dam anticline are statistically more likely to detect arsenic in groundwater compared to wells farther away. Structural and hydrologic changes related to folding are interpreted to be the cause. Core drilled near the fold axis is heavily fractured, and many fractures are filled with sulfides. Elevated hydraulic conductivity estimates are also recorded near the fold axis, which may reflect a higher concentration of vertical fractures. These structural and hydrologic changes may have led to systematic changes in the distribution and concentration of arsenic-bearing mineral hosts, resulting in the observed detection pattern. For areas with similar underlying geology, this approach may improve prediction of arsenic risk down to the local level.
Collapse
Affiliation(s)
- Eric D Stewart
- Wisconsin Geological and Natural History Survey, Division of Extension, University of Wisconsin-Madison, 3817 Mineral Point Road, Madison, WI, 53705, USA
| | - Esther K Stewart
- Wisconsin Geological and Natural History Survey, Division of Extension, University of Wisconsin-Madison, 3817 Mineral Point Road, Madison, WI, 53705, USA
| | - Kenneth R Bradbury
- Wisconsin Geological and Natural History Survey, Division of Extension, University of Wisconsin-Madison, 3817 Mineral Point Road, Madison, WI, 53705, USA
| | - William Fitzpatrick
- Wisconsin Geological and Natural History Survey, Division of Extension, University of Wisconsin-Madison, 3817 Mineral Point Road, Madison, WI, 53705, USA
| |
Collapse
|
12
|
Carmean CM, Mimoto M, Landeche M, Ruiz D, Chellan B, Zhao L, Schulz MC, Dumitrescu AM, Sargis RM. Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic. Nutrients 2021; 13:2894. [PMID: 34445052 PMCID: PMC8398803 DOI: 10.3390/nu13082894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic arsenic exposure via drinking water is associated with diabetes in human pop-ulations throughout the world. Arsenic is believed to exert its diabetogenic effects via multiple mechanisms, including alterations to insulin secretion and insulin sensitivity. In the past, acute arsenicosis has been thought to be partially treatable with selenium supplementation, though a potential interaction between selenium and arsenic had not been evaluated under longer-term exposure models. The purpose of the present study was to explore whether selenium status may augment arsenic's effects during chronic arsenic exposure. To test this possibility, mice were exposed to arsenic in their drinking water and provided ad libitum access to either a diet replete with selenium (Control) or deficient in selenium (SelD). Arsenic significantly improved glucose tolerance and decreased insulin secretion and β-cell function in vivo. Dietary selenium deficiency resulted in similar effects on glucose tolerance and insulin secretion, with significant interactions between arsenic and dietary conditions in select insulin-related parameters. The findings of this study highlight the complexity of arsenic's metabolic effects and suggest that selenium deficiency may interact with arsenic exposure on β-cell-related physiological parameters.
Collapse
Affiliation(s)
- Christopher M. Carmean
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Chicago Center for Health and Environment (CACHET), Chicago, IL 60612, USA
| | - Mizuho Mimoto
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (M.M.); (A.M.D.)
| | - Michael Landeche
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA;
| | - Bijoy Chellan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Lidan Zhao
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Margaret C. Schulz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Division of Epidemiology and Biostatistics, School of Public Health, Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexandra M. Dumitrescu
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (M.M.); (A.M.D.)
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Chicago Center for Health and Environment (CACHET), Chicago, IL 60612, USA
| |
Collapse
|
13
|
El-Ghiaty MA, El-Kadi AO. Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI JOURNAL 2021; 20:1184-1242. [PMID: 34512225 PMCID: PMC8419240 DOI: 10.17179/excli2021-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate (iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different physiological organ systems, through understanding its behavior in the human body that leads to homeostatic derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the sophisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic species with a detailed description of the different environmental sources as well as the possible routes of human exposure to these species. We also summarize the reported findings of experimental investigations evaluating the influence of various arsenicals on different members of CYP superfamily using human-based models.
Collapse
Affiliation(s)
- Mahmoud A. El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Liu R, Tabuchi T, Kitamura T, Miyashiro I, Sobue T. Long-term observational study on 6223 survivors of arsenic poisoning due to contaminated milk powder during infancy. Cancer Sci 2020; 111:3873-3880. [PMID: 32885537 PMCID: PMC7540997 DOI: 10.1111/cas.14623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 11/29/2022] Open
Abstract
In 1955, an outbreak of arsenic poisoning caused by the ingestion of arsenic-contaminated Morinaga Dry Milk occurred in western Japan. This study aimed to assess the mortality and cancer incidence risk among Japanese individuals who were poisoned during this time as infants. In total, 6223 survivors (mean age at enrollment, 27.5 y) who had ingested contaminated milk when they were aged ≤ 2 y participated in this study. Follow-up was conducted from 1982 to 2018 (mean follow-up duration, 30.3 y). Standardized mortality ratio (SMR) and standardized incidence ratio (SIR) were used to compare mortality and cancer incidence rates of subjects with the respective Japanese population rates, and 95% confidence intervals (95% CIs) of the SMR and SIR were also calculated. In total, 561 deaths and 524 new cancer cases were observed. A statistically significant increase in mortality rate was observed for all causes (SMR, 1.15; 1.01-1.19), nervous system disease (2.83, 1.62-4.19), respiratory disease (2.02, 1.37-2.62), genitourinary system disease (2.25, 1.10-3.73), and traffic accident (2.03, 1.14-3.04). In contrast, a significant decrease in cancer incidence rate was observed for all cancers (SIR, 0.96; 0.84-0.99), stomach cancer (0.77, 0.57-0.92), colon cancer (0.63, 0.41-0.85), rectum cancer (0.69, 0.43-0.95), and breast cancer (0.72, 0.52-0.89). Liver cancer showed a high mortality rate (SMR, 1.68; 1.06-2.31). In this study, after the long-term follow-up we revealed overall and cause-specific mortality and cancer incidence risk among survivors who ingested arsenic-contaminated dry milk as infants.
Collapse
Affiliation(s)
- Rong Liu
- Division of Environmental Medicine and Population SciencesDepartment of Social and Environmental MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Takahiro Tabuchi
- Cancer Control CenterOsaka International Cancer InstituteOsakaJapan
| | - Tetsuhisa Kitamura
- Division of Environmental Medicine and Population SciencesDepartment of Social and Environmental MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Isao Miyashiro
- Cancer Control CenterOsaka International Cancer InstituteOsakaJapan
| | - Tomotaka Sobue
- Division of Environmental Medicine and Population SciencesDepartment of Social and Environmental MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| |
Collapse
|
15
|
Liao PJ, Hsu KH, Chiou HY, Chen CJ, Lee CH. Joint effects of genomic markers and urinary methylation capacity associated with inorganic arsenic metabolism on the occurrence of cancers among residents in arseniasis-endemic areas: A cohort subset with average fifteen-year follow-up. Biomed J 2020; 44:S218-S225. [PMID: 35297370 PMCID: PMC9068568 DOI: 10.1016/j.bj.2020.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 11/30/2022] Open
Abstract
Background Chronic exposure to inorganic arsenic results in many cancers in susceptible persons. The metabolism of inorganic arsenic and genomic susceptibility are thought to be associated with cancer occurrence. Methods This study aims to examine the interaction of genomic susceptibility markers and urinary methylation capacity indicators involved in inorganic arsenic metabolism with all-cancer occurrence. This study conducted a follow-up on 96 residents to determine their urinary inorganic arsenic metabolites and genomic assay from an arseniasis area. Among them, 24 cancer developed. Multivariable Cox proportional hazards model was used to determine and estimate the candidate independent variables for cancer development. Results The residents with high inorganic arsenic exposure, high primary methylation index (PMI; MMA/InAs) (but lower secondary methylation index (SMI)), and non-heterogeneity type of genomic markers, including GSTO1, AS3MT, and MPO, tend to develop cancers. Subjects with higher PMI are at higher risk of developing cancers (HR = 1.66; 95% CI = 1.30–2.12). Cancer occurrence was greater among the CC type of GSTO1 (HR = 3.33; 95% CI = 1.11–10.00), CC type of AS3MT (HR = 19.21; 95% CI = 1.16–318.80), and AA type of MPO (HR = 13.40; 95% CI = 1.26–142.40). After adjusting confounders, a mutually moderating effect was revealed between genomic markers and methylation capacity on cancer occurrence. Conclusions This study found the hypermethylation responses to inorganic arsenic exposure and an array of genomic markers may increase the susceptibility of a wide range of organ cancers. The findings indicated a high-risk arsenic-exposed population to develop cancers. The phenotype of arsenic metabolism and genomic polymorphism suggested a potential preventive strategy for arsenic carcinogenesis.
Collapse
Affiliation(s)
- Pei-Ju Liao
- Department of Health Care Administration, Oriental Institute of Technology, New Taipei City, Taiwan
| | - Kuang-Hung Hsu
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Laboratory for Epidemiology, Department of Health Care Management, Chang Gung University, Taoyuan, Taiwan; Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| | - Hung-Yi Chiou
- Department of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Garnier R, Mathieu-Huart A, Ronga-Pezeret S, Nouyrigat E, Benoit P, Goullé JP, Granon C, Manel J, Manouchehri N, Nisse P, Normand JC, Roulet A, Simon F, Gabach P, Tournoud C. Exposition de la population française à l’arsenic inorganique. Identification de valeurs toxicologiques de référence. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2020. [DOI: 10.1016/j.toxac.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Mehus AA, Bergum N, Knutson P, Shrestha S, Zhou XD, Garrett SH, Sens DA, Sens MA, Somji S. Activation of PPARγ and inhibition of cell proliferation reduces key proteins associated with the basal subtype of bladder cancer in As3+-transformed UROtsa cells. PLoS One 2020; 15:e0237976. [PMID: 32822399 PMCID: PMC7444546 DOI: 10.1371/journal.pone.0237976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
Environmental exposure to arsenite (As3+) has a strong association with the development of human urothelial cancer (UC) and is the 5th most common cancer in men and the 12th most common cancer in women. Muscle invasive urothelial cancer (MIUC) are grouped into basal or luminal molecular subtypes based on their gene expression profile. The basal subtype is more aggressive and can be associated with squamous differentiation, characterized by high expression of keratins (KRT1, 5, 6, 14, and 16) and epidermal growth factor receptor (EGFR) within the tumors. The luminal subtype is less aggressive and is predominately characterized by elevated gene expression of peroxisome proliferator-activated receptor- gamma (PPARγ) and forkhead box protein A1 (FOXA1). We have previously shown that As3+-transformed urothelial cells (As-T) exhibit a basal subtype of UC expressing genes associated with squamous differentiation. We hypothesized that the molecular subtype of the As-T cells could be altered by inducing the expression of PPARγ and/or inhibiting the proliferation of the cells. Non-transformed and As-T cells were treated with Troglitazone (TG, PPARG agonist, 10 μM), PD153035 (PD, an EGFR inhibitor, 1 μM) or a combination of TG and PD for 3 days. The results obtained demonstrate that treatment of the As-T cells with TG upregulated the expression of PPARγ and FOXA1 whereas treatment with PD decreased the expression of some of the basal keratins. However, a combined treatment of TG and PD resulted in a consistent decrease of several proteins associated with the basal subtype of bladder cancers (KRT1, KRT14, KRT16, P63, and TFAP2A). Our data suggests that activation of PPARγ while inhibiting cell proliferation facilitates the regulation of genes involved in maintaining the luminal subtype of UC. In vivo animal studies are needed to address the efficacy of using PPARγ agonists and/or proliferation inhibitors to reduce tumor grade/stage of MIUC.
Collapse
Affiliation(s)
- Aaron A. Mehus
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Nicholas Bergum
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Peter Knutson
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Swojani Shrestha
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Mary Ann Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kim C, States JC, Ceresa BP. Chronic and acute arsenic exposure enhance EGFR expression via distinct molecular mechanisms. Toxicol In Vitro 2020; 67:104925. [PMID: 32599262 DOI: 10.1016/j.tiv.2020.104925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/06/2023]
Abstract
The impacts of acute arsenic exposure (i.e. vomiting, diarrhea, and renal failure) are distinct from those brought about by sustained, low level exposure from environmental sources or drinking of contaminated well water. Chronic arsenic exposure is a risk factor for the development of pulmonary diseases, including lung cancer. How arsenic exposure leads to pulmonary disease is not fully understood. Both acute versus chronic arsenic exposure increase EGFR expression, but do so via distinct molecular mechanisms. BEAS-2B cells were exposed to either acute sodium arsenite (5 μM for 24 h) or chronic sodium arsenite (100 nM for 24 weeks). Cells treated with acute arsenic exhibited a decrease in viability, changes in morphology, and increased mRNA level of BTC. In contrast, during 24 weeks of arsenic exposure, the cells had increased EGFR expression and activity, and increased mRNA and protein levels of TGFα. Further, chronic arsenic treatment caused an increase in cell migration in the absence of exogenous ligand. Elevated TGFα and EGFR expression are features of many non-small cell lung cancers. We propose that lung epithelial cells chronically exposed to low level arsenic increases EGFR signaling via TGFα production to enhance ligand-independent cell migration.
Collapse
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, USA
| | | | - Brian P Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, USA.
| |
Collapse
|
19
|
Zuzolo D, Cicchella D, Demetriades A, Birke M, Albanese S, Dinelli E, Lima A, Valera P, De Vivo B. Arsenic: Geochemical distribution and age-related health risk in Italy. ENVIRONMENTAL RESEARCH 2020; 182:109076. [PMID: 31901628 DOI: 10.1016/j.envres.2019.109076] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/11/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
This study is the first attempt to evaluate occurrence, distribution and potential health impacts of As at a national scale in Italy. In various environmental matrices, As geochemical distribution was investigated and carcinogenic and non-carcinogenic risks were assessed with respect to different exposure routes and age groups. Both deterministic and probabilistic methods were used to determine the health risks. Geochemical mapping at a sub-continental scale provided a useful tool to spatially represent As concentration and the critical areas posing a health threat to inhabitants. The results show that significant As concentrations in tap water and soil (up to 27.20 μg/l and 62.20 mg/kg, respectively) are mainly governed by geological features. In the central parts of Italy, where alkaline volcanic materials and consequently high levels of As occur, the residents are prone to health issues. Daily exposure to As in tap water is unparalleled playing an important role in the potential cancer and non-cancer risks. The Incremental Lifetime Cancer Risk for skin cancer and also lung and bladder cancer associated with tap water ingestion interestingly shows that (i) almost 80% of the computed values fall above the internationally accepted benchmark value of 1 × 10-5; (ii) majority of the data exceed the acceptable risk proposed by most jurisdictions, such as that of Italian law (1 × 10-6). Further, geographical variation of health risk highlights high carcinogenic and non-carcinogenic risk associated with water ingestion for those living in the northern Alps (including the city of Trento) and the central and southern Italy (including the capital Rome and the cities of Napoli and Catanzaro). According to the results, application of the probabilistic method which considers variability and uncertainty is preferred to the deterministic approach for risk assessment. The sensitivity analysis showed that As concentration in drinking water and exposure duration are the factors with the greatest impact on the outcome of risk assessment (for all age groups). The results of the current study may be a good starting point for authorities to urgently decide about the needed policy actions in order to prevent the adverse health effects and to reduce the human health risk due to As exposure.
Collapse
Affiliation(s)
- Daniela Zuzolo
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy.
| | - Domenico Cicchella
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Alecos Demetriades
- Institute of Geology and Mineral Exploration (retired), 1 Spirou Louis St., Olympic Village, 136 77, Acharnae, Athens, Hellas, Greece
| | - Manfred Birke
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655, Hannover, Germany
| | - Stefano Albanese
- Department of Earth Sciences, Environment and Resources, University of Napoli "Federico II", 80125, Napoli, Italy
| | - Enrico Dinelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40100, Bologna, Italy
| | - Annamaria Lima
- Department of Earth Sciences, Environment and Resources, University of Napoli "Federico II", 80125, Napoli, Italy
| | - Paolo Valera
- Department of Civil-Environmental Engineering and Architecture, University of Cagliari, 09123, Cagliari, Italy
| | - Benedetto De Vivo
- Norwest Italia Srl, 80138, Napoli, Italy; Pegaso University, 80132, Napoli, Italy
| |
Collapse
|
20
|
Sun X, Li B, Han F, Xiao E, Xiao T, Sun W. Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients. MICROBIAL ECOLOGY 2019; 78:589-602. [PMID: 30725170 DOI: 10.1007/s00248-019-01327-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) and antimony (Sb) are both toxic metalloids that are of primary concern for human health. Mining activity has introduced elevated levels of arsenic and antimony into the rivers and has increased the risks of drinking water contamination in China. Due to their mobility, the majority of the metalloids originating from mining activities are deposited in the river sediments. Thus, depending on various geochemical conditions, sediment could either be a sink or source for As and Sb in the water column. Microbes are key mediators for biogeochemical transformation and can both mobilize or precipitate As and Sb. To further understand the microbial community responses to As and Sb contamination, sediment samples with different contamination levels were collected from three rivers. The result of the study suggested that the major portions of As and Sb were in strong association with the sediment matrix and considered nonbioavailable. These fractions, however, were also suggested to have profound influences on the microbial community composition. As and Sb contamination caused strong reductions in microbial diversity in the heavily contaminated river sediments. Microorganisms were more sensitive to As comparing to Sb, as revealed by the co-occurrence network and random forest predictions. Operational taxonomic units (OTUs) that were potentially involved in As and Sb metabolism, such as Anaerolinea, Sphingomonas, and Opitutus, were enriched in the heavily contaminated samples. In contrast, many keystone taxa, including members of the Hyphomicrobiaceae and Bradyrhizobiaceae families, were inhibited by metalloid contamination, which could further impair crucial environmental services provided by these members.
Collapse
Affiliation(s)
- Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Feng Han
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China.
| |
Collapse
|
21
|
Cha JD, Lourenço DB, Korkes F. Analysis of the association between bladder carcinoma and arsenic concentration in soil and water in southeast Brazil. Int Braz J Urol 2018; 44:906-913. [PMID: 30044600 PMCID: PMC6237532 DOI: 10.1590/s1677-5538.ibju.2017.0543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 04/22/2018] [Indexed: 11/22/2022] Open
Abstract
In approximately 50% of cases of bladder carcinoma, an associated predisposing factor can be established. The main factors are exposure to tobacco, arsenic (As) ore and aromatic compounds. Arsenic is a metalloid with a low average concentration in the earth's crust, and one of the most dangerous substances for human health. The present study aims to evaluate the incidence of hospitalization and mortality from bladder neoplasia and its possible association with As concentration in water and soil in two of the most critical regions of Brazil: the states of São Paulo and Minas Gerais. We have investigated bladder cancer hospitalization and mortality in the states of São Paulo and Minas Gerais during 2010-2014. Water and soil samples were analyzed and As concentrations were established. Data were obtained through the Department of Informatics of the Brazilian Unified Health System. Correlation was made with water samples from São Paulo and with data on soil analysis from Minas Gerais. The results revealed no direct association in the distinctive municipalities. Areas with high environmental As concentration had a low bladder cancer rate, while areas with normal as levels had similar cancer rates. The quantitative variables did not present a normal distribution (p < 0.05). In conclusion, we did not observe a correlation between as concentration in water or soil and bladder cancer's hospitalization and mortality rates in the states of São Paulo and Minas Gerais.
Collapse
Affiliation(s)
| | | | - Fernando Korkes
- Departamento de Urologia, Faculdade de Medicina do ABC, SP, Brasil.,Departamento de Urologia, Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
| |
Collapse
|
22
|
Clewell HJ, Yager JW, Greene TB, Gentry PR. Application of the adverse outcome pathway (AOP) approach to inform mode of action (MOA): A case study with inorganic arsenic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:893-912. [PMID: 30230972 DOI: 10.1080/15287394.2018.1500326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to establish a process for deriving a chemical-specific mode of action (MOA) from chemical-agnostic adverse outcome pathway (AOPs), using inorganic arsenic (iAs) as a case study. The AOP developed for this case study are related to disruption of cellular signaling by chemicals that strongly bind to vicinal dithiols in cellular proteins, leading to disruption of inflammatory and oxidative stress signaling along with inhibition of the DNA damage responses. The proposed MOA for iAs incorporates this AOP, overlaid on a background of increasing oxidative stress and/or co-exposure to mutagenic chemicals or radiation. The most challenging aspect of developing a MOA from AOP is the incorporation of metabolism and dose-response, neither of which may be considered in the development of an AOP. The cellular responses to relatively low concentrations (below 100 parts per billion) of iAs in drinking water appear to be secondary to binding of trivalent arsenite and its trivalent metabolite, monomethyl arsenous acid to key cellular vicinal dithiols in target tissues, resulting in a co-carcinogenic MOA. The proposed AOP may also be applied to non-cancer endpoints, enabling an integrated approach to conducting a risk assessment for iAs.
Collapse
|
23
|
Yuan T, Zhang H, Chen B, Zhang H, Tao S. Association between lung cancer risk and inorganic arsenic concentration in drinking water: a dose-response meta-analysis. Toxicol Res (Camb) 2018; 7:1257-1266. [PMID: 30542608 DOI: 10.1039/c8tx00177d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/14/2018] [Indexed: 12/26/2022] Open
Abstract
High dose arsenic in drinking water (≥100 μg L-1) is known to induce lung cancer, but lung cancer risks at low to moderate arsenic levels and its dose-response relationship remains inconclusive. We conducted a systematic review of cohort and case-control studies that quantitatively reported the association between arsenic concentrations in drinking water and lung cancer risks by searching the PubMed database till June 14, 2018. Pooled relative risks (RRs) of lung cancer associated with full range (10 μg L-1-1000 μg L-1) and low to moderate range (<100 μg L-1) of water arsenic concentrations were calculated using random-effects models. A dose-response meta-analysis was performed to estimate the pooled associations between restricted cubic splines of log-transformed water arsenic and the lung cancer risks. Fifteen studies (9 case-control and 6 cohort studies) involving a total of 218 481 participants met the inclusion criteria. Meta-analysis identified significantly increased risks of lung cancer on exposure to both full range (RR = 1.21; 95% confidence interval [CI] = 1.05-1.37; heterogeneity I 2 = 54.3%) and low to moderate range (RR = 1.18; 95%CI = 1.00-1.35; I 2 = 56.3%) of arsenic-containing water. In the dose-response meta-analysis of eight case-control studies, we found no evidence of non-linearity, although statistical power was limited. The corresponding pooled RRs and their 95%CIs for exposure to 10 μg L-1, 50 μg L-1, and 100 μg L-1 water arsenic were 1.02 (1.00-1.03), 1.10 (1.04-1.15), and 1.20 (1.08-1.32), respectively. We provide evidence on the association between increased lung cancer risks and inorganic arsenic in drinking water across low, moderate and high levels. Minimizing arsenic levels in drinking water may be of public health importance.
Collapse
Affiliation(s)
- Tanwei Yuan
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| | - Hongbo Zhang
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| | - Bin Chen
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| | - Hong Zhang
- School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease , School of Public Health , Soochow University , Suzhou , 215123 , PR China.,School of Public Health , Medical College of Soochow University , 199 Ren'ai Road , Suzhou 215123 , Jiangsu , China . ; ; Tel: +86-0512-65698540
| |
Collapse
|
24
|
Zhou Q, Xi S. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 2018; 99:78-88. [PMID: 30223072 DOI: 10.1016/j.yrtph.2018.09.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/08/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022]
Abstract
Long-term exposure to arsenic (inorganic arsenic) is a world-wide environmental health concern. Arsenic is classified as the Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Epidemiological studies have established a strong association between inorganic arsenic (iAs) exposure in drinking water and an increased incidence of cancer including bladder, liver, lung, prostate, and skin cancer. iAs also increases the risk of other diseases such as cardiovascular disease, hypertension and diabetes. The molecular mechanisms of carcinogenesis of iAs remain poorly defined, several mechanisms have been proposed, including genotoxicity, altered cell proliferation, oxidative stress, changes to the epigenome, disturbances of signal transduction pathways, cytotoxicity and regenerative proliferation. In this article, we will summarize current knowledge on the mechanisms of arsenic carcinogenesis and focus on integrating all these issues to garner a broader perspective.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China
| | - Shuhua Xi
- Department of Environmental and Occupational Health, Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
25
|
Desai G, Barg G, Queirolo EI, Vahter M, Peregalli F, Mañay N, Kordas K. A cross-sectional study of general cognitive abilities among Uruguayan school children with low-level arsenic exposure, potential effect modification by methylation capacity and dietary folate. ENVIRONMENTAL RESEARCH 2018; 164:124-131. [PMID: 29486343 PMCID: PMC5911190 DOI: 10.1016/j.envres.2018.02.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND Few studies have evaluated the association between low-level arsenic (As) exposure and cognitive performance among children. OBJECTIVES In this cross-sectional study, we assessed the association between low-level As exposure and cognitive performance among 5-8 year-old children in Montevideo, and tested effect modification by As methylation capacity and children's dietary folate intake. METHODS We measured total urinary As (UAs) concentrations and the proportion of monomethylarsonic acid (MMA) in the urine of 328 children. Seven subtests of the standardized Woodcock-Muñoz cognitive battery were used to assess cognitive performance, from which, the general intellectual abilities (GIA) score was derived. Total folate intake was estimated from two 24-h dietary recalls. Linear regression analyses were performed. Effect modification was assessed by stratifying at the median %MMA value and tertiles of total folate intake calculated as micrograms (µg) of dietary folate equivalents (dfe). RESULTS The median UAs was 11.9 µg/l (range = 1.4-93.9), mean folate intake was 337.4 (SD = 123.3) µg dfe, and median %MMA was 9.42 (range = 2.6-24.8). There was no association between UAs and cognitive abilities, and no consistent effect modification by %MMA. UAs was associated inversely with concept formation, and positively with cognitive efficiency and numbers reversed subtest in the lowest folate intake tertile; UAs was also positively associated with sound integration in the second tertile and concept formation in the highest tertile of folate intake. There was no consistent pattern of effect modification by %MMA or folate intake. CONCLUSION There was no association between low-level As exposure and general cognitive abilities.
Collapse
Affiliation(s)
- Gauri Desai
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA.
| | - Gabriel Barg
- Department of Neurocognition, Catholic University of Uruguay, Montevideo, Uruguay
| | - Elena I Queirolo
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | | | - Fabiana Peregalli
- Center for Research, Catholic University of Uruguay, Montevideo, Uruguay
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay, Montevideo, Uruguay
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, NY, USA
| |
Collapse
|
26
|
Smith AH, Marshall G, Roh T, Ferreccio C, Liaw J, Steinmaus C. Lung, Bladder, and Kidney Cancer Mortality 40 Years After Arsenic Exposure Reduction. J Natl Cancer Inst 2018; 110:241-249. [PMID: 29069505 PMCID: PMC6059241 DOI: 10.1093/jnci/djx201] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/29/2017] [Accepted: 08/25/2017] [Indexed: 11/14/2022] Open
Abstract
Background Region II in northern Chile (population 442 570) experienced a sudden major increase in arsenic water concentrations in 1958 in the main city of Antofagasta, followed by a major reduction in exposure when an arsenic removal plant was installed in 1970. It provides a unique opportunity to study latency effects of exposure to arsenic, and this is the first study with mortality data up to 40 years after exposure reduction. Methods We previously identified high mortality rates in Region II up to the year 2000. Here we present rate ratios (RRs) for Region II compared with all the rest of Chile from 2001 to 2010, and with unexposed Region V (population 1 539 852) for all years from 1950 to 2010. All statistical tests were one-sided. Results From 2001 to 2010, comparing Region II with the rest of Chile, lung and bladder mortality were still greatly elevated (RR = 3.38, 95% confidence interval [CI] = 3.19 to 3.58, P < .001 for lung cancer in men; RR = 2.41, 95% CI = 2.20 to 2.64, P < .001 for lung cancer in women; RR = 4.79, 95% CI = 4.20 to 5.46, P < .001 for bladder cancer in men; RR = 6.43, 95% CI = 5.49 to 7.54, P < .001 for bladder cancer in women). Kidney cancer mortality was also elevated (RR = 1.75, 95% CI = 1.49 to 2.05, P < .001 for men; RR = 2.09, 95% CI = 1.69 to 2.57, P < .001 for women). Earlier short latency acute myocardial infarction mortality increases had subsided. Conclusions Lung, bladder, and kidney cancer mortality due to arsenic exposure have very long latencies, with increased risks manifesting 40 years after exposure reduction. Our findings suggest that arsenic in drinking water may involve one of the longest cancer latencies for a human carcinogen.
Collapse
Affiliation(s)
- Allan H Smith
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, CA
| | - Guillermo Marshall
- Departamento de Estadística, Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Taehyun Roh
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, CA
| | - Catterina Ferreccio
- Advanced Center for Chronic Diseases, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jane Liaw
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, CA
| | - Craig Steinmaus
- Arsenic Health Effects Research Group, School of Public Health, University of California, Berkeley, CA
| |
Collapse
|
27
|
Arsenic Methylation Capacity and Metabolic Syndrome in the 2013-2014 U.S. National Health and Nutrition Examination Survey (NHANES). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010168. [PMID: 29361794 PMCID: PMC5800267 DOI: 10.3390/ijerph15010168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Arsenic methylation capacity is associated with metabolic syndrome and its components among highly exposed populations. However, this association has not been investigated in low to moderately exposed populations. Therefore, we investigated arsenic methylation capacity in relation to the clinical diagnosis of metabolic syndrome in a low arsenic exposure population. Additionally, we compared arsenic methylation patterns present in our sample to those of more highly exposed populations. Using logistic regression models adjusted for relevant biological and lifestyle covariates, we report no association between increased arsenic methylation and metabolic syndrome in a population in which arsenic is regulated at 10 ppb in drinking water. However, we cannot rule out the possibility of a positive association between arsenic methylation and metabolic syndrome in a subsample of women with normal body mass index (BMI). To our knowledge this is the first investigation of arsenic methylation capacity with respect to metabolic syndrome in a low exposure population. We also report that methylation patterns in our sample are similar to those found in highly exposed populations. Additionally, we report that gender and BMI significantly modify the effect of arsenic methylation on metabolic syndrome. Future studies should evaluate the effectiveness of arsenic policy enforcement on subclinical biomarkers of cardiovascular disease.
Collapse
|
28
|
Pace C, Dagda R, Angermann J. Antioxidants Protect against Arsenic Induced Mitochondrial Cardio-Toxicity. TOXICS 2017; 5:toxics5040038. [PMID: 29206204 PMCID: PMC5750566 DOI: 10.3390/toxics5040038] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022]
Abstract
Arsenic is a potent cardiovascular toxicant associated with numerous biomarkers of cardiovascular diseases in exposed human populations. Arsenic is also a carcinogen, yet arsenic trioxide is used as a therapeutic agent in the treatment of acute promyelotic leukemia (APL). The therapeutic use of arsenic is limited due to its severe cardiovascular side effects. Many of the toxic effects of arsenic are mediated by mitochondrial dysfunction and related to arsenic's effect on oxidative stress. Therefore, we investigated the effectiveness of antioxidants against arsenic induced cardiovascular dysfunction. A growing body of evidence suggests that antioxidant phytonutrients may ameliorate the toxic effects of arsenic on mitochondria by scavenging free radicals. This review identifies 21 antioxidants that can effectively reverse mitochondrial dysfunction and oxidative stress in cardiovascular cells and tissues. In addition, we propose that antioxidants have the potential to improve the cardiovascular health of millions of people chronically exposed to elevated arsenic concentrations through contaminated water supplies or used to treat certain types of leukemias. Importantly, we identify conceptual gaps in research and development of new mito-protective antioxidants and suggest avenues for future research to improve bioavailability of antioxidants and distribution to target tissues in order reduce arsenic-induced cardiovascular toxicity in a real-world context.
Collapse
Affiliation(s)
- Clare Pace
- Department of Environmental Science and Health, University of Nevada, Reno, NV 89557, USA.
| | - Ruben Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| | - Jeff Angermann
- School of Community Health Sciences, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
29
|
Nardone A, Ferreccio C, Acevedo J, Enanoria W, Blair A, Smith AH, Balmes J, Steinmaus C. The impact of BMI on non-malignant respiratory symptoms and lung function in arsenic exposed adults of Northern Chile. ENVIRONMENTAL RESEARCH 2017; 158:710-719. [PMID: 28738299 PMCID: PMC5603214 DOI: 10.1016/j.envres.2017.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/10/2017] [Accepted: 06/15/2017] [Indexed: 05/15/2023]
Abstract
BACKGROUND Elevated body mass index (BMI) and arsenic are both associated with cancer and with non-malignant lung disease. Using a unique exposure situation in Northern Chile with data on lifetime arsenic exposure, we previously identified the first evidence of an interaction between arsenic and BMI for the development of lung cancer. OBJECTIVES We examined whether there was an interaction between arsenic and BMI for the development of non-malignant lung disease. METHODS Data on lifetime arsenic exposure, respiratory symptoms, spirometry, BMI, and smoking were collected from 751 participants from cities in Northern Chile with varying levels of arsenic water concentrations. Spirometry values and respiratory symptoms were compared across subjects in different categories of arsenic exposure and BMI. RESULTS Adults with both a BMI above the 90th percentile (>33.9kg/m2) and arsenic water concentrations ≥11µg/L exhibited high odds ratios (ORs) for cough (OR = 10.7, 95% confidence interval (CI): 3.03, 50.1), shortness of breath (OR = 14.2, 95% CI: 4.79, 52.4), wheeze (OR = 14.4, 95% CI: 4.80, 53.7), and the combined presence of any respiratory symptom (OR = 9.82, 95% CI: 4.22, 24.5). In subjects with lower BMIs, respiratory symptom ORs for arsenic water concentrations ≥11µg/L were markedly lower. In never-smokers, reductions in forced vital capacity associated with arsenic increased as BMI increased. Analysis of the FEV1/FVC ratio in never-smokers significantly increased as BMI and arsenic concentrations increased. Similar trends were not observed for FEV1 alone or in ever-smokers. CONCLUSIONS This study provides preliminary evidence that BMI may increase the risk for arsenic-related non-malignant respiratory disease.
Collapse
Affiliation(s)
- Anthony Nardone
- Global Health Sciences Program, University of California San Francisco, San Francisco, CA, USA
| | - Catterina Ferreccio
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), FONDAP, Santiago, Chile
| | - Johanna Acevedo
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), FONDAP, Santiago, Chile
| | - Wayne Enanoria
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Alden Blair
- Global Health Sciences Program, University of California San Francisco, San Francisco, CA, USA
| | - Allan H Smith
- Arsenic Health Effects Research Program, University of California Berkeley, School of Public Health, Berkeley, CA, USA
| | - John Balmes
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Division of Environmental Health Sciences, University of California Berkeley, School of Public Health, Berkeley, CA, USA
| | - Craig Steinmaus
- Arsenic Health Effects Research Program, University of California Berkeley, School of Public Health, Berkeley, CA, USA.
| |
Collapse
|
30
|
|
31
|
Eckstein M, Rea M, Fondufe-Mittendorf YN. Transient and permanent changes in DNA methylation patterns in inorganic arsenic-mediated epithelial-to-mesenchymal transition. Toxicol Appl Pharmacol 2017; 331:6-17. [PMID: 28336213 PMCID: PMC5747965 DOI: 10.1016/j.taap.2017.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022]
Abstract
Chronic low dose inorganic arsenic exposure causes cells to take on an epithelial-to-mesenchymal phenotype, which is a crucial process in carcinogenesis. Inorganic arsenic is not a mutagen and thus epigenetic alterations have been implicated in this process. Indeed, during the epithelial-to-mesenchymal transition, morphologic changes to cells correlate with changes in chromatin structure and gene expression, ultimately driving this process. However, studies on the effects of inorganic arsenic exposure/withdrawal on the epithelial-to-mesenchymal transition and the impact of epigenetic alterations in this process are limited. In this study we used high-resolution microarray analysis to measure the changes in DNA methylation in cells undergoing inorganic arsenic-induced epithelial-to-mesenchymal transition, and on the reversal of this process, after removal of the inorganic arsenic exposure. We found that cells exposed to chronic, low-dose inorganic arsenic exposure showed 30,530 sites were differentially methylated, and with inorganic arsenic withdrawal several differential methylated sites were reversed, albeit not completely. Furthermore, these changes in DNA methylation mainly correlated with changes in gene expression at most sites tested but not at all. This study suggests that DNA methylation changes on gene expression are not clear-cut and provide a platform to begin to uncover the relationship between DNA methylation and gene expression, specifically within the context of inorganic arsenic treatment.
Collapse
Affiliation(s)
- Meredith Eckstein
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Matthew Rea
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
32
|
The expression of keratin 6 is regulated by the activation of the ERK1/2 pathway in arsenite transformed human urothelial cells. Toxicol Appl Pharmacol 2017; 331:41-53. [PMID: 28501331 DOI: 10.1016/j.taap.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 05/09/2017] [Indexed: 11/22/2022]
Abstract
Urothelial cancers have an environmental etiological component, and previous studies from our laboratory have shown that arsenite (As+3) can cause the malignant transformation of the immortalized urothelial cells (UROtsa), leading to the expression of keratin 6 (KRT6). The expression of KRT6 in the parent UROtsa cells can be induced by the addition of epidermal growth factor (EGF). Tumors formed by these transformed cells have focal areas of squamous differentiation that express KRT6. The goal of this study was to investigate the mechanism involved in the upregulation of KRT6 in urothelial cancers and to validate that the As+3-transformed UROtsa cells are a model of urothelial cancer. The results obtained showed that the parent and the As+3-transformed UROtsa cells express EGFR which is phosphorylated with the addition of epidermal growth factor (EGF) resulting in an increased expression of KRT6. Inhibition of the extracellular-signal regulated kinases (ERK1/2) pathway by the addition of the mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 kinase inhibitor U0126 resulted in a decrease in the phosphorylation of ERK1/2 and a reduced expression of KRT6. Immuno-histochemical analysis of the tumors generated by the As+3-transformed isolates expressed EGFR and tumors formed by two of the transformed isolates expressed the phosphorylated form of EGFR. These results show that the expression of KRT6 is regulated at least in part by the ERK1/2 pathway and that the As+3-transformed human urothelial cells have the potential to serve as a valid model to study urothelial carcinomas.
Collapse
|
33
|
Rao CV, Pal S, Mohammed A, Farooqui M, Doescher MP, Asch AS, Yamada HY. Biological effects and epidemiological consequences of arsenic exposure, and reagents that can ameliorate arsenic damage in vivo. Oncotarget 2017; 8:57605-57621. [PMID: 28915699 PMCID: PMC5593671 DOI: 10.18632/oncotarget.17745] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023] Open
Abstract
Through contaminated diet, water, and other forms of environmental exposure, arsenic affects human health. There are many U.S. and worldwide "hot spots" where the arsenic level in public water exceeds the maximum exposure limit. The biological effects of chronic arsenic exposure include generation of reactive oxygen species (ROS), leading to oxidative stress and DNA damage, epigenetic DNA modification, induction of genomic instability, and inflammation and immunomodulation, all of which can initiate carcinogenesis. High arsenic exposure is epidemiologically associated with skin, lung, bladder, liver, kidney and pancreatic cancer, and cardiovascular, neuronal, and other diseases. This review briefly summarizes the biological effects of arsenic exposure and epidemiological cancer studies worldwide, and provides an overview for emerging rodent-based studies of reagents that can ameliorate the effects of arsenic exposure in vivo. These reagents may be translated to human populations for disease prevention. We propose the importance of developing a biomarker-based precision prevention approach for the health issues associated with arsenic exposure that affects millions of people worldwide.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Sanya Pal
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Mudassir Farooqui
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Mark P Doescher
- Stephenson Cancer Center and Department of Family and Preventive Medicine, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Adam S Asch
- Stephenson Cancer Center, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Hiroshi Y Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The goal of this review is to delineate the following: (1) the primary means of inorganic arsenic (iAs) exposure for human populations, (2) the adverse public health outcomes associated with chronic iAs exposure, (3) the pathophysiological connection between arsenic and type 2 diabetes (T2D), and (4) the incipient evidence for microRNAs as candidate mechanistic links between iAs exposure and T2D. RECENT FINDINGS Exposure to iAs in animal models has been associated with the dysfunction of several different cell types and tissues, including liver and pancreatic islets. Many microRNAs that have been identified as responsive to iAs exposure under in vitro and/or in vivo conditions have also been shown in independent studies to regulate processes that underlie T2D etiology, such as glucose-stimulated insulin secretion from pancreatic beta cells. Defects in insulin secretion could be, in part, associated with aberrant microRNA expression and activity. Additional in vivo studies need to be performed with standardized concentrations and durations of arsenic exposure in order to evaluate rigorously microRNAs as molecular drivers of iAs-associated diabetes.
Collapse
Affiliation(s)
- Rowan Beck
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Miroslav Styblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Praveen Sethupathy
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
35
|
Shah P, Trinh E, Qiang L, Xie L, Hu WY, Prins GS, Pi J, He YY. Arsenic Induces p62 Expression to Form a Positive Feedback Loop with Nrf2 in Human Epidermal Keratinocytes: Implications for Preventing Arsenic-Induced Skin Cancer. Molecules 2017; 22:molecules22020194. [PMID: 28125038 PMCID: PMC5361890 DOI: 10.3390/molecules22020194] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 01/29/2023] Open
Abstract
Exposure to inorganic arsenic in contaminated drinking water poses an environmental public health threat for hundreds of millions of people in the US and around the world. Arsenic is a known carcinogen for skin cancer. However, the mechanism by which arsenic induces skin cancer remains poorly understood. Here, we have shown that arsenic induces p62 expression in an autophagy-independent manner in human HaCaT keratinocytes. In mouse skin, chronic arsenic exposure through drinking water increases p62 protein levels in the epidermis. Nrf2 is required for basal and arsenic-induced p62 up-regulation. p62 knockdown reduces arsenic-induced Nrf2 activity, and induces sustained p21 up-regulation. p62 induction is associated with increased proliferation in mouse epidermis. p62 knockdown had little effect on arsenic-induced apoptosis, while it decreased cell proliferation following arsenic treatment. Our findings indicate that arsenic induces p62 expression to regulate the Nrf2 pathway in human keratinocytes and suggest that targeting p62 may help prevent arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA.
| | - Elaine Trinh
- Department of Biological Sciences and Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.
| | - Lishi Xie
- Department of Urology, College of Medicine, and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Wen-Yang Hu
- Department of Urology, College of Medicine, and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Gail S Prins
- Department of Urology, College of Medicine, and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL 60637, USA.
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Hsu KH, Tsui KH, Hsu LI, Chiou HY, Chen CJ. Dose-Response Relationship between Inorganic Arsenic Exposure and Lung Cancer among Arseniasis Residents with Low Methylation Capacity. Cancer Epidemiol Biomarkers Prev 2016; 26:756-761. [PMID: 28007985 DOI: 10.1158/1055-9965.epi-16-0281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/16/2016] [Accepted: 12/14/2016] [Indexed: 11/16/2022] Open
Abstract
Background: Exposure to inorganic arsenic (InAs) has been documented as a risk factor for lung cancer. This study examined the association between InAs exposure, its metabolism, and lung cancer occurrence.Methods: We followed 1,300 residents from an arseniasis area in Taiwan, determined urinary InAs metabolites, and identified 39 lung cancer cases. Cox proportional hazards model was performed.Results: The results demonstrated that participants with either the primary methylation index [monomethylarsonic acid (MMA)/InAs] or the secondary methylation index [dimethylarsenic acid (DMA)/MMA] lower than their respective median values were at a higher risk of lung cancer (HRs from 3.41 to 4.66) than those with high methylation capacity. The incidence density of lung cancer increased from 79.9/100,000 (year-1) to 467.4/100,000 (year-1) for residents with low methylation capacity and from 0 to 158.5/100,000 (year-1) for residents with high methylation capacity when the arsenic exposure dose increased from 2 to 10 ppb to ≥200 ppb, respectively. The analyses revealed a dose-response relationship between lung cancer occurrence and increasing arsenic concentrations in drinking water as well as cumulative arsenic exposure (monotonic trend test; P < 0.05 and P < 0.05, respectively) among the residents with low methylation capacity. The relationship between arsenic exposure and lung cancer among high methylators was not statistically significant.Conclusions: Hypomethylation responses to InAs exposure may dose dependently increase lung cancer occurrence.Impact: The high-risk characteristics observed among those exposed should be considered in future preventive medicine and research on arsenic carcinogenesis. Cancer Epidemiol Biomarkers Prev; 26(5); 756-61. ©2016 AACR.
Collapse
Affiliation(s)
- Kuang-Hung Hsu
- Laboratory for Epidemiology, Department of Health Care Management and Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan.,Department of Urology, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Ke-Hung Tsui
- Department of Urology, Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan
| | - Ling-I Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei City, Taiwan.
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
37
|
The 12-year follow-up of survival, chronic adverse effects, and retention of arsenic in patients with acute promyelocytic leukemia. Blood 2016; 128:1525-8. [PMID: 27402972 DOI: 10.1182/blood-2016-02-699439] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Clewell HJ, Gentry PR, Barton HA, Shipp AM, Yager JW, Andersen ME. Requirements for a Biologically Realistic Cancer Risk Assessment for Inorganic Arsenic. Int J Toxicol 2016. [DOI: 10.1080/109158199225701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A remarkable feature of the carcinogenicity of inorganic arsenic (As,) is the observation that human exposures to Asi have been strongly associated with increases in skin, lung, and internal cancers, but As, does not typically cause tumors in standard laboratory animal test protocols. Considerable controversy has centered on whether there is epidemiological evidence of a “threshold” for the carcinogenic effects of Asi, or at least of a highly nonlinear dose–response. Saturation of metabolism in the dose-range associated with tumors does not appear to be adequate to produce a major impact on the dose-response for carcinogenicity. If there is a strong nonlinearity, it results from the nature of the carcinogenic mechanism(s) of Asi. However, no single hypothesis for the mechanism of Asi carcinogenicity has widespread support. A biologically realistic cancer risk assessment for Asi would requirea quantitative description of the dose of active arsenic species in target tissues, the interactions between active arsenic and tissue constituents, and the manner in which these interactions result in tumor formation in multiple organs in humans, but not in experimental animals. Although Asi has only infrequently been associated with tumors in animal studies, it has repeatedly been shown to act as a comutagen in vitro and as a cocarcinogen in vivo. Asi is clastogenic, producing chromatid aberrations, but does not produce point mutations at single gene loci. Of particular interest, Asi has been shown to inhibit repair of DNA single-strand breaks, a possible mechanism for its observed comutagenicity and cocarcinogenicity. We propose a cocarcinogenic mode of action in which Asi acts primarily on intermediate cells deficient in cell cycle control at a late stage in a preexisting carcinogenic process. This interaction enhances ge-nomic fragility and accelerates conversion of premalignant lesions to more aggressive, clinically observable tumors. An indirect effect of As, on DNA repair is consistent with the expectation of a nonlinear dose-response rather than the linear dose-response traditionally assumed for mutagenic carcinogens. However, defining the exact nature of this tumor dose-response will require further experimental data on the dose-response for the cellular effects of Asi. Because Asi carcinogenicity is unlikely to be observed in normal experimental animals not exposed to other carcinogens, studies in animals and cell lines deficient in cell cycle control should also be considered. Experimental studies specifically designed to address the key mechanistic and dose-response issues for Asi carcinogenicity are critically needed to support public health policy decisions regarding current environmental exposures to Asi.
Collapse
Affiliation(s)
| | | | - Hugh A. Barton
- KS Crump Group, ICF Kaiser International, Huston, Louisiana, USA
| | - Annette M. Shipp
- KS Crump Group, ICF Kaiser International, Huston, Louisiana, USA
| | | | | |
Collapse
|
39
|
Arsenic in Drinking Water and Lung Cancer Mortality in the United States: An Analysis Based on US Counties and 30 Years of Observation (1950-1979). JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2016; 2016:1602929. [PMID: 27382373 PMCID: PMC4921645 DOI: 10.1155/2016/1602929] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/07/2016] [Accepted: 04/10/2016] [Indexed: 01/28/2023]
Abstract
Background. To examine whether the US EPA (2010) lung cancer risk estimate derived from the high arsenic exposures (10–934 µg/L) in southwest Taiwan accurately predicts the US experience from low arsenic exposures (3–59 µg/L). Methods. Analyses have been limited to US counties solely dependent on underground sources for their drinking water supply with median arsenic levels of ≥3 µg/L. Results. Cancer risks (slopes) were found to be indistinguishable from zero for males and females. The addition of arsenic level did not significantly increase the explanatory power of the models. Stratified, or categorical, analysis yielded relative risks that hover about 1.00. The unit risk estimates were nonpositive and not significantly different from zero, and the maximum (95% UCL) unit risk estimates for lung cancer were lower than those in US EPA (2010). Conclusions. These data do not demonstrate an increased risk of lung cancer associated with median drinking water arsenic levels in the range of 3–59 µg/L. The upper-bound estimates of the risks are lower than the risks predicted from the SW Taiwan data and do not support those predictions. These results are consistent with a recent metaregression that indicated no increased lung cancer risk for arsenic exposures below 100–150 µg/L.
Collapse
|
40
|
Sandquist EJ, Somji S, Dunlevy JR, Garrett SH, Zhou XD, Slusser-Nore A, Sens DA. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines. PLoS One 2016; 11:e0156310. [PMID: 27224422 PMCID: PMC4880289 DOI: 10.1371/journal.pone.0156310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/12/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. METHODS Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. RESULTS This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. CONCLUSIONS The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition and E-cadherin are viewed as necessary for a cell to establish a new metastatic site. The lack of N-cadherin expression in tumor transplants is consistent with E-cadherin expressing cells "seeding" a site for tumor growth. The study shows that a minority population of cultured cells can be the initiators of tumor growth.
Collapse
Affiliation(s)
- Elizabeth J. Sandquist
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Seema Somji
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jane R. Dunlevy
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Scott H. Garrett
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Xu Dong Zhou
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Andrea Slusser-Nore
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Donald A. Sens
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail:
| |
Collapse
|
41
|
Tanaka H, Tsukuma H, Oshima A. Long-Term Prospective Study of 6104 Survivors of Arsenic Poisoning During Infancy Due to Contaminated Milk Powder in 1955. J Epidemiol 2016; 20:439-45. [PMID: 20736507 PMCID: PMC3900820 DOI: 10.2188/jea.je20090131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background In 1955, an outbreak of arsenic poisoning caused by ingestion of arsenic-contaminated dry milk occurred in western Japan. We assessed the excess mortality among Japanese who were poisoned during this episode as infants. Methods We identified and enrolled 6104 survivors (mean age at enrollment, 27.4 years) who had ingested contaminated milk when they were age 2 years or younger; they were followed until 2006 (mean duration of follow-up, 24.3 years). Death certificates of subjects who died between 1982 and 2006 were examined to calculate cause-specific standardized mortality ratios (SMRs) using the mortality rate among Osaka residents as the standard. Results There was no significant excess overall mortality (SMR: 1.1, 95% confidence interval: 1.0–1.2). However, significant excess mortality in both sexes was observed from diseases of the nervous system (3.7, 1.9–6.2). Excess mortality from all causes of death decreased to unity beyond 10 years after study enrollment. The 408 men who were unemployed at the time of enrollment in the study had a significantly elevated risk of death from diseases of the nervous system (25.3, 10.8–58.8), respiratory diseases (8.6, 3.1–16.8), circulatory diseases (3.2, 1.6–5.2), and external causes (2.6, 1.4–4.1). Conclusions As compared with the general population, survivors of arsenic poisoning during infancy had a significantly higher mortality risk from diseases of the nervous system.
Collapse
Affiliation(s)
- Hideo Tanaka
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute
| | | | | |
Collapse
|
42
|
A Systematic Review and Meta-Regression Analysis of Lung Cancer Risk and Inorganic Arsenic in Drinking Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:15498-515. [PMID: 26690190 PMCID: PMC4690926 DOI: 10.3390/ijerph121214990] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 11/17/2022]
Abstract
High levels (> 200 µg/L) of inorganic arsenic in drinking water are known to be a cause of human lung cancer, but the evidence at lower levels is uncertain. We have sought the epidemiological studies that have examined the dose-response relationship between arsenic levels in drinking water and the risk of lung cancer over a range that includes both high and low levels of arsenic. Regression analysis, based on six studies identified from an electronic search, examined the relationship between the log of the relative risk and the log of the arsenic exposure over a range of 1–1000 µg/L. The best-fitting continuous meta-regression model was sought and found to be a no-constant linear-quadratic analysis where both the risk and the exposure had been logarithmically transformed. This yielded both a statistically significant positive coefficient for the quadratic term and a statistically significant negative coefficient for the linear term. Sub-analyses by study design yielded results that were similar for both ecological studies and non-ecological studies. Statistically significant X-intercepts consistently found no increased level of risk at approximately 100–150 µg/L arsenic.
Collapse
|
43
|
Thakur C, Chen F. Current understanding of mdig/MINA in human cancers. Genes Cancer 2015; 6:288-302. [PMID: 26413213 PMCID: PMC4575916 DOI: 10.18632/genesandcancer.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022] Open
Abstract
Mineral dust-induced gene, mdig has recently been identified and is known to be overexpressed in a majority of human cancers and holds predictive power in the poor prognosis of the disease. Mdig is an environmentally expressed gene that is involved in cell proliferation, neoplastic transformation and immune regulation. With the advancement in deciphering the prognostic role of mdig in human cancers, our understanding on how mdig renders a normal cell to undergo malignant transformation is still very limited. This article reviews the current knowledge of the mdig gene in context to human neoplasias and its relation to the clinico-pathologic factors predicting the outcome of the disease in patients. It also emphasizes on the promising role of mdig that can serve as a potential candidate for biomarker discovery and as a therapeutic target in inflammation and cancers. Considering the recent advances in understanding the underlying mechanisms of tumor formation, more preclinical and clinical research is required to validate the potential of using mdig as a novel biological target of therapeutic and diagnostic value.
Collapse
Affiliation(s)
- Chitra Thakur
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
44
|
Kazi TG, Wadhwa SK, Afridi HI, Talpur FN, Tuzen M, Baig JA. Comparison of essential and toxic elements in esophagus, lung, mouth and urinary bladder male cancer patients with related to controls. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7705-7715. [PMID: 25548013 DOI: 10.1007/s11356-014-3988-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/12/2014] [Indexed: 06/04/2023]
Abstract
There is a compelling evidence in support of negative associations between essential trace and toxic elements in different types of cancer. The aim of the present study was to investigate the relationship between carcinogenic (As, Cd, Ni) and anti-carcinogenic (Se, Zn) trace elements in scalp hair samples of different male cancerous patients (esophagus, lung, mouth, and urinary bladder). For comparative purposes, the scalp hair samples of healthy males of the same age group (ranged 35-65 years) as controls were analyzed. Both controls and patients have the same socioeconomic status, localities, dietary habits, and smoking locally made cigarette. The scalp hair samples were oxidized by 65% nitric acid: 30% hydrogen peroxide (2:1) ratio in microwave oven followed by atomic absorption spectrometry. The validity and accuracy of the methodology were checked using certified reference material of human hair BCR 397. The mean concentrations of As, Cd, and Ni were found to be significantly higher in scalp hair samples of patients having different cancers as compared to the controls, while reverse results were obtained in the case of Se and Zn levels (p < 0.01). The study revealed that the carcinogenic processes are significantly affecting the trace elements burden and mutual interaction of essential trace and toxic elements in the cancerous patients.
Collapse
Affiliation(s)
- Tasneem Gul Kazi
- National Center of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan,
| | | | | | | | | | | |
Collapse
|
45
|
Huang L, Wu H, van der Kuijp TJ. The health effects of exposure to arsenic-contaminated drinking water: a review by global geographical distribution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:432-452. [PMID: 25365079 DOI: 10.1080/09603123.2014.958139] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chronic arsenic exposure through drinking water has been a vigorously studied and debated subject. However, the existing literature does not allow for a thorough examination of the potential regional discrepancies that may arise among arsenic-related health outcomes. The purpose of this article is to provide an updated review of the literature on arsenic exposure and commonly discussed health effects according to global geographical distribution. This geographically segmented approach helps uncover the discrepancies in the health effects of arsenic. For instance, women are more susceptible than men to a few types of cancer in Taiwan, but not in other countries. Although skin cancer and arsenic exposure correlations have been discovered in Chile, Argentina, the United States, and Taiwan, no evident association was found in mainland China. We then propose several globally applicable recommendations to prevent and treat the further spread of arsenic poisoning and suggestions of future study designs and decision-making.
Collapse
Affiliation(s)
- Lei Huang
- a State Key Laboratory of Pollution Control & Resource Reuse , School of the Environment, Nanjing University , Nanjing , China
| | | | | |
Collapse
|
46
|
Wang W, Cheng S, Zhang D. Association of inorganic arsenic exposure with liver cancer mortality: A meta-analysis. ENVIRONMENTAL RESEARCH 2014; 135:120-125. [PMID: 25262084 DOI: 10.1016/j.envres.2014.08.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND The association of long-term inorganic arsenic (iAs) exposure through drinking water with risk of liver cancer mortality remains controversial. Therefore, we reviewed and quantitatively summarized the evidence from observational studies with a meta-analysis. METHODS Pertinent studies were identified by searching PubMed and China National Knowledge Infrastructure through May 2014 and by reviewing the reference lists of retrieved articles. Studies that reported standardized mortality ratios (SMRs) with 95% confidence interval (95% CIs) for the association of iAs in drinking water with liver cancer were eligible. The random effect model was adopted as the pooling method to generate summary effect estimates (meta-SMRs). RESULTS Of the 4851 articles identified through searching databases, 7 articles including 12 studies were included in the meta-analysis. The meta-SMR with 95% CI of liver cancer for the highest versus lowest category of iAs exposure level in drinking water was 1.80 (1.61 to 2.02). Furthermore, an increased risk of liver cancer mortality was found in both females [1.80 (1.45 to 2.24)] and males [1.84 (1.56 to 2.16)]. In subgroup analysis, the meta-SMRs were 1.93 (1.72 to 2.15) for cohort studies, 1.60 (1.22 to 2.10) for ecological studies, 1.93 (1.72 to 2.15) for studies conducted in Asia, and 1.60 (1.22 to 2.10) for studies conducted in South America, respectively. After removing the 3 studies conducted by Smith et al. (having two studies separately for males and females) and Chen et al. that had a strong effect on heterogeneity, a significant association was also found [1.85 (1.72 to 1.99)]. CONCLUSION This meta-analysis indicates that long-term iAs exposure through drinking water increases the risk of liver cancer mortality.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, 38 Dengzhou Road, Shandong Province, Qingdao 266021, People׳s Republic of China
| | - Shuo Cheng
- Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, 38 Dengzhou Road, Shandong Province, Qingdao 266021, People׳s Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The Medical College of Qingdao University, 38 Dengzhou Road, Shandong Province, Qingdao 266021, People׳s Republic of China.
| |
Collapse
|
47
|
Gentry PR, Yager JW, Clewell RA, Clewell HJ. Use of mode of action data to inform a dose-response assessment for bladder cancer following exposure to inorganic arsenic. Toxicol In Vitro 2014; 28:1196-205. [PMID: 24937311 DOI: 10.1016/j.tiv.2014.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 01/15/2023]
Abstract
In the recent National Research Council report on conducting a dose-response assessment for inorganic arsenic, the committee remarked that mode of action data should be used, to the extent possible, to extrapolate below the observed range for epidemiological studies to inform the shape of the dose-response curve. Recent in vitro mode of action studies focused on understanding the development of bladder cancer following exposure to inorganic arsenic provide data to inform the dose-response curve. These in vitro data, combined with results of bladder cancer epidemiology studies, inform the dose-response curve in the low-dose region, and include values for both pharmacokinetic and pharmacodynamic variability. Integration of these data provides evidence of a range of concentrations of arsenic for which no effect on the bladder would be expected. Specifically, integration of these results suggest that arsenic exposures in the range of 7-43 ppb in drinking water are exceedingly unlikely to elicit changes leading to key events in the development of cancer or noncancer effects in bladder tissue. These findings are consistent with the lack of evidence for bladder cancer following chronic ingestion of arsenic water concentrations <100 ppb in epidemiological studies.
Collapse
Affiliation(s)
- P R Gentry
- ENVIRON International Corporation, 1900 N. 18th Street, Suite 804, Monroe, LA 71201, United States.
| | - J W Yager
- ENVIRON International Corporation, 2200 Powell Street, Suite 700, Emeryville, CA 94608, United States; University of New Mexico, MSC 10 5550, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| | - R A Clewell
- The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709-2137, United States
| | - H J Clewell
- The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC 27709-2137, United States
| |
Collapse
|
48
|
Saint-Jacques N, Parker L, Brown P, Dummer TJB. Arsenic in drinking water and urinary tract cancers: a systematic review of 30 years of epidemiological evidence. Environ Health 2014; 13:44. [PMID: 24889821 PMCID: PMC4088919 DOI: 10.1186/1476-069x-13-44] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Arsenic in drinking water is a public health issue affecting hundreds of millions of people worldwide. This review summarizes 30 years of epidemiological studies on arsenic exposure in drinking water and the risk of bladder or kidney cancer, quantifying these risks using a meta-analytical framework. METHODS Forty studies met the selection criteria. Seventeen provided point estimates of arsenic concentrations in drinking water and were used in a meta-analysis of bladder cancer incidence (7 studies) and mortality (10 studies) and kidney cancer mortality (2 studies). Risk estimates for incidence and mortality were analyzed separately using Generalized Linear Models. Predicted risks for bladder cancer incidence were estimated at 10, 50 and 150 μg/L arsenic in drinking water. Bootstrap randomizations were used to assess robustness of effect size. RESULTS Twenty-eight studies observed an association between arsenic in drinking water and bladder cancer. Ten studies showed an association with kidney cancer, although of lower magnitude than that for bladder cancer. The meta-analyses showed the predicted risks for bladder cancer incidence were 2.7 [1.2-4.1]; 4.2 [2.1-6.3] and; 5.8 [2.9-8.7] for drinking water arsenic levels of 10, 50, and 150 μg/L, respectively. Bootstrapped randomizations confirmed this increased risk, but, lowering the effect size to 1.4 [0.35-4.0], 2.3 [0.59-6.4], and 3.1 [0.80-8.9]. The latter suggests that with exposures to 50 μg/L, there was an 83% probability for elevated incidence of bladder cancer; and a 74% probability for elevated mortality. For both bladder and kidney cancers, mortality rates at 150 ug/L were about 30% greater than those at 10 μg/L. CONCLUSION Arsenic in drinking water is associated with an increased risk of bladder and kidney cancers, although at lower levels (<150 μg/L), there is uncertainty due to the increased likelihood of exposure misclassification at the lower end of the exposure curve. Meta-analyses suggest exposure to 10 μg/L of arsenic in drinking water may double the risk of bladder cancer, or at the very least, increase it by about 40%. With the large number of people exposed to these arsenic concentrations worldwide the public health consequences of arsenic in drinking water are substantial.
Collapse
Affiliation(s)
- Nathalie Saint-Jacques
- Cancer Care Nova Scotia, Surveillance and Epidemiology Unit, Room 560 Bethune Building, 1276 South Street, Halifax B3H 2Y9, Nova Scotia, Canada
- Interdisciplinary PhD program, Dalhousie University, 6299 South Street, Room 314, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Louise Parker
- Department of Pediatrics and Population Cancer Research Program, Dalhousie University, 1494 Carlton Street, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| | - Patrick Brown
- Population Studies and Surveillance, Cancer Care Ontario, 620 University Ave, Toronto M5G 2 L7 Ontario, Canada
| | - Trevor JB Dummer
- Department of Pediatrics and Population Cancer Research Program, Dalhousie University, 1494 Carlton Street, PO Box 15000, Halifax B3H 4R2, Nova Scotia, Canada
| |
Collapse
|
49
|
Bustaffa E, Stoccoro A, Bianchi F, Migliore L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 2014; 88:1043-67. [PMID: 24691704 DOI: 10.1007/s00204-014-1233-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Arsenic is a human carcinogen with weak mutagenic properties that induces tumors through mechanisms not yet completely understood. People worldwide are exposed to arsenic-contaminated drinking water, and epidemiological studies showed a high percentage of lung, bladder, liver, and kidney cancer in these populations. Several mechanisms by which arsenical compounds induce tumorigenesis were proposed including genotoxic damage and chromosomal abnormalities. Over the past decade, a growing body of evidence indicated that epigenetic modifications have a role in arsenic-inducing adverse effects on human health. The main epigenetic mechanisms are DNA methylation in gene promoter regions that regulate gene expression, histone tail modifications that regulate the accessibility of transcriptional machinery to genes, and microRNA activity (noncoding RNA able to modulate mRNA translation). The "double capacity" of arsenic to induce mutations and epimutations could be the main cause of arsenic-induced carcinogenesis. The aim of this review is to better clarify the mechanisms of the initiation and/or the promotion of arsenic-induced carcinogenesis in order to understand the best way to perform an early diagnosis and a prompt prevention that is the key point for protecting arsenic-exposed population. Studies on arsenic-exposed population should be designed in order to examine more comprehensively the presence and consequences of these genetic/epigenetic alterations.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56123, Pisa, Italy
| | | | | | | |
Collapse
|
50
|
Yu ZM, Dummer TJB, Adams A, Murimboh JD, Parker L. Relationship between drinking water and toenail arsenic concentrations among a cohort of Nova Scotians. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:135-44. [PMID: 24368508 DOI: 10.1038/jes.2013.88] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/02/2013] [Indexed: 05/21/2023]
Abstract
Consumption of arsenic-contaminated drinking water is associated with increased cancer risk. The relationship between arsenic body burden, such as concentrations in human toenails, and arsenic in drinking water is not fully understood. We evaluated the relationship between arsenic concentrations in drinking water and toenail clippings among a cohort of Nova Scotians. A total of 960 men and women aged 35 to 69 years provided home drinking water and toenail clipping samples. Information on water source and treatment use and covariables was collected through questionnaires. Arsenic concentrations in drinking water and toenail clippings and anthropometric indices were measured. Private drilled water wells had higher arsenic concentrations compared with other dug wells and municipal drinking water sources (P<0.001). Among participants with drinking water arsenic levels ≥1 μg/l, there was a significant relationship between drinking water and toenail arsenic concentrations (r=0.46, P<0.0001). Given similar levels of arsenic exposure from drinking water, obese individuals had significantly lower concentrations of arsenic in toenails compared with those with a normal weight. Private drilled water wells were an important source of arsenic exposure in the study population. Body weight modifies the relationship between drinking water arsenic exposure and toenail arsenic concentrations.
Collapse
Affiliation(s)
- Zhijie M Yu
- Population Cancer Research Program, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Trevor J B Dummer
- Population Cancer Research Program, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimee Adams
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia, Canada
| | - John D Murimboh
- Department of Chemistry, Acadia University, Wolfville, Nova Scotia, Canada
| | - Louise Parker
- Population Cancer Research Program, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|