1
|
Li B, Liang J, Phillips MA, Michael AJ. A hybrid biosynthetic-catabolic pathway for norspermidine production. Biochem J 2024; 481:1241-1253. [PMID: 39230569 PMCID: PMC11531321 DOI: 10.1042/bcj20240411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/24/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
The only known pathway for biosynthesis of the polyamine norspermidine starts from aspartate β-semialdehyde to form the diamine 1,3-diaminopropane, which is then converted to norspermidine via a carboxynorspermidine intermediate. This pathway is found primarily in the Vibrionales order of the γ-Proteobacteria. However, norspermidine is also found in other species of bacteria and archaea, and in diverse single-celled eukaryotes, chlorophyte algae and plants that do not encode the known norspermidine biosynthetic pathway. We reasoned that products of polyamine catabolism could be an alternative route to norspermidine production. 1,3-diaminopropane is formed from terminal catabolism of spermine and spermidine, and norspermidine can be formed from catabolism of thermospermine. We found that the single-celled chlorophyte alga Chlamydomonas reinhardtii thermospermine synthase (CrACL5) did not aminopropylate exogenously-derived 1,3-diaminopropane efficiently when expressed in Escherichia coli. In contrast, it completely converted all E. coli native spermidine to thermospermine. Co-expression in E. coli of the polyamine oxidase 5 from lycophyte plant Selaginella lepidophylla (SelPAO5), together with the CrACL5 thermospermine synthase, converted almost all thermospermine to norspermidine. Although CrACL5 was efficient at aminopropylating norspermidine to form tetraamine norspermine, SelPAO5 oxidizes norspermine back to norspermidine, with the balance of flux being inclined fully to norspermine oxidation. The steady-state polyamine content of E. coli co-expressing thermospermine synthase CrACL5 and polyamine oxidase SelPAO5 was an almost total replacement of spermidine by norspermidine. We have recapitulated a potential hybrid biosynthetic-catabolic pathway for norspermidine production in E. coli, which could explain norspermidine accumulation in species that do not encode the known aspartate β-semialdehyde-dependent pathway.
Collapse
Affiliation(s)
- Bin Li
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Margaret A. Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Anthony J. Michael
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
2
|
Yin K, Hu Z, Yuan M, Chen W, Bi X, Cui G, Liang Z, Deng YZ. Polyamine oxidation enzymes regulate sexual mating/filamentation and pathogenicity in Sporisorium scitamineum. MOLECULAR PLANT PATHOLOGY 2024; 25:e70003. [PMID: 39235122 PMCID: PMC11375735 DOI: 10.1111/mpp.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Sugarcane smut fungus Sporisorium scitamineum produces polyamines putrescine (PUT), spermidine (SPD), and spermine (SPM) to regulate sexual mating/filamentous growth critical for pathogenicity. Besides de novo biosynthesis, intracellular levels of polyamines could also be modulated by oxidation. In this study, we identified two annotated polyamine oxidation enzymes (SsPAO and SsCuAO1) in S. scitamineum. Compared to the wild type (MAT-1), the ss1paoΔ and ss1cuao1Δ mutants were defective in sporidia growth, sexual mating/filamentation, and pathogenicity. The addition of a low concentration of cAMP (0.1 mM) could partially or fully restore filamentation of ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ. cAMP biosynthesis and hydrolysis genes were differentially expressed in the ss1paoΔ × ss2paoΔ or ss1cuao1Δ × ss2cuao1Δ cultures, further supporting that SsPAO- or SsCuAO1-based polyamine homeostasis regulates S. scitamineum filamentation by affecting the cAMP/PKA signalling pathway. During early infection, PUT promotes, while SPD inhibits, the accumulation of reactive oxygen species (ROS) in sugarcane, therefore modulating redox homeostasis at the smut fungus-sugarcane interface. Autophagy induction was found to be enhanced in the ss1paoΔ mutant and reduced in the ss1cuao1Δ mutant. Exogenous addition of cAMP, PUT, SPD, or SPM at low concentration promoted autophagy activity under a non-inductive condition (rich medium), suggesting a cross-talk between polyamines and cAMP signalling in regulating autophagy in S. scitamineum. Overall, our work proves that SsPAO- and SsCuAO1-mediated intracellular polyamines affect intracellular redox balance and thus play a role in growth, sexual mating/filamentation, and pathogenicity of S. scitamineum.
Collapse
Affiliation(s)
- Kai Yin
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhijian Hu
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Meiting Yuan
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Weidong Chen
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xinping Bi
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guobing Cui
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yi Zhen Deng
- Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Plant Protection, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Manck LE, Park J, Tully BJ, Poire AM, Bundy RM, Dupont CL, Barbeau KA. Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean. THE ISME JOURNAL 2022; 16:358-369. [PMID: 34341506 PMCID: PMC8776838 DOI: 10.1038/s41396-021-01065-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.
Collapse
Affiliation(s)
- Lauren E Manck
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Jiwoon Park
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Benjamin J Tully
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA
| | - Alfonso M Poire
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA, USA
| | - Randelle M Bundy
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Christopher L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Human Health, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Synthetic Biology, J. Craig Venter Institute, La Jolla, CA, USA
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Tsigoias S, Papanikolaou MG, Kabanos TA, Kalampounias AG. Structure and dynamics of aqueous norspermidine solutions: an in situultrasonic relaxation spectroscopic study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:495104. [PMID: 34544061 DOI: 10.1088/1361-648x/ac2863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Anin situultrasonic relaxation spectroscopic study is presented in an effort to determine the structural changes and the dynamics involved when norspermidine (NSpd) is dissolved in water. Our aim is to elucidate the mechanism responsible for the observed relaxation mechanism in acoustic spectra and estimate the corresponding thermodynamic parameters and the associated volume change. The experimental spectra of aqueous NSpd solutions revealed a single Debye-type relaxation mechanism attributed to proton-transfer reaction. The concentration and temperature dependence of the acoustic parameters supports this assignment. The activation enthalpy and entropy were estimated equal to ΔH*= 1.79 ± 0.20 kcal mol-1and ΔS*= -18.31 ± 0.73 cal mol-1 K-1, respectively. The concentration and temperature dependence of the sound velocity and absorption in the solutions exhibit characteristic features that are related to alterations in the network rigidity due to variations in hydrogen-bonding interactions at molecular level. The volume change associated to proton-transfer reaction for NSpd has been estimated and compared with the volume change observed for an analogous guanidine, the 1,1,3,3 tetramethyl guanidine. The obtained results are discussed in the framework of an existing theoretical structural model highlighting the strong molecular association in these liquid mixtures leading to complementary information on the structure and dynamics of guanidine amines. A comprehensive model of the whole relaxation processes is presented and discussed in detail.
Collapse
Affiliation(s)
- S Tsigoias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - M G Papanikolaou
- Section of Inorganic and analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - T A Kabanos
- Section of Inorganic and analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - A G Kalampounias
- Physical Chemistry Laboratory, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
- University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece
| |
Collapse
|
5
|
Abstract
In the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations at seawater pH produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells uptake and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, “Candidatus Pelagibacter” strain HTCC7211 and “Candidatus Pelagibacter ubique” strain HTCC1062. Both strains took up all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but polyamines did not fully substitute for their requirements of glycine (or related compounds) or pyruvate (or related compounds). Our data suggest that potABCD transports all five polyamines and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they metabolize.
Collapse
|
6
|
Young EC, Baumgartner JT, Karatan E, Kuhn ML. A mutagenic screen reveals NspS residues important for regulation of Vibrio cholerae biofilm formation. MICROBIOLOGY-SGM 2021; 167. [PMID: 33502310 DOI: 10.1099/mic.0.001023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biofilm formation in the human intestinal pathogen Vibrio cholerae is in part regulated by norspermidine, spermidine and spermine. V. cholerae senses these polyamines through a signalling pathway consisting of the periplasmic protein, NspS, and the integral membrane c-di-GMP phosphodiesterase MbaA. NspS and MbaA belong to a proposed class of novel signalling systems composed of periplasmic ligand-binding proteins and membrane-bound c-di-GMP phosphodiesterases containing both GGDEF and EAL domains. In this signal transduction pathway, NspS is hypothesized to interact with MbaA in the periplasm to regulate its phosphodiesterase activity. Polyamine binding to NspS likely alters this interaction, leading to the activation or inhibition of biofilm formation depending on the polyamine. The purpose of this study was to determine the amino acids important for NspS function. We performed random mutagenesis of the nspS gene, identified mutant clones deficient in biofilm formation, determined their responsiveness to norspermidine and mapped the location of these residues onto NspS homology models. Single mutants clustered on two lobes of the NspS model, but the majority were found on a single lobe that appeared to be more mobile upon norspermidine binding. We also identified residues in the putative ligand-binding site that may be important for norspermidine binding and interactions with MbaA. Ultimately, our results provide new insights into this novel signalling pathway in V. cholerae and highlight differences between periplasmic binding proteins involved in transport versus signal transduction.
Collapse
Affiliation(s)
- Erin C Young
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Jackson T Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Ece Karatan
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
7
|
Abstract
Polyamine oxidases (PAOs) are characterized by a broad variability in catalytic properties and subcellular localization, and impact key cellular processes in diverse organisms. In the present study, a comprehensive phylogenetic analysis was performed to understand the evolution of PAOs across the three domains of life and particularly within eukaryotes. Phylogenetic trees show that PAO-like sequences of bacteria, archaea, and eukaryotes form three distinct clades, with the exception of a few procaryotes that probably acquired a PAO gene through horizontal transfer from a eukaryotic donor. Results strongly support a common origin for archaeal PAO-like proteins and eukaryotic PAOs, as well as a shared origin between PAOs and monoamine oxidases. Within eukaryotes, four main lineages were identified that likely originated from an ancestral eukaryotic PAO before the split of the main superphyla, followed by specific gene losses in each superphylum. Plant PAOs show the highest diversity within eukaryotes and belong to three distinct clades that underwent to multiple events of gene duplication and gene loss. Peptide deletion along the evolution of plant PAOs of Clade I accounted for further diversification of function and subcellular localization. This study provides a reference for future structure-function studies and emphasizes the importance of extending comparisons among PAO subfamilies across multiple eukaryotic superphyla.
Collapse
Affiliation(s)
- Daniele Salvi
- Department of Health, Life and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | |
Collapse
|
8
|
Nishio T, Yoshikawa Y, Shew CY, Umezawa N, Higuchi T, Yoshikawa K. Specific effects of antitumor active norspermidine on the structure and function of DNA. Sci Rep 2019; 9:14971. [PMID: 31628357 PMCID: PMC6802174 DOI: 10.1038/s41598-019-50943-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
We compared the effects of trivalent polyamines, spermidine (SPD) and norspermidine (NSPD), a chemical homologue of SPD, on the structure of DNA and gene expression. The chemical structures of SPD and NSPD are different only with the number of methylene groups between amine groups, [N-3-N-4-N] and [N-3-N-3-N], respectively. SPD plays vital roles in cell function and survival, including in mammals. On the other hand, NSPD has antitumor activity and is found in some species of plants, bacteria and algae, but not in humans. We found that both polyamines exhibit biphasic effect; enhancement and inhibition on in vitro gene expression, where SPD shows definitely higher potency in enhancement but NSPD causes stronger inhibition. Based on the results of AFM (atomic force microscopy) observations together with single DNA measurements with fluorescence microscopy, it becomes clear that SPD tends to align DNA orientation, whereas NSPD induces shrinkage with a greater potency. The measurement of binding equilibrium by NMR indicates that NSPD shows 4-5 times higher affinity to DNA than SPD. Our theoretical study with Monte Carlo simulation provides the insights into the underlying mechanism of the specific effect of NSPD on DNA.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Chwen-Yang Shew
- Doctoral Program in Chemistry, The Graduate Center of the City University of New York, New York, 10016, USA.
- Department of Chemistry, College of Staten Island, Staten Island, New York, 10314, USA.
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
9
|
Sagor GHM, Kusano T, Berberich T. A Polyamine Oxidase from Selaginella lepidophylla (SelPAO5) can Replace AtPAO5 in Arabidopsis through Converting Thermospermine to Norspermidine instead to Spermidine. PLANTS 2019; 8:plants8040099. [PMID: 30991762 PMCID: PMC6524367 DOI: 10.3390/plants8040099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/16/2022]
Abstract
Of the five polyamine oxidases in Arabidopsis thaliana, AtPAO5 has a substrate preference for the tetraamine thermospermine (T-Spm) which is converted to triamine spermidine (Spd) in a back-conversion reaction in vitro. A homologue of AtPAO5 from the lycophyte Selaginella lepidophylla (SelPAO5) back-converts T-Spm to the uncommon polyamine norspermidine (NorSpd) instead of Spd. An Atpao5 loss-of-function mutant shows a strong reduced growth phenotype when growing on a T-Spm containing medium. When SelPAO5 was expressed in the Atpao5 mutant, T-Spm level decreased to almost normal values of wild type plants, and NorSpd was produced. Furthermore the reduced growth phenotype was cured by the expression of SelPAO5. Thus, a NorSpd synthesis pathway by PAO reaction and T-Spm as substrate was demonstrated in planta and the assumption that a balanced T-Spm homeostasis is needed for normal growth was strengthened.
Collapse
Affiliation(s)
- G H M Sagor
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan.
| | - Thomas Berberich
- Laboratory Center, Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Hong L, Liu JL, Midoun SZ, Miller PC. Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina. J Zhejiang Univ Sci B 2018; 18:833-844. [PMID: 28990374 DOI: 10.1631/jzus.b1700088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds (including β-carotene and vitamins) with potential commercial value. A large transcriptome database of D. salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform. We characterized the metabolic processes in D. salina with a focus on valuable metabolites, with the aim of manipulating D. salina to achieve greater economic value in large-scale production through a bioengineering strategy. Gene expression profiles under salt stress verified using quantitative polymerase chain reaction (qPCR) implied that salt can regulate the expression of key genes. This study generated a substantial fraction of D. salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes. This first full-scale transcriptome study of D. salina establishes a foundation for further comparative genomic studies.
Collapse
Affiliation(s)
- Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Li Liu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Samira Z Midoun
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Philip C Miller
- Systems Biology Research Group, Bioengineering Department, University of California, 9500 Gilman Dr. San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Tassoni A, Awad N, Griffiths G. Effect of ornithine decarboxylase and norspermidine in modulating cell division in the green alga Chlamydomonas reinhardtii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:125-131. [PMID: 29232652 DOI: 10.1016/j.plaphy.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
The extensive genetic resources of Chlamydomonas has led to its widespread use as a model system for understanding fundamental processes in plant cells, including rates of cell division potentially modulated through polyamines. Putrescine was the major polyamine in both free (88%) and membrane-bound fractions (93%) while norspermidine was the next most abundant in these fractions accounting for 11% and 6%, respectively. Low levels of diaminopropane, spermidine and spermine were also observed although no cadaverine or norspermine were detected. Ornithine decarboxylase (ODC, EC 4.1.1.17) activity was almost five times higher than arginine decarboxylase (ADC, EC 4.1.1.19) and is the major route of putrescine synthesis. The fluoride analogue of ornithine (α-DFMO) inhibited membrane associated ODC activity whilst simultaneously stimulating cell division in a dose dependent manner. Following exposure to α-DFMO the putrescine content in the cells declined while the norspermidine content increased over two fold. Addition of norspermidine to cultures stimulated cell division mimicking the effects observed using DFMO and also reversed the inhibitory effects of cyclohexylamine on growth. The results reveal that ODC is the major route to polyamine formation in the Chlamydomonas CC-406 cell-wall mutant, in contrast to the preferential ADC route reported for Chlorella vulgaris, suggesting that significant species differences exist in biosynthetic pathways which modulate endogenous polyamine levels in green algae.
Collapse
Affiliation(s)
- Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, Via Irnerio 42, University of Bologna, 40126, Bologna, Italy.
| | - Nahid Awad
- European Bioenergy Research Institute, Aston University, Birmingham, B4 7ET, UK
| | - Gareth Griffiths
- European Bioenergy Research Institute, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
12
|
Wotanis CK, Brennan WP, Angotti AD, Villa EA, Zayner JP, Mozina AN, Rutkovsky AC, Sobe RC, Bond WG, Karatan E. Relative contributions of norspermidine synthesis and signaling pathways to the regulation of Vibrio cholerae biofilm formation. PLoS One 2017; 12:e0186291. [PMID: 29045455 PMCID: PMC5646818 DOI: 10.1371/journal.pone.0186291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/28/2017] [Indexed: 01/22/2023] Open
Abstract
The polyamine norspermidine is one of the major polyamines synthesized by Vibrionales and has also been found in various aquatic organisms. Norspermidine is among the environmental signals that positively regulate Vibrio cholerae biofilm formation. The NspS/MbaA signaling complex detects extracellular norspermidine and mediates the response to this polyamine. Norspermidine binding to the NspS periplasmic binding protein is thought to inhibit the phosphodiesterase activity of MbaA, increasing levels of the biofilm-promoting second messenger cyclic diguanylate monophosphate, thus enhancing biofilm formation. V. cholerae can also synthesize norspermidine using the enzyme NspC as well as import it from the environment. Deletion of the nspC gene was shown to reduce accumulation of bacteria in biofilms, leading to the conclusion that intracellular norspermidine is also a positive regulator of biofilm formation. Because V. cholerae uses norspermidine to synthesize the siderophore vibriobactin it is possible that intracellular norspermidine is required to obtain sufficient amounts of iron, which is also necessary for robust biofilm formation. The objective of this study was to assess the relative contributions of intracellular and extracellular norspermidine to the regulation of biofilm formation in V. cholerae. We show the biofilm defect of norspermidine synthesis mutants does not result from an inability to produce vibriobactin as vibriobactin synthesis mutants do not have diminished biofilm forming abilities. Furthermore, our work shows that extracellular, but not intracellular norspermidine, is mainly responsible for promoting biofilm formation. We establish that the NspS/MbaA signaling complex is the dominant mediator of biofilm formation in response to extracellular norspermidine, rather than norspermidine synthesized by NspC or imported into the cell.
Collapse
Affiliation(s)
- Caitlin K. Wotanis
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - William P. Brennan
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Anthony D. Angotti
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Elizabeth A. Villa
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Josiah P. Zayner
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Alexandra N. Mozina
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Alexandria C. Rutkovsky
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Richard C. Sobe
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Whitney G. Bond
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Ece Karatan
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Sobe RC, Bond WG, Wotanis CK, Zayner JP, Burriss MA, Fernandez N, Bruger EL, Waters CM, Neufeld HS, Karatan E. Spermine inhibits Vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system. J Biol Chem 2017; 292:17025-17036. [PMID: 28827313 PMCID: PMC5641875 DOI: 10.1074/jbc.m117.801068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/18/2017] [Indexed: 11/06/2022] Open
Abstract
The aquatic bacterium and human intestinal pathogen, Vibrio cholerae, senses and responds to a variety of environment-specific cues to regulate biofilm formation. Specifically, the polyamines norspermidine and spermidine enhance and repress V. cholerae biofilm formation, respectively. These effects are relevant for understanding V. cholerae pathogenicity and are mediated through the periplasmic binding protein NspS and the transmembrane bis-(3'-5') cyclic diguanosine monophosphate (c-di-GMP) phosphodiesterase MbaA. However, the levels of spermidine required to inhibit biofilm formation through this pathway are unlikely to be encountered by V. cholerae in aquatic reservoirs or within the human host during infection. We therefore hypothesized that other polyamines in the gastrointestinal tract may control V. cholerae biofilm formation at physiological levels. The tetramine spermine has been reported to be present at nearly 50 μm concentrations in the intestinal lumen. Here, we report that spermine acts as an exogenous cue that inhibits V. cholerae biofilm formation through the NspS-MbaA signaling system. We found that this effect probably occurs through a direct interaction of spermine with NspS, as purified NspS protein could bind spermine in vitro Spermine also inhibited biofilm formation by altering the transcription of the vps genes involved in biofilm matrix production. Global c-di-GMP levels were unaffected by spermine supplementation, suggesting that biofilm formation may be regulated by variations in local rather than global c-di-GMP pools. Finally, we propose a model illustrating how the NspS-MbaA signaling system may communicate exogenous polyamine content to the cell to control biofilm formation in the aquatic environment and within the human intestine.
Collapse
Affiliation(s)
- Richard C Sobe
- From the Department of Biology, Appalachian State University, Boone, North Carolina 28608 and
| | - Whitney G Bond
- From the Department of Biology, Appalachian State University, Boone, North Carolina 28608 and
| | - Caitlin K Wotanis
- From the Department of Biology, Appalachian State University, Boone, North Carolina 28608 and
| | - Josiah P Zayner
- From the Department of Biology, Appalachian State University, Boone, North Carolina 28608 and
| | - Marybeth A Burriss
- From the Department of Biology, Appalachian State University, Boone, North Carolina 28608 and
| | - Nicolas Fernandez
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Eric L Bruger
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Christopher M Waters
- the Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Howard S Neufeld
- From the Department of Biology, Appalachian State University, Boone, North Carolina 28608 and
| | - Ece Karatan
- From the Department of Biology, Appalachian State University, Boone, North Carolina 28608 and
| |
Collapse
|
14
|
Horňák K, Kasalický V, Šimek K, Grossart HP. Strain-specific consumption and transformation of alga-derived dissolved organic matter by members of the Limnohabitans-C and Polynucleobacter-B clusters of Betaproteobacteria. Environ Microbiol 2017; 19:4519-4535. [PMID: 28856804 DOI: 10.1111/1462-2920.13900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
We investigated changes in quality and quantity of extracellular and biomass-derived organic matter (OM) from three axenic algae (genera Rhodomonas, Chlamydomonas, Coelastrum) during growth of Limnohabitans parvus, Limnohabitans planktonicus and Polynucleobacter acidiphobus representing important clusters of freshwater planktonic Betaproteobacteria. Total extracellular and biomass-derived OM concentrations from each alga were approximately 20 mg l-1 and 1 mg l-1 respectively, from which up to 9% could be identified as free carbohydrates, polyamines, or free and combined amino acids. Carbohydrates represented 54%-61% of identified compounds of the extracellular OM from each alga. In biomass-derived OM of Rhodomonas and Chlamydomonas 71%-77% were amino acids and polyamines, while in that of Coelastrum 85% were carbohydrates. All bacteria grew on alga-derived OM of Coelastrum, whereas only Limnohabitans strains grew on OM from Rhodomonas and Chlamydomonas. Bacteria consumed 24%-76% and 38%-82% of all identified extracellular and biomass-derived OM compounds respectively, and their consumption was proportional to the concentration of each OM compound in the different treatments. The bacterial biomass yield was higher than the total identifiable OM consumption indicating that bacteria also utilized other unidentified alga-derived OM compounds. Bacteria, however, also produced specific OM compounds suggesting enzymatic polymer degradation or de novo exudation.
Collapse
Affiliation(s)
- Karel Horňák
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Seestrasse 187, Kilchberg CH-8802, Switzerland
| | - Vojtěch Kasalický
- Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Karel Šimek
- Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Hydrobiology, Na Sádkách 7, České Budějovice CZ-37005, Czech Republic
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Limnology of Stratified Lakes, Alte Fisherhütte 2, OT Neuglobsow, Stechlin D-16775, Germany.,Institute for Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam D-14468, Germany
| |
Collapse
|
15
|
Hamana K, Furuchi T, Nakamura T, Hayashi H, Niitsu M. Occurrence of penta-amines, hexa-amines and N-methylated polyamines in unicellular eukaryotic organisms belonging to the phyla Heterokontophyta and Labyrinthulomycota of the subdomain Stramenopiles. J GEN APPL MICROBIOL 2016; 62:320-325. [PMID: 27773915 DOI: 10.2323/jgam.2016.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Faculty of Engineering, Maebashi Institute of Technology
| | | | | | | | | |
Collapse
|
16
|
Hamana K, Niitsu M, Hayashi H. Occurrence of homospermidine and thermospermine as a cellular polyamine in unicellular chlorophyte and multicellular charophyte green algae. J GEN APPL MICROBIOL 2014; 59:313-9. [PMID: 24005181 DOI: 10.2323/jgam.59.313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan.
| | | | | |
Collapse
|
17
|
Lutz C, Erken M, Noorian P, Sun S, McDougald D. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae. Front Microbiol 2013; 4:375. [PMID: 24379807 PMCID: PMC3863721 DOI: 10.3389/fmicb.2013.00375] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/21/2013] [Indexed: 12/23/2022] Open
Abstract
It is now well accepted that Vibrio cholerae, the causative agent of the water-borne disease cholera, is acquired from environmental sources where it persists between outbreaks of the disease. Recent advances in molecular technology have demonstrated that this bacterium can be detected in areas where it has not previously been isolated, indicating a much broader, global distribution of this bacterium outside of endemic regions. The environmental persistence of V. cholerae in the aquatic environment can be attributed to multiple intra- and interspecific strategies such as responsive gene regulation and biofilm formation on biotic and abiotic surfaces, as well as interactions with a multitude of other organisms. This review will discuss some of the mechanisms that enable the persistence of this bacterium in the environment. In particular, we will discuss how V. cholerae can survive stressors such as starvation, temperature, and salinity fluctuations as well as how the organism persists under constant predation by heterotrophic protists.
Collapse
Affiliation(s)
- Carla Lutz
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales Sydney, NSW, Australia
| | - Martina Erken
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales Sydney, NSW, Australia ; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| | - Parisa Noorian
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales Sydney, NSW, Australia
| | - Shuyang Sun
- The Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore
| | - Diane McDougald
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Science, University of New South Wales Sydney, NSW, Australia ; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
18
|
Silva TM, Andersson S, Sukumaran SK, Marques MP, Persson L, Oredsson S. Norspermidine and novel Pd(II) and Pt(II) polynuclear complexes of norspermidine as potential antineoplastic agents against breast cancer. PLoS One 2013; 8:e55651. [PMID: 23418450 PMCID: PMC3572109 DOI: 10.1371/journal.pone.0055651] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 12/28/2012] [Indexed: 12/19/2022] Open
Abstract
Background New strategies are needed for breast cancer treatment and one initial step is to test new chemotherapeutic drugs in breast cancer cell lines, to choose candidates for further studies towards clinical use. Methodology and Findings The cytotoxic effects of a biogenic polyamine analogue – norspermidine – and its trinuclear Pd(II) and Pt(II) complexes – Pd3NSpd2 and Pt3NSpd2, respectively – were investigated in one immortalized normal-like and three breast cancer cell lines. The normal-like MCF-10A cells were least sensitive to the compounds, while growth inhibition and cell death was observed in the cancer cell lines. Norspermidine and its Pd(II) complex were generally shown to have stronger antiproliferative effects than the corresponding Pt(II) complex. Moreover, both norspermidine and the Pd(II) complex reduced the cellular activity of the growth-related enzyme, ornithine decarboxylase (ODC) to a lower level than the Pt(II) complex in most of the cell lines examined. Treatment with norspermidine or the Pd(II) complex reduced the number of colonies formed in a soft agar assay performed with the breast cancer cell lines, indicating that these compounds reduced the malignancy of the breast cancer cells. The effect of norspermidine or the Pd(II) complex on colony formation was much stronger than that observed for the Pt(II) complex. The results from a new mammalian genotoxicity screen together with those of a single cell gel electrophoresis assay indicated that none of the drugs were genotoxic at a 25 µM concentration. Main Conclusions Overall, norspermidine and its Pd(II) complex were shown to have strong antiproliferative effects. In comparison, the effects obtained with the Pd(II) complex were much stronger than that of the Pt(II) complex. The results obtained in the present study demonstrate that the trinuclear Pd(II) complex of norspermidine (Pd3NSpd2) may be regarded as a potential new metal-based drug against breast cancer, coupling a significant efficiency to a low toxicity.
Collapse
Affiliation(s)
- Tânia Magalhães Silva
- Research Unit “Molecular Physical-Chemistry”, University of Coimbra, Portugal
- Department of Biology, University of Lund, Sweden
- Department of Experimental Medical Science, University of Lund, Sweden
| | | | | | - Maria Paula Marques
- Research Unit “Molecular Physical-Chemistry”, University of Coimbra, Portugal
- Departament of Life Sciences, Faculty of Science and Technology, University of Coimbra, Portugal
| | - Lo Persson
- Department of Experimental Medical Science, University of Lund, Sweden
| | - Stina Oredsson
- Department of Biology, University of Lund, Sweden
- * E-mail:
| |
Collapse
|
19
|
Mukherjee T, Costa Pessoa J, Kumar A, Sarkar AR. Synthesis, structure, magnetic properties and biological activity of supramolecular copper(ii) and nickel(ii) complexes with a Schiff base ligand derived from vitamin B6. Dalton Trans 2013; 42:2594-607. [DOI: 10.1039/c2dt31575k] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Mukherjee T, Pessoa JC, Kumar A, Sarkar AR. Synthesis, spectroscopic characterization, insulin-enhancment, and competitive DNA binding activity of a new Zn(ii) complex with a vitamin B6 derivative—a new fluorescence probe for Zn(ii). Dalton Trans 2012; 41:5260-71. [DOI: 10.1039/c2dt12298g] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Mukherjee T, Costa Pessoa J, Kumar A, Sarkar AR. Oxidovanadium(IV) Schiff Base Complex Derived from Vitamin B6: Synthesis, Characterization, and Insulin Enhancing Properties. Inorg Chem 2011; 50:4349-61. [DOI: 10.1021/ic102412s] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tirtha Mukherjee
- Department of Chemistry, University of Kalyani, Kalyani-741235, West Bengal, India
| | - Joa̅o Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - Amit Kumar
- Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais 1049-001 Lisboa, Portugal
| | - Asit R. Sarkar
- Department of Chemistry, University of Kalyani, Kalyani-741235, West Bengal, India
| |
Collapse
|
22
|
Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ. Polyamine biosynthetic diversity in plants and algae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:513-20. [PMID: 20227886 DOI: 10.1016/j.plaphy.2010.02.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 05/04/2023]
Abstract
Polyamine biosynthesis in plants differs from other eukaryotes because of the contribution of genes from the cyanobacterial ancestor of the chloroplast. Plants possess an additional biosynthetic route for putrescine formation from arginine, consisting of the enzymes arginine decarboxylase, agmatine iminohydrolase and N-carbamoylputrescine amidohydrolase, derived from the cyanobacterial ancestor. They also synthesize an unusual tetraamine, thermospermine, that has important developmental roles and which is evolutionarily more ancient than spermine in plants and algae. Single-celled green algae have lost the arginine route and are dependent, like other eukaryotes, on putrescine biosynthesis from the ornithine. Some plants like Arabidopsis thaliana and the moss Physcomitrella patens have lost ornithine decarboxylase and are thus dependent on the arginine route. With its dependence on the arginine route, and the pivotal role of thermospermine in growth and development, Arabidopsis represents the most specifically plant mode of polyamine biosynthesis amongst eukaryotes. A number of plants and algae are also able to synthesize unusual polyamines such as norspermidine, norspermine and longer polyamines, and biosynthesis of these amines likely depends on novel aminopropyltransferases similar to thermospermine synthase, with relaxed substrate specificity. Plants have a rich repertoire of polyamine-based secondary metabolites, including alkaloids and hydroxycinnamic amides, and a number of polyamine-acylating enzymes have been recently characterised. With the genetic tools available for Arabidopsis and other model plants and algae, and the increasing capabilities of comparative genomics, the biological roles of polyamines can now be addressed across the plant evolutionary lineage.
Collapse
Affiliation(s)
- Christine Fuell
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR47UA, UK
| | | | | | | | | |
Collapse
|
23
|
Higashi K, Terui Y, Suganami A, Tamura Y, Nishimura K, Kashiwagi K, Igarashi K. Selective Structural Change by Spermidine in the Bulged-out Region of Double-stranded RNA and Its Effect on RNA Function. J Biol Chem 2008; 283:32989-94. [DOI: 10.1074/jbc.m806027200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Hamana K. Cellular polyamines of phototrophs and heterotrophs belonging to the lower eukaryotic phyla Cercozoa, Euglenozoa, Heterokonta and Metamonada. J GEN APPL MICROBIOL 2008; 54:135-40. [PMID: 18497488 DOI: 10.2323/jgam.54.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi, Gunma, Japan.
| |
Collapse
|
25
|
Hamana K, Niitsu M. Cellular polyamines of lower eukaryotes belonging to the phyla Glaucophyta, Rhodophyta, Cryptophyta, Haptophyta and Percolozoa. J GEN APPL MICROBIOL 2007; 52:235-40. [PMID: 17116972 DOI: 10.2323/jgam.52.235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Gunma University School of Health Sciences, Gunma, Japan.
| | | |
Collapse
|
26
|
Hamana K, Hagiwara H, Yamamoto Y. Analysis of cellular polyamines of slime molds in comparison to the polyamine profiles of phylogenetically related organisms. J GEN APPL MICROBIOL 2006; 52:107-12. [PMID: 16778354 DOI: 10.2323/jgam.52.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Gunma University School of Health Sciences, Japan.
| | | | | |
Collapse
|
27
|
Hamana K, Aizaki T, Arai E, Saito A, Uchikata K, Ohnishi H. Distribution of norspermidine as a cellular polyamine within micro green algae including non-photosynthetic achlorophyllous Polytoma, Polytomella, Prototheca and Helicosporidium. J GEN APPL MICROBIOL 2005; 50:289-95. [PMID: 15747227 DOI: 10.2323/jgam.50.289] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Gunma University School of Health Sciences, Maebashi, Gunma 371-8514, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Hamana K, Sakamoto A, Nishina M, Niitsu M. Cellular polyamine profile of the phyla Dinophyta, Apicomplexa, Ciliophora, Euglenozoa, Cercozoa and Heterokonta. J GEN APPL MICROBIOL 2005; 50:297-303. [PMID: 15747233 DOI: 10.2323/jgam.50.297] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Koei Hamana
- Gunma University School of Health Sciences, Maebashi, Gunma 371-8514, Japan.
| | | | | | | |
Collapse
|
29
|
Hwang DF, Lu YH, Noguchi T. Effects of exogenous polyamines on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. SHOKUHIN EISEIGAKU ZASSHI. JOURNAL OF THE FOOD HYGIENIC SOCIETY OF JAPAN 2003; 44:49-53. [PMID: 12749197 DOI: 10.3358/shokueishi.44.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of exogenous polyamines (cadaverine, putrescine, norspermidine, spermidine, and spermine) on the growth, toxicity, and toxin profile of the dinoflagellate Alexandrium minutum T1 was examined. It was found that cadaverine at concentrations of 0.1-2.0 mumol/L enhanced the growth of A. minutum T1. Putrescine and norspermidine at a low level (0.1 mumol/L) also promoted the algal growth. Spermidine depressed the algal growth. However, the cell toxicity levels of A. minutum T1 cultured with or without cadaverine, putrescine, norspermidine, and spermidine were almost the same. The toxic components of A. minutum T1 were GTXs 1-4 only, and GTXs 1 and 4 were predominant (74.6 +/- 7.1%) in all cultures. On the other hand, spermine did not effect the growth of A. minutum T1, though it decreased the cell toxicity and the ratio of GTX 2 + GTX 3 (15.0 +/- 6.6%).
Collapse
Affiliation(s)
- Deng-Fwu Hwang
- Department of Food Science, National Taiwan Ocean University: Keelung 202, Taiwan, R.O.C
| | | | | |
Collapse
|
30
|
Pandey S, Ranade SA, Nagar PK, Kumar N. Role of polyamines and ethylene as modulators of plant senescence. J Biosci 2000; 25:291-9. [PMID: 11022232 DOI: 10.1007/bf02703938] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Under optimal conditions of growth, senescence, a terminal phase of development, sets in after a certain physiological age. It is a dynamic and closely regulated developmental process which involves an array of changes at both physiological and biochemical levels including gene expression. A large number of biotic and abiotic factors accelerate the process. Convincing evidence suggests the involvement of polyamines (PAs) and ethylene in this process. Although the biosynthetic pathways of both PAs and ethylene are interrelated, S-adenosylmethionine (SAM) being a common precursor, their physiological functions are distinct and at times antagonistic, particularly during leaf and flower senescence and also during fruit ripening. This provides an effective means for regulation of their biosynthesis and also to understand the mechanism by which the balance between the two can be established for manipulating the senescence process. The present article deals with current advances in the knowledge of the interrelationship between ethylene and PAs during senescence which may open up new vistas of investigation for the future.
Collapse
Affiliation(s)
- S Pandey
- Plant Biotechnology Division, Institute of Himalayan Bioresource Technology, Palampur 176 061, India
| | | | | | | |
Collapse
|
31
|
Kaiser A, Vollmert M, Tholl D, Graves MV, Gurnon JR, Xing W, Lisec AD, Nickerson KW, Van Etten JL. Chlorella virus PBCV-1 encodes a functional homospermidine synthase. Virology 1999; 263:254-62. [PMID: 10544099 DOI: 10.1006/viro.1999.9972] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequence analysis of the 330-kb genome of chlorella virus Paramecium bursaria chlorella virus 1 (PBCV-1) revealed an open reading frame, A237R, that encodes a protein with 34% amino acid identity to homospermidine synthase from Rhodopseudomonas viridis. Expression of the a237r gene product in Escherichia coli established that the recombinant enzyme catalyzes the NAD(+)-dependent formation of homospermidine from two molecules of putrescine. The a237r gene is expressed late in PBCV-1 infection. Both uninfected and PBCV-1-infected chlorella, as well as PBCV-1 virions, contain homospermidine, along with the more common polyamines putrescine, spermidine, and cadaverine. The total number of polyamine molecules per virion ( approximately 539) is too small to significantly neutralize the virus double-stranded DNA (>660,000 nucleotides). Consequently, the biological significance of the homospermidine synthase gene is unknown. However, the gene is widespread among the chlorella viruses. To our knowledge, this is the first report of a virus encoding an enzyme involved in polyamine biosynthesis.
Collapse
Affiliation(s)
- A Kaiser
- Institut fur Pharmazeutische Biologie, Technische Universitaet Braunschweig, Mendelssohnstrasse 1, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tholl D, Ober D, Martin W, Kellermann J, Hartmann T. Purification, molecular cloning and expression in Escherichia coli of homospermidine synthase from Rhodopseudomonas viridis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:373-9. [PMID: 8841401 DOI: 10.1111/j.1432-1033.1996.0373h.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Homospermidine synthase (HSS) catalyzes the synthesis of the polyamine homospermidine from 2 mol putrescine in an NAD(+)-dependent reaction. In this study, the enzyme was purified from anaerobically grown cultures of the photosynthetic bacterium Rhodopseudomonas viridis to electrophoretic homogeneity using a three-step procedure. The enzyme was shown to be a homodimer of 52-kDa subunits. Six endopeptidase LysC fragments were sequenced from the purified protein. With the aid of degenerate primers designed against these peptides, specific PCR products from R. viridis DNA were obtained that were used as hybridization probes to isolate the hss gene from a library constructed in lambda EMBL4. The hss gene and flanking regions were sequenced and were shown to exist as a single copy in the R. viridis genome. HSS is translated from a monocistronic mRNA and possesses no detectable similarity to previously sequenced gene products. Escherichia coli, which lacks HSS activity, was transformed with an expression plasmid containing the hss coding region under the control of a bacteriophage T7 promoter. Upon induction, transformed F. coli cells accumulate enzymatically active and highly stable R. viridis HSS at levels corresponding to 40-50% of the soluble protein in crude extracts.
Collapse
Affiliation(s)
- D Tholl
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Germany
| | | | | | | | | |
Collapse
|
33
|
Mei YH. A Sensitive and Fast Method for the Determination of Polyamines in Biological Samples. Benzoyl Chloride Pre-Column Derivatization High-Performance Liquid Chromatography. ACTA ACUST UNITED AC 1994. [DOI: 10.1080/10826079408013489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
Hoshino S, Matsuzaki S, Wakita M, Kobayashi Y, Suzuki M. Cartilage response to thyroid hormones in the sex-linked dwarf chicken. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1989; 93:583-5. [PMID: 2474410 DOI: 10.1016/0300-9629(89)90014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Trachea cartilages were dissected from normal and dwarf chickens which had been injected with thyroxine (T4, 200 micrograms/kg) or triiodothyronine (T3, 200 micrograms/kg) for seven consecutive days, and were analysed for nucleic acids, proteins and polyamines. 2. In saline-injected control chickens, RNA, but not DNA and protein, concentration of the cartilage was higher in dwarfs than in normals. The concentration of putrescine was lower in dwarfs than in normals, while that of spermine was the reverse. 3. Thyroid hormones, especially T3, tended to increase concentrations of RNA, spermidine and spermine, and to decrease that of putrescine. However, there were no clear differences in the response to hormones between breeds.
Collapse
Affiliation(s)
- S Hoshino
- Faculty of Bioresources, Mie University, Tsu, Japan
| | | | | | | | | |
Collapse
|
35
|
Hamana K, Matsuzaki S, Sakakibara M. Distribution of sym-homosperimidine in eubacteria, cyanobacteria, algae and ferns. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02903.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Slocum RD, Kaur-Sawhney R, Galston AW. The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 1984; 235:283-303. [PMID: 6393877 DOI: 10.1016/0003-9861(84)90201-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
37
|
Yamamoto S, Iwado A, Hashimoto Y, Aoyama Y, Makita M. Gas chromatography—mass spectrometry of polyamines as their N-ethyloxycarbonyl derivatives and identification of sym-homospermidine and sym-norspermine in mosses and ferns. J Chromatogr A 1984. [DOI: 10.1016/s0021-9673(01)96049-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Kurabuchi S, Matsuzaki S, Inoue S. Changes in polyamine content during limb regeneration in adult Xenopus laevis. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1983; 227:121-6. [PMID: 6619761 DOI: 10.1002/jez.1402270116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polyamine contents in the regenerates were determined at various stages after amputation of the forelimbs of the adult female Xenopus laevis. Putrescine, spermidine, spermine, and sym-homospermidine were detected in all the specimens examined. Cadaverine was detected only in a limited number of samples. At 5 days after amputation of forelimbs, well before the formation of regenerates, the putrescine content in the stump tissues increased, followed by the increase in spermidine content. The putrescine level in the forelimb regenerates was highest between 30 and 50 days after amputation, and then decreased. The spermidine concentration in the regenerates was about 20 times greater than that in intact forelimbs all throughout the experiments. The concentration of spermine was initially lower than that of both putrescine and spermidine and further decreased soon after amputation. The concentration of sym-homospermidine was originally very low and increased slightly during regeneration. The significance of these results, with respect to the function of polyamines in forelimb regeneration of Xenopus laevis, is discussed.
Collapse
|
39
|
Abstract
Members of all four families of methanogenic bacteria were analyzed for polyamine concentrations. High-performance liquid chromatography analysis of dansylated cell extracts revealed typical polyamine patterns for each family. Members of Methanobacteriaceae (family I) were characterized by very low polyamine concentrations; members of Methanococcaceae (family II) were characterized by putrescine and high spermidine concentrations; members of Methanomicrobiaceae (family III) were characterized by the presence of putrescine, spermidine, and sym-homospermidine; and members of Methanosarcinaceae (family IV) contained only high concentrations of sym-homospermidine in addition to putrescine. The highest polyamine concentration was found in Methanosarcina barkeri Jülich, with 0.35% putrescine in the dry cell material. The polyamine distribution found coincides with the dendrogram based on comparative cataloguing of 16S rRNA and offers a new, rapid chemotaxonomic method for characterizing methanogenic bacteria. Variation of the growth substrates (H2-CO2, methanol, acetate, and trimethylamine) for M. barkeri resulted in quantitative but not qualitative differences in polyamine composition.
Collapse
|
40
|
Hamana K, Miyagawa K, Matsuzaki S. Occurrence of sym-homospermidine as the major polyamine in nitrogen-fixing cyanobacteria. Biochem Biophys Res Commun 1983; 112:606-13. [PMID: 6405746 DOI: 10.1016/0006-291x(83)91507-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We analyzed the amount of polyamines in a variety of cyanobacteria including nitrogen-fixing and nonfixing species. All the cyanobacteria capable of fixing nitrogen, contained sym-homospermidine as the major polyamine. The concentration of putrescine, spermidine and spermine was extremely low in these cyanobacteria. The cyanobacteria which normally fail to fix nitrogen contained spermidine as the major polyamine, while the sym-homospermidine content was very low or under the limits of detection. Apparently there is a close relationship between the sym-homospermidine content and the ability to fix nitrogen in cyanobacteria.
Collapse
|
41
|
Shirahata A, Takeda Y, Kawase M, Samejima K. Detection of spermine and thermospermine by thin-layer chromatography. J Chromatogr A 1983. [DOI: 10.1016/s0021-9673(01)88139-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Matsuzaki S, Hamana K, Imai K, Matsuura K. Occurrence in high concentrations of N1-acetylspermidine and syn-homospermidine in the hamster epididymis. Biochem Biophys Res Commun 1982; 107:307-13. [PMID: 7126211 DOI: 10.1016/0006-291x(82)91705-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|