1
|
Zhai H, Zhou C, Zhang Y, Wang Y, Wang M, Wei S, Li T. Mechanism Analysis of OsbHLH34-OsERF34 Mediated Regulation of Rice Resistance to Sheath Blight. Int J Mol Sci 2025; 26:2249. [PMID: 40076870 PMCID: PMC11899915 DOI: 10.3390/ijms26052249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Transcription factors are pivotal molecules involved in transcriptional and post-transcriptional regulation in plants, playing a crucial role in combating biological stress. Here, we have characterized a regulatory factor, OsbHLH34, which governs the response of rice to infection by Rhizoctonia solani AG1-IA. The expression of OsbHLH34 significantly impacts the susceptibility of rice to Rhizoctonia solani infection. Through the generation of OsbHLH34 knockout and overexpressing rice plants, we observed that OsbHLH34 acts as a positive regulator of rice resistance against rice sheath blight. The average lesion area of overexpression plants was 14.3%, the average lesion area of wildtype plants was 36%, and the average lesion area of mutant plants was 67.6%. Transcriptome and qRT-PCR analysis showed that OsbHLH34 regulates OsERF34, which is a key transcription factor for ethylene biosynthesis and resistance to sheath blight. By employing yeast one-hybrid and dual luciferase assays, we demonstrated that OsbHLH34 directly interacts with the promoter of OsERF34, thereby activating its transcription. Both in vitro and in vivo experiments confirmed OsERF34 as a direct target of OsbHLH34. These findings not only enhance our understanding of the molecular mechanisms underpinning rice disease resistance but also offer novel targets for the improvement of rice disease resistance through breeding strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Songhong Wei
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China; (H.Z.); (C.Z.); (Y.Z.); (Y.W.); (M.W.)
| | - Tianya Li
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China; (H.Z.); (C.Z.); (Y.Z.); (Y.W.); (M.W.)
| |
Collapse
|
2
|
Yamagishi M, Nomizu T, Nakatsuka T. Overexpression of lily MicroRNA156-resistant SPL13A stimulates stem elongation and flowering in Lilium formosanum under non-inductive (non-chilling) conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1456183. [PMID: 39494055 PMCID: PMC11527630 DOI: 10.3389/fpls.2024.1456183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Flowering plants undergo juvenile vegetative, adult vegetative, and reproductive phases. Lily plants (Lilium spp.) develop scaly leaves during their juvenile vegetative phase. Stem elongation occurs in the adult vegetative phase and is followed by floral transition. As the duration of the juvenile vegetative phase is long in lilies, the microRNA156 (miR156) and SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) modules are expected to play a major role in vegetative phase change and flower induction. In the present study, we aimed to explore the functions of lily SLP13A. We evaluated phenotypic changes and gene expression in L. formosanum plants overexpressing miR156-resistant SPL13A (rSPL13A) and examined the accumulation levels of gene transcripts and mature miRNAs in non-transformed L. longiflorum plants. Lily plants overexpressing rSPL13A exhibited stem elongation under non-inductive conditions, and FLOWERING LOCUS T (FT) genes were poorly involved in this stem elongation. Flowering was induced in the transformed plants with elongated stems, and the accumulation of MADS5 (APETALA1) transcripts and mature miR172 was elevated in these plants. In non-transformed lilies, SPL13A transcripts were highly accumulated in the shoot apices of both juvenile and adult plants. As mature miR156 was poorly accumulated in the shoot apices of the adult plants, SPL13A was active enough to stimulate stem elongation and flower induction. In contrast, mature miR156 was reliably detected in shoot apices of the juvenile plants. Because our transient assay using tobacco plants expressing a SPL13A-GFP fusion protein indicated that miR156 repressed SPL13A expression mainly at the translational level, SPL13A activity should be insufficient to stimulate stem elongation in the juvenile plants. In addition, the accumulation of MADS5 transcripts and mature miR172 in the shoot apices increased with plant growth and peaked before the transition to the reproductive phase. Therefore, we conclude that SPL13A regulates stem elongation in the adult vegetative phase, which differs from the mechanisms evaluated in Arabidopsis and rice, wherein stem elongation proceeds in a reproductive phase and FT genes are heavily involved in it, and that SPL13A induces flowering by the activation of genes related to the age pathway underlying floral transition, as APETALA1 and primary-MIR172 are mainly involved in this pathway.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Toshikazu Nomizu
- Biotechnology Division, Niigata Agricultural Research Institute, Nagaoka, Niigata, Japan
| | - Takashi Nakatsuka
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
3
|
Akagi M, Nakamura N, Tanaka Y. Downregulation of a Phi class glutathione S-transferase gene in transgenic torenia yielded pale flower color. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:147-151. [PMID: 39463771 PMCID: PMC11500598 DOI: 10.5511/plantbiotechnology.24.0409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 10/29/2024]
Abstract
The members of glutathione S-transferase (GST) belonging to the Phi class of the GST family are known to play a role in anthocyanin transport to the vacuole. We isolated a GST orthologue from the torenia petal cDNA library. Transgenic plants transcribing GST double stranded RNA were generated from a torenia cultivar having blue flowers. These plants exhibited a range of flower colors, from blue to almost white. Quantitative RT-PCR confirmed the downregulation of the GST transcript, accompanied by a decrease in anthocyanin levels in the petals of the transgenic plants, whereas flavone levels remained unchanged. These results suggest that GST is involved in anthocyanin transport in torenia petals, and that anthocyanins and flavones are likely transported to the vacuole through different mechanisms.
Collapse
Affiliation(s)
- Misako Akagi
- Research Institute, Suntory Global Innovation Center Ltd
| | | | | |
Collapse
|
4
|
Vollen K, Zhao C, Alonso JM, Stepanova AN. Sourcing DNA parts for synthetic biology applications in plants. Curr Opin Biotechnol 2024; 87:103140. [PMID: 38723389 DOI: 10.1016/j.copbio.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Transgenic approaches are now standard in plant biology research aiming to characterize gene function or improve crops. Recent advances in DNA synthesis and assembly make constructing transgenes a routine task. What remains nontrivial is the selection of the DNA parts and optimization of the transgene design. Early career researchers and seasoned molecular biologists alike often face difficult decisions on what promoter or terminator to use, what tag to include, and where to place it. This review aims to inform about the current approaches being employed to identify and characterize DNA parts with the desired functionalities and give general advice on basic construct design. Furthermore, we hope to share the excitement about new experimental and computational tools being developed in this field.
Collapse
Affiliation(s)
- Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jose M Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
5
|
Winters NP, Wafula EK, Knollenberg BJ, Hämälä T, Timilsena PR, Perryman M, Zhang D, Sheaffer LL, Praul CA, Ralph PE, Prewitt S, Leandro-Muñoz ME, Delgadillo-Duran DA, Altman NS, Tiffin P, Maximova SN, dePamphilis CW, Marden JH, Guiltinan MJ. A combination of conserved and diverged responses underlies Theobroma cacao's defense response to Phytophthora palmivora. BMC Biol 2024; 22:38. [PMID: 38360697 PMCID: PMC10870529 DOI: 10.1186/s12915-024-01831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. RESULTS We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. CONCLUSIONS Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.
Collapse
Affiliation(s)
- Noah P Winters
- IGDP Ecology, The Pennsylvania State University, 422 Huck Life Sciences Building, University Park, PA, 16803, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Prakash R Timilsena
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Melanie Perryman
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD, USA
| | - Lena L Sheaffer
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Craig A Praul
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Paula E Ralph
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sarah Prewitt
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | | | | | - Naomi S Altman
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Siela N Maximova
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
| | - Claude W dePamphilis
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - James H Marden
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Mark J Guiltinan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
- Department of Biology, The Pennsylvania State University, University Park, PA, USA.
- IGDP Plant Biology, The Pennsylvania State University, University Park, PA, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
6
|
Matsushima A, Matsuo K. Removal of plant endogenous proteins from tobacco leaf extract by freeze-thaw treatment for purification of recombinant proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111953. [PMID: 38072330 DOI: 10.1016/j.plantsci.2023.111953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Plants are useful as a low-cost source for producing biopharmaceutical proteins. A significant hurdle in the production of recombinant proteins in plants, however, is the complicated process of removing plant-derived components. Removing endogenous plant proteins, including ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), a major photosynthetic plant enzyme that catalyzes photosynthesis through carboxylation and oxygenation, is important for the purification of recombinant plant proteins. In particular, RuBisCO accounts for 50% of the soluble leaf protein; thus, the removal of RuBisCO is critical for the purification of recombinant proteins from plant materials. An effective conventional method, known as freeze-thaw treatment, was developed for the removal of RuBisCO from Nicotiana benthamiana, which expresses recombinant green fluorescent protein (GFP). Crude extracts or supernatants were frozen at - 30 °C. Upon thawing, most of the RuBisCO was precipitated by centrifugation without significant inactivation and/or yield reduction of GFP. Based on the proteomics analysis, using this method, RuBisCO large and small subunits were reduced to approximately 10% and 20% of those of the unfrozen supernatant solutions, respectively, without the need for specific reagents or equipment. The proteomic analysis also revealed that many ribosomal proteins were removed from the extracts. This method improves the purification process of recombinant proteins from plant materials. Prolonged freezing damaged recombinant β-glucuronidase (GUS), suggesting that the applicability of this treatment should be carefully considered for each recombinant protein.
Collapse
Affiliation(s)
- Akito Matsushima
- Frontier Business Division, Chiyoda Corporation, 4-6-2 Minatomirai, Nishi-ku, Yokohama 220-8765, Japan
| | - Kouki Matsuo
- National Institute of Advanced Industrial Science and Technology (AIST), Bioproduction Research Institute, 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan.
| |
Collapse
|
7
|
Zeng Q, Jia H, Ma Y, Xu L, Ming R, Yue J. Genome-Wide Identification and Expression Pattern Profiling of the Aquaporin Gene Family in Papaya ( Carica papaya L.). Int J Mol Sci 2023; 24:17276. [PMID: 38139107 PMCID: PMC10744249 DOI: 10.3390/ijms242417276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Aquaporins (AQPs) are mainly responsible for the transportation of water and other small molecules such as CO2 and H2O2, and they perform diverse functions in plant growth, in development, and under stress conditions. They are also active participants in cell signal transduction in plants. However, little is known about AQP diversity, biological functions, and protein characteristics in papaya. To better understand the structure and function of CpAQPs in papaya, a total of 29 CpAQPs were identified and classified into five subfamilies. Analysis of gene structure and conserved motifs revealed that CpAQPs exhibited a degree of conservation, with some differentiation among subfamilies. The predicted interaction network showed that the PIP subfamily had the strongest protein interactions within the subfamily, while the SIP subfamily showed extensive interaction with members of the PIP, TIP, NIP, and XIP subfamilies. Furthermore, the analysis of CpAQPs' promoters revealed a large number of cis-elements participating in light, hormone, and stress responses. CpAQPs exhibited different expression patterns in various tissues and under different stress conditions. Collectively, these results provided a foundation for further functional investigations of CpAQPs in ripening, as well as leaf, flower, fruit, and seed development. They also shed light on the potential roles of CpAQP genes in response to environmental factors, offering valuable insights into their biological functions in papaya.
Collapse
Affiliation(s)
- Qiuxia Zeng
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haifeng Jia
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaying Ma
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangwei Xu
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
| | - Jingjing Yue
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (H.J.); (Y.M.); (L.X.)
| |
Collapse
|
8
|
Sasaki K, Tanaka T. Overcoming Difficulties in Molecular Biological Analysis through a Combination of Genetic Engineering, Genome Editing, and Genome Analysis in Hexaploid Chrysanthemum morifolium. PLANTS (BASEL, SWITZERLAND) 2023; 12:2566. [PMID: 37447127 DOI: 10.3390/plants12132566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Chrysanthemum is one of the most commercially important ornamental plants globally, of which many new varieties are produced annually. Among these new varieties, many are the result of crossbreeding, while some are the result of mutation breeding. Recent advances in gene and genome sequencing technology have raised expectations about the use of biotechnology and genome breeding to efficiently breed new varieties. However, some features of chrysanthemum complicate molecular biological analysis. For example, chrysanthemum is a hexaploid hyperploid plant with a large genome, while its genome is heterogeneous because of the difficulty of obtaining pure lines due to self-incompatibility. Despite these difficulties, an increased number of reports on transcriptome analysis in chrysanthemum have been published as a result of recent technological advances in gene sequencing, which should deepen our understanding of the properties of these plants. In this review, we discuss recent studies using gene engineering, genome editing, and genome analysis, including transcriptome analysis, to analyze chrysanthemum, as well as the current status of and future prospects for chrysanthemum.
Collapse
Affiliation(s)
- Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba 305-0852, Ibaraki, Japan
| | - Tsuyoshi Tanaka
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8518, Ibaraki, Japan
| |
Collapse
|
9
|
Kotera Y, Komori H, Tasaki K, Takagi K, Imano S, Katou S. The Peroxisomal β-Oxidative Pathway and Benzyl Alcohol O-Benzoyltransferase HSR201 Cooperatively Contribute to the Biosynthesis of Salicylic Acid. PLANT & CELL PHYSIOLOGY 2023:pcad034. [PMID: 37098219 DOI: 10.1093/pcp/pcad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 06/19/2023]
Abstract
The phytohormone salicylic acid (SA) regulates plant defense responses against pathogens. Previous studies have suggested that SA is mainly produced from trans-cinnamic acid (CA) in tobacco, but the underlying mechanisms remain largely unknown. SA synthesis is activated by wounding in tobacco plants in which the expression of WIPK and SIPK, two mitogen-activated protein kinases, is suppressed. Using this phenomenon, we previously revealed that HSR201 encoding benzyl alcohol O-benzoyltransferase is required for pathogen signal-induced SA synthesis. In this study, we further analyzed the transcriptomes of wounded WIPK/SIPK-suppressed plants and found that the expression of NtCNL, NtCHD and NtKAT1, homologous to cinnamate-coenzyme A (CoA) ligase (CNL), cinnamoyl-CoA hydratase/dehydrogenase (CHD) and 3-ketoacyl-CoA thiolase (KAT), respectively, is associated with SA biosynthesis. CNL, CHD and KAT constitute a β-oxidative pathway in the peroxisomes and produce benzoyl-CoA, a precursor of benzenoid compounds in petunia flowers. Subcellular localization analysis showed that NtCNL, NtCHD and NtKAT1 localize in the peroxisomes. Recombinant NtCNL catalyzed the formation of CoA esters of CA, whereas recombinant NtCHD and NtKAT1 proteins converted cinnamoyl-CoA to benzoyl-CoA, a substrate of HSR201. Virus-induced gene silencing of any one of NtCNL, NtCHD and NtKAT1 homologs compromised SA accumulation induced by a pathogen-derived elicitor in Nicotiana benthamiana leaves. Transient overexpression of NtCNL in N. benthamiana leaves resulted in SA accumulation, which was enhanced by co-expression of HSR201, although overexpression of HSR201 alone did not cause SA accumulation. These results suggested that the peroxisomal β-oxidative pathway and HSR201 cooperatively contribute to SA biosynthesis in tobacco and N. benthamiana.
Collapse
Affiliation(s)
- Yu Kotera
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Hirotomo Komori
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Kosuke Tasaki
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Kumiko Takagi
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Sayaka Imano
- Faculty of Agriculture, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| | - Shinpei Katou
- Graduate School of Science and Technology, Shinshu University, Minamiminowa 8304, Nagano 399-4598, Japan
| |
Collapse
|
10
|
Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology 2023; 580:112-119. [PMID: 36812696 DOI: 10.1016/j.virol.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Department of Biotechnology, Faculty of Agriculture, Azarbijan Shahid Madani University, Tabriz, Iran.
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| | - Maria Salvato
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | - Valentina Turri
- Healthcare Direction, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori, IRCCS, 47014, Meldola, FC, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
11
|
Jasmonic Acid-Induced β-Cyclocitral Confers Resistance to Bacterial Blight and Negatively Affects Abscisic Acid Biosynthesis in Rice. Int J Mol Sci 2023; 24:ijms24021704. [PMID: 36675223 PMCID: PMC9866013 DOI: 10.3390/ijms24021704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Jasmonic acid (JA) regulates the production of several plant volatiles that are involved in plant defense mechanisms. In this study, we report that the JA-responsive volatile apocarotenoid, β-cyclocitral (β-cyc), negatively affects abscisic acid (ABA) biosynthesis and induces a defense response against Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight in rice (Oryza sativa L.). JA-induced accumulation of β-cyc was regulated by OsJAZ8, a repressor of JA signaling in rice. Treatment with β-cyc induced resistance against Xoo and upregulated the expression of defense-related genes in rice. Conversely, the expression of ABA-responsive genes, including ABA-biosynthesis genes, was downregulated by JA and β-cyc treatment, resulting in a decrease in ABA levels in rice. β-cyc did not inhibit the ABA-dependent interactions between OsPYL/RCAR5 and OsPP2C49 in yeast cells. Furthermore, we revealed that JA-responsive rice carotenoid cleavage dioxygenase 4b (OsCCD4b) was localized in the chloroplast and produced β-cyc both in vitro and in planta. These results suggest that β-cyc plays an important role in the JA-mediated resistance against Xoo in rice.
Collapse
|
12
|
Oku S, Ueno K, Sawazaki Y, Maeda T, Jitsuyama Y, Suzuki T, Onodera S, Fujino K, Shimura H. Functional characterization and vacuolar localization of fructan exohydrolase derived from onion (Allium cepa). JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4908-4922. [PMID: 35552692 DOI: 10.1093/jxb/erac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Fructans such as inulin and levan accumulate in certain taxonomic groups of plants and are a reserve carbohydrate alternative to starch. Onion (Allium cepa L.) is a typical plant species that accumulates fructans, and it synthesizes inulin-type and inulin neoseries-type fructans in the bulb. Although genes for fructan biosynthesis in onion have been identified so far, no genes for fructan degradation had been found. In this study, phylogenetic analysis predicted that we isolated a putative vacuolar invertase gene (AcpVI1), but our functional analyses demonstrated that it encoded a fructan 1-exohydrolase (1-FEH) instead. Assessments of recombinant proteins and purified native protein showed that the protein had 1-FEH activity, hydrolyzing the β-(2,1)-fructosyl linkage in inulin-type fructans. Interestingly, AcpVI1 had an amino acid sequence close to those of vacuolar invertases and fructosyltransferases, unlike all other FEHs previously found in plants. We showed that AcpVI1 was localized in the vacuole, as are onion fructosyltransferases Ac1-SST and Ac6G-FFT. These results indicate that fructan-synthesizing and -degrading enzymes are both localized in the vacuole. In contrast to previously reported FEHs, our data suggest that onion 1-FEH evolved from a vacuolar invertase and not from a cell wall invertase. This demonstrates that classic phylogenetic analysis on its own is insufficient to discriminate between invertases and FEHs, highlighting the importance of functional markers in the nearby active site residues.
Collapse
Affiliation(s)
- Satoshi Oku
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Keiji Ueno
- Graduate School of Dairy Science, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Yukiko Sawazaki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Tomoo Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| | - Yutaka Jitsuyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Takashi Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Shuichi Onodera
- Graduate School of Dairy Science, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Kaien Fujino
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Hanako Shimura
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
13
|
Takagi K, Tasaki K, Komori H, Katou S. Hypersensitivity-Related Genes HSR201 and HSR203J Are Regulated by Calmodulin-Binding Protein 60-Type Transcription Factors and Required for Pathogen Signal-Induced Salicylic Acid Synthesis. PLANT & CELL PHYSIOLOGY 2022; 63:1008-1022. [PMID: 35671166 DOI: 10.1093/pcp/pcac074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Salicylic acid (SA) plays a key role in plant resistance to pathogens. In Arabidopsis, the isochorismate synthase pathway mainly contributes to pathogen-induced SA synthesis, and the expression of SA synthesis genes is activated by two calmodulin (CaM)-binding protein 60 (CBP60)-type transcription factors, CBP60g and SARD1. In tobacco, the mechanisms underlying SA synthesis remain largely unknown. SA production is induced by wounding in tobacco plants in which the expression of two stress-related mitogen-activated protein kinases is suppressed. Using this phenomenon, we identified genes whose expression is associated with SA synthesis. One of the genes, NtCBP60g, showed 23% amino acid sequence identity with CBP60g. Transient overexpression of NtCBP60g as well as NtSARD1, a tobacco homolog of SARD1, induced SA accumulation in Nicotiana benthamiana leaves. NtCBP60g and NtSARD1 bound CaM, and CaM enhanced SA accumulation induced by NtCBP60g and NtSARD1. Conversely, mutations in NtCBP60g and NtSARD1 that abolished CaM binding reduced their ability to induce SA. Expression profiling and promoter analysis identified two hypersensitivity-related genes, HSR201 and HSR203J as the targets of NtCBP60g and NtSARD1. Virus-induced gene silencing of both NtCBP60g and NtSARD1 homologs compromised SA accumulation and the expression of HSR201 and HSR203J homologs, which were induced by a pathogen-derived elicitor in N. benthamiana leaves. Moreover, elicitor-induced SA accumulation was compromised by silencing of the HSR201 homolog and the HSR203J homolog. These results suggested that HSR201 and HSR203J are regulated by NtCBP60g and NtSARD1 and are required for elicitor-induced SA synthesis.
Collapse
Affiliation(s)
- Kumiko Takagi
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Kosuke Tasaki
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Hirotomo Komori
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| | - Shinpei Katou
- Graduate School of Science and Technology, Shinshu University, Nagano, 399-4598 Japan
| |
Collapse
|
14
|
Song S, Zhang D, Ma F, Xing W, Huang D, Wu B, Chen J, Chen D, Xu B, Xu Y. Genome-Wide Identification and Expression Analyses of the Aquaporin Gene Family in Passion Fruit ( Passiflora edulis), Revealing PeTIP3-2 to Be Involved in Drought Stress. Int J Mol Sci 2022; 23:5720. [PMID: 35628541 PMCID: PMC9146829 DOI: 10.3390/ijms23105720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Aquaporins (AQPs) in plants can transport water and small molecules, and they play an important role in plant development and abiotic stress response. However, to date, a comprehensive study on AQP family members is lacking. In this study, 27 AQP genes were identified from the passion fruit genome and classified into four groups (NIP, PIP, TIP, SIP) on the basis of their phylogenetic relationships. The prediction of protein interactions indicated that the AQPs of passion fruit were mainly associated with AQP family members and boron protein family genes. Promoter cis-acting elements showed that most PeAQPs contain light response elements, hormone response elements, and abiotic stress response elements. According to collinear analysis, passion fruit is more closely related to Arabidopsis than rice. Furthermore, three different fruit ripening stages and different tissues were analyzed on the basis of the transcriptome sequencing results for passion fruit AQPs under drought, high-salt, cold and high-temperature stress, and the results were confirmed by qRT-PCR. The results showed that the PeAQPs were able to respond to different abiotic stresses, and some members could be induced by and expressed in response to multiple abiotic stresses at the same time. Among the three different fruit ripening stages, 15 AQPs had the highest expression levels in the first stage. AQPs are expressed in all tissues of the passion fruit. One of the passion fruit aquaporin genes, PeTIP3-2, which was induced by drought stress, was selected and transformed into Arabidopsis. The survival rate of transgenic plants under drought stress treatment is higher than that of wild-type plants. The results indicated that PeTIP3-2 was able to improve the drought resistance of plants. Our discovery lays the foundation for the functional study of AQPs in passion fruit.
Collapse
Affiliation(s)
- Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| | - Dahui Zhang
- Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (J.C.)
| | - Funing Ma
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| | - Wenting Xing
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Bin Wu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Jian Chen
- Yunnan Agricultural University, Kunming 650201, China; (D.Z.); (J.C.)
| | - Di Chen
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Binqiang Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.S.); (F.M.); (W.X.); (D.H.); (B.W.); (D.C.); (B.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 571101, China
| |
Collapse
|
15
|
Jiang L, Chen J, Yang YZ, Li R, Li S, Wang ZQ, Jiang T. Functional analysis of a viral promoter from a strawberry vein banding virus isolate from China. Virol J 2022; 19:60. [PMID: 35361243 PMCID: PMC8974135 DOI: 10.1186/s12985-022-01778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Promoters are important factors affecting gene expression in cells. The driven activities of viral promoters were generally assessed to screen available promoters for transgenic and research and biotech industries. In this study, we cloned a full-length promoter from a Chinese isolate of strawberry vein banding virus (SVBV) and produced several deletion mutants for evaluation of applications in production of reporter proteins in stable transgenic plants. Methods The full-length promoter of SVBV (SP1) and its three deletion mutants (SP2, SP3, and SP4) were amplified using polymerase chain reaction. The effects of SVBV SP1, SP2, SP3, and SP4 on gene expression were evaluated using β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. Results Transient expression assays showed that the SVBV SP1 promoter and its three deletion mutants all expressed the reporter genes, albeit at very different levels. Interestingly, transcriptional activity driven by the SP1 promoter was much higher than that of the cauliflower mosaic virus (CaMV) 35S promoter. After stable transformation of the GUS gene into Nicotiana tabacum plants, SVBV SP1-driven transgene expression was approximately 2.6-fold higher than CaMV 35S promoter-driven transgene expression. In addition, GUS gene expression levels were enhanced by co-inoculation of the plants with the SP1 promoter-driven vector carrying the GUS gene and the vector expressing SVBV open reading frame (ORF) V or ORF VI. Conclusions The SVBV SP1 promoter from the Chinese isolate evaluated in this study could successfully drive transient and stable expression in plants, it was a stronger promoter than the CaMV 35S and FLt-US promoters and may be more useful for the production of stable transgenic plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01778-2.
Collapse
Affiliation(s)
- Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - You-Zhi Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Rui Li
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Shuang Li
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China.,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China.,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhan-Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, People's Republic of China.
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China. .,Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China. .,Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
16
|
Matsuo K. CRISPR/Cas9-mediated knockout of the DCL2 and DCL4 genes in Nicotiana benthamiana and its productivity of recombinant proteins. PLANT CELL REPORTS 2022; 41:307-317. [PMID: 34783883 DOI: 10.1007/s00299-021-02809-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE DCL2 and DCL4 genes in Nicotiana benthamiana plants were successfully edited using the CRISPR/Cas9 system. Recently, plants have been utilized for recombinant protein production similar to other expression systems, i.e., bacteria, yeast, insect, and mammal cells. However, insufficient amounts of recombinant proteins are often produced in plant cells. The repression of RNA silencing within plant cells could improve production levels of recombinant protein because RNA silencing frequently decomposes mRNAs from transgenes. In this study, the genes dicer-like protein 2 and 4 (NbDCL2 and NbDCL4) were successfully edited to produce double-knockout transgenic Nicotiana benthamiana plants (dcl2dcl4 plants) using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology. A transient green fluorescent protein (GFP) gene expression assay revealed that the dcl2dcl4 plants accumulated higher amounts of GFP and GFP mRNA than wild type (WT) and RNA-dependent RNA polymerase 6-knockout N. benthamiana plants (ΔRDR6 plants). Small RNA sequencing also showed that dcl2dcl4 plants accumulated lower amounts of small interfering RNAs (siRNAs) against the GFP gene than WT plants. The dcl2dcl4 plants might also produce higher amounts of human fibroblast growth factor 1 (FGF1) than WT and ΔRDR6 plants. These observations appear to reflect differences between DCLs and RDR6 in plant cell biological mechanisms. These results reveal that dcl2dcl4 plants would be suitable as platform plants for recombinant protein production.
Collapse
Affiliation(s)
- Kouki Matsuo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.
| |
Collapse
|
17
|
Ghimire B, Saraiva M, Andersen CB, Gogoi A, Saleh M, Zic N, van West P, Brurberg MB. Transformation systems, gene silencing and gene editing technologies in oomycetes. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Sullivan ML, Knollenberg BJ. Red Clover HDT, a BAHD Hydroxycinnamoyl-Coenzyme A:L-3,4-Dihydroxyphenylalanine (L-DOPA) Hydroxycinnamoyl Transferase That Synthesizes Clovamide and Other N-Hydroxycinnamoyl-Aromatic Amino Acid Amides. FRONTIERS IN PLANT SCIENCE 2021; 12:727461. [PMID: 34868112 PMCID: PMC8641662 DOI: 10.3389/fpls.2021.727461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/13/2021] [Indexed: 05/16/2023]
Abstract
Red clover leaves accumulate high levels (up to 1 to 2% of dry matter) of two caffeic acid derivatives: phaselic acid (2-O-caffeoyl-L-malate) and clovamide [N-caffeoyl-L-3,4-dihydroxyphenylalanine (L-DOPA)]. These likely play roles in protecting the plant from biotic and abiotic stresses but can also help preserve protein during harvest and storage of the forage via oxidation by an endogenous polyphenol oxidase. We previously identified and characterized, a hydroxycinnamoyl-coenzyme A (CoA):malate hydroxycinnamoyl transferase (HMT) from red clover. Here, we identified a hydroxycinnamoyl-CoA:L-DOPA hydroxycinnamoyl transferase (HDT) activity in unexpanded red clover leaves. Silencing of the previously cloned HMT gene reduced both HMT and HDT activities in red clover, even though the HMT enzyme lacks HDT activity. A combination of PCR with degenerate primers based on BAHD hydroxycinnamoyl-CoA transferase sequences and 5' and 3' rapid amplification of cDNA ends was used to clone two nearly identical cDNAs from red clover. When expressed in Escherichia coli, the encoded proteins were capable of transferring hydroxycinnamic acids (p-coumaric, caffeic, or ferulic) from the corresponding CoA thioesters to the aromatic amino acids L-Phe, L-Tyr, L-DOPA, or L-Trp. Kinetic parameters for these substrates were determined. Stable expression of HDT in transgenic alfalfa resulted in foliar accumulation of p-coumaroyl- and feruloyl-L-Tyr that are not normally present in alfalfa, but not derivatives containing caffeoyl or L-DOPA moieties. Transient expression of HDT in Nicotiana benthamiana resulted in the production of caffeoyl-L-Tyr, but not clovamide. Coexpression of HDT with a tyrosine hydroxylase resulted in clovamide accumulation, indicating the host species' pool of available amino acid (and hydroxycinnamoyl-CoA) substrates likely plays a major role in determining HDT product accumulation in planta. Finally, that HDT and HMT proteins share a high degree of identity (72%), but differ substantially in substrate specificity, is promising for further investigation of structure-function relationships of this class of enzymes, which could allow the rational design of BAHD enzymes with specific and desirable activities.
Collapse
Affiliation(s)
| | - Benjamin J. Knollenberg
- Department of Plant Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
19
|
Samalova M, Moore I. The steroid-inducible pOp6/LhGR gene expression system is fast, sensitive and does not cause plant growth defects in rice (Oryza sativa). BMC PLANT BIOLOGY 2021; 21:461. [PMID: 34627147 PMCID: PMC8501728 DOI: 10.1186/s12870-021-03241-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Inducible systems for transgene expression activated by a chemical inducer or an inducer of non-plant origin are desirable tools for both basic plant research and biotechnology. Although, the technology has been widely exploited in dicotyledonous model plants such as Arabidopsis, it has not been optimised for use with the monocotyledonous model species, namely rice. We have adapted the dexamethasone-inducible pOp6/LhGR system for rice and the results indicated that it is fast, sensitive and tightly regulated, with high levels of induction that remain stable over several generations. Most importantly, we have shown that the system does not cause negative growth defects in vitro or in soil grown plants. Interestingly in the process of testing, we found that another steroid, triamcinolone acetonide, is a more potent inducer in rice than dexamethasone. We present serious considerations for the construct design to avoid undesirable effects caused by the system in plants, leakiness and possible silencing, as well as simple steps to maximize translation efficiency of a gene of interest. Finally, we compare the performance of the pOp6/LhGR system with other chemically inducible systems tested in rice in terms of the properties of an ideal inducible system.
Collapse
Affiliation(s)
- Marketa Samalova
- Department of Experimental Biology, Masaryk University, Brno, Czech Republic.
| | - Ian Moore
- Department of Plant Sciences, Oxford University, Oxford, UK
| |
Collapse
|
20
|
Jin S, Lin Q, Luo Y, Zhu Z, Liu G, Li Y, Chen K, Qiu JL, Gao C. Genome-wide specificity of prime editors in plants. Nat Biotechnol 2021; 39:1292-1299. [PMID: 33859403 DOI: 10.1038/s41587-021-00891-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
Although prime editors (PEs) have the potential to facilitate precise genome editing in therapeutic, agricultural and research applications, their specificity has not been comprehensively evaluated. To provide a systematic assessment in plants, we first examined the mismatch tolerance of PEs in plant cells and found that the editing frequency was influenced by the number and location of mismatches in the primer binding site and spacer of the prime editing guide RNA (pegRNA). Assessing the activity of 12 pegRNAs at 179 predicted off-target sites, we detected only low frequencies of off-target edits (0.00~0.23%). Whole-genome sequencing of 29 PE-treated rice plants confirmed that PEs do not induce genome-wide pegRNA-independent off-target single-nucleotide variants or small insertions/deletions. We also show that ectopic expression of the Moloney murine leukemia virus reverse transcriptase as part of the PE does not change retrotransposon copy number or telomere structure or cause insertion of pegRNA or messenger RNA sequences into the genome.
Collapse
Affiliation(s)
- Shuai Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zixu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guanwen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yunjia Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Kunling Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Azpeitia E, Tichtinsky G, Le Masson M, Serrano-Mislata A, Lucas J, Gregis V, Gimenez C, Prunet N, Farcot E, Kater MM, Bradley D, Madueño F, Godin C, Parcy F. Cauliflower fractal forms arise from perturbations of floral gene networks. Science 2021; 373:192-197. [PMID: 34244409 DOI: 10.1126/science.abg5999] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/03/2021] [Indexed: 11/02/2022]
Abstract
Throughout development, plant meristems regularly produce organs in defined spiral, opposite, or whorl patterns. Cauliflowers present an unusual organ arrangement with a multitude of spirals nested over a wide range of scales. How such a fractal, self-similar organization emerges from developmental mechanisms has remained elusive. Combining experimental analyses in an Arabidopsis thaliana cauliflower-like mutant with modeling, we found that curd self-similarity arises because the meristems fail to form flowers but keep the "memory" of their transient passage in a floral state. Additional mutations affecting meristem growth can induce the production of conical structures reminiscent of the conspicuous fractal Romanesco shape. This study reveals how fractal-like forms may emerge from the combination of key, defined perturbations of floral developmental programs and growth dynamics.
Collapse
Affiliation(s)
- Eugenio Azpeitia
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69364 Lyon, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Marie Le Masson
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Antonio Serrano-Mislata
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Carlos Gimenez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Nathanaël Prunet
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Etienne Farcot
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Desmond Bradley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), 46022 Valencia, Spain
| | - Christophe Godin
- Laboratoire de Reproduction et Développement des Plantes, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Inria, F-69364 Lyon, France.
| | - Francois Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, F-38054 Grenoble, France.
| |
Collapse
|
22
|
Hiraga Y, Shimada N, Nagashima Y, Suda K, Kanamori T, Ishiguro K, Sato Y, Hirakawa H, Sato S, Akashi T, Tanaka Y, Ohta D, Aoki K, Shibata D, Suzuki H, Kera K. Identification of a Flavin Monooxygenase-Like Flavonoid 8-Hydroxylase with Gossypetin Synthase Activity from Lotus japonicus. PLANT & CELL PHYSIOLOGY 2021; 62:411-423. [PMID: 33416873 DOI: 10.1093/pcp/pcaa171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Lotus japonicus is a model legume that accumulates 8-hydroxyflavonol derivatives, such as gossypetin (8-hydroxyquercetin) 3-O-glycoside, which confer the yellow color to its petals. An enzyme, flavonoid 8-hydroxylase (F8H; LjF8H), is assumed to be involved in the biosynthesis, but the specific gene is yet to be identified. The LjF8H cDNA was isolated as a flavin adenine dinucleotide (FAD)-binding monooxygenase-like protein using flower buds and flower-specific EST data of L. japonicus. LjF8H is a single copy gene on chromosome III consisting of six exons. The conserved FAD- and NAD(P)H-dependent oxidase motifs were found in LjF8H. Phylogenetic analysis suggested that LjF8H is a member of the flavin monooxygenase group but distinctly different from other known flavonoid oxygenases. Analysis of recombinant yeast microsome expressing LjF8H revealed that the enzyme catalyzed the 8-hydroxylation of quercetin. Other flavonoids, such as naringenin, eriodictyol, apigenin, luteolin, taxifolin and kaempferol, also acted as substrates of LjF8H. This broad substrate acceptance was unlike known F8Hs in other plants. Interestingly, flavanone and flavanonol, which have saturated C-C bond at positions 2 and 3 of the flavonoid C-ring, produced 6-hyroxylflavonoids as a by-product of the enzymatic reaction. Furthermore, LjF8H only accepted the 2S-isomer of naringenin, suggesting that the conformational state of the substrates might affect product specificity. The overexpression of LjF8H in Arabidopsis thaliana and Petunia hybrida synthesized gossypetin and 8-hydroxykaempferol, respectively, indicating that LjF8H was functional in plant cells. In conclusion, this study represents the first instance of cloning and identification of F8Hs responsible for gossypetin biosynthesis.
Collapse
Affiliation(s)
- Yasuhide Hiraga
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Research and Development Department, Hirata Corporation, 111 Hitotsugi, Ueki, Kita, Kumamoto-shi, Kumamoto, 861-0198 Japan
| | - Norimoto Shimada
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Yoshiki Nagashima
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Kunihiro Suda
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Tina Kanamori
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531 Japan
| | - Kanako Ishiguro
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1, Seika-dai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Yuka Sato
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880 Japan
| | - Hideki Hirakawa
- Facility for Genome Informatics, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Shusei Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880 Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1, Seika-dai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
| | - Daisaku Ohta
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531 Japan
| | - Koh Aoki
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Daisuke Shibata
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Research and Development Department, Hirata Corporation, 111 Hitotsugi, Ueki, Kita, Kumamoto-shi, Kumamoto, 861-0198 Japan
| | - Kota Kera
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba, 292-0818 Japan
- Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502 Japan
| |
Collapse
|
23
|
Prewitt SF, Shalit-Kaneh A, Maximova SN, Guiltinan MJ. Inter-species functional compatibility of the Theobroma cacao and Arabidopsis FT orthologs: 90 million years of functional conservation of meristem identity genes. BMC PLANT BIOLOGY 2021; 21:218. [PMID: 33990176 PMCID: PMC8122565 DOI: 10.1186/s12870-021-02982-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In angiosperms the transition to flowering is controlled by a complex set of interacting networks integrating a range of developmental, physiological, and environmental factors optimizing transition time for maximal reproductive efficiency. The molecular mechanisms comprising these networks have been partially characterized and include both transcriptional and post-transcriptional regulatory pathways. Florigen, encoded by FLOWERING LOCUS T (FT) orthologs, is a conserved central integrator of several flowering time regulatory pathways. To characterize the molecular mechanisms involved in controlling cacao flowering time, we have characterized a cacao candidate florigen gene, TcFLOWERING LOCUS T (TcFT). Understanding how this conserved flowering time regulator affects cacao plant's transition to flowering could lead to strategies to accelerate cacao breeding. RESULTS BLAST searches of cacao genome reference assemblies identified seven candidate members of the CENTRORADIALIS/TERMINAL FLOWER1/SELF PRUNING gene family including a single florigen candidate. cDNA encoding the predicted cacao florigen was cloned and functionally tested by transgenic genetic complementation in the Arabidopsis ft-10 mutant. Transgenic expression of the candidate TcFT cDNA in late flowering Arabidopsis ft-10 partially rescues the mutant to wild-type flowering time. Gene expression studies reveal that TcFT is spatially and temporally expressed in a manner similar to that found in Arabidopsis, specifically, TcFT mRNA is shown to be both developmentally and diurnally regulated in leaves and is most abundant in floral tissues. Finally, to test interspecies compatibility of florigens, we transformed cacao tissues with AtFT resulting in the remarkable formation of flowers in tissue culture. The morphology of these in vitro flowers is normal, and they produce pollen that germinates in vitro with high rates. CONCLUSION We have identified the cacao CETS gene family, central to developmental regulation in angiosperms. The role of the cacao's single FT-like gene (TcFT) as a general regulator of determinate growth in cacao was demonstrated by functional complementation of Arabidopsis ft-10 late-flowering mutant and through gene expression analysis. In addition, overexpression of AtFT in cacao resulted in precocious flowering in cacao tissue culture demonstrating the highly conserved function of FT and the mechanisms controlling flowering in cacao.
Collapse
Affiliation(s)
- S F Prewitt
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA
| | - A Shalit-Kaneh
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA
| | - S N Maximova
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - M J Guiltinan
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
24
|
Tokizawa M, Enomoto T, Ito H, Wu L, Kobayashi Y, Mora-Macías J, Armenta-Medina D, Iuchi S, Kobayashi M, Nomoto M, Tada Y, Fujita M, Shinozaki K, Yamamoto YY, Kochian LV, Koyama H. High affinity promoter binding of STOP1 is essential for early expression of novel aluminum-induced resistance genes GDH1 and GDH2 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2769-2789. [PMID: 33481007 DOI: 10.1093/jxb/erab031] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 05/28/2023]
Abstract
Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.
Collapse
Affiliation(s)
- Mutsutomo Tokizawa
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada
| | - Takuo Enomoto
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hiroki Ito
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Liujie Wu
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- University of Warwick, UK
| | - Yuriko Kobayashi
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Javier Mora-Macías
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada
| | - Dagoberto Armenta-Medina
- CONACyT Consejo Nacional de Ciencia y Tecnología, Dirección de Cátedras, Insurgentes Sur 1582, Crédito Constructor, 03940 Ciudad de México, México
- INFOTEC Centro de Investigación e Innovación en Tecnologías de la Informacion y Comunicación, Circuito Tecnopolo Sur No 112, Fracc. Tecnopolo Pocitos II, 20313 Aguascalientes, México
| | - Satoshi Iuchi
- RIKEN Bioresource Research Center, Ibaraki 305-0074, Japan
| | | | - Mika Nomoto
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Miki Fujita
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yoshiharu Y Yamamoto
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon S7N 4J8, Canada
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
25
|
Gupta D, Dey N, Leelavathi S, Ranjan R. Development of efficient synthetic promoters derived from pararetrovirus suitable for translational research. PLANTA 2021; 253:42. [PMID: 33475866 DOI: 10.1007/s00425-021-03565-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION In this study, useful hybrid promoters were developed for efficient ectopic gene expression in monocot and dicot plants, and they hold strong prominence in both transgenic research and biotech industries. This study deals with developing novel synthetic promoters derived from Rice Tungro Bacilliform Virus (RTBV) and Mirabilis Mosaic Virus (MMV). Despite numerous availability, there is a severe scarcity of promoters universally suitable for monocot and dicot plants. Here, eight chimeric promoter constructs were synthesized as gBlocks gene fragments through domain swapping and hybridization by incorporating important domains of previously characterized RTBV and MMV promoters. The developed promoter constructs were assessed for transient GUS expression in tobacco protoplast (Xanthi Brad) and agro-infiltrated tobacco, petunia, rice and pearl millet. Protoplast expression analysis showed that two promoter constructs, namely pUPMA-RP1-MP1GUS and pUPMA-RP4-MP1GUS exhibited 3.56 and 2.5 times higher activities than that of the CaMV35S promoter. We had observed the similar type of expression patterns of these promoters in agroinfiltration-based transient studies. RP1-MP1 and RP4-MP1 promoters exhibited 1.87- and 1.68-fold increase expression in transgenic tobacco plants; while, a 1.95-fold increase was found in RP1-MP1 transgenic rice plants when compared their activities with CaMV35S promoter. Furthermore, on evaluating these promoter constructs for their expression in the bacterial system, pUPMA-RP1-MP1GFP was found to have the highest GFP expression. Moreover, the promoter construct was also evaluated for its capacity to express the HMP3 gene. Biobeads of encapsulated bacterial cells expressing HMP3 gene under control of the pUPMA-RP4-MP1 promoter were found to reduce 72.9% copper and 29.2% zinc concentration from wastewater. Our results had demonstrated that the developed promoter constructs could be used for translational research in dicot, monocot plants and bacterial systems for efficient gene expression.
Collapse
Affiliation(s)
- Dipinte Gupta
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, 282005, India
| | - Nrisingha Dey
- Institute of Life Science, Nalco Square, Bhubaneshwar, Odisha, 751023, India
| | - Sadhu Leelavathi
- Plant Biology: Plant Transformation Research Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067, India
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
26
|
Murata M, Konno K, Wasano N, Mochizuki A, Mitsuhara I. Expression of a gene for an MLX56 defense protein derived from mulberry latex confers strong resistance against a broad range of insect pests on transgenic tomato lines. PLoS One 2021; 16:e0239958. [PMID: 33428626 PMCID: PMC7799757 DOI: 10.1371/journal.pone.0239958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/19/2020] [Indexed: 11/19/2022] Open
Abstract
Insect pests cause serious damage in crop production, and various attempts have been made to produce insect-resistant crops, including the expression of genes for proteins with anti-herbivory activity, such as Bt (Bacillus thuringiensis) toxins. However, the number of available genes with sufficient anti-herbivory activity is limited. MLX56 is an anti-herbivory protein isolated from the latex of mulberry plants, and has been shown to have strong growth-suppressing activity against the larvae of a variety of lepidopteran species. As a model of herbivore-resistant plants, we produced transgenic tomato lines expressing the gene for MLX56. The transgenic tomato lines showed strong anti-herbivory activities against the larvae of the common cutworm, Spodoptera litura. Surprisingly, the transgenic tomato lines also exhibited strong activity against the attack of western flower thrips, Frankliniera occidentalis. Further, growth of the hadda beetle, Henosepilachna vigintioctopunctata, fed on leaves of transgenic tomato was significantly retarded. The levels of damage caused by both western flower thrips and hadda beetles were negligible in the high-MLX56-expressing tomato line. These results indicate that introduction of the gene for MLX56 into crops can enhance crop resistance against a wide range of pest insects, and that MLX56 can be utilized in developing genetically modified (GM) pest-resistant crops.
Collapse
Affiliation(s)
- Mika Murata
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsu, Mie Prefecture, Japan
| | - Kotaro Konno
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki Prefecture, Japan
- * E-mail: (IM); (KK)
| | - Naoya Wasano
- Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka Prefecture, Japan
| | - Atsushi Mochizuki
- Institute of Agro-Environmental Sciences, NARO, Tsukuba, Ibaraki Prefecture, Japan
| | - Ichiro Mitsuhara
- Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki Prefecture, Japan
- * E-mail: (IM); (KK)
| |
Collapse
|
27
|
Onohata T, Gomi K. Overexpression of jasmonate-responsive OsbHLH034 in rice results in the induction of bacterial blight resistance via an increase in lignin biosynthesis. PLANT CELL REPORTS 2020; 39:1175-1184. [PMID: 32424468 DOI: 10.1007/s00299-020-02555-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
OsbHLH034 acts as a positive regulator in jasmonate signaling in rice. Jasmonic acid (JA) is a plant hormone under strict regulation by various transcription factors (TFs) that acts as a signaling compound in the regulation of plant defense responses and development. Here, we report that a basic helix-loop-helix (bHLH)-type TF, OsbHLH034, plays an important role in the JA-mediated resistance response against rice bacterial blight caused by Xanthomonas oryzae pv. oryzae. The expression of OsbHLH034 was upregulated at a late phase after JA treatment. OsbHLH034 interacted with a Jasmonate ZIM-domain (JAZ) protein, OsJAZ9, in both plant and yeast cells. Transgenic rice plants overexpressing OsbHLH034 exhibited a JA-hypersensitive phenotype and increased resistance against rice bacterial blight. Conversely, OsbHLH034-overexpressing plants exhibited high sensitivity to salt stress. The expression of some JA-responsive secretory-type peroxidase genes was upregulated in the OsbHLH034-overexpressing rice plants. Concomitantly, the lignin content significantly increased in these transgenic plants compared to that in the wild-type. These results indicate that OsbHLH034 acts as a positive regulator of the JA-mediated defense response in rice.
Collapse
Affiliation(s)
- Tomonori Onohata
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan
| | - Kenji Gomi
- Plant Genome and Resource Research Center, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
28
|
Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008944. [PMID: 32730252 PMCID: PMC7419008 DOI: 10.1371/journal.pgen.1008944] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/11/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient nuclear transgene expression in the green microalga Chlamydomonas reinhardtii is generally hindered by low transcription rates. Introns can increase transcript abundance by a process called Intron-Mediated Enhancement (IME) in this alga and has been broadly observed in other eukaryotes. However, the mechanisms of IME in microalgae are poorly understood. Here, we identified 33 native introns from highly expressed genes in C. reinhardtii selected from transcriptome studies as well as 13 non-native introns. We investigated their IME capacities and probed the mechanism of action by modification of splice sites, internal sequence motifs, and position within transgenes. Several introns were found to elicit strong IME and found to be broadly applicable in different expression constructs. We determined that IME in C. reinhardtii exclusively occurs from introns within transcribed ORFs regardless of the promoter and is not induced by traditional enhancers of transcription. Our results elucidate some mechanistic details of IME in C. reinhardtii, which are similar to those observed in higher plants yet underly distinctly different induction processes. Our findings narrow the focus of targets responsible for algal IME and provides evidence that introns are underestimated regulators of C. reinhardtii nuclear gene expression. Although many genetic tools and basic transformation strategies exist for the model microalga Chlamydomonas reinhardtii, high-level genetic engineering with this organism is hindered by its inherent recalcitrance to foreign gene expression and limited knowledge of responsible expression regulators. In this work, we characterized the dynamics of 33 endogenous and 13 non-native introns and their effect on gene expression as artificial insertions into codon optimized transgenes. We found that introns from different origins have the capacity to increase gene expression rates. Intron-mediated enhancement was observed exclusively when these elements were placed in transcripts but not outside of transcribed mRNA regions. Insertion of different endogenous introns into coding sequences was found to positively affect expression rates through a synergy of additive transcription enhancement and exon length reduction, similar to those natively found in the C. reinhardtii genome. Our results indicate that intensive mRNA processing plays an underestimated role in the regulation of native gene expression in C. reinhardtii. In addition to internal sequence motifs, the location of artificially introduced introns greatly affected transgene expression levels. This work is highly valuable to the greater microalgal and synthetic biology research communities and contributes to broadening our understanding of eukaryotic intron-mediated enhancement.
Collapse
Affiliation(s)
- Thomas Baier
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Nick Jacobebbinghaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Alexander Einhaus
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Olaf Kruse
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse, Bielefeld, Germany
- * E-mail:
| |
Collapse
|
29
|
Zhou X, Dong Y, Zhang Q, Xiao D, Yang M, Wang J. Expression of Multiple Exogenous Insect Resistance and Salt Tolerance Genes in Populus nigra L. FRONTIERS IN PLANT SCIENCE 2020; 11:1123. [PMID: 32793270 PMCID: PMC7393212 DOI: 10.3389/fpls.2020.01123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/07/2020] [Indexed: 05/02/2023]
Abstract
Four exogenous genes, Cry3A, Cry1Ac, mtlD, and BADH, were inserted into the p1870 vector to obtain multigenic transgenic Populus nigra L. with improved insect resistance and salt tolerance. During vector construction, different promoters were used for each gene, the AtADH 5'-UTR enhancer was added between the Cry1Ac promoter and the target gene, and the matrix attachment region (MAR, GenBank: U67919.1) structure was added at both ends of the vector. It was then successfully transferred into the genome of European black poplar by Agrobacterium-mediated leaf disk transformation, and a total of 28 transgenic lines were obtained by kanamycin screening. Five events with the highest insect resistance were selected based on preliminary tests: nos. 1, 7, 9, 12, and 17. PCR, real-time PCR, and enzyme-linked immunosorbent assays (ELISA) were used to detect the expression of exogenous genes and to analyze the Bt protein toxin levels in transgenic lines from June to October. PCR results showed that all four genes were successfully introduced into the five selected lines. Fluorescence quantitative PCR showed no significant differences in the transcript abundance of the four exogenous genes between different lines. A Bt protein toxin assay showed that the Cry3A protein toxin content was significantly higher than the Cry1Ac protein toxin content by approximately three orders of magnitude. Levels of the two toxins were negatively correlated. Over the course of the growing season, Cry1Ac content raised and varied between 0.46 and 18.41 ng·g-1. Cry3A content decreased over the same time period and varied between 2642.75 and 15775.22 ng·g-1. Indoor insect feeding assay showed that the transgenic lines had high insect resistance, with mortality rates of 1-2-year-old Hyphantria cunea larvae reaching more than 80%, and those of Plagiodera versicolora larvae and nymphs reaching 100%. No. 17 and no. 12 lines had better insect resistance to Lepidoptera and Coleoptera pests. There was no clear improvement in salt tolerance of the transgenic lines, but comprehensive evaluation of 11 salt tolerance indicators showed that lines no. 17 and no. 7 had certain degrees of salt tolerance.
Collapse
Affiliation(s)
- Xinglu Zhou
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yan Dong
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Qi Zhang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Dandan Xiao
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Institute of Coastal Agriculture, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Minsheng Yang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jinmao Wang
- Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| |
Collapse
|
30
|
Pimenta Lange MJ, Szperlinski M, Kalix L, Lange T. Cucumber gibberellin 1-oxidase/desaturase initiates novel gibberellin catabolic pathways. J Biol Chem 2020; 295:8442-8448. [PMID: 32345611 DOI: 10.1074/jbc.ra120.013708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Bioactive gibberellins (GAs) are central regulators of plant growth and development, including seed development. GA homeostasis is achieved via complex biosynthetic and catabolic pathways, whose exact activities remain to be elucidated. Here, we isolated two cDNAs from mature or imbibed cucumber seeds with high sequence similarity to known GA 3-oxidases. We found that one enzyme (designated here CsGA3ox5) has GA 3-oxidation activity. However, the second enzyme (designated CsGA1ox/ds) performed multiple reactions, including 1β-oxidation and 9,11-desaturation of GAs, but was lacking the 3-oxidation activity. CsGA1ox/ds overexpression in Arabidopsis plants resulted in severely dwarfed plants that could be rescued by the exogenous application of bioactive GA4, confirming that CsGA1ox/ds catabolizes GAs. Substitution of three amino acids in CsGA1ox/ds, Phe93, Pro106, and Ser202, with those typically conserved among GA 3-oxidases, Tyr93, Met106, and Thr202, respectively, conferred GA 3-oxidase activity to CsGA1ox/ds and thereby augmented its potential to form bioactive GAs in addition to catabolic products. Accordingly, overexpression of this amino acid-modified GA1ox/ds variant in Arabidopsis accelerated plant growth and development, indicating that this enzyme variant can produce bioactive GAs in planta Furthermore, a genetically modified GA3ox5 variant in which these three canonical GA 3-oxidase amino acids were changed to the ones present in CsGA1ox/ds was unable to convert GA9 to GA4, highlighting the importance of these three conserved amino acids for GA 3-oxidase activity.
Collapse
Affiliation(s)
- Maria João Pimenta Lange
- From the Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manuela Szperlinski
- From the Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Leon Kalix
- From the Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Theo Lange
- From the Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
31
|
Xu Y, Jin Z, Xu B, Li J, Li Y, Wang X, Wang A, Hu W, Huang D, Wei Q, Xu Z, Song S. Identification of transcription factors interacting with a 1274 bp promoter of MaPIP1;1 which confers high-level gene expression and drought stress Inducibility in transgenic Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:278. [PMID: 32546127 PMCID: PMC7298759 DOI: 10.1186/s12870-020-02472-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/26/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Drought stress can severely affect plant growth and crop yield. The cloning and identification of drought-inducible promoters would be of value for genetically-based strategies to improve resistance of crops to drought. RESULTS Previous studies showed that the MaPIP1;1 gene encoding an aquaporin is involved in the plant drought stress response. In this study, the promoter pMaPIP1;1, which lies 1362 bp upstream of the MaPIP1;1 transcriptional initiation site, was isolated from the banana genome..And the transcription start site(A) is 47 bp before the ATG. To functionally validate the promoter, various lengths of pMaPIP1;1 were deleted and fused to GUS to generate pMaPIP1;1::GUS fusion constructs that were then transformed into Arabidopsis to generate four transformants termed M-P1, M-P2, M-P3 and M-P4.Mannitol treatment was used to simulate drought conditions. All four transformants reacted well to mannitol treatment. M-P2 (- 1274 bp to - 1) showed the highest transcriptional activity among all transgenic Arabidopsis tissues, indicating that M-P2 was the core region of pMaPIP1;1. This region of the promoter also confers high levels of gene expression in response to mannitol treatment. Using M-P2 as a yeast one-hybrid bait, 23 different transcription factors or genes that interacted with MaPIP1;1 were screened. In an dual luciferase assay for complementarity verification, the transcription factor MADS3 positively regulated MaPIP1;1 transcription when combined with the banana promoter. qRT-PCR showed that MADS3 expression was similar in banana leaves and roots under drought stress. In banana plants grown in 45% soil moisture to mimic drought stress, MaPIP1;1 expression was maximized, which further demonstrated that the MADS3 transcription factor can synergize with MaPIP1;1. CONCLUSIONS Together our results revealed that MaPIP1;1 mediates molecular mechanisms associated with drought responses in banana, and will expand our understanding of how AQP gene expression is regulated. The findings lay a foundation for genetic improvement of banana drought resistance.
Collapse
Affiliation(s)
- Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaoyi Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Anbang Wang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qing Wei
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhuye Xu
- Hainan University, Haikou, China
| | - Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
32
|
Basso MF, Arraes FBM, Grossi-de-Sa M, Moreira VJV, Alves-Ferreira M, Grossi-de-Sa MF. Insights Into Genetic and Molecular Elements for Transgenic Crop Development. FRONTIERS IN PLANT SCIENCE 2020; 11:509. [PMID: 32499796 PMCID: PMC7243915 DOI: 10.3389/fpls.2020.00509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
Climate change and the exploration of new areas of cultivation have impacted the yields of several economically important crops worldwide. Both conventional plant breeding based on planned crosses between parents with specific traits and genetic engineering to develop new biotechnological tools (NBTs) have allowed the development of elite cultivars with new features of agronomic interest. The use of these NBTs in the search for agricultural solutions has gained prominence in recent years due to their rapid generation of elite cultivars that meet the needs of crop producers, and the efficiency of these NBTs is closely related to the optimization or best use of their elements. Currently, several genetic engineering techniques are used in synthetic biotechnology to successfully improve desirable traits or remove undesirable traits in crops. However, the features, drawbacks, and advantages of each technique are still not well understood, and thus, these methods have not been fully exploited. Here, we provide a brief overview of the plant genetic engineering platforms that have been used for proof of concept and agronomic trait improvement, review the major elements and processes of synthetic biotechnology, and, finally, present the major NBTs used to improve agronomic traits in socioeconomically important crops.
Collapse
Affiliation(s)
| | - Fabrício Barbosa Monteiro Arraes
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maíra Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Valdeir Junio Vaz Moreira
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
33
|
Peng F, Zhang W, Zeng W, Zhu J, Miki D. Gene targeting in Arabidopsis via an all-in-one strategy that uses a translational enhancer to aid Cas9 expression. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:892-894. [PMID: 31553828 PMCID: PMC7061861 DOI: 10.1111/pbi.13265] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 05/03/2023]
Affiliation(s)
- Fangnan Peng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenxin Zhang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian‐Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
34
|
Andrés F, Kinoshita A, Kalluri N, Fernández V, Falavigna VS, Cruz TMD, Jang S, Chiba Y, Seo M, Mettler-Altmann T, Huettel B, Coupland G. The sugar transporter SWEET10 acts downstream of FLOWERING LOCUS T during floral transition of Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:53. [PMID: 32013867 PMCID: PMC6998834 DOI: 10.1186/s12870-020-2266-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/27/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Floral transition initiates reproductive development of plants and occurs in response to environmental and endogenous signals. In Arabidopsis thaliana, this process is accelerated by several environmental cues, including exposure to long days. The photoperiod-dependent promotion of flowering involves the transcriptional induction of FLOWERING LOCUS T (FT) in the phloem of the leaf. FT encodes a mobile protein that is transported from the leaves to the shoot apical meristem, where it forms part of a regulatory complex that induces flowering. Whether FT also has biological functions in leaves of wild-type plants remains unclear. RESULTS In order to address this issue, we first studied the leaf transcriptomic changes associated with FT overexpression in the companion cells of the phloem. We found that FT induces the transcription of SWEET10, which encodes a bidirectional sucrose transporter, specifically in the leaf veins. Moreover, SWEET10 is transcriptionally activated by long photoperiods, and this activation depends on FT and one of its earliest target genes SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1). The ectopic expression of SWEET10 causes early flowering and leads to higher levels of transcription of flowering-time related genes in the shoot apex. CONCLUSIONS Collectively, our results suggest that the FT-signaling pathway activates the transcription of a sucrose uptake/efflux carrier during floral transition, indicating that it alters the metabolism of flowering plants as well as reprogramming the transcription of floral regulators in the shoot meristem.
Collapse
Affiliation(s)
- Fernando Andrés
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: UMR AGAP, Univ. Montpellier, INRAE, CIRAD, INSAAE, Montpellier, France
| | - Atsuko Kinoshita
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Naveen Kalluri
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Virginia Fernández
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, France
| | - Vítor S. Falavigna
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Tiago M. D. Cruz
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - Seonghoe Jang
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
- Present Address: World Vegetable Center Korea Office (WKO), 100 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jellabuk-do 55365 Republic of Korea
| | - Yasutaka Chiba
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Tabea Mettler-Altmann
- Cluster of Excellence on Plant Sciences and Institute of Plant Biochemistry, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany
| |
Collapse
|
35
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
36
|
Kojima T, Asakura N, Hasegawa S, Hirasawa T, Mizuno Y, Takemoto D, Katou S. Transcriptional induction of capsidiol synthesis genes by wounding can promote pathogen signal-induced capsidiol synthesis. BMC PLANT BIOLOGY 2019; 19:576. [PMID: 31864296 PMCID: PMC6925906 DOI: 10.1186/s12870-019-2204-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Plants are exposed to various forms of environmental stress. Penetration by pathogens is one of the most serious environmental insults. Wounding caused by tissue damage or herbivory also affects the growth and reproduction of plants. Moreover, wounding disrupts physical barriers present at the plant surface and increases the risk of pathogen invasion. Plants cope with environmental stress by inducing a variety of responses. These stress responses must be tightly controlled, because their unnecessary induction is detrimental to plant growth. In tobacco, WIPK and SIPK, two wound-responsive mitogen-activated protein kinases, have been shown to play important roles in regulating wound responses. However, their contribution to downstream wound responses such as gene expression is not well understood. RESULTS To identify genes regulated by WIPK and SIPK, the transcriptome of wounded WIPK/SIPK-suppressed plants was analyzed. Among the genes down-regulated in WIPK/SIPK-suppressed plants, the largest group consisted of those involved in the production of antimicrobial phytoalexins. Almost all genes involved in the biosynthesis of capsidiol, a major phytoalexin in tobacco, were transcriptionally induced by wounding in WIPK/SIPK-dependent and -independent manners. 5-epi-aristolochene synthase (EAS) is the committing enzyme for capsidiol synthesis, and the promoter of EAS4, a member of the EAS family, was analyzed. Reporter gene analysis revealed that at least two regions each 40-50 bp length were involved in activation of the EAS4 promoter by wounding, as well as by artificial activation of WIPK and SIPK. Unlike transcripts of the capsidiol synthesis genes, accumulation of EAS protein and capsidiol itself were not induced by wounding; however, wounding significantly enhanced their subsequent induction by a pathogen-derived elicitor. CONCLUSIONS Our results suggest a so-called priming phenomenon since the induction of EAS by wounding is only visible at the transcript level. By inducing transcripts, not the proteins, of EAS and possibly other capsidiol synthesis genes at wound sites, plants can produce large quantities of capsidiol quickly if pathogens invade the wound site, whereas plants can minimize energy loss and avoid the cytotoxic effects of capsidiol where pathogens do not gain entry during wound healing.
Collapse
Affiliation(s)
- Tomoya Kojima
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Nobuhide Asakura
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Shiori Hasegawa
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Taishi Hirasawa
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Yuri Mizuno
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Shinpei Katou
- Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan.
| |
Collapse
|
37
|
Feike D, Korolev AV, Soumpourou E, Murakami E, Reid D, Breakspear A, Rogers C, Radutoiu S, Stougaard J, Harwood WA, Oldroyd GED, Miller J. Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2234-2245. [PMID: 31022324 PMCID: PMC6835126 DOI: 10.1111/pbi.13135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/18/2019] [Indexed: 05/20/2023]
Abstract
Plant synthetic biology and cereal engineering depend on the controlled expression of transgenes of interest. Most engineering in plant species to date has relied heavily on the use of a few, well-established constitutive promoters to achieve high levels of expression; however, the levels of transgene expression can also be influenced by the use of codon optimization, intron-mediated enhancement and varying terminator sequences. Most of these alternative approaches for regulating transgene expression have only been tested in small-scale experiments, typically testing a single gene of interest. It is therefore difficult to interpret the relative importance of these approaches and to design engineering strategies that are likely to succeed in different plant species, particularly if engineering multigenic traits where the expression of each transgene needs to be precisely regulated. Here, we present data on the characterization of 46 promoters and 10 terminators in Medicago truncatula, Lotus japonicus, Nicotiana benthamiana and Hordeum vulgare, as well as the effects of codon optimization and intron-mediated enhancement on the expression of two transgenes in H. vulgare. We have identified a core set of promoters and terminators of relevance to researchers engineering novel traits in plant roots. In addition, we have shown that combining codon optimization and intron-mediated enhancement increases transgene expression and protein levels in barley. Based on our study, we recommend a core set of promoters and terminators for broad use and also propose a general set of principles and guidelines for those engineering cereal species.
Collapse
Affiliation(s)
- Doreen Feike
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
EMBL HeidelbergMeyerhofstraße 169117HeidelbergGermany
| | | | - Eleni Soumpourou
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - Eiichi Murakami
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Present address:
GRA&GREEN Inc., Incubation Center 106Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐0814Japan
| | - Dugald Reid
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Christian Rogers
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - Simona Radutoiu
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Giles E. D. Oldroyd
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - J. Benjamin Miller
- John Innes CentreNorwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
38
|
Kozgunova E, Goshima G. A versatile microfluidic device for highly inclined thin illumination microscopy in the moss Physcomitrella patens. Sci Rep 2019; 9:15182. [PMID: 31645620 PMCID: PMC6811556 DOI: 10.1038/s41598-019-51624-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
High-resolution microscopy is a valuable tool for studying cellular processes, such as signalling, membrane trafficking, or cytoskeleton remodelling. Several techniques of inclined illumination microscopy allow imaging at a near single molecular level; however, the application of these methods to plant cells is limited, owing to thick cell walls as well as the necessity to excise a part of the tissue for sample preparation. In this study, we utilised a simple, easy-to-use microfluidic device for highly inclined and laminated optical sheet (HILO) microscopy using a model plant Physcomitrella patens. We demonstrated that the shallow microfluidic device can be used for long-term culture of living cells and enables high-resolution HILO imaging of microtubules without perturbing their dynamics. In addition, our microdevice allows the supply and robust washout of compounds during HILO microscopy imaging, for example, to perform a microtubule regrowth assay. Furthermore, we tested long-term (48 h) HILO imaging using a microdevice and visualised the developmental changes in the microtubule dynamics during tissue regeneration. These novel applications of the microfluidic device provide a valuable resource for studying molecular dynamics in living plant cells.
Collapse
Affiliation(s)
- Elena Kozgunova
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| |
Collapse
|
39
|
Ishibashi K, Saruta M, Shimizu T, Shu M, Anai T, Komatsu K, Yamada N, Katayose Y, Ishikawa M, Ishimoto M, Kaga A. Soybean antiviral immunity conferred by dsRNase targets the viral replication complex. Nat Commun 2019; 10:4033. [PMID: 31562302 PMCID: PMC6764979 DOI: 10.1038/s41467-019-12052-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/13/2019] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic positive-strand RNA viruses replicate their genomes in membranous compartments formed in a host cell, which sequesters the dsRNA replication intermediate from antiviral immune surveillance. Here, we find that soybean has developed a way to overcome this sequestration. We report the positional cloning of the broad-spectrum soybean mosaic virus resistance gene Rsv4, which encodes an RNase H family protein with dsRNA-degrading activity. An active-site mutant of Rsv4 is incapable of inhibiting virus multiplication and is associated with an active viral RNA polymerase complex in infected cells. These results suggest that Rsv4 enters the viral replication compartment and degrades viral dsRNA. Inspired by this model, we design three plant-gene-derived dsRNases that can inhibit the multiplication of the respective target viruses. These findings suggest a method for developing crops resistant to any target positive-strand RNA virus by fusion of endogenous host genes.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masayasu Saruta
- Crop Breeding and Food Functional Components Division, Western Region Agricultural Research Center, National Agriculture and Food Research Organization, 1-3-1 Senyu-cho, Zentsuji-shi, Kagawa, 765-8508, Japan
- Soybean Breeding Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Takehiko Shimizu
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
- Advanced Genomics Breeding Section, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Miao Shu
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan
| | - Kunihiko Komatsu
- Research Team for Crop Cold Tolerance, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Hitsujigaoka 1, Toyohira, Sapporo, Hokkaido, 062-8555, Japan
- Crop Breeding and Food Functional Components Division, Western Region Agricultural Research Center, National Agriculture and Food Research Organization, 1-3-1 Senyu-cho, Zentsuji-shi, Kagawa, 765-8508, Japan
| | - Naohiro Yamada
- Nagano Vegetable and Ornamental Crops Experiment Station, 1066-1, Soga, Shiojiri, Nagano, 399-6461, Japan
| | - Yuichi Katayose
- Advanced Genomics Breeding Section, Institute of Crop Science, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
- Department of Planning and Coordination, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Masayuki Ishikawa
- Plant and Microbial Research Unit, Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan
| | - Masao Ishimoto
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
- Division of Basic Research, Institute of Crop Science, National Agriculture and Food Research Organization, 3-1-1 Kannondai, Tsukuba, Ibaraki, 305-8517, Japan
| | - Akito Kaga
- Soybean and Field Crop Applied Genomics Research Unit, Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
40
|
Matsuo K, Atsumi G. CRISPR/Cas9-mediated knockout of the RDR6 gene in Nicotiana benthamiana for efficient transient expression of recombinant proteins. PLANTA 2019; 250:463-473. [PMID: 31065786 DOI: 10.1007/s00425-019-03180-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION RDR6 gene knockout Nicotiana benthamiana plant was successfully produced using CRISPR/Cas9 technology. The production of recombinant proteins in plants has many advantages, such as safety and reduced costs. However, there are several problems with this technology, especially low levels of protein production. The dysfunction of the RNA silencing mechanism in plant cells would be effective to improve recombinant protein production because the RNA silencing mechanism efficiently degrades transgene-derived mRNAs. Therefore, to overcome this problem, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology was used to develop RNA silencing-related gene knockout transgenic Nicotiana benthamiana. We successfully produced RNA-dependent RNA polymerase 6 (RDR6), one of the most important components of the RNA silencing mechanism-knockout N. benthamiana (ΔRDR6 plants). The ΔRDR6 plants had abnormal flowers and were sterile, as with the Arabidopsis RDR6 mutants. However, a transient gene expression assay showed that the ΔRDR6 plants accumulated larger amounts of green fluorescent protein (GFP) and GFP mRNA than the wild-type (WT) plants. Small RNA sequencing analysis revealed that levels of small interfering RNA against the GFP gene were greatly reduced in the ΔRDR6 plants, as compared to that of the WT plants. These findings demonstrate that the ΔRDR6 plants can express larger amounts of recombinant proteins than WT plants and, therefore, would be useful for recombinant protein production and understanding the contributions of RDR6 to genetic and physiological events in plants.
Collapse
Affiliation(s)
- Kouki Matsuo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.
| | - Go Atsumi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| |
Collapse
|
41
|
Hoshino A, Mizuno T, Shimizu K, Mori S, Fukada-Tanaka S, Furukawa K, Ishiguro K, Tanaka Y, Iida S. Generation of Yellow Flowers of the Japanese Morning Glory by Engineering Its Flavonoid Biosynthetic Pathway toward Aurones. PLANT & CELL PHYSIOLOGY 2019; 60:1871-1879. [PMID: 31135027 DOI: 10.1093/pcp/pcz101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Wild-type plants of the Japanese morning glory (Ipomoea nil) produce blue flowers that accumulate anthocyanin pigments, whereas its mutant cultivars show wide range flower color such as red, magenta and white. However, I. nil lacks yellow color varieties even though yellow flowers were curiously described in words and woodblocks printed in the 19th century. Such yellow flowers have been regarded as 'phantom morning glories', and their production has not been achieved despite efforts by breeders of I. nil. The chalcone isomerase (CHI) mutants (including line 54Y) bloom very pale yellow or cream-colored flowers conferred by the accumulation of 2', 4', 6', 4-tetrahydoroxychalcone (THC) 2'-O-glucoside. To produce yellow phantom morning glories, we introduced two snapdragon (Antirrhinum majus) genes to the 54Y line by encoding aureusidin synthase (AmAS1) and chalcone 4'-O-glucosyltransferase (Am4'CGT), which are necessary for the accumulation of aureusidin 6-O-glucoside and yellow coloration in A. majus. The transgenic plants expressing both genes exhibit yellow flowers, a character sought for many years. The flower petals of the transgenic plants contained aureusidin 6-O-glucoside, as well as a reduced amount of THC 2'-O-glucoside. In addition, we identified a novel aurone compound, aureusidin 6-O-(6″-O-malonyl)-glucoside, in the yellow petals. A combination of the coexpression of AmAS1 and Am4'CGT and suppression of CHI is an effective strategy for generating yellow varieties in horticultural plants.
Collapse
Affiliation(s)
- Atsushi Hoshino
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Takayuki Mizuno
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | - Keiichi Shimizu
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Shoko Mori
- Suntory Foundation for Life Sciences, Seika, Kyoto, Japan
| | | | - Kazuhiko Furukawa
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
| | - Kanako Ishiguro
- Research Institute, Suntory Global Innovation Center Ltd, Seika, Kyoto, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, Seika, Kyoto, Japan
| | - Shigeru Iida
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
| |
Collapse
|
42
|
Daspute AA, Yunxuan X, Gu M, Kobayashi Y, Wagh S, Panche A, Koyama H. Agrobacterium rhizogenes-mediated hairy roots transformation as a tool for exploring aluminum-responsive genes function. Future Sci OA 2019; 5:FSO364. [PMID: 30906565 PMCID: PMC6426172 DOI: 10.4155/fsoa-2018-0065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022] Open
Abstract
AIM To develop a useful alternative approach to evaluate the gene function in hairy roots. METHODS Arabidopsis and tobacco (wild-type or mutant) were a host for Agrobacterium rhizogenes transformation. RESULTS The hairy roots formation efficiency ranged from 53 to 98% in tobacco and 53 to 66% in Arabidopsis. Hairy and intact roots showed similar gene expression pattern in response to salt and aluminum stress. Genomic polymerase chain reaction and fluorescent images showed high rate (>80%) of co-integration of T-DNAs and uniform cell transformation without use of any antibiotic selection. Whole processes of hairy roots were completed within 1 month after the infection of Agrobacterium. CONCLUSION Aluminum-responsive orthologous gene function could be evaluated by NtSTOP1-KD and Atstop1 as a host for hairy roots transformation.
Collapse
Affiliation(s)
- Abhijit A Daspute
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu 501–1193, Japan
- Institute of Bioscience & Biotechnology, Department of Biological Sciences, MGM College, Aurangabad 411-003, India
| | - Xian Yunxuan
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu 501–1193, Japan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, Guangxi Universities, Nanning 530-005, China
| | - Minghua Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, Guangxi Universities, Nanning 530-005, China
| | - Yuriko Kobayashi
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu 501–1193, Japan
| | - Sopan Wagh
- Institute of Bioscience & Biotechnology, Department of Biological Sciences, MGM College, Aurangabad 411-003, India
| | - Archana Panche
- Institute of Bioscience & Biotechnology, Department of Biological Sciences, MGM College, Aurangabad 411-003, India
| | - Hiroyuki Koyama
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu 501–1193, Japan
| |
Collapse
|
43
|
Isogai M, Matsudaira T, Ito M, Yoshikawa N. The 1b gene of raspberry bushy dwarf virus is a virulence component that facilitates systemic virus infection in plants. Virology 2019; 526:222-230. [PMID: 30447555 DOI: 10.1016/j.virol.2018.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
A product translated from the 1b gene of raspberry bushy dwarf virus (RBDV) was specifically detected in RBDV-infected Nicotiana benthamiana plants by immunoblot analysis. To analyze the effects of the 1b gene on virus infection in host plants, an RBDV deletion mutant virus (RB∆1bstop), which is unable to express the 1b gene, was constructed and inoculated to N. benthamiana plants. The results showed that accumulation of the virus genomic (g) RNAs 1 and 2 decreased in inoculated leaves, and that systemic virus spread was delayed compared with wild-type RBDV. In contrast, accumulation of the viral gRNAs 1 and 2 was elevated in RB∆1bstop-infected leaf tissues during ectopic expression of the 1b gene. Furthermore, we found that the 1b has weak RNA silencing suppressor activity.
Collapse
Affiliation(s)
- Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan.
| | - Takanori Matsudaira
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Makoto Ito
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| | - Nobuyuki Yoshikawa
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka 020-8550, Iwate, Japan
| |
Collapse
|
44
|
Costa LM, Sakakibara H. Sixty Years of Plant and Cell Physiology. PLANT & CELL PHYSIOLOGY 2019; 60:1-3. [PMID: 30605543 DOI: 10.1093/pcp/pcy244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
| | - Hitoshi Sakakibara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Japan
| |
Collapse
|
45
|
Sakai K, Charlot F, Le Saux T, Bonhomme S, Nogué F, Palauqui JC, Fattaccioli J. Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology. PLANT METHODS 2019; 15:79. [PMID: 31367225 PMCID: PMC6651895 DOI: 10.1186/s13007-019-0459-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/06/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant protoplasts are basic plant cells units in which the pecto-cellulosic cell wall has been removed, but the plasma membrane is intact. One of the main features of plant cells is their strong plasticity, and their propensity to regenerate an organism from a single cell. Methods and differentiation protocols used in plant physiology and biology usually involve macroscopic vessels and containers that make difficult, for example, to follow the fate of the same protoplast all along its full development cycle, but also to perform continuous studies of the influence of various gradients in this context. These limits have hampered the precise study of regeneration processes. RESULTS Herein, we present the design of a comprehensive, physiologically relevant, easy-to-use and low-cost microfluidic and microscopic setup for the monitoring of Physcomitrella patens (P. patens) growth and development on a long-term basis. The experimental solution we developed is made of two parts (i) a microfluidic chip composed of a single layer of about a hundred flow-through microfluidic traps for the immobilization of protoplasts, and (ii) a low-cost, light-controlled, custom-made microscope allowing the continuous recording of the moss development in physiological conditions. We validated the experimental setup with three proofs of concepts: (i) the kinetic monitoring of first division steps and cell wall regeneration, (ii) the influence of the photoperiod on growth of the protonemata, and (iii) finally the induction of leafy buds using a phytohormone, cytokinin. CONCLUSIONS We developed the design of a comprehensive, physiologically relevant, easy-to-use and low-cost experimental setup for the study of P. patens development in a microfluidic environment. This setup allows imaging of P. patens development at high resolution and over long time periods.
Collapse
Affiliation(s)
- Kaori Sakai
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - Florence Charlot
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Sandrine Bonhomme
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Fabien Nogué
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Jean-Christophe Palauqui
- INRA, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| |
Collapse
|
46
|
Okitsu N, Matsui K, Horikawa M, Sugahara K, Tanaka Y. Identification and Characterization of Novel Nemophila menziesii Flavone Glucosyltransferases that Catalyze Biosynthesis of Flavone 7,4'-O-Diglucoside, a Key Component of Blue Metalloanthocyanins. PLANT & CELL PHYSIOLOGY 2018; 59:2075-2085. [PMID: 29986079 DOI: 10.1093/pcp/pcy129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 05/23/2023]
Abstract
The brilliant blue color of the Nemophila menziesii flower is derived from metalloanthocyanin, which consists of anthocyanin {petunidin 3-O-[6-O-(trans-p-coumaroyl)-β-glucoside]-5-O-[6-O-(malonyl)-β-glucoside]}, flavone [apigenin 7-O-β-glucoside-4'-O-(6-O-malonyl)-O-β-glucoside] and metal ions (Mg2+, Fe3+). Although the two glucosyl moieties at the apigenin 7-O and 4'-O positions are essential for metalloanthocyanin formation, the mechanism of glucosylation has not yet been clarified. In this study, we used crude protein extract prepared from N. menziesii petals to determine that apigenin is sequentially glucosylated by the catalysis of UDP-glucose:flavone 4'-O-glucosyltrasferase (F4'GT) and UDP-glucose:flavone 4'-O-glucoside 7-O-glucosyltransferase (F4'G7GT). We identified 150 contigs exhibiting homology with a UDP-glucose-dependent GT in the N. menziesii petal transcriptome and isolated 24 putative full-length GT cDNAs which were then subjected to functional analysis. Two GT cDNAs, NmF4'GT and NmF4'G7GT, which are highly expressed during the early stages of petal development and rarely in leaves, were shown to encode F4'GT and F4'G7GT activities, respectively. Biochemical characterization of the recombinant enzymes revealed that NmF4'GT specifically catalyzed 4'-glucosylation of flavonoids and that NmF4'G7GT specifically catalyzed 7-glucosylation of flavone 4'-O-glucosides and flavones. Apigenin 7,4'-O-diglucoside was efficiently synthesized from apigenin in the presence of recombinant NmF4'GT and NmF4'G7GT. Transgenic tobacco BY-2 cells expressing NmF4'GT and NmF4'G7GT converted apigenin into apigenin 7,4'-O-diglucoside, confirming their activities in vivo. Based on these results, we conclude that these two GTs act co-ordinately to catalyze apigenin 7,4'-O-diglucoside biosynthesis in N. menziesii.
Collapse
Affiliation(s)
- Naoko Okitsu
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Keisuke Matsui
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Kohtaro Sugahara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| |
Collapse
|
47
|
Prihatna C, Larkan NJ, Barbetti MJ, Barker SJ. Tomato CYCLOPS/IPD3 is required for mycorrhizal symbiosis but not tolerance to Fusarium wilt in mycorrhiza-deficient tomato mutant rmc. MYCORRHIZA 2018; 28:495-507. [PMID: 29948410 DOI: 10.1007/s00572-018-0842-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Mycorrhizal symbiosis requires several common symbiosis genes including CYCLOPS/IPD3. The reduced mycorrhizal colonisation (rmc) tomato mutant has a deletion of five genes including CYCLOPS/IPD3, and rmc is more susceptible to Fusarium wilt than its wild-type parental line. This study investigated the genetic defects leading to both fungal interaction phenotypes and whether these were separable. Complementation was performed in rmc to test the requirement for CYCLOPS/IPD3 in mycorrhiza formation and Fusarium wilt tolerance. Promoter analysis via GFP expression in roots was conducted to determine the role of native regulatory elements in the proper functioning of CYCLOPS/IPD3. CYCLOPS/IPD3 regulated by its native promoter, but not a 2×35S promoter, restores mycorrhizal association in rmc. GFP regulated by the 2×35S promoter is not expressed in epidermal cells of roots, indicating that expression of CYCLOPS/IPD3 in these cells is required for colonisation by the fungi utilised in this research. CYCLOPS/IPD3 did not restore Fusarium wilt tolerance, however, showing that the genetic requirements for mycorrhizal association and Fusarium wilt tolerance are different. Our results confirm the expected role of CYCLOPS/IPD3 in mycorrhizal symbiosis and suggest that Fusarium tolerance is conferred by one of the other four genes affected by the deletion.
Collapse
Affiliation(s)
- Cahya Prihatna
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia.
- PT Wilmar Benih Indonesia, Jalan Jababeka X Blok F No. 9, Bekasi, Jawa Barat, 17530, Indonesia.
| | | | - Martin John Barbetti
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
- The UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Susan Jane Barker
- School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
48
|
Jeong IS, Lee S, Bonkhofer F, Tolley J, Fukudome A, Nagashima Y, May K, Rips S, Lee SY, Gallois P, Russell WK, Jung HS, von Schaewen A, Koiwa H. Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: a protein super-expression system for structural studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:131-145. [PMID: 29385647 DOI: 10.1111/tpj.13847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/31/2017] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
The oligosaccharyltransferase (OT) complex catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the endoplasmic reticulum. Despite their importance, little is known about the structure and function of plant OT complexes, mainly due to lack of efficient recombinant protein production systems suitable for studies on large plant protein complexes. Here, we purified Arabidopsis OT complexes using the tandem affinity-tagged OT subunit STAUROSPORINE AND TEMPERATURE SENSITIVE3a (STT3a) expressed by an Arabidopsis protein super-expression platform. Mass-spectrometry analysis of the purified complexes identified three essential OT subunits, OLIGOSACCHARYLTRANSFERASE1 (OST1), HAPLESS6 (HAP6), DEFECTIVE GLYCOSYLATION1 (DGL1), and a number of ribosomal subunits. Transmission-electron microscopy showed that STT3a becomes incorporated into OT-ribosome super-complexes formed in vivo, demonstrating that this expression/purification platform is suitable for analysis of large protein complexes. Pairwise in planta interaction analyses of individual OT subunits demonstrated that all subunits identified in animal OT complexes are conserved in Arabidopsis and physically interact with STT3a. Genetic analysis of newly established OT subunit mutants for OST1 and DEFENDER AGAINST APOTOTIC DEATH (DAD) family genes revealed that OST1 and DAD1/2 subunits are essential for the plant life cycle. However, mutations in these individual isoforms produced much milder growth/underglycosylation phenotypes than previously reported for mutations in DGL1, OST3/6 and STT3a.
Collapse
Affiliation(s)
- In Sil Jeong
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering College of Creative Convergence Engineering, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, South Korea
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, South Korea
| | - Florian Bonkhofer
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Jordan Tolley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Akihito Fukudome
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yukihiro Nagashima
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kimberly May
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Stephan Rips
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Sang Y Lee
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas-Medical Branch, Oxford Rd, Galveston, TX, 77555, USA
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, South Korea
| | - Antje von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
49
|
Katsuma S, Kawamoto M, Shoji K, Aizawa T, Kiuchi T, Izumi N, Ogawa M, Mashiko T, Kawasaki H, Sugano S, Tomari Y, Suzuki Y, Iwanaga M. Transcriptome profiling reveals infection strategy of an insect maculavirus. DNA Res 2018; 25:4816134. [PMID: 29360973 PMCID: PMC6014269 DOI: 10.1093/dnares/dsx056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/03/2018] [Indexed: 11/14/2022] Open
Abstract
Bombyx mori macula-like virus (BmMLV) is a positive, single-stranded insect RNA virus that is closely related to plant maculaviruses. BmMLV is currently characterized as an unclassified maculavirus. BmMLV accumulates at extremely high levels in cell lines derived from the silkworm, Bombyx mori, but it does not lead to lethality and establishes persistent infections. It is unknown how this insect maculavirus replicates and establishes persistent infections in insect cells. Here, we showed that BmMLV p15, which is located on a subgenomic fragment and is not found in plant maculaviruses, is highly expressed in BmMLV-infected silkworm cells and that p15 protein is required to establish BmMLV infections in silkworm cells. We also showed that two distinct small RNA-mediated pathways maintain BmMLV levels in BmMLV-infected silkworm cells, thereby allowing the virus to establish persistent infection. Virus-derived siRNAs and piRNAs were both produced as the infection progressed. Knockdown experiments demonstrated that the exogenous RNAi pathway alone or RNAi and piRNA pathways function cooperatively to silence BmMLV RNA and that both pathways are important for normal growth of BmMLV-infected silkworm cells. On the basis of our study, we propose a mechanism of how a plant virus-like insect virus can establish persistent infections in insect cells.
Collapse
Affiliation(s)
- Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Munetaka Kawamoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keisuke Shoji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takahiro Aizawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takashi Kiuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Natsuko Izumi
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Moe Ogawa
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Takaaki Mashiko
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hideki Kawasaki
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Sumio Sugano
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Masashi Iwanaga
- Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Utsunomiya-shi, Tochigi 321-8505, Japan
| |
Collapse
|
50
|
Jeon EJ, Tadamura K, Murakami T, Inaba JI, Kim BM, Sato M, Atsumi G, Kuchitsu K, Masuta C, Nakahara KS. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming. J Virol 2017; 91:e00761-17. [PMID: 28724770 PMCID: PMC5599751 DOI: 10.1128/jvi.00761-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca2+ ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca2+ influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses.IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole-plant resistance against secondary infection with pathogens; this so-called systemic acquired resistance (SAR) has been known for more than half a century and continues to be extensively studied. SAR-induced plants strongly and rapidly express a number of antibiotics and pathogenesis-related proteins targeted against secondary infection, which can account for enhanced resistance against bacterial and fungal pathogens but are not thought to control viral infection. This study showed that enhanced resistance against cucumber mosaic virus is caused by a tobacco calmodulin-like protein, rgs-CaM, which detects and counteracts the major viral virulence factor (RNA silencing suppressor) after SAR induction. rgs-CaM-mediated SAR illustrates the growth versus defense trade-off in plants, as it targets the major virulence factor only under specific biotic stress conditions, thus avoiding the cost of constitutive activation while reducing the damage from virus infection.
Collapse
Affiliation(s)
- Eun Jin Jeon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuki Tadamura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taiki Murakami
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Inaba
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Bo Min Kim
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masako Sato
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Go Atsumi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science and Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|