1
|
Ma L, Wei A, Liu C, Liu N, Han Y, Chen Z, Wang N, Du S. Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis. Genes (Basel) 2024; 15:1505. [PMID: 39766773 PMCID: PMC11675882 DOI: 10.3390/genes15121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cucumber (Cucumis sativus L.) is a crucial vegetable crop, requiring significant nitrogen fertilizer inputs. However, excessive nitrogen application not only impairs growth but also poses severe environmental risks. Thus, enhancing nitrogen use efficiency (NUE) in cucumber is imperative. For the identification of genes associated with NUE in cucumber, roots of high NUE and low NUE lines were analyzed under high nitrogen conditions. Using transcriptome sequencing through WGCNA, a total of 15,180 genes were categorized into 35 co-expression modules, with 5 modules being highly correlated with NUE. Based on differential expression within the five modules and the results of GO and KEGG enrichment analyses, 25 genes were identified as potentially related to NUE. Among these, CsaV4_1G002492 (GLR22), CsaV4_2G003460 (GLR35), CsaV4_3G000307 (NRT1.1), and CsaV4_7G001709 (UPS2) were homologous to genes in Arabidopsis known to directly participate in NUE related process. These four genes were chosen as key genes for further analysis. qRT-PCR analysis revealed that CsaV4_3G000307 and CsaV4_7G001709 were more active during the early stages of the high nitrogen treatment in the high NUE line. Conversely, CsaV4_1G002492 and CsaV4_2G003460 were more active in the low NUE line. Using transcriptomic analysis, a frameshift INDEL mutation was observed in CsaV4_3G000307 in the low NUE line, which impacted the compactness of the protein structure, potentially altering its function. Analysis of protein interactions of these four key genes predicted some potential interaction networks. This research offers critical insights into the genetic factors influencing NUE in cucumber, presenting potential targets for genetic modification or breeding programs.
Collapse
Affiliation(s)
- Linhao Ma
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Nan Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhengwu Chen
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ningning Wang
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
- College of Agricultural Science, Nankai University, Tianjin 300071, China
| | - Shengli Du
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
2
|
Ali S, Tyagi A, Park S, Bae H. Understanding the mechanobiology of phytoacoustics through molecular Lens: Mechanisms and future perspectives. J Adv Res 2024; 65:47-72. [PMID: 38101748 PMCID: PMC11518948 DOI: 10.1016/j.jare.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND How plants emit, perceive, and respond to sound vibrations (SVs) is a long-standing question in the field of plant sensory biology. In recent years, there have been numerous studies on how SVs affect plant morphological, physiological, and biochemical traits related to growth and adaptive responses. For instance, under drought SVs navigate plant roots towards water, activate their defence responses against stressors, and increase nectar sugar in response to pollinator SVs. Also, plants emit SVs during stresses which are informative in terms of ecological and adaptive perspective. However, the molecular mechanisms underlying the SV perception and emission in plants remain largely unknown. Therefore, deciphering the complexity of plant-SV interactions and identifying bonafide receptors and signaling players will be game changers overcoming the roadblocks in phytoacoustics. AIM OF REVIEW The aim of this review is to provide an overview of recent developments in phytoacoustics. We primarily focuss on SV signal perception and transduction with current challenges and future perspectives. KEY SCIENTIFIC CONCEPTS OF REVIEW Timeline breakthroughs in phytoacoustics have constantly shaped our understanding and belief that plants may emit and respond to SVs like other species. However, unlike other plant mechanostimuli, little is known about SV perception and signal transduction. Here, we provide an update on phytoacoustics and its ecological importance. Next, we discuss the role of cell wall receptor-like kinases, mechanosensitive channels, intracellular organelle signaling, and other key players involved in plant-SV receptive pathways that connect them. We also highlight the role of calcium (Ca2+), reactive oxygen species (ROS), hormones, and other emerging signaling molecules in SV signal transduction. Further, we discuss the importance of molecular, biophysical, computational, and live cell imaging tools for decoding the molecular complexity of acoustic signaling in plants. Finally, we summarised the role of SV priming in plants and discuss how SVs could modulate plant defense and growth trade-offs during other stresses.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
3
|
Sarkar S, Rhein HS, Pittman JK, Hirschi KD. A dominant-negative Arabidopsis cation exchanger 1 (CAX1): N-terminal autoinhibition and membrane topology. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2982-2999. [PMID: 39175446 DOI: 10.1111/tpj.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Calcium (Ca2+) is essential for plant growth and cellular homeostasis, with cation exchangers (CAXs) regulating Ca2+ transport into plant vacuoles. In Arabidopsis, multiple CAXs feature a common structural arrangement, comprising an N-terminal autoinhibitory domain followed by two pseudosymmetrical modules. Mutations in CAX1 enhance stress tolerance, notably tolerance to anoxia (a condition marked by oxygen depletion), crucial for flood resilience. Here we engineered a dominant-negative CAX1 variant, named ½N-CAX1, incorporating the autoinhibitory domain and the N-terminal pseudosymmetrical module, which, when expressed in wild-type Arabidopsis plants, phenocopied the anoxia tolerance of cax1. Physiological evaluations, yeast assays, and calcium imaging demonstrated that wild-type plants expressing ½N-CAX1 have phenotypes consistent with inhibition of CAX1, which is likely through direct interaction of ½N-CAX1 with CAX1. Eliminating segments within the N-terminal pseudosymmetrical module, as well as incorporating modules from other plant CAXs and expressing these variants into wild-type plants, failed to produce anoxia tolerance. This underscores the requirement for both the CAX1 autoinhibitory domain and the intact pseudosymmetrical module to produce the dominant-negative phenotype. Our study elucidates the interaction of this ½N-CAX1 variant with CAX1 and its impact on anoxia tolerance, offering insights into further approaches for engineering plant stress tolerance.
Collapse
Affiliation(s)
- Shayan Sarkar
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Hormat Shadgou Rhein
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Jon K Pittman
- Faculty of Science and Engineering, School of Natural Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Kendal D Hirschi
- Pediatrics Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
4
|
León-García F, García-Laynes F, Estrada-Tapia G, Monforte-González M, Martínez-Estevez M, Echevarría-Machado I. In Silico Analysis of Glutamate Receptors in Capsicum chinense: Structure, Evolution, and Molecular Interactions. PLANTS (BASEL, SWITZERLAND) 2024; 13:812. [PMID: 38592787 PMCID: PMC10975470 DOI: 10.3390/plants13060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Plant glutamate receptors (GLRs) are integral membrane proteins that function as non-selective cation channels, involved in the regulation of developmental events crucial in plants. Knowledge of these proteins is restricted to a few species and their true agonists are still unknown in plants. Using tomato SlGLRs, a search was performed in the pepper database to identify GLR sequences in habanero pepper (Capsicum chinense Jacq.). Structural, phylogenetic, and orthology analysis of the CcGLRs, as well as molecular docking and protein interaction networks, were conducted. Seventeen CcGLRs were identified, which contained the characteristic domains of GLR. The variation of conserved residues in the M2 transmembrane domain between members suggests a difference in ion selectivity and/or conduction. Also, new conserved motifs in the ligand-binding regions are reported. Duplication events seem to drive the expansion of the species, and these were located in the evolution by using orthologs. Molecular docking analysis allowed us to identify differences in the agonist binding pocket between CcGLRs, which suggest the existence of different affinities for amino acids. The possible interaction of some CcGLRs with proteins leads to suggesting specific functions for them within the plant. These results offer important functional clues for CcGLR, probably extrapolated to other Solanaceae.
Collapse
Affiliation(s)
| | | | | | | | | | - Ileana Echevarría-Machado
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, #130, x 32 and 34, Mérida 97205, Yucatán, Mexico; (F.L.-G.); (M.M.-G.); (M.M.-E.)
| |
Collapse
|
5
|
Hu Y, Dai Z, Huang J, Han M, Wang Z, Jiao W, Gao Z, Liu X, Liu L, Ma Z. Genome-wide identification and expression analysis of the glutamate receptor gene family in sweet potato and its two diploid relatives. FRONTIERS IN PLANT SCIENCE 2023; 14:1255805. [PMID: 38179475 PMCID: PMC10764598 DOI: 10.3389/fpls.2023.1255805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/06/2023] [Indexed: 01/06/2024]
Abstract
Plant glutamate receptor (GLR) homologs are crucial calcium channels that play an important role in plant development, signal transduction, and response to biotic and abiotic stresses. However, the GLR gene family has not yet been thoroughly and systematically studied in sweet potato. In this study, a total of 37 GLR genes were identified in the cultivated hexaploid sweet potato (Ipomoea batatas), and 32 GLR genes were discovered in each of the two diploid relatives (Ipomoea trifida and Ipomoea triloba) for the first time. Based on their evolutionary relationships to those of Arabidopsis, these GLRs were split into five subgroups. We then conducted comprehensive analysis to explore their physiological properties, protein interaction networks, promoter cis-elements, chromosomal placement, gene structure, and expression patterns. The results indicate that the homologous GLRs of the cultivated hexaploid sweet potato and its two relatives are different. These variations are reflected in their functions related to plant growth, hormonal crosstalk, development of tuberous roots, resistance to root rot, and responses to abiotic stress factors, all of which are governed by specific individual GLR genes. This study offers a comprehensive analysis of GLR genes in sweet potato and its two diploid relatives. It also provides a theoretical basis for future research into their regulatory mechanisms, significantly influencing the field of molecular breeding in sweet potatoes.
Collapse
Affiliation(s)
- Yaya Hu
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhuoru Dai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Jinan Huang
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Meikun Han
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhiwei Wang
- Department of Agriculture Forestry and Biological Engineering, Baoding Vocational and Technical College, Baoding, Hebei, China
| | - Weijing Jiao
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhiyuan Gao
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Xinliang Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Lanfu Liu
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - Zhimin Ma
- Hebei Key Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Simon AA, Navarro-Retamal C, Feijó JA. Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:415-452. [PMID: 36854472 PMCID: PMC11479355 DOI: 10.1146/annurev-arplant-070522-033255] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca2+) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades ofArabidopsis thaliana in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.
Collapse
Affiliation(s)
- Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA;
| | - Carlos Navarro-Retamal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
7
|
Ahmed I, Kumar A, Bheri M, Srivastava AK, Pandey GK. Glutamate receptor like channels: Emerging players in calcium mediated signaling in plants. Int J Biol Macromol 2023; 234:123522. [PMID: 36758765 DOI: 10.1016/j.ijbiomac.2023.123522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Glutamate receptors like channels (GLRs) are ligand gated non-selective cation channels and are multigenic in nature. They are homologs of mammalian ionic glutamate receptors (iGLRs) that play an important role in neurotransmission. It has been more than 25 years of discovery of plant GLRs, since then, significant progress has been made to unravel their structure and function in plants. Recently, the first crystal structure of plant GLR has been resolved that suggests that, though, plant GLRs contain the conserved signature domains of iGLRs, their unique features enable agonist/antagonist-dependent change in their activity. GLRs exhibit diverse subcellular localization and undergo dynamic expression variation in response to developmental and environmental stress conditions in plants. The combined use of genetic, electrophysiology and calcium imaging using different genetically encoded calcium indicators has revealed that GLRs are involved in generating calcium (Ca2+) influx across the plasma membrane and are involved in shaping the Ca2+ signature in response to different developmental and environmental stimuli. These findings indicate that GLRs influence cytosolic Ca2+ dynamics, thus, highlighting "GLR-Ca2+-crosstalk (GCC)" in developmental and stress-responsive signaling pathways. With this background, the present review summarises the recent developments pertaining to GLR function, in the broader context of regulation of stress tolerance in plants.
Collapse
Affiliation(s)
- Israr Ahmed
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
8
|
Yu B, Liu N, Tang S, Qin T, Huang J. Roles of Glutamate Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental Stimuli. PLANTS (BASEL, SWITZERLAND) 2022; 11:3450. [PMID: 36559561 PMCID: PMC9782139 DOI: 10.3390/plants11243450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Plant glutamate receptor-like channels (GLRs) are the homologues of ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in mammals, and they play important roles in various plant-specific physiological processes, such as pollen tube growth, sexual reproduction, root meristem proliferation, internode cell elongation, stomata aperture regulation, and innate immune and wound responses. Notably, these biological functions of GLRs have been mostly linked to the Ca2+-permeable channel activity as GLRs can directly channel the transmembrane flux of Ca2+, which acts as a key second messenger in plant cell responses to both endogenous and exogenous stimuli. Thus, it was hypothesized that GLRs are mainly involved in Ca2+ signaling processes in plant cells. Recently, great progress has been made in GLRs for their roles in long-distance signal transduction pathways mediated by electrical activity and Ca2+ signaling. Here, we review the recent progress on plant GLRs, and special attention is paid to recent insights into the roles of GLRs in response to environmental stimuli via Ca2+ signaling, electrical activity, ROS, as well as hormone signaling networks. Understanding the roles of GLRs in integrating internal and external signaling for plant developmental adaptations to a changing environment will definitely help to enhance abiotic stress tolerance.
Collapse
|
9
|
Genome-Wide Identification and Expression Analysis of BraGLRs Reveal Their Potential Roles in Abiotic Stress Tolerance and Sexual Reproduction. Cells 2022; 11:cells11233729. [PMID: 36496989 PMCID: PMC9739336 DOI: 10.3390/cells11233729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Glutamate receptors (GLRs) are involved in multiple functions during the plant life cycle through affecting the Ca2+ concentration. However, GLRs in Brassica species have not yet been reported. In this study, 16 glutamate receptor-like channels (GLR) belonged to two groups were identified in the Brassica rapa (B. rapa) genome by bioinformatic analysis. Most members contain domains of ANF_receptor, Peripla_BP_6, Lig_chan, SBP_bac_3, and Lig_chan_Glu_bd that are closely related to glutamate receptor channels. This gene family contains many elements associated with drought stress, low temperature stress, methyl jasmonate (MeJA), salicylic acid (SA), and other stress resistance. Gene expression profiles showed that BraGLR genes were expressed in roots, stems, leaves, flowers, and siliques. BraGLR5 expression was elevated after drought stress in drought-sensitive plants. BraGLR1, BraGLR8, and BraGLR11 expression were significantly upregulated after salt stress. BraGLR3 expression is higher in the female sterile-line mutants than in the wild type. The expression levels of BraGLR6, BraGLR9, BraGLR12, and BraGLR13 were significantly higher in the male sterile-line mutants than in the wild type. The expression of most BraGLRs increased after self-pollination, with BraGLR9 exhibiting the greatest increase. These results suggest that BraGLRs play an important role in abiotic stress tolerance and sexual reproduction.
Collapse
|
10
|
Naz R, Khan A, Alghamdi BS, Ashraf GM, Alghanmi M, Ahmad A, Bashir SS, Haq QMR. An Insight into Animal Glutamate Receptors Homolog of Arabidopsis thaliana and Their Potential Applications-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192580. [PMID: 36235446 PMCID: PMC9572488 DOI: 10.3390/plants11192580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/01/2023]
Abstract
Most excitatory impulses received by neurons are mediated by ionotropic glutamate receptors (iGluRs). These receptors are located at the apex and play an important role in memory, neuronal development, and synaptic plasticity. These receptors are ligand-dependent ion channels that allow a wide range of cations to pass through. Glutamate, a neurotransmitter, activates three central ionotropic receptors: N-methyl-D-aspartic acid (NMDA), -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), and kainic acid (KA). According to the available research, excessive glutamate release causes neuronal cell death and promotes neurodegenerative disorders. Arabidopsis thaliana contains 20 glutamate receptor genes (AtGluR) comparable to the human ionotropic glutamate (iGluRs) receptor. Many studies have proved that AtGL-rec genes are involved in a number of plant growth and physiological activities, such as in the germination of seeds, roots, abiotic and biotic stress, and cell signaling, which clarify the place of these genes in plant biology. In spite of these, the iGluRs, Arabidopsis glutamate receptors (AtGluR), is associated with the ligand binding activity, which confirms the evolutionary relationship between animal and plant glutamate receptors. Along with the above activities, the impact of mammalian agonists and antagonists on Arabidopsis suggests a correlation between plant and animal glutamate receptors. In addition, these glutamate receptors (plant/animal) are being utilized for the early detection of neurogenerative diseases using the fluorescence resonance energy transfer (FRET) approach. However, a number of scientific laboratories and institutes are consistently working on glutamate receptors with different aspects. Currently, we are also focusing on Arabidopsis glutamate receptors. The current review is focused on updating knowledge on AtGluR genes, their evolution, functions, and expression, and as well as in comparison with iGluRs. Furthermore, a high throughput approach based on FRET nanosensors developed for understanding neurotransmitter signaling in animals and plants via glutamate receptors has been discussed. The updated information will aid in the future comprehension of the complex molecular dynamics of glutamate receptors and the exploration of new facts in plant/animal biology.
Collapse
Affiliation(s)
- Ruphi Naz
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | | | |
Collapse
|
11
|
Zhang J, Cui T, Su Y, Zang S, Zhao Z, Zhang C, Zou W, Chen Y, Cao Y, Chen Y, Que Y, Chen N, Luo J. Genome-Wide Identification, Characterization, and Expression Analysis of Glutamate Receptor-like Gene (GLR) Family in Sugarcane. PLANTS 2022; 11:plants11182440. [PMID: 36145840 PMCID: PMC9506223 DOI: 10.3390/plants11182440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
The plant glutamate receptor-like gene (GLR) plays a vital role in development, signaling pathways, and in its response to environmental stress. However, the GLR gene family has not been comprehensively and systematically studied in sugarcane. In this work, 43 GLR genes, including 34 in Saccharum spontaneum and 9 in the Saccharum hybrid cultivar R570, were identified and characterized, which could be divided into three clades (clade I, II, and III). They had different evolutionary mechanisms, the former was mainly on the WGD/segmental duplication, while the latter mainly on the proximal duplication. Those sugarcane GLR proteins in the same clade had a similar gene structure and motif distribution. For example, 79% of the sugarcane GLR proteins contained all the motifs, which proved the evolutionary stability of the sugarcane GLR gene family. The diverse cis-acting regulatory elements indicated that the sugarcane GLRs may play a role in the growth and development, or under the phytohormonal, biotic, and abiotic stresses. In addition, GO and KEGG analyses predicted their transmembrane transport function. Based on the transcriptome data, the expression of the clade III genes was significantly higher than that of the clade I and clade II. Furthermore, qRT-PCR analysis demonstrated that the expression of the SsGLRs was induced by salicylic acid (SA) treatment, methyl jasmonic acid (MeJA) treatment, and abscisic acid (ABA) treatment, suggesting their involvement in the hormone synthesis and signaling pathway. Taken together, the present study should provide useful information on comparative genomics to improve our understanding of the GLR genes and facilitate further research on their functions.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianzhen Cui
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Cao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Niandong Chen
- New Huadu Business School, Minjiang University, Fuzhou 350108, China
- Correspondence: (N.C.); (J.L.); Tel.: +86-591-8385-2547 (N.C. & J.L.)
| | - Jun Luo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (N.C.); (J.L.); Tel.: +86-591-8385-2547 (N.C. & J.L.)
| |
Collapse
|
12
|
Macias-González M, Truco MJ, Han R, Jenni S, Michelmore RW. High-resolution genetic dissection of the major QTL for tipburn resistance in lettuce, Lactuca sativa. G3 (BETHESDA, MD.) 2021; 11:jkab097. [PMID: 33772545 PMCID: PMC8495944 DOI: 10.1093/g3journal/jkab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
Tipburn is an important physiological disorder of lettuce, Lactuca sativa L., related to calcium deficiency that can result in leaf necrosis and unmarketable crops. The major quantitative trait locus (QTL), qTPB5.2, can account for up to 70% of the phenotypic variance for tipburn incidence in the field. This QTL was genetically dissected to identify candidate genes for tipburn by creating lines with recombination events within the QTL and assessing their resistance to tipburn. By comparing lines with contrasting haplotypes, the genetic region was narrowed down to ∼877 Kb that was associated with a reduction of tipburn by ∼60%. Analysis of the lettuce reference genome sequence revealed 12 genes in this region, one of which is a calcium transporter with a single nucleotide polymorphism in an exon between haplotypes with contrasting phenotypes. RNA-seq analysis of recombinants revealed two genes that were differentially expressed between contrasting haplotypes consistent with the tipburn phenotype. One encodes a Teosinte branched1/Cycloidea/Proliferating Cell factor transcription factor; however, differential expression of the calcium transporter was detected. The phenotypic data indicated that there is a second region outside of the ∼877 Kb region but within the QTL, at which a haplotype from the susceptible parent decreased tipburn by 10-20%. A recombinant line was identified with beneficial haplotypes in each region from both parents that showed greater tipburn resistance than the resistant parent; this line could be used as the foundation for breeding cultivars with more resistance than is currently available.
Collapse
Affiliation(s)
- Miguel Macias-González
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Maria Jose Truco
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Rongkui Han
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Sylvie Jenni
- Science and Technology Branch, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| | - Richard W Michelmore
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
13
|
Ramos-Vicente D, Grant SG, Bayés À. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology 2021; 195:108640. [PMID: 34116111 DOI: 10.1016/j.neuropharm.2021.108640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function. Comprehensive phylogenetic analysis of these proteins across metazoans have revealed that their evolution is much more complex than what can be anticipated from vertebrate genomes. This is particularly true for ionotropic glutamate receptors (iGluRs), as their current classification into 6 classes (AMPA, Kainate, Delta, NMDA1, NMDA2 and NMDA3) would be largely incomplete. New work proposes a classification of iGluRs into 4 subfamilies that encompass 10 classes. Vertebrate AMPA, Kainate and Delta receptors would belong to one of these subfamilies, named AKDF, the NMDA subunits would constitute another subfamily and non-vertebrate iGluRs would be organised into the previously unreported Epsilon and Lambda subfamilies. Similarly, the animal evolution of metabotropic glutamate receptors has resulted in the formation of four classes of these receptors, instead of the three currently recognised. Here we review our current knowledge on the animal evolution of glutamate receptors and their auxiliary subunits. This article is part of the special issue on 'Glutamate Receptors - Orphan iGluRs'.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
14
|
Gangwar SP, Green MN, Michard E, Simon AA, Feijó JA, Sobolevsky AI. Structure of the Arabidopsis Glutamate Receptor-like Channel GLR3.2 Ligand-Binding Domain. Structure 2020; 29:161-169.e4. [PMID: 33027636 DOI: 10.1016/j.str.2020.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022]
Abstract
Glutamate receptor-like channels (GLRs) play important roles in numerous plant physiological processes. GLRs are homologous to ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in vertebrates. Here we determine crystal structures of Arabidopsis thaliana GLR3.2 ligand-binding domain (LBD) in complex with glycine and methionine to 1.58- and 1.75-Å resolution, respectively. Our structures show a fold similar to that of iGluRs, but with several secondary structure elements either missing or different. The closed clamshell conformation of GLR3.2 LBD suggests that both glycine and methionine act as agonists. The mutation R133A strongly increases the constitutive activity of the channel, suggesting that the LBD mutated at the residue critical for agonist binding produces a more stable closed clamshell conformation. Furthermore, our structures explain the promiscuity of GLR activation by different amino acids, confirm evolutionary conservation of structure between GLRs and iGluRs, and predict common molecular principles of their gating mechanisms driven by bilobed clamshell-like LBDs.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Marriah N Green
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Training Program in Nutritional and Metabolic Biology, Institute of Human Nutrition, Columbia University Irving Medical Center, 630 West 168(th) Street, New York, NY 10032, USA
| | - Erwan Michard
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park, MD 20742-5815, USA
| | - Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park, MD 20742-5815, USA
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park, MD 20742-5815, USA.
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
15
|
Zhang X, Liu H, Pilon-Smits E, Huang W, Wang P, Wang M, Guo F, Wang Y, Li R, Zhao H, Ni D. Transcriptome-Wide Analysis of Nitrogen-Regulated Genes in Tea Plant ( Camellia sinensis L. O. Kuntze) and Characterization of Amino Acid Transporter CsCAT9.1. PLANTS 2020; 9:plants9091218. [PMID: 32957496 PMCID: PMC7569990 DOI: 10.3390/plants9091218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
The vigor of tea plants (Camellia sinensis) and tea quality are strongly influenced by the abundance and forms of nitrogen, principally NO3−, NH4+, and amino acids. Mechanisms to access different nitrogen sources and the regulatory cues remain largely elusive in tea plants. A transcriptome analysis was performed to categorize differentially expressed genes (DEGs) in roots and young leaves during the early response to four nitrogen treatments. Relative to the continuously nitrogen-replete control, the three nitrogen-deprived and resupplied treatments shared 237 DEGs in the shoots and 21 DEGs in the root. Gene-ontology characterization revealed that transcripts encoding genes predicted to participate in nitrogen uptake, assimilation, and translocation were among the most differentially expressed after exposure to the different nitrogen regimes. Because of its high transcript level regardless of nitrogen condition, a putative amino acid transporter, TEA020444/CsCAT9.1, was further characterized in Arabidopsis and found to mediate the acquisition of a broad spectrum of amino acids, suggesting a role in amino acid uptake, transport, and deposition in sinks as an internal reservoir. Our results enhance our understanding of nitrogen-regulated transcript level patterns in tea plants and pinpoint candidate genes that function in nitrogen transport and metabolism, allowing tea plants to adjust to variable nitrogen environments.
Collapse
Affiliation(s)
- Xinwan Zhang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongling Liu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Wei Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Pu Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingle Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Guo
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Wang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiyuan Li
- Key Laboratory of information and computing science Guizhou Province, Guizhou Normal University, Guiyang 550001, China;
| | - Hua Zhao
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (H.L.); (W.H.); (P.W.); (M.W.); (F.G.); (Y.W.); (D.N.)
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Ju C, Kong D, Lee Y, Ge G, Song Y, Liu J, Kwak JM. Methionine synthase 1 provides methionine for activation of the GLR3.5 Ca2+ channel and regulation of germination in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:178-187. [PMID: 31563952 PMCID: PMC6913737 DOI: 10.1093/jxb/erz431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 09/11/2019] [Indexed: 05/09/2023]
Abstract
Seed germination is a developmental process regulated by numerous internal and external cues. Our previous studies have shown that calcium influx mediated by the Arabidopsis glutamate receptor homolog 3.5 (AtGLR3.5) modulates the expression of the ABSCISIC ACID INSENSITIVE 4 (ABI4) transcription factor during germination and that L-methionine (L-Met) activates AtGLR3.1/3.5 Ca2+ channels in guard cells. However, it is not known whether L-Met participates in regulation of germination and what cellular mechanism is responsible for Met production during germination. Here, we describe Arabidopsis methionine synthase 1 (AtMS1), which acts in the final step of Met biosynthesis, synthesizes the Met required for the activation of AtGLR3.5 Ca2+ channels whose expression is up-regulated during germination, leading to the regulation of seed germination. We show that exogenous L-Met promotes germination in an AtGRL3.5-dependent manner. We also demonstrate that L-Met directly regulates the AtGLR3.5-mediated increase in cytosolic Ca2+ level in seedlings. We provide pharmacological and genetic evidence that Met synthesized via AtMS1 acts upstream of the AtGLR3.5-mediated Ca2+ signal and regulates the expression of ABI4, a major regulator in the abscisic acid response in seeds. Overall, our results link AtMS1, L-Met, the AtGLR3.5 Ca2+ channel, Ca2+ signals, and ABI4, and shed light on the physiological role and molecular mechanism of L-Met in germination.
Collapse
Affiliation(s)
- Chuanli Ju
- College of Life Sciences, Capital Normal University, Beijing, China
- Correspondence: or
| | - Dongdong Kong
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuree Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Gege Ge
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yanan Song
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jiawen Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - June M Kwak
- Department of New Biology, DGIST, Daegu, Republic of Korea
- Correspondence: or
| |
Collapse
|
17
|
Wang PH, Lee CE, Lin YS, Lee MH, Chen PY, Chang HC, Chang IF. The Glutamate Receptor-Like Protein GLR3.7 Interacts With 14-3-3ω and Participates in Salt Stress Response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1169. [PMID: 31632419 DOI: 10.3389/fpls.2019.01169/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/27/2019] [Indexed: 05/25/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that mediate fast excitatory neurotransmission in the mammalian central nervous system. In the model plant Arabidopsis thaliana, a family of 20 glutamate receptor-like proteins (GLRs) shares similarities to animal iGluRs in sequence and predicted secondary structure. However, the function of GLRs in plants is little known. In the present study, a serine site (Ser-860) of AtGLR3.7 phosphorylated by a calcium-dependent protein kinase (CDPK) was identified and confirmed by an in vitro kinase assay. Using a bimolecular fluorescence complementation and quartz crystal microbalance analyses, the physical interaction between AtGLR3.7 and the 14-3-3ω protein was confirmed. The mutation of Ser-860 to alanine abolished this interaction, indicating that Ser-860 is the 14-3-3ω binding site of AtGLR3.7. Compared with wild type, seed germination of the glr3.7-2 mutant was more sensitive to salt stress. However, the primary root growth of GLR3.7-S860A overexpression lines was less sensitive to salt stress than that of the wild-type line. In addition, the increase of cytosolic calcium ion concentration by salt stress was significantly lower in the glr3.7-2 mutant line than in the wild-type line. Moreover, association of 14-3-3 proteins to microsomal fractions was less in GLR3.7-S860A overexpression lines than in GLR3.7 overexpression line under 150 mM NaCl salt stress condition. Overall, our results indicated that GLR3.7 is involved in salt stress response in A. thaliana by affecting calcium signaling.
Collapse
Affiliation(s)
- Po-Hsun Wang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-En Lee
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Sin Lin
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Man-Hsuan Lee
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Chun Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
18
|
Bienert MD, Muries B, Crappe D, Chaumont F, Bienert GP. Overexpression of X Intrinsic Protein 1;1 in Nicotiana tabacum and Arabidopsis reduces boron allocation to shoot sink tissues. PLANT DIRECT 2019; 3:e00143. [PMID: 31245781 PMCID: PMC6549384 DOI: 10.1002/pld3.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/09/2019] [Indexed: 05/05/2023]
Abstract
Major Intrinsic Proteins (MIP) are a family of channels facilitating the diffusion of water and/or small solutes across cellular membranes. X Intrinsic Proteins (XIP) form the least characterized MIP subfamily in vascular plants. XIPs are mostly impermeable to water but facilitate the diffusion of hydrogen peroxide, urea and boric acid when expressed in heterologous expression systems. However, their transport capabilities in planta and their impact on plant physiology are still unknown. Here, we demonstrated that overexpression of NtXIP1;1 in Nicotiana tabacum by the En2pPMA4 or the 35S CaMV promoter and in Arabidopsis, which does not contain any XIP gene, by the 35S CaMV promoter, resulted in boron (B)-deficiency symptoms such as death of the shoot apical meristem, infertile flowers, and puckered leaves. Leaf B concentrations in symptomatic tissues and B xylem sap concentrations were lower in the overexpressors than in control plants. Importantly, expression of NtXIP1;1 under the control of the AtNIP5;1 promoter complemented the B deficiency phenotype of the Atnip5;1 knockout mutant, defining its ability to act as a boric acid channel in planta. Protein quantification analysis revealed that NtXIP1;1 was predominantly expressed in young B-demanding tissues and induced under B-deficient conditions. Our results strongly suggest that NtXIP1;1 plays a role in B homeostasis and its tissue-specific expression critically contributes to the distribution of B within tobacco.
Collapse
Affiliation(s)
- Manuela Desiree Bienert
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| | - Beatriz Muries
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Delphine Crappe
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Gerd Patrick Bienert
- Department of Physiology and Cell BiologyLeibniz Institute of Plant Genetics and Crop Plant ResearchGaterslebenGermany
| |
Collapse
|
19
|
Wang PH, Lee CE, Lin YS, Lee MH, Chen PY, Chang HC, Chang IF. The Glutamate Receptor-Like Protein GLR3.7 Interacts With 14-3-3ω and Participates in Salt Stress Response in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:1169. [PMID: 31632419 PMCID: PMC6779109 DOI: 10.3389/fpls.2019.01169] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/27/2019] [Indexed: 05/19/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that mediate fast excitatory neurotransmission in the mammalian central nervous system. In the model plant Arabidopsis thaliana, a family of 20 glutamate receptor-like proteins (GLRs) shares similarities to animal iGluRs in sequence and predicted secondary structure. However, the function of GLRs in plants is little known. In the present study, a serine site (Ser-860) of AtGLR3.7 phosphorylated by a calcium-dependent protein kinase (CDPK) was identified and confirmed by an in vitro kinase assay. Using a bimolecular fluorescence complementation and quartz crystal microbalance analyses, the physical interaction between AtGLR3.7 and the 14-3-3ω protein was confirmed. The mutation of Ser-860 to alanine abolished this interaction, indicating that Ser-860 is the 14-3-3ω binding site of AtGLR3.7. Compared with wild type, seed germination of the glr3.7-2 mutant was more sensitive to salt stress. However, the primary root growth of GLR3.7-S860A overexpression lines was less sensitive to salt stress than that of the wild-type line. In addition, the increase of cytosolic calcium ion concentration by salt stress was significantly lower in the glr3.7-2 mutant line than in the wild-type line. Moreover, association of 14-3-3 proteins to microsomal fractions was less in GLR3.7-S860A overexpression lines than in GLR3.7 overexpression line under 150 mM NaCl salt stress condition. Overall, our results indicated that GLR3.7 is involved in salt stress response in A. thaliana by affecting calcium signaling.
Collapse
Affiliation(s)
- Po-Hsun Wang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Cheng-En Lee
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Sin Lin
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Man-Hsuan Lee
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Hui-Chun Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- *Correspondence: Ing-Feng Chang,
| |
Collapse
|
20
|
Zheng Y, Luo L, Wei J, Chen Q, Yang Y, Hu X, Kong X. The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana. Biochem Biophys Res Commun 2018; 506:895-900. [DOI: 10.1016/j.bbrc.2018.10.153] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 01/20/2023]
|
21
|
Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. THE NEW PHYTOLOGIST 2018; 220:49-69. [PMID: 29916203 DOI: 10.1111/nph.15266] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/21/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 49 I. Introduction 49 II. Physiological and structural characteristics of plant Ca2+ -permeable ion channels 50 III. Ca2+ extrusion systems 61 IV. Concluding remarks 64 Acknowledgements 64 References 64 SUMMARY: Calcium is an essential structural, metabolic and signalling element. The physiological functions of Ca2+ are enabled by its orchestrated transport across cell membranes, mediated by Ca2+ -permeable ion channels, Ca2+ -ATPases and Ca2+ /H+ exchangers. Bioinformatics analysis has not determined any Ca2+ -selective filters in plant ion channels, but electrophysiological tests do reveal Ca2+ conductances in plant membranes. The biophysical characteristics of plant Ca2+ conductances have been studied in detail and were recently complemented by molecular genetic approaches. Plant Ca2+ conductances are mediated by several families of ion channels, including cyclic nucleotide-gated channels (CNGCs), ionotropic glutamate receptors, two-pore channel 1 (TPC1), annexins and several types of mechanosensitive channels. Key Ca2+ -mediated reactions (e.g. sensing of temperature, gravity, touch and hormones, and cell elongation and guard cell closure) have now been associated with the activities of specific subunits from these families. Structural studies have demonstrated a unique selectivity filter in TPC1, which is passable for hydrated divalent cations. The hypothesis of a ROS-Ca2+ hub is discussed, linking Ca2+ transport to ROS generation. CNGC inactivation by cytosolic Ca2+ , leading to the termination of Ca2+ signals, is now mechanistically explained. The structure-function relationships of Ca2+ -ATPases and Ca2+ /H+ exchangers, and their regulation and physiological roles are analysed.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professora Popova Street, St Petersburg, 197376, Russia
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Stanislav Isayenkov
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, 2a Osipovskogo Street, Kyiv, 04123, Ukraine
| | - Tracey A Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colima, 28045, Mexico
| |
Collapse
|
22
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
23
|
Wudick MM, Michard E, Oliveira Nunes C, Feijó JA. Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4976335. [PMID: 29684179 DOI: 10.1093/jxb/ery153] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 06/08/2023]
Abstract
Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.
Collapse
Affiliation(s)
- Michael M Wudick
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| | - Erwan Michard
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| | | | - José A Feijó
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| |
Collapse
|
24
|
Zhang X, Ding X, Ji Y, Wang S, Chen Y, Luo J, Shen Y, Peng L. Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice (Glycyrrhiza uralensis) plants under UV-B irradiation. Sci Rep 2018; 8:6144. [PMID: 29670187 PMCID: PMC5906665 DOI: 10.1038/s41598-018-24284-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Plants respond to UV-B irradiation (280–315 nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomic analysis, combined with analysis of differentially expressed genes in the leaves of plants exposed to UV-B irradiation at various time points. Fifty-four metabolites, primarily amino acids and flavonoids, exhibited changes in levels after the UV-B treatment. The amino acid metabolism was altered by UV-B irradiation: the Asp family pathway was activated and closely correlated to Glu. Some amino acids appeared to be converted into antioxidants such as γ-aminobutyric acid and glutathione. Hierarchical clustering analysis revealed that various flavonoids with characteristic groups were induced by UV-B. In particular, the levels of some ortho-dihydroxylated B-ring flavonoids, which might function as scavengers of reactive oxygen species, increased in response to UV-B treatment. In general, unigenes encoding key enzymes involved in amino acid metabolism and flavonoid biosynthesis were upregulated by UV-B irradiation. These findings lay the foundation for further analysis of the mechanism underlying the response of G. uralensis to UV-B irradiation.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoli Ding
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, 750021, China.,School of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Yaxi Ji
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China. .,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
| | - Li Peng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, 750021, China. .,School of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
25
|
Canales J, Henriquez-Valencia C, Brauchi S. The Integration of Electrical Signals Originating in the Root of Vascular Plants. FRONTIERS IN PLANT SCIENCE 2018; 8:2173. [PMID: 29375591 PMCID: PMC5767606 DOI: 10.3389/fpls.2017.02173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.
Collapse
Affiliation(s)
- Javier Canales
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Carlos Henriquez-Valencia
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Facultad de Medicina, Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases, Valdivia, Chile
| |
Collapse
|
26
|
L-Met Activates Arabidopsis GLR Ca 2+ Channels Upstream of ROS Production and Regulates Stomatal Movement. Cell Rep 2017; 17:2553-2561. [PMID: 27926860 DOI: 10.1016/j.celrep.2016.11.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
Plant glutamate receptor homologs (GLRs) have long been proposed to function as ligand-gated Ca2+ channels, but no in planta evidence has been provided. Here, we present genetic evidence that Arabidopsis GLR3.1 and GLR3.5 form Ca2+ channels activated by L-methionine (L-Met) at physiological concentrations and regulate stomatal apertures and plant growth. The glr3.1/3.5 mutations resulted in a lower cytosolic Ca2+ level, defective Ca2+-induced stomatal closure, and Ca2+-deficient growth disorder, all of which involved L-Met. Patch-clamp analyses of guard cells showed that GLR3.1/3.5 Ca2+ channels are activated specifically by L-Met, with the activation abolished in glr3.1/3.5. Moreover, GLR3.1/3.5 Ca2+ channels are distinct from previously characterized ROS-activated Ca2+ channels and act upstream of ROS, providing Ca2+ transients necessary for the activation of NADPH oxidases. Our data indicate that GLR3.1/3.5 constitute L-Met-activated Ca2+ channels responsible for maintaining basal [Ca2+]cyt, play a pivotal role in plant growth, and act upstream of ROS, thereby regulating stomatal aperture.
Collapse
|
27
|
Tang RJ, Luan S. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:97-105. [PMID: 28709026 DOI: 10.1016/j.pbi.2017.06.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 05/26/2023]
Abstract
Calcium (Ca2+) and magnesium (Mg2+) are the most abundant divalent cations in plants. As a nutrient and a signaling ion, Ca2+ levels in the cell are tightly controlled by an array of channels and carriers that provide mechanistic basis for Ca2+ homeostasis and the generation of Ca2+ signals. Although a family of CorA-type Mg2+ transporters plays a key role in controlling Mg2+ homeostasis in plants, more components are yet to be identified. Ca2+ and Mg2+ appear to have antagonistic interactions in plant cells, and therefore plants depend on a homeostatic balance between Ca2+ and Mg2+ for optimal growth and development. Maintenance of such a balance in response to changing nutrient status in the soil emerges as a critical feature of plant mineral nutrition. Studies have uncovered signaling mechanisms that perceive nutrient status as a signal and regulate transport activities as adaptive responses. This 'nutrient sensing' network is exemplified by the Ca2+-dependent CBL (calcineurin B-like)-CIPK (CBL-interacting protein kinase) pathway that serves as a major link between environmental nutrient status and transport activities. In this review, we analyze the recent literature on Ca2+ and Mg2+ transport systems and their regulation and provide our perspectives on future research.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
28
|
Szechyńska-Hebda M, Lewandowska M, Karpiński S. Electrical Signaling, Photosynthesis and Systemic Acquired Acclimation. Front Physiol 2017; 8:684. [PMID: 28959209 PMCID: PMC5603676 DOI: 10.3389/fphys.2017.00684] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/25/2017] [Indexed: 12/20/2022] Open
Abstract
Electrical signaling in higher plants is required for the appropriate intracellular and intercellular communication, stress responses, growth and development. In this review, we have focus on recent findings regarding the electrical signaling, as a major regulator of the systemic acquired acclimation (SAA) and the systemic acquired resistance (SAR). The electric signaling on its own cannot confer the required specificity of information to trigger SAA and SAR, therefore, we have also discussed a number of other mechanisms and signaling systems that can operate in combination with electric signaling. We have emphasized the interrelation between ionic mechanism of electrical activity and regulation of photosynthesis, which is intrinsic to a proper induction of SAA and SAR. In a special way, we have summarized the role of non-photochemical quenching and its regulator PsbS. Further, redox status of the cell, calcium and hydraulic waves, hormonal circuits and stomatal aperture regulation have been considered as components of the signaling. Finally, a model of light-dependent mechanisms of electrical signaling propagation has been presented together with the systemic regulation of light-responsive genes encoding both, ion channels and proteins involved in regulation of their activity. Due to space limitations, we have not addressed many other important aspects of hormonal and ROS signaling, which were presented in a number of recent excellent reviews.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of SciencesKrakow, Poland
| | - Maria Lewandowska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life SciencesWarsaw, Poland
| |
Collapse
|
29
|
Ramesh SA, Tyerman SD, Gilliham M, Xu B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol Life Sci 2017; 74:1577-1603. [PMID: 27838745 PMCID: PMC11107511 DOI: 10.1007/s00018-016-2415-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 01/11/2023]
Abstract
The role of γ-aminobutyric acid (GABA) as a signal in animals has been documented for over 60 years. In contrast, evidence that GABA is a signal in plants has only emerged in the last 15 years, and it was not until last year that a mechanism by which this could occur was identified-a plant 'GABA receptor' that inhibits anion passage through the aluminium-activated malate transporter family of proteins (ALMTs). ALMTs are multigenic, expressed in different organs and present on different membranes. We propose GABA regulation of ALMT activity could function as a signal that modulates plant growth, development, and stress response. In this review, we compare and contrast the plant 'GABA receptor' with mammalian GABAA receptors in terms of their molecular identity, predicted topology, mode of action, and signalling roles. We also explore the implications of the discovery that GABA modulates anion flux in plants, its role in signal transduction for the regulation of plant physiology, and predict the possibility that there are other GABA interaction sites in the N termini of ALMT proteins through in silico evolutionary coupling analysis; we also explore the potential interactions between GABA and other signalling molecules.
Collapse
Affiliation(s)
- Sunita A Ramesh
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Bo Xu
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
30
|
Roy BC, Mukherjee A. Computational analysis of the glutamate receptor gene family of Arabidopsis thaliana. J Biomol Struct Dyn 2016; 35:2454-2474. [PMID: 27632363 DOI: 10.1080/07391102.2016.1222968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bidhan Chandra Roy
- Department of Botany, Dinabandhu Mahavidyalaya, North 24 Parganas, Bongaon, West Bengal 743235, India
| | - Ashutosh Mukherjee
- Department of Botany, Vivekananda College, 269, Diamond Harbour Road, Thakurpukur, Kolkata, West Bengal 700063, India
| |
Collapse
|
31
|
De Bortoli S, Teardo E, Szabò I, Morosinotto T, Alboresi A. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms. Biophys Chem 2016; 218:14-26. [PMID: 27586818 DOI: 10.1016/j.bpc.2016.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023]
Abstract
Photosynthetic eukaryotes have a complex evolutionary history shaped by multiple endosymbiosis events that required a tight coordination between the organelles and the rest of the cell. Plant ionotropic glutamate receptors (iGLRs) form a large superfamily of proteins with a predicted or proven non-selective cation channel activity regulated by a broad range of amino acids. They are involved in different physiological processes such as C/N sensing, resistance against fungal infection, root and pollen tube growth and response to wounding and pathogens. Most of the present knowledge is limited to iGLRs located in plasma membranes. However, recent studies localized different iGLR isoforms to mitochondria and/or chloroplasts, suggesting the possibility that they play a specific role in bioenergetic processes. In this work, we performed a comparative analysis of GLR sequences from bacteria and various photosynthetic eukaryotes. In particular, novel types of selectivity filters of bacteria are reported adding new examples of the great diversity of the GLR superfamily. The highest variability in GLR sequences was found among the algal sequences (cryptophytes, diatoms, brown and green algae). GLRs of land plants are not closely related to the GLRs of green algae analyzed in this work. The GLR family underwent a great expansion in vascular plants. Among plant GLRs, Clade III includes sequences from Physcomitrella patens, Marchantia polymorpha and gymnosperms and can be considered the most ancient, while other clades likely emerged later. In silico analysis allowed the identification of sequences with a putative target to organelles. Sequences with a predicted localization to mitochondria and chloroplasts are randomly distributed among different type of GLRs, suggesting that no compartment-related specific function has been maintained across the species.
Collapse
Affiliation(s)
| | - Enrico Teardo
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Italy; CNR Institute of Neuroscience, Padova, Italy
| | | | | |
Collapse
|
32
|
Singh SK, Chien CT, Chang IF. The Arabidopsis glutamate receptor-like gene GLR3.6 controls root development by repressing the Kip-related protein gene KRP4. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1853-1869. [PMID: 26773810 DOI: 10.1093/jxb/erv576] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In Arabidopsis, 20 genes encode putative glutamate receptor-like proteins (AtGLRs). However, the functions of most genes are unknown. In this study, our results revealed that loss of function of AtGLR3.6 (atglr3.6-1) leads to reduced primary root growth and fewer lateral roots, whereas AtGLR3.6 overexpression induced both primary and lateral root growth. The glr3.6-1 mutant exhibited a smaller root meristem size compared with the wild type, indicating that AtGLR3.6 controls root meristem size. In addition, atglr3.6-1 roots show a decreased mitotic activity accounting for the reduced root meristem size. Furthermore, expression of a gene encoding a cell cycle inhibitor, the cyclin-dependent kinase (CDK) inhibitor Kip-related protein 4 (KRP4), was significantly up-regulated in the mutant and down-regulated in AtGLR3.6-overexpressing roots, suggesting a role for KRP4 in AtGLR3.6-mediated root meristem maintenance. Importantly, the atglr3.6-1 mutant recovered most of its root growth when KRP4 expression is down-regulated, whereas elevated KRP4 expression in AtGLR3.6-overexpressing plants phenocopied the wild-type root growth, implying an underlying relationship between AtGLR3.6 and KRP4 genes. Cytosolic Ca(2+) elevation is reduced in atglr3.6-1 roots, suggesting impaired calcium signaling. Moreover, calcium treatment reduced the level of KRP4 and hence induced root growth. Collectively, we reveal that AtGLR3.6 is required for primary and lateral root development, and KRP4 functions as a downstream signaling element in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shashi Kant Singh
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Te Chien
- Division of Silviculture, Taiwan Forestry Research Institute, 53 Nan-Hai Road, Taipei 10066, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan Department of Life Science, National Taiwan University, Taipei 106, Taiwan Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 106, Taiwan
| |
Collapse
|
33
|
Yoshida R, Mori IC, Kamizono N, Shichiri Y, Shimatani T, Miyata F, Honda K, Iwai S. Glutamate functions in stomatal closure in Arabidopsis and fava bean. JOURNAL OF PLANT RESEARCH 2016; 129:39-49. [PMID: 26586261 PMCID: PMC5515988 DOI: 10.1007/s10265-015-0757-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/13/2015] [Indexed: 05/02/2023]
Abstract
Guard cells are indispensable for higher plants because they control gas exchange and water balance to maintain photosynthetic activity. The signaling processes that govern their movement are controlled by several factors, such as abscisic acid (ABA), blue light, pathogen-associated molecular patterns (PAMPs), and carbon dioxide. Herein, we demonstrated that the amino acid glutamate (Glu), a well-known mammalian neurotransmitter, functions as a novel signaling molecule in stomatal closure in both Arabidopsis and fava bean (Vicia faba L.). Pharmacological and electrophysiological analyses provided important clues for the participation of Glu-receptors, Ca(2+), and protein phosphorylation during the signaling process. Genetic analyses using Arabidopsis ABA-deficient (aba2-1) and ABA-insensitive (abi1-1 and abi2-1) mutants showed that ABA is not required for Glu signaling. However, loss-of-function of the Arabidopsis gene encoding Slow Anion Channel-Associated 1 (SLAC1) and Calcium-Dependent Protein Kinase 6 (CPK6) impaired the Glu response. Moreover, T-DNA knockout mutations of the Arabidopsis Glu receptor-like gene (GLR), GLR3.5, lost their sensitivity to Glu-dependent stomatal closure. Our results strongly support functional Glu-signaling in stomatal closure and the crucial roles of GLRs in this signaling process.
Collapse
Affiliation(s)
- Riichiro Yoshida
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| | - Izumi C Mori
- Institute of Plant Sciences and Resources, Okayama University, 2-20-1, Chuo, Kurashiki, 710-0046, Japan
| | - Nobuto Kamizono
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Yudai Shichiri
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Tetsuo Shimatani
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Fumika Miyata
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kenji Honda
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Sumio Iwai
- Laboratory of Horticultural Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Kohrimoto, Kagoshima, Kagoshima, 890-0065, Japan
| |
Collapse
|
34
|
Garnett T, Plett D, Heuer S, Okamoto M. Genetic approaches to enhancing nitrogen-use efficiency (NUE) in cereals: challenges and future directions. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:921-941. [PMID: 32480734 DOI: 10.1071/fp15025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/24/2015] [Indexed: 05/03/2023]
Abstract
Over 100million tonnes of nitrogen (N) fertiliser are applied globally each year to maintain high yields in agricultural crops. The rising price of N fertilisers has made them a major cost for farmers. Inefficient use of N fertiliser leads to substantial environmental problems through contamination of air and water resources and can be a significant economic cost. Consequently, there is considerable need to improve the way N fertiliser is used in farming systems. The efficiency with which crops use applied N fertiliser - the nitrogen-use efficiency (NUE) - is currently quite low for cereals. This is the case in both high yielding environments and lower yielding environments characteristic of cereal growing regions of Australia. Multiple studies have attempted to identify the genetic basis of NUE, but the utility of the results is limited because of the complex nature of the trait and the magnitude of genotype by environment interaction. Transgenic approaches have been applied to improve plant NUE but with limited success, due, in part, to a combination of the complexity of the trait but also due to lack of accurate phenotyping methods. This review documents these two approaches and suggests future directions in improving cereal NUE with a focus on the Australian cereal industry.
Collapse
Affiliation(s)
- Trevor Garnett
- Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia
| | - Darren Plett
- Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia
| | - Sigrid Heuer
- Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia
| | - Mamoru Okamoto
- Australian Centre for Plant Functional Genomics, School of Agriculture Food and Wine, University of Adelaide, Adelaide, SA 5064, Australia
| |
Collapse
|
35
|
Kong D, Ju C, Parihar A, Kim S, Cho D, Kwak JM. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination. PLANT PHYSIOLOGY 2015; 167:1630-42. [PMID: 25681329 PMCID: PMC4378146 DOI: 10.1104/pp.114.251298] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Seed germination is a critical step in a plant's life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis.
Collapse
Affiliation(s)
- Dongdong Kong
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (D.K., C.J., A.P., S.K., D.C.); andCenter for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea (J.M.K.)
| | - Chuanli Ju
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (D.K., C.J., A.P., S.K., D.C.); andCenter for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea (J.M.K.)
| | - Aisha Parihar
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (D.K., C.J., A.P., S.K., D.C.); andCenter for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea (J.M.K.)
| | - So Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (D.K., C.J., A.P., S.K., D.C.); andCenter for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea (J.M.K.)
| | - Daeshik Cho
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (D.K., C.J., A.P., S.K., D.C.); andCenter for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea (J.M.K.)
| | - June M Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742 (D.K., C.J., A.P., S.K., D.C.); andCenter for Plant Aging Research, Institute for Basic Science, Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea (J.M.K.)
| |
Collapse
|
36
|
Weiland M, Mancuso S, Baluska F. Signalling via glutamate and GLRs in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 43:1-25. [PMID: 32480438 DOI: 10.1071/fp15109] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/14/2015] [Indexed: 05/14/2023]
Abstract
The genome of Arabidopsis thaliana (L. Heynh.) contains 20 coding sequences for homologues of animal ionotropic glutamate receptors. These glutamate receptor-like receptors act as sensors and mediators of a multitude of exogenous as well as endogenous signals and are found in all analysed plant species. Their molecular structure clearly indicates a function as integral membrane proteins with a ligand-gated ion channel activity. Altered gene expressions and the occurrence of mRNA splice variants confer a high flexibility on the gene as well as on the RNA level. An individual glutamate receptor of A. thaliana is able to bind two different ligands (most probable amino acids and their derivatives), whereas a functional receptor complex is likely to consist of four single proteins. These features enable an immense number of sensitivities against various local and temporal stimuli. This review encompasses the last 15 years of research concerning glutamate signalling and glutamate receptors in plants. It is aimed at summarising their major characteristics and involvements to obtain a broader and farer reaching perspective of these fundamental components of plant signal transduction.
Collapse
Affiliation(s)
- Matthias Weiland
- Department of Plant, Soil and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Stefano Mancuso
- Department of Plant, Soil and Environmental Science, University of Florence, Viale delle Idee 30, 50019 Sesto Fiorentino, Italy
| | - Frantisek Baluska
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| |
Collapse
|
37
|
Teardo E, Carraretto L, De Bortoli S, Costa A, Behera S, Wagner R, Lo Schiavo F, Formentin E, Szabo I. Alternative splicing-mediated targeting of the Arabidopsis GLUTAMATE RECEPTOR3.5 to mitochondria affects organelle morphology. PLANT PHYSIOLOGY 2015; 167:216-27. [PMID: 25367859 PMCID: PMC4280996 DOI: 10.1104/pp.114.242602] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/30/2014] [Indexed: 05/18/2023]
Abstract
Since the discovery of 20 genes encoding for putative ionotropic glutamate receptors in the Arabidopsis (Arabidopsis thaliana) genome, there has been considerable interest in uncovering their physiological functions. For many of these receptors, neither their channel formation and/or physiological roles nor their localization within the plant cells is known. Here, we provide, to our knowledge, new information about in vivo protein localization and give insight into the biological roles of the so-far uncharacterized Arabidopsis GLUTAMATE RECEPTOR3.5 (AtGLR3.5), a member of subfamily 3 of plant glutamate receptors. Using the pGREAT vector designed for the expression of fusion proteins in plants, we show that a splicing variant of AtGLR3.5 targets the inner mitochondrial membrane, while the other variant localizes to chloroplasts. Mitochondria of knockout or silenced plants showed a strikingly altered ultrastructure, lack of cristae, and swelling. Furthermore, using a genetically encoded mitochondria-targeted calcium probe, we measured a slightly reduced mitochondrial calcium uptake capacity in the knockout mutant. These observations indicate a functional expression of AtGLR3.5 in this organelle. Furthermore, AtGLR3.5-less mutant plants undergo anticipated senescence. Our data thus represent, to our knowledge, the first evidence of splicing-regulated organellar targeting of a plant ion channel and identify the first cation channel in plant mitochondria from a molecular point of view.
Collapse
Affiliation(s)
- Enrico Teardo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Luca Carraretto
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Sara De Bortoli
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Alex Costa
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Smrutisanjita Behera
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Richard Wagner
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Fiorella Lo Schiavo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Elide Formentin
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| | - Ildiko Szabo
- Department of Biology, University of Padova, 35121 Padua, Italy (E.T., L.C., S.D.B., F.L.S., E.F., I.S.);Department of Biosciences, University of Milan, 20133 Milan, Italy (A.C., S.B.); andBiophysics, Department of Biology/Chemistry, University of Osnabrueck, 49069 Osnabrueck, Germany (R.W.)
| |
Collapse
|
38
|
Steinhorst L, Kudla J. Signaling in cells and organisms - calcium holds the line. CURRENT OPINION IN PLANT BIOLOGY 2014; 22:14-21. [PMID: 25195171 DOI: 10.1016/j.pbi.2014.08.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 05/22/2023]
Abstract
Previous research has established calcium (Ca(2+)) and reactive oxygen species (ROS) as important cellular second messengers in eukaryotes. Recently, the occurrence of cell-to-cell moving Ca(2+) and ROS waves was reported in plants. This was paralleled by the discovery of long-distance wound-activated surface potential changes (WASPs) that require the function of putatively Ca(2+)-releasing glutamate receptor-like channels (GLRs) in Arabidopsis. Although the functional interconnection of Ca(2+)-dependent phosphorylation and ROS waves via NADPH oxidase activation has been clearly established, potential further interconnections between these long-distance signaling processes are less clear. In this review we cover emerging concepts and existing open questions that interconnect cellular and global signaling via Ca(2+), ROS and WASPs.
Collapse
Affiliation(s)
- Leonie Steinhorst
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany.
| |
Collapse
|
39
|
Edel KH, Kudla J. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium 2014; 57:231-46. [PMID: 25477139 DOI: 10.1016/j.ceca.2014.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
Calcium serves as a versatile messenger in adaptation reactions and developmental processes in plants and animals. Eukaryotic cells generate cytosolic Ca(2+) signals via Ca(2+) conducting channels. Ca(2+) signals are represented in form of stimulus-specific spatially and temporally defined Ca(2+) signatures. These Ca(2+) signatures are detected, decoded and transmitted to downstream responses by an elaborate toolkit of Ca(2+) binding proteins that function as Ca(2+) sensors. In this article, we examine the distribution and evolution of Ca(2+)-conducting channels and Ca(2+) decoding proteins in the plant lineage. To this end, we have in addition to previously studied genomes of plant species, identified and analyzed the Ca(2+)-signaling components from species that hold key evolutionary positions like the filamentous terrestrial algae Klebsormidium flaccidum and Amborella trichopoda, the single living representative of the sister lineage to all other extant flowering plants. Plants and animals exhibit substantial differences in their complements of Ca(2+) channels and Ca(2+) binding proteins. Within the plant lineage, remarkable differences in the evolution of complexity between different families of Ca(2+) signaling proteins are observable. Using the CBL/CIPK Ca(2+) sensor/kinase signaling network as model, we attempt to link evolutionary tendencies to functional predictions. Our analyses, for example, suggest Ca(2+) dependent regulation of Na(+) homeostasis as an evolutionary most ancient function of this signaling network. Overall, gene families of Ca(2+) signaling proteins have significantly increased in their size during plant evolution reaching an extraordinary complexity in angiosperms.
Collapse
Affiliation(s)
- Kai H Edel
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany.
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Schlossplatz 4, 48149 Münster, Germany; College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia.
| |
Collapse
|
40
|
Lu G, Wang X, Liu J, Yu K, Gao Y, Liu H, Wang C, Wang W, Wang G, Liu M, Mao G, Li B, Qin J, Xia M, Zhou J, Liu J, Jiang S, Mo H, Cui J, Nagasawa N, Sivasankar S, Albertsen MC, Sakai H, Mazur BJ, Lassner MW, Broglie RM. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants. PLANT CELL REPORTS 2014; 33:617-31. [PMID: 24682459 DOI: 10.1007/s00299-014-1586-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 05/26/2023]
Abstract
A high-quality rice activation tagging population has been developed and screened for drought-tolerant lines using various water stress assays. One drought-tolerant line activated two rice glutamate receptor-like genes. Transgenic overexpression of the rice glutamate receptor-like genes conferred drought tolerance to rice and Arabidopsis. Rice (Oryza sativa) is a multi-billion dollar crop grown in more than one hundred countries, as well as a useful functional genetic tool for trait discovery. We have developed a population of more than 200,000 activation-tagged rice lines for use in forward genetic screens to identify genes that improve drought tolerance and other traits that improve yield and agronomic productivity. The population has an expected coverage of more than 90 % of rice genes. About 80 % of the lines have a single T-DNA insertion locus and this molecular feature simplifies gene identification. One of the lines identified in our screens, AH01486, exhibits improved drought tolerance. The AH01486 T-DNA locus is located in a region with two glutamate receptor-like genes. Constitutive overexpression of either glutamate receptor-like gene significantly enhances the drought tolerance of rice and Arabidopsis, thus revealing a novel function of this important gene family in plant biology.
Collapse
Affiliation(s)
- Guihua Lu
- Beijing Kaituo DNA Biotech Research Center, Co., Ltd., Beijing, 102206, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shankar A, Srivastava AK, Yadav AK, Sharma M, Pandey A, Raut VV, Das MK, Suprasanna P, Pandey GK. Whole genome transcriptome analysis of rice seedling reveals alterations in Ca(2+) ion signaling and homeostasis in response to Ca(2+) deficiency. Cell Calcium 2014; 55:155-65. [PMID: 24814644 DOI: 10.1016/j.ceca.2014.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/18/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Ca(2+) is an essential inorganic macronutrient, involved in regulating major physiological processes in plants. It has been well established as a second messenger and is predominantly stored in the cell wall, endoplasmic reticulum, mitochondria and vacuoles. In the cytosol, the concentration of this ion is maintained at nano-molar range. Upon requirement, Ca(2+) is released from intra-cellular as well as extracellular compartments such as organelles and cell wall. In this study, we report for the first time, a whole genome transcriptome response to short (5 D) and long (14 D) term Ca(2+) starvation and restoration in rice. Our results manifest that short and long term Ca(2+) starvation involves a very different response in gene expression with respect to both the number and function of genes involved. A larger number of genes were up- or down-regulated after 14 D (5588 genes) than after 5 D (798 genes) of Ca(2+) starvation. The functional classification of these genes indicated their connection with various metabolic pathways, ion transport, signal transduction, transcriptional regulation, and other processes related to growth and development. The results obtained here will enable to understand how changes in Ca(2+) concentration or availability are interpreted into adaptive responses in plants.
Collapse
Affiliation(s)
- Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Manisha Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| | - Vaibhavi V Raut
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Mirnal K Das
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India.
| |
Collapse
|
42
|
Steinhorst L, Kudla J. Calcium and reactive oxygen species rule the waves of signaling. PLANT PHYSIOLOGY 2013; 163:471-85. [PMID: 23898042 PMCID: PMC3793029 DOI: 10.1104/pp.113.222950] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/25/2013] [Indexed: 05/18/2023]
Abstract
Calcium signaling and reactive oxygen species signaling are directly connected, and both contribute to cell-to-cell signal propagation in plants.
Collapse
|
43
|
Identification and mRNA expression profile of glutamate receptor-like gene in quinclorac-resistant and susceptible Echinochloa crus-galli. Gene 2013; 531:489-95. [PMID: 24036427 DOI: 10.1016/j.gene.2013.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/04/2013] [Indexed: 11/21/2022]
Abstract
Animal ionotropic glutamate receptors (iGluRs) function as Ca(2+) ion channels during excitatory neurotransmission in nerve cells. Here, a glutamate receptor-like gene (GLR) was identified and characterized from a plant - Echinochloa crus-galli. The GLR gene was designated EcGLR1 with GenBank no: JX518597. It has a 2,793 bp open reading frame predicted to encode a 101.7 kDa protein. Sequence alignment showed that EcGLR1 is a GLR homologue. Its expression in response to quinclorac treatment was assessed by real-time PCR in near-isogenic lines of quinclorac-resistant (R) and susceptible (S) biotypes of E. crus-galli. The expression of EcGLR1 in the seedling leaf and root at least increased 5 times in the S plants and 22 times in the R plants after exposure to quinclorac. In the adult plant leaves, roots and stems, its expression increased 11-14 times in the S plants and 23-25 times in the R plants after quinclorac stimulation. In the seed, its expression was 4 times less in the S plants than that in the R plants, but after treatment, the levels all increased by about 24 times in the two biotypes. EcGLR1 expression was 1-4 times greater in the R plants than in that in the S plants, and after treatment by quinclorac, the difference increased to a ratio of 4 to 9. Its expression was higher in all tissues tested of R biotypes than in that of S plants before or after quinclorac treatment. The results of this study provide basic information for the further research of function of the EcGLR1 in resistance to quinclorac in E. crus-galli.
Collapse
|
44
|
Tapken D, Anschütz U, Liu LH, Huelsken T, Seebohm G, Becker D, Hollmann M. A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids. Sci Signal 2013; 6:ra47. [PMID: 23757024 DOI: 10.1126/scisignal.2003762] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated cation channels that mediate neurotransmission in animal nervous systems. Homologous proteins in plants have been implicated in root development, ion transport, and several metabolic and signaling pathways. AtGLR3.4, a plant iGluR homolog from Arabidopsis thaliana, has ion channel activity and is gated by asparagine, serine, and glycine. Using heterologous expression in Xenopus oocytes, we found that another Arabidopsis iGluR homolog, AtGLR1.4, functioned as a ligand-gated, nonselective, Ca(2+)-permeable cation channel that responded to an even broader range of amino acids, none of which are agonists of animal iGluRs. Seven of the 20 standard amino acids--mainly hydrophobic ones--acted as agonists, with methionine being most effective and most potent. Nine amino acids were antagonists, and four, including glutamate and glycine, had no effect on channel activity. We constructed a model of this previously uncharacterized ligand specificity and used knockout mutants to show that AtGLR1.4 accounts for methionine-induced membrane depolarization in Arabidopsis leaves.
Collapse
Affiliation(s)
- Daniel Tapken
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Sharma S, Lin W, Villamor JG, Verslues PE. Divergent low water potential response in Arabidopsis thaliana accessions Landsberg erecta and Shahdara. PLANT, CELL & ENVIRONMENT 2013; 36:994-1008. [PMID: 23130549 DOI: 10.1111/pce.12032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 10/14/2012] [Accepted: 10/21/2012] [Indexed: 05/22/2023]
Abstract
The Arabidopsis thaliana accession Shahdara (Sha) differs from Landsberg erecta (Ler) and other accessions in its responses to drought and low water potential including lower levels of proline accumulation. However, Sha maintained greater seedling root elongation at low water potential and a higher NADP/NADPH ratio than Ler. Profiling of major amino acids and organic acids found that Sha had reduced levels of all glutamate family amino acids metabolically related to proline, but increased levels of aspartate-derived amino acids (particularly isoleucine), leucine and valine at low water potential. Although Sha is known for its different abiotic stress response, RNA sequencing and co-expression clustering found that Sha differed most from Ler in defence/immune response and reactive oxygen-related gene expression. HVA22B and Osmotin34 were two of the relatively few abiotic stress-associated genes differentially expressed between Ler and Sha. Insensitivity to exogenous glutamine and a different expression profile of glutamate receptors were further factors that may underlie the differing metabolism and low water potential phenotypes of Sha. These data define the unique environmental adaptation and differing metabolism of Sha including differences in defence gene expression, and will facilitate further analysis of Sha natural variation to understand metabolic regulation and abiotic/biotic stress interaction.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
46
|
Vincill ED, Clarin AE, Molenda JN, Spalding EP. Interacting glutamate receptor-like proteins in Phloem regulate lateral root initiation in Arabidopsis. THE PLANT CELL 2013; 25:1304-13. [PMID: 23590882 PMCID: PMC3663269 DOI: 10.1105/tpc.113.110668] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/29/2013] [Accepted: 04/04/2013] [Indexed: 05/18/2023]
Abstract
Molecular, genetic, and electrophysiological evidence indicates that at least one of the plant Glu receptor-like molecules, GLR3.4, functions as an amino acid-gated Ca²⁺channel at the plasma membrane. The aspect of plant physiology, growth, or development to which GLR3.4 contributes is an open question. Protein localization studies performed here provide important information. In roots, GLR3.4 and the related GLR3.2 protein were present primarily in the phloem, especially in the vicinity of the sieve plates. GLR3.3 was expressed in most cells of the growing primary root but was not enriched in the phloem, including the sieve plate area. GLR3.2 and GLR3.4 physically interacted with each other better than with themselves as evidenced by a biophotonic assay performed in human embryonic kidney cells and Nicotiana benthamiana leaf cells. GLR3.3 interacted poorly with itself or the other two GLRs. Mutations in GLR3.2, GLR3.4, or GLR3.2 and GLR3.4 caused the same and equally severe phenotype, namely, a large overproduction and aberrant placement of lateral root primordia. Loss of GLR3.3 did not affect lateral root primordia. These results support the hypothesis that apoplastic amino acids acting through heteromeric GLR3.2/GLR3.4 channels affect lateral root development via Ca²⁺ signaling in the phloem.
Collapse
Affiliation(s)
- Eric D Vincill
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
47
|
Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H. Plant mechanosensing and Ca2+ transport. TRENDS IN PLANT SCIENCE 2013; 18:227-33. [PMID: 23291244 DOI: 10.1016/j.tplants.2012.12.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 05/18/2023]
Abstract
Mechanical stimuli generate Ca(2+) signals and influence growth and development in plants. Recently, candidates for Ca(2+)-permeable mechanosensitive (MS) channels have been identified. These channels are thought to be responsible for sensing osmotic shock, touch, and gravity. One candidate is the MscS-like (MSL) protein family, a homolog of the typical bacterial MS channels. Some of the MSL proteins are localized to plastids to maintain their shape and size. Another candidate is the mid1-complementing activity (MCA) protein family, which is structurally unique to the plant kingdom. MCA proteins are localized in the plasma membrane and are suggested to be involved in mechanosensing and to be functionally related to reactive oxygen species (ROS) signaling. Here, we review their structural features and role in planta.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | |
Collapse
|
48
|
McAllister CH, Beatty PH, Good AG. Engineering nitrogen use efficient crop plants: the current status. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1011-25. [PMID: 22607381 DOI: 10.1111/j.1467-7652.2012.00700.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the last 40 years the amount of synthetic nitrogen (N) applied to crops has risen drastically, resulting in significant increases in yield but with considerable impacts on the environment. A requirement for crops that require decreased N fertilizer levels has been recognized in the call for a 'Second Green Revolution' and research in the field of nitrogen use efficiency (NUE) has continued to grow. This has prompted a search to identify genes that improve the NUE of crop plants, with candidate NUE genes existing in pathways relating to N uptake, assimilation, amino acid biosynthesis, C/N storage and metabolism, signalling and regulation of N metabolism and translocation, remobilization and senescence. Herein is a review of the approaches taken to determine possible NUE candidate genes, an overview of experimental study of these genes as effectors of NUE in both cereal and non-cereal plants and the processes of commercialization of enhanced NUE crop plants. Patents issued regarding increased NUE in plants as well as gene pyramiding studies are also discussed as well as future directions of NUE research.
Collapse
|
49
|
Kwaaitaal M, Maintz J, Cavdar M, Panstruga R. On the ligand binding profile and desensitization of plant ionotropic glutamate receptor (iGluR)-like channels functioning in MAMP-triggered Ca²⁺ influx. PLANT SIGNALING & BEHAVIOR 2012; 7:1373-7. [PMID: 22918498 PMCID: PMC3548851 DOI: 10.4161/psb.21761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The generation of intracellular microbe-associated molecular pattern (MAMP)-triggered Ca²⁺ transients was recently demonstrated to involve ionotropic Glutamate Receptor (iGluR)-like channels in Arabidopsis and tobacco. Here we elaborate on our previous findings and refine our insights in the putative agonist binding profile and potential mode of desensitization of MAMP-activated plant iGluRs. Based on results from pharmacological inhibition and desensitization experiments, we propose that plant iGluR complexes responsible for the MAMP-triggered Ca²⁺ signature have a binding profile that combines the specificities of mammalian NMDA-and non-NMDA types of iGluRs, possibly reflecting the evolutionary history of plant and animal iGluRs. We further hypothesize that, analogous to the mammalian NMDA-NR1 receptor, desensitization of plant iGluR-like channels might involve binding of the ubiquitous Ca²⁺ sensor calmodulin to a cytoplasmic C-terminal domain.
Collapse
Affiliation(s)
- Mark Kwaaitaal
- Department of Plant-Microbe Interactions; Max Planck Institute for Plant Breeding Research; Cologne, Germany
- Faculty of Life Sciences; Department of Agriculture and Ecology; University of Copenhagen; Copenhagen, Denmark
| | - Jens Maintz
- Department of Plant-Microbe Interactions; Max Planck Institute for Plant Breeding Research; Cologne, Germany
| | - Meltem Cavdar
- Unit of Plant Molecular Cell Biology; Institute for Biology I; RWTH Aachen University; Aachen, Germany
| | - Ralph Panstruga
- Department of Plant-Microbe Interactions; Max Planck Institute for Plant Breeding Research; Cologne, Germany
- Unit of Plant Molecular Cell Biology; Institute for Biology I; RWTH Aachen University; Aachen, Germany
- Correspondence to: Ralph Panstruga,
| |
Collapse
|
50
|
Kurusu T, Yamanaka T, Nakano M, Takiguchi A, Ogasawara Y, Hayashi T, Iida K, Hanamata S, Shinozaki K, Iida H, Kuchitsu K. Involvement of the putative Ca²⁺-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca²⁺ uptake, Ca²⁺-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. JOURNAL OF PLANT RESEARCH 2012; 125:555-68. [PMID: 22080252 DOI: 10.1007/s10265-011-0462-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 10/24/2011] [Indexed: 05/18/2023]
Abstract
To gain insight into the cellular functions of the mid1-complementing activity (MCA) family proteins, encoding putative Ca²⁺-permeable mechanosensitive channels, we isolated two MCA homologs of tobacco (Nicotiana tabacum) BY-2 cells, named NtMCA1 and NtMCA2. NtMCA1 and NtMCA2 partially complemented the lethality and Ca²⁺ uptake defects of yeast mutants lacking mechanosensitive Ca²⁺ channel components. Furthermore, in yeast cells overexpressing NtMCA1 and NtMCA2, the hypo-osmotic shock-induced Ca²⁺ influx was enhanced. Overexpression of NtMCA1 or NtMCA2 in BY-2 cells enhanced Ca²⁺ uptake, and significantly alleviated growth inhibition under Ca²⁺ limitation. NtMCA1-overexpressing BY-2 cells showed higher sensitivity to hypo-osmotic shock than control cells, and induced the expression of the touch-inducible gene, NtERF4. We found that both NtMCA1-GFP and NtMCA2-GFP were localized at the plasma membrane and its interface with the cell wall, Hechtian strands, and at the cell plate and perinuclear vesicles of dividing cells. NtMCA2 transcript levels fluctuated during the cell cycle and were highest at the G1 phase. These results suggest that NtMCA1 and NtMCA2 play roles in Ca²⁺-dependent cell proliferation and mechanical stress-induced gene expression in BY-2 cells, by regulating the Ca²⁺ influx through the plasma membrane.
Collapse
Affiliation(s)
- Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|