1
|
Zhang Y, Yuan X, Zhang Y, Luo Y, Zhao K, Zu F, Tian Z, Li J, Zhang L, He X, Gao J, Fu M, Li G, Liu F. GWAS and WGCNA analysis uncover candidate genes associated with drought in Brassica juncea L. FRONTIERS IN PLANT SCIENCE 2025; 16:1551804. [PMID: 40256595 PMCID: PMC12007043 DOI: 10.3389/fpls.2025.1551804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Drought poses a major challenge to crop growth and yield, and exploring the drought tolerance of crops is an effective and economical approach to mitigating the effects of drought. To screen drought-tolerant germplasm resources and key functional genes related to drought tolerance in Brassica juncea L.(193 accessions), three treatments were applied at the germination and seedling stages:control(CK), moderate drought stress (M), and severe drought stress (S). Drought tolerance identification, GWAS, and RNA-Seq analysis of these materials under different treatments showed that drought stress significantly reduced the germination rate, aboveground and underground fresh weight at the seedling stage, harvest index at maturity, and expanded the root/shoot ratio. From the 193 materials, 24 drought-tolerant, 139 drought-tolerant medium, and 30 drought-sensitive materials were identified. The 77 SNPs identified by GWAS were associated with the relative germination rate at the germination stage, and the fresh weight of the aboveground and underground parts at the seedling stage, which could be integrated into 27 QTLs. WGCNA identified 15, 0, and 5 modules significantly related to drought tolerance in the aboveground and underground parts at the germination and seedling stages, respectively. By correlating the significant GWAS SNPs with the significant WGCNA modules, a total of 11 genes related to drought tolerance under moderate and severe drought stress were identified. These genes were involved in the regulation of auxin-responsive protein (SAUR), LEA protein, glucosidase, AP2/ERF, WRKY and GATA transcription factors, FLZ zinc finger domain, PRP, and b561 proteins. Among them, the BjuB035910 gene was detected in the underground parts of the seedling and germination stages under moderate drought stress. GWAS and selective sweep analysis jointly identified the 23.955-24.089 Mb region of chromosome B06, where four genes (BjuB022264, BjuB022292, BjuB022282, and BjuB022235) were located, as confirmed by WGCNA analysis. A total of 125 SNPs with high linkage disequilibrium were found in this region, and 12 haplotypes were detected, with Hap1 being present exclusively in drought-tolerant materials and Hap3-Hap12 distributed in drought-sensitive materials. These findings provide new insights into the drought tolerance mechanisms of B. juncea and will contribute to the breeding of drought-tolerant rapeseed varieties.
Collapse
Affiliation(s)
- Yusong Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Xiaoyan Yuan
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Yunyun Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Yanqing Luo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Kaiqin Zhao
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Feng Zu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Zhengshu Tian
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Jinfeng Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Lifan Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Xiaoying He
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Jinxiang Gao
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Minglian Fu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Genze Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Yunnan Key Laboratory of Genetic Improvement of Herbal Oil Crops, Kunming, China
| | - Feihu Liu
- College of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|
2
|
Clúa J, Jaskolowski A, Abriata LA, Poirier Y. Spotlight on cytochrome b561 and DOMON domain proteins. TRENDS IN PLANT SCIENCE 2024:S1360-1385(24)00308-X. [PMID: 39674795 DOI: 10.1016/j.tplants.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
Biotic and abiotic stresses constrain plant growth worldwide. Therefore, understanding the molecular mechanisms contributing to plant resilience is key to achieving food security. In recent years, proteins containing dopamine β-monooxygenase N-terminal (DOMON) and/or cytochrome b561 domains have been identified as important regulators of plant responses to multiple stress factors. Recent findings show that these proteins control the redox states of different cellular compartments to modulate plant development, stress responses, and iron homeostasis. In this review, we analyze the distribution and structure of proteins with DOMON and/or cytochrome b561 domains in model plants. We also discuss their biological roles and the molecular mechanisms by which this poorly characterized group of proteins exert their functions.
Collapse
Affiliation(s)
- Joaquín Clúa
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Aime Jaskolowski
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| | - Luciano A Abriata
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Liu H, Zhang W, Zeng J, Zheng Q, Guo Z, Ruan C, Li W, Wang G, Wang X, Guo W. A Golgi vesicle-membrane-localized cytochrome B561 regulates ascorbic acid regeneration and confers Verticillium wilt resistance in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39602087 DOI: 10.1111/tpj.17162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Ascorbic acid (AsA) serves as a key antioxidant involved in the various physiological processes and against diverse stresses in plants. Due to the insufficiency of AsA de novo biosynthesis, the AsA regeneration is essential to supplement low AsA synthesis rates. Redox reactions play a crucial role in response to biotic stress in plants; however, how AsA regeneration participates in hydrogen peroxide (H2O2) homeostasis and plant defense remains largely unknown. Here, we identified a Golgi vesicle-membrane-localized cytochrome B561 (CytB561) encoding gene, GhB561-11, involved in AsA regeneration and plant resistance to Verticillium dahliae in cotton. GhB561-11 was significantly downregulated upon V. dahliae attack. Knocking down GhB561-11 greatly enhanced cotton resistance to V. dahliae. We found that suppressing GhB561-11 inhibited the AsA regeneration, elevated the basal level of H2O2, and enhanced the plant defense against V. dahliae. Further investigation revealed that GhB561-11 interacted with the lipid droplet-associated protein GhLDAP3 to collectively regulate the AsA regeneration. Simultaneously silencing GhB561-11 and GhLDAP3 significantly elevated the H2O2 contents and dramatically improved the Verticillium wilt resistance in cotton. The study broadens our insights into the functional roles of CytB561 in regulating AsA regeneration and H2O2 homeostasis. It also provides a strategy by downregulating GhB561-11 to enhance Verticillium wilt resistance in cotton breeding programs.
Collapse
Affiliation(s)
- Hanqiao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenshu Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
- Institute for the Control of the Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Jianguo Zeng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qihang Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhan Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chaofeng Ruan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weixi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guilin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Wang
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Engineering Research Center of Ministry of Education for Cotton Germplasm Enhancement and Application, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Mahmoud A, Qi R, Chi X, Liao N, Malangisha GK, Ali A, Moustafa-Farag M, Yang J, Zhang M, Hu Z. Integrated Bulk Segregant Analysis, Fine Mapping, and Transcriptome Revealed QTLs and Candidate Genes Associated with Drought Adaptation in Wild Watermelon. Int J Mol Sci 2023; 25:65. [PMID: 38203237 PMCID: PMC10779233 DOI: 10.3390/ijms25010065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
Drought stress has detrimental effects on crop productivity worldwide. A strong root system is crucial for maintaining water and nutrients uptake under drought stress. Wild watermelons possess resilient roots with excellent drought adaptability. However, the genetic factors controlling this trait remain uninvestigated. In this study, we conducted a bulk segregant analysis (BSA) on an F2 population consisting of two watermelon genotypes, wild and domesticated, which differ in their lateral root development under drought conditions. We identified two quantitative trait loci (qNLR_Dr. Chr01 and qNLR_Dr. Chr02) associated with the lateral root response to drought. Furthermore, we determined that a small region (0.93 Mb in qNLR_Dr. Chr01) is closely linked to drought adaptation through quantitative trait loci (QTL) validation and fine mapping. Transcriptome analysis of the parent roots under drought stress revealed unique effects on numerous genes in the sensitive genotype but not in the tolerant genotype. By integrating BSA, fine mapping, and the transcriptome, we identified six genes, namely L-Ascorbate Oxidase (AO), Cellulose Synthase-Interactive Protein 1 (CSI1), Late Embryogenesis Abundant Protein (LEA), Zinc-Finger Homeodomain Protein 2 (ZHD2), Pericycle Factor Type-A 5 (PFA5), and bZIP transcription factor 53-like (bZIP53-like), that might be involved in the drought adaptation. Our findings provide valuable QTLs and genes for marker-assisted selection in improving water-use efficiency and drought tolerance in watermelon. They also lay the groundwork for the genetic manipulation of drought-adapting genes in watermelon and other Cucurbitacea species.
Collapse
Affiliation(s)
- Ahmed Mahmoud
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
- Hainan Institute of Zhejiang University, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
- Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St, Giza 12619, Egypt;
| | - Rui Qi
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
- Hainan Institute of Zhejiang University, Yazhou District, Sanya 572025, China
| | - Xiaolu Chi
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
- Hainan Institute of Zhejiang University, Yazhou District, Sanya 572025, China
| | - Nanqiao Liao
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
| | - Guy Kateta Malangisha
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
| | - Abid Ali
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
| | - Mohamed Moustafa-Farag
- Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St, Giza 12619, Egypt;
| | - Jinghua Yang
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
- Hainan Institute of Zhejiang University, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Mingfang Zhang
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
- Hainan Institute of Zhejiang University, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| | - Zhongyuan Hu
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (A.M.); (R.Q.); (X.C.); (N.L.); (G.K.M.); (A.A.); (J.Y.); (M.Z.)
- Hainan Institute of Zhejiang University, Yazhou District, Sanya 572025, China
- Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China
| |
Collapse
|
5
|
Gradogna A, Lagostena L, Beltrami S, Tosato E, Picco C, Scholz-Starke J, Sparla F, Trost P, Carpaneto A. Tonoplast cytochrome b561 is a transmembrane ascorbate-dependent monodehydroascorbate reductase: functional characterization of electron currents in plant vacuoles. THE NEW PHYTOLOGIST 2023; 238:1957-1971. [PMID: 36806214 DOI: 10.1111/nph.18823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Ascorbate (Asc) is a major redox buffer of plant cells, whose antioxidant activity depends on the ratio with its one-electron oxidation product monodehydroascorbate (MDHA). The cytoplasm contains millimolar concentrations of Asc and soluble enzymes that can regenerate Asc from MDHA or fully oxidized dehydroascorbate. Also, vacuoles contain Asc, but no soluble Asc-regenerating enzymes. Here, we show that vacuoles isolated from Arabidopsis mesophyll cells contain a tonoplast electron transport system that works as a reversible, Asc-dependent transmembrane MDHA oxidoreductase. Electron currents were measured by patch-clamp on isolated vacuoles and found to depend on the availability of Asc (electron donor) and ferricyanide or MDHA (electron acceptors) on opposite sides of the tonoplast. Electron currents were catalyzed by cytochrome b561 isoform A (CYB561A), a tonoplast redox protein with cytoplasmic and luminal Asc binding sites. The Km for Asc of the luminal (4.5 mM) and cytoplasmic site (51 mM) reflected the physiological Asc concentrations in these compartments. The maximal current amplitude was similar in both directions. Mutant plants with impaired CYB561A expression showed no detectable trans-tonoplast electron currents and strong accumulation of leaf anthocyanins under excessive illumination, suggesting a redox-modulation exerted by CYB561A on the typical anthocyanin response to high-light stress.
Collapse
Affiliation(s)
| | - Laura Lagostena
- Institute of Biophysics - CNR, Via De Marini 6, 16149, Genova, Italy
| | - Sara Beltrami
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Edoardo Tosato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Cristiana Picco
- Institute of Biophysics - CNR, Via De Marini 6, 16149, Genova, Italy
| | | | - Francesca Sparla
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
| | - Armando Carpaneto
- Institute of Biophysics - CNR, Via De Marini 6, 16149, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genova, Italy
| |
Collapse
|
6
|
Kumari M, Naidu S, Kumari B, Singh IK, Singh A. Comparative transcriptome analysis of Zea mays upon mechanical wounding. Mol Biol Rep 2023; 50:5319-5343. [PMID: 37155015 DOI: 10.1007/s11033-023-08429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mechanical wounding (MW) is mainly caused due to high wind, sand, heavy rains and insect infestation, leading to damage to crop plants and an increase in the incidences of pathogen infection. Plants respond to MW by altering expression of genes, proteins, and metabolites that help them to cope up with the stress. METHODS AND RESULTS In order to characterize maize transcriptome in response to mechanical wounding, a microarray analysis was executed. The study revealed 407 differentially expressed genes (DEGs) (134 upregulated and 273 downregulated). The upregulated genes were engaged in protein synthesis, transcription regulation, phytohormone signaling-mediated by salicylic acid, auxin, jasmonates, biotic and abiotic stress including bacterial, insect, salt and endoplasmic reticulum stress, cellular transport, on the other hand downregulated genes were involved in primary metabolism, developmental processes, protein modification, catalytic activity, DNA repair pathways, and cell cycle. CONCLUSION The transcriptome data present here can be further utilized for understanding inducible transcriptional response during mechanical injury and their purpose in biotic and abiotic stress tolerance. Furthermore, future study concentrating on the functional characterization of the selected key genes (Bowman Bird trypsin inhibitor, NBS-LRR-like protein, Receptor-like protein kinase-like, probable LRR receptor-like ser/thr-protein kinase, Cytochrome P450 84A1, leucoanthocyanidin dioxygenase, jasmonate O-methyltransferase) and utilizing them for genetic engineering for crop improvement is strongly recommended.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Babita Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Indrakant K Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India.
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India.
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, New Delhi, India.
| |
Collapse
|
7
|
Malambane G, Madumane K, Sewelo LT, Batlang U. Drought stress tolerance mechanisms and their potential common indicators to salinity, insights from the wild watermelon (Citrullus lanatus): A review. FRONTIERS IN PLANT SCIENCE 2023; 13:1074395. [PMID: 36815012 PMCID: PMC9939662 DOI: 10.3389/fpls.2022.1074395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 06/18/2023]
Abstract
Climate change has escalated the effect of drought on crop production as it has negatively altered the environmental condition. Wild watermelon grows abundantly in the Kgalagadi desert even though the environment is characterized by minimal rainfall, high temperatures and intense sunshine during growing season. This area is also characterized by sandy soils with low water holding capacity, thus bringing about drought stress. Drought stress affects crop productivity through its effects on development and physiological functions as dictated by molecular responses. Not only one or two physiological process or genes are responsible for drought tolerance, but a combination of various factors do work together to aid crop tolerance mechanism. Various studies have shown that wild watermelon possess superior qualities that aid its survival in unfavorable conditions. These mechanisms include resilient root growth, timely stomatal closure, chlorophyll fluorescence quenching under water deficit as key physiological responses. At biochemical and molecular level, the crop responds through citrulline accumulation and expression of genes associated with drought tolerance in this species and other plants. Previous salinity stress studies involving other plants have identified citrulline accumulation and expression of some of these genes (chloroplast APX, Type-2 metallothionein), to be associated with tolerance. Emerging evidence indicates that the upstream of functional genes are the transcription factor that regulates drought and salinity stress responses as well as adaptation. In this review we discuss the drought tolerance mechanisms in watermelons and some of its common indicators to salinity at physiological, biochemical and molecular level.
Collapse
|
8
|
The Improved Biocontrol Agent, F1-35, Protects Watermelon against Fusarium Wilt by Triggering Jasmonic Acid and Ethylene Pathways. Microorganisms 2022; 10:microorganisms10091710. [PMID: 36144312 PMCID: PMC9501610 DOI: 10.3390/microorganisms10091710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Watermelon Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (FON), is one of the most important diseases, and has become a major limiting factor to watermelon production worldwide. Previous research has found that the improved biocontrol agent, F1-35, had a high control efficiency to watermelon Fusarium wilt. In this study, the control efficiency of F1-35 to watermelon Fusarium wilt was firstly tested, and the control efficiency was 61.7%. Then, we investigated the mode of action of F1-35 in controlling watermelon Fusarium wilt. Using a pairing assay, we found that F1-35 did not inhibit the normal growth of FON. To know more about the interaction between F1-35 and watermelon root, the protein expressions of roots after 12, 24, and 48 h post-inoculation were examined. A total of 1109 differentially expressed proteins were obtained. KEGG analysis found that the most differentially expressed proteins occurred in alpha-linolenic acid metabolism, cysteine and methionine metabolism, plant–pathogen interaction, and the MAPK signaling pathway to the plant. A further analysis of differentially expressed proteins showed that F1-35 triggered the jasmonic acid and ethylene pathways in watermelon. To validate our results, the qRT-PCR was used to analyze the gene expression levels of PAL, LOX1, and CTR1. The gene expression results showed that those genes, which were positive correlated with the JA pathway, were up-expressed, including PAL and LOX1, and the negative associated gene, CTR1, was down-expressed. In conclusion, the improved biocontrol agent, F1-35, improves the resistance of watermelons to FON by triggering the JA and ET pathways.
Collapse
|
9
|
Mandizvo T, Odindo AO, Mashilo J, Magwaza LS. Drought tolerance assessment of citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.) accessions based on morphological and physiological traits. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 180:106-123. [PMID: 35405428 DOI: 10.1016/j.plaphy.2022.03.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Long-term cultivation of citron watermelon under water-constrained environments in sub-Saharan Africa resulted in the selection and domestication of highly tolerant genotypes. However, information on the magnitude of variation for drought tolerance in citron watermelon is limited for the effective selection of suitable genotypes for breeding. The objective of this study was to determine variation for drought tolerance among South African citron watermelon landrace accessions for selection and use as genetic stock for drought-tolerance breeding in this crop and closely-related cucurbit crops. Forty genetically differentiated citron watermelon accessions were grown under non-stress (NS) and drought-stress (DS) conditions under glasshouse environment. Data of physiological (i.e., leaf gas exchange and chlorophyll fluorescence parameters) and morphological traits (i.e., shoot and root system architecture traits, and fruit yield) were collected and subjected to various parametric statistical analyses. The accessions varied significantly for assessed traits under both NS and DS conditions which aided classification into five groups, namely; A (highly drought-tolerant), B (drought-tolerant), C (moderate drought-tolerant), D (drought-sensitive) and E (highly drought-sensitive). Drought-tolerant genotypes produced more fruit yield with less water compared with drought-sensitive genotypes. Several physiological and morphological parameters correlated with fruit yield under DS condition namely: instantaneous water-use efficiency (r = 0.97), leaf dry weight (r = 0.77), total root length (r = 0.46) and root dry weight (r = 0.48). The following accessions, namely: WWM-46, WWM-68, WWM-41(A), WWM-15, WWM-64, WWM-57, WWM-47, WWM-37(2), WWM-79, WWM-05 and WWM-50) were identified as highly drought-tolerant and recommended for drought-tolerance breeding in this crop or related cucurbit crops such as sweet dessert watermelon.
Collapse
Affiliation(s)
- Takudzwa Mandizvo
- Crop Science, School of Agricultural Earth and Environmental Sciences, University of KwaZulu-Natal, South Africa.
| | - Alfred Oduor Odindo
- Crop Science, School of Agricultural Earth and Environmental Sciences, University of KwaZulu-Natal, South Africa
| | - Jacob Mashilo
- Limpopo Department of Agriculture and Rural Development, Agriculture Regulatory and Technology Development, Directorate, Towoomba Research Centre, Private Bag X1615, Bela-Bela, 0480, South Africa
| | - Lembe Samukelo Magwaza
- Crop Science, School of Agricultural Earth and Environmental Sciences, University of KwaZulu-Natal, South Africa; Department of Horticultural Sciences, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
10
|
Izuno A, Onoda Y, Amada G, Kobayashi K, Mukai M, Isagi Y, Shimizu KK. Demography and selection analysis of the incipient adaptive radiation of a Hawaiian woody species. PLoS Genet 2022; 18:e1009987. [PMID: 35061669 PMCID: PMC8782371 DOI: 10.1371/journal.pgen.1009987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Ecological divergence in a species provides a valuable opportunity to study the early stages of speciation. We focused on Metrosideros polymorpha, a unique example of the incipient radiation of woody species, to examine how an ecological divergence continues in the face of gene flow. We analyzed the whole genomes of 70 plants collected throughout the island of Hawaii, which is the youngest island with the highest altitude in the archipelago and encompasses a wide range of environments. The continuous M. polymorpha forest stands on the island of Hawaii were differentiated into three genetic clusters, each of which grows in a distinctive environment and includes substantial genetic and phenotypic diversity. The three genetic clusters showed signatures of selection in genomic regions encompassing genes relevant to environmental adaptations, including genes associated with light utilization, oxidative stress, and leaf senescence, which are likely associated with the ecological differentiation of the species. Our demographic modeling suggested that the glaberrima cluster in wet environments maintained a relatively large population size and two clusters split: polymorpha in the subalpine zone and incana in dry and hot conditions. This ecological divergence possibly began before the species colonized the island of Hawaii. Interestingly, the three clusters recovered genetic connectivity coincidentally with a recent population bottleneck, in line with the weak reproductive isolation observed in the species. This study highlights that the degree of genetic differentiation between ecologically-diverged populations can vary depending on the strength of natural selection in the very early phases of speciation. Knowledge about how genetic barriers are formed between populations in distinct environments is valuable to understand the processes of speciation and conserve biodiversity. Metrosideros polymorpha, an endemic woody species in the Hawaiian Islands, is a good system to study developing genetic barriers in a species, because it colonized the diverse environments and diversified the morphology for a relatively short period of time. We analyzed the genomes of 70 M. polymorpha plants from a broad range of environments on the island of Hawaii to infer the current and past genetic barriers among them. Currently, M. polymorpha plants growing in different environments have substantially different genomes, especially at the genomic regions with genes putatively controlling physiology to fit in distinct environment. However, in its history, they had hybridized with one another, possibly because plants formerly growing in different environments came into close contact due to the climate changes. It is suggested that genetic barriers can easily strengthen or weaken depending on environments splitting the ecology of a species before reproductive isolation becomes complete.
Collapse
Affiliation(s)
- Ayako Izuno
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, Tsukuba, Japan
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Gaku Amada
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Keito Kobayashi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mana Mukai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
11
|
Citron Watermelon Potential to Improve Crop Diversification and Reduce Negative Impacts of Climate Change. SUSTAINABILITY 2021. [DOI: 10.3390/su13042269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.) is an underexploited and under-researched crop species with the potential to contribute to crop diversification in Sub-Saharan Africa. The species is cultivated in the drier parts of Southern Africa, mainly by smallholder farmers who maintain a wide range of landrace varieties. Understanding the molecular and morpho-physiological basis for drought adaptation in citron watermelon under these dry environments can aid in the identification of suitable traits for drought-tolerance breeding and improve food system resilience among smallholder farmers, thus adding to crop diversification. This paper reviews the literature on drought adaptation of Citrullus lanatus spp. (C3 xerophytes), using the systematic review approach. The review discusses the potential role of citron watermelon in adding to crop diversification, alternative food uses, and potential by-products that can be processed from the crop, and it analyzes the role of Sub-Saharan African farmers play as key actors in conserving citron watermelon germplasm and biodiversity. Finally, the review provides a summary of significant findings and identifies critical knowledge gaps for further research.
Collapse
|
12
|
Comparative Transcriptomics and Co-Expression Networks Reveal Tissue- and Genotype-Specific Responses of qDTYs to Reproductive-Stage Drought Stress in Rice ( Oryza sativa L.). Genes (Basel) 2020; 11:genes11101124. [PMID: 32987927 PMCID: PMC7650634 DOI: 10.3390/genes11101124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Rice (Oryza sativa L.) is more sensitive to drought stress than other cereals. To dissect molecular mechanisms underlying drought-tolerant yield in rice, we applied differential expression and co-expression network approaches to transcriptomes from flag-leaf and emerging panicle tissues of a drought-tolerant yield introgression line, DTY-IL, and the recurrent parent Swarna, under moderate reproductive-stage drought stress. Protein turnover and efficient reactive oxygen species scavenging were found to be the driving factors in both tissues. In the flag-leaf, the responses further included maintenance of photosynthesis and cell wall reorganization, while in the panicle biosynthesis of secondary metabolites was found to play additional roles. Hub genes of importance in differential drought responses included an expansin in the flag-leaf and two peroxidases in the panicle. Overlaying differential expression data with allelic variation in DTY-IL quantitative trait loci allowed for the prioritization of candidate genes. They included a differentially regulated auxin-responsive protein, with DTY-IL-specific amino acid changes in conserved domains, as well as a protein kinase with a DTY-IL-specific frameshift in the C-terminal region. The approach highlights how the integration of differential expression and allelic variation can aid in the discovery of mechanism and putative causal contribution underlying quantitative trait loci for drought-tolerant yield.
Collapse
|
13
|
Esposito S, Cardi T, Campanelli G, Sestili S, Díez MJ, Soler S, Prohens J, Tripodi P. ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean 'da serbo' type long shelf-life germplasm. HORTICULTURE RESEARCH 2020; 7:134. [PMID: 32922806 PMCID: PMC7459340 DOI: 10.1038/s41438-020-00353-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 05/26/2023]
Abstract
Double digest restriction-site associated sequencing (ddRAD-seq) is a flexible and cost-effective strategy for providing in-depth insights into the genetic architecture of germplasm collections. Using this methodology, we investigated the genomic diversity of a panel of 288 diverse tomato (Solanum lycopersicum L.) accessions enriched in 'da serbo' (called 'de penjar' in Spain) long shelf life (LSL) materials (152 accessions) mostly originating from Italy and Spain. The rest of the materials originate from different countries and include landraces for fresh consumption, elite cultivars, heirlooms, and breeding lines. Apart from their LSL trait, 'da serbo' landraces are of remarkable interest for their resilience. We identified 32,799 high-quality SNPs, which were used for model ancestry population structure and non-parametric hierarchical clustering. Six genetic subgroups were revealed, clearly separating most 'da serbo' landraces, but also the Spanish germplasm, suggesting a subdivision of the population based on type and geographical provenance. Linkage disequilibrium (LD) in the collection decayed very rapidly within <5 kb. We then investigated SNPs showing contrasted minor frequency allele (MAF) in 'da serbo' materials, resulting in the identification of high frequencies in this germplasm of several mutations in genes related to stress tolerance and fruit maturation such as CTR1 and JAR1. Finally, a mini-core collection of 58 accessions encompassing most of the diversity was selected for further exploitation of key traits. Our findings suggest the presence of a genetic footprint of the 'da serbo' germplasm selected in the Mediterranean basin. Moreover, we provide novel insights on LSL 'da serbo' germplasm as a promising source of alleles for tolerance to stresses.
Collapse
Affiliation(s)
- Salvatore Esposito
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| | - Gabriele Campanelli
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Tronto, Italy
| | - Sara Sestili
- CREA Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto (AP), Tronto, Italy
| | - María José Díez
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Salvador Soler
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, (SA) Italy
| |
Collapse
|
14
|
Nawae W, Shearman JR, Tangphatsornruang S, Punpee P, Yoocha T, Sangsrakru D, Naktang C, Sonthirod C, Wirojsirasak W, Ukoskit K, Sriroth K, Klomsa-Ard P, Pootakham W. Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by a comparative analysis of leaf transcriptome. PeerJ 2020; 8:e9608. [PMID: 33240580 PMCID: PMC7676377 DOI: 10.7717/peerj.9608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/05/2020] [Indexed: 01/17/2023] Open
Abstract
Sugarcane contributes 80% of global sugar production and to bioethanol generation for the bioenergy industry. Its productivity is threatened by drought that can cause up to 60% yield loss. This study used RNA-Seq to gain a better understanding of the underlying mechanism by which drought-tolerant sugarcane copes with water stress. We compared gene expression in KPS01-12 (drought-tolerant genotype) and UT12 (drought-sensitive genotype) that have significantly different yield loss rates under drought conditions. We treated KPS01-12 and UT12 with mild and moderate water stress and found differentially expressed genes in various biological processes. KPS01-12 had higher expression of genes that were involved in water retention, antioxidant secondary metabolite biosynthesis, and oxidative and osmotic stress response than UT12. In contrast, the sensitive genotype had more down-regulated genes that were involved in photosynthesis, carbon fixation and Calvin cycle than the tolerant genotype. Our obtained expression profiles suggest that the tolerant sugarcane has a more effective genetic response than the sensitive genotype at the initiation of drought stress. The knowledge gained from this study may be applied in breeding programs to improve sugarcane production in drought conditions.
Collapse
Affiliation(s)
- Wanapinun Nawae
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Jeremy R Shearman
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Prapat Punpee
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| | - Warodom Wirojsirasak
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand.,Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Kittipat Ukoskit
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathum Thani, Thailand
| | - Klanarong Sriroth
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Peeraya Klomsa-Ard
- Mitr Phol Sugarcane Research Center Co., Ltd., Phu Khiao, Chaiyaphum, Thailand
| | - Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani, Thailand
| |
Collapse
|
15
|
Singh RR, Verstraeten B, Siddique S, Tegene AM, Tenhaken R, Frei M, Haeck A, Demeestere K, Pokhare S, Gheysen G, Kyndt T. Ascorbate oxidation activates systemic defence against root-knot nematode Meloidogyne graminicola in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4271-4284. [PMID: 32242224 DOI: 10.1093/jxb/eraa171] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/02/2020] [Indexed: 05/23/2023]
Abstract
Ascorbic acid (AA) is the major antioxidant buffer produced in the shoot tissue of plants. Previous studies on root-knot nematode (RKN; Meloidogyne graminicola)-infected rice (Oryza sativa) plants showed differential expression of AA-recycling genes, although their functional role was unknown. Our results confirmed increased dehydroascorbate (DHA) levels in nematode-induced root galls, while AA mutants were significantly more susceptible to nematode infection. External applications of ascorbate oxidase (AO), DHA, or reduced AA, revealed systemic effects of ascorbate oxidation on rice defence versus RKN, associated with a primed accumulation of H2O2 upon nematode infection. To confirm and further investigate these systemic effects, a transcriptome analysis was done on roots of foliar AO-treated plants, revealing activation of the ethylene (ET) response and jasmonic acid (JA) biosynthesis pathways in roots, which was confirmed by hormone measurements. Activation of these pathways by methyl-JA, or ethephon treatment can complement the susceptibility phenotype of the rice Vitamin C (vtc1) mutant. Experiments on the jasmonate signalling (jar1) mutant or using chemical JA/ET inhibitors confirm that the effects of ascorbate oxidation are dependent on both the JA and ET pathways. Collectively, our data reveal a novel pathway in which ascorbate oxidation induces systemic defence against RKNs.
Collapse
Affiliation(s)
| | | | - Shahid Siddique
- Institute of Crop Science and Resource Conservation, Department of Molecular Phytomedicine, University of Bonn, Bonn, Germany
- Department of Entomology and Nematology, UC Davis, One Shields Avenue, CA, USA
| | | | - Raimund Tenhaken
- Department of Bio Sciences; Plant Physiology, University of Salzburg, Salzburg, Austria
| | - Michael Frei
- Institute of Crop Science and Resource Conservation, Crop Science, University of Bonn, Bonn, Germany
| | - Ashley Haeck
- Department of Green Chemistry and Technology, Research Group EnVOC, Ghent University, Ghent, Belgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Research Group EnVOC, Ghent University, Ghent, Belgium
| | - Somnath Pokhare
- Institute of Crop Science and Resource Conservation, Department of Molecular Phytomedicine, University of Bonn, Bonn, Germany
| | | | - Tina Kyndt
- Department of Biotechnology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Foyer CH, Kyndt T, Hancock RD. Vitamin C in Plants: Novel Concepts, New Perspectives, and Outstanding Issues. Antioxid Redox Signal 2020; 32:463-485. [PMID: 31701753 DOI: 10.1089/ars.2019.7819] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significance: The concept that vitamin C (l-ascorbic acid) is at the heart of the peroxide processing and redox signaling hub in plants is well established, but our knowledge of the precise mechanisms involved remains patchy at best. Recent Advances: Ascorbate participates in the multifaceted signaling pathways initiated by both reactive oxygen species (ROS) and reactive nitrogen species. Crucially, the apoplastic ascorbate/dehydroascorbate (DHA) ratio that is regulated by ascorbate oxidase (AO) sculpts the apoplastic ROS (apoROS) signal that controls polarized cell growth, biotic and abiotic defences, and cell to cell signaling, as well as exerting control over the light-dependent regulation of photosynthesis. Critical Issues: Here we re-evaluate the roles of ascorbate in photosynthesis and other processes, addressing the question of how much we really know about the regulation of ascorbate homeostasis and its functions in plants, or how AO is regulated to modulate apoROS signals. Future Directions: The role of microRNAs in the regulation of AO activity in relation to stress perception and signaling must be resolved. Similarly, the molecular characterization of ascorbate transporters and mechanistic links between photosynthetic and respiratory electron transport and ascorbate synthesis/homeostasis are a prerequisite to understanding ascorbate homeostasis and function. Similarly, there is little in vivo evidence for ascorbate functions as an enzyme cofactor.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Tina Kyndt
- Department Biotechnology, University of Ghent, Ghent, Belgium
| | - Robert D Hancock
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
17
|
Transcriptional reprogramming of genes related to ascorbate and glutathione biosynthesis, turnover and translocation in aphid-challenged maize seedlings. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Podgórska A, Ostaszewska M, Gardeström P, Rasmusson AG, Szal B. In comparison with nitrate nutrition, ammonium nutrition increases growth of the frostbite1 Arabidopsis mutant. PLANT, CELL & ENVIRONMENT 2015; 38:224-37. [PMID: 25040883 DOI: 10.1111/pce.12404] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 05/21/2023]
Abstract
Ammonium nutrition inhibits the growth of many plant species, including Arabidopsis thaliana. The toxicity of ammonium is associated with changes in the cellular redox state. The cellular oxidant/antioxidant balance is controlled by mitochondrial electron transport chain. In this study, we analysed the redox metabolism of frostbite1 (fro1) plants, which lack mitochondrial respiratory chain complex I. Surprisingly, the growth of fro1 plants increased under ammonium nutrition. Ammonium nutrition increased the reduction level of pyridine nucleotides in the leaves of wild-type plants, but not in the leaves of fro1 mutant plants. The observed higher activities of type II NADH dehydrogenases and cytochrome c oxidase in the mitochondrial electron transport chain may improve the energy metabolism of fro1 plants grown on ammonium. Additionally, the observed changes in reactive oxygen species (ROS) metabolism in the apoplast may be important for determining the growth of fro1 under ammonium nutrition. Moreover, bioinformatic analyses showed that the gene expression changes in fro1 plants significantly overlap with the changes previously observed in plants with a modified apoplastic pH. Overall, the results suggest a pronounced connection between the mitochondrial redox system and the apoplastic pH and ROS levels, which may modify cell wall plasticity and influence growth.
Collapse
Affiliation(s)
- Anna Podgórska
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, I. Miecznikowa 1, 02-096, Warsaw, Poland
| | | | | | | | | |
Collapse
|
19
|
Asard H, Barbaro R, Trost P, Bérczi A. Cytochromes b561: ascorbate-mediated trans-membrane electron transport. Antioxid Redox Signal 2013; 19:1026-35. [PMID: 23249217 PMCID: PMC3763232 DOI: 10.1089/ars.2012.5065] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Cytochromes b561 (CYB561s) constitute a family of trans-membrane (TM), di-heme proteins, occurring in a variety of organs and cell types, in plants and animals, and using ascorbate (ASC) as an electron donor. CYB561s function as monodehydroascorbate reductase, regenerating ASC, and as Fe³⁺-reductases, providing reduced iron for TM transport. A CYB561-core domain is also associated with dopamine β-monooxygenase redox domains (DOMON) in ubiquitous CYBDOM proteins. In plants, CYBDOMs form large protein families. Physiological functions supported by CYB561s and CYBDOMs include stress defense, cell wall modifications, iron metabolism, tumor suppression, and various neurological processes, including memory retention. CYB561s, therefore, significantly broaden our view on the physiological roles of ASC. RECENT ADVANCES The ubiquitous nature of CYB561s is only recently being recognized. Significant advances have been made through the study of recombinant CYB561s, revealing structural and functional properties of a unique "two-heme four-helix" protein configuration. In addition, the DOMON domains of CYBDOMs are suggested to contain another heme b. CRITICAL ISSUES New CYB561 proteins are still being identified, and there is a need to provide an insight and overview on the various roles of these proteins and their structural properties. FUTURE DIRECTIONS Mutant studies will reveal in greater detail the mechanisms by which CYB561s and CYBDOMs participate in cell metabolism in plants and animals. Moreover, the availability of efficient heterologous expression systems should allow protein crystallization, more detailed (atomic-level) structural information, and insights into the intra-molecular mechanism of electron transport.
Collapse
Affiliation(s)
- Han Asard
- Department of Biology, University of Antwerp, Antwerp, Belgium.
| | | | | | | |
Collapse
|
20
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
21
|
Tóth SZ, Schansker G, Garab G. The physiological roles and metabolism of ascorbate in chloroplasts. PHYSIOLOGIA PLANTARUM 2013; 148:161-75. [PMID: 23163968 DOI: 10.1111/ppl.12006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/30/2012] [Accepted: 10/31/2012] [Indexed: 05/03/2023]
Abstract
Ascorbate is a multifunctional metabolite in plants. It is essential for growth control, involving cell division and cell wall synthesis and also involved in redox signaling, in the modulation of gene expression and regulation of enzymatic activities. Ascorbate also fulfills crucial roles in scavenging reactive oxygen species, both enzymatically and nonenzymatically, a well-established phenomenon in the chloroplasts stroma. We give an overview on these important physiological functions and would like to give emphasis to less well-known roles of ascorbate, in the thylakoid lumen, where it also plays multiple roles. It is essential for photoprotection as a cofactor for violaxanthin de-epoxidase, a key enzyme in the formation of nonphotochemical quenching. Lumenal ascorbate has recently also been shown to act as an alternative electron donor of photosystem II once the oxygen-evolving complex is inactivated and to protect the photosynthetic machinery by slowing down donor-side induced photoinactivation; it is yet to be established if ascorbate has a similar role in the case of other stress effects, such as high light and UV-B stress. In bundle sheath cells, deficient in oxygen evolution, ascorbate provides electrons to photosystem II, thereby poising cyclic electron transport around photosystem I. It has also been shown that, by supporting linear electron transport through photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells, in which oxygen evolution is largely inhibited, externally added ascorbate enhances hydrogen production. For fulfilling its multiple roles, Asc has to be transported into the thylakoid lumen and efficiently regenerated; however, very little is known yet about these processes.
Collapse
Affiliation(s)
- Szilvia Z Tóth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, P.O. Box 521, H-6701, Hungary.
| | | | | |
Collapse
|
22
|
Roles of conserved Arg(72) and Tyr(71) in the ascorbate-specific transmembrane electron transfer catalyzed by Zea mays cytochrome b561. J Biosci Bioeng 2013; 115:497-506. [PMID: 23290447 DOI: 10.1016/j.jbiosc.2012.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 10/29/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022]
Abstract
Cytochromes b561, novel transmembrane electron transport proteins residing in eukaryotic cells, have a number of common features including six transmembrane α-helices and two heme ligation sites. Our recent studies on recombinant Zea mays cytochrome b561 suggested that concerted proton/electron transfer mechanism was functioning in plant cytochromes b561 as well and that conserved Lys(83) on a cytosolic loop had important roles for ascorbate-binding and a succeeding electron transfer. In the present study, we conducted site-directed mutagenesis analyses on conserved Arg(72) and Tyr(71). Removal of a positive charge at Arg(72) did not affect significantly on the final heme reduction level with ascorbate as reductant. However, characteristic pH-dependent initial time-lag upon electron acceptance from ascorbate was completely lost for R72A and R72E mutants. Substitution of Tyr(71) with Ala or Phe affected both on the final heme reduction level and on the pH-dependent initial time-lag, causing acceleration of the electron transfer. These observations were interpreted as existence of specific interactions of Tyr(71) and Arg(72) with ascorbate. However, their mechanistic roles were distinctly different from that of Lys(83), as exemplified by K83A/Y71A double mutant, and might be related for expelling of monodehydroascorbate radical from the substrate-binding site to prevent a back-flow of electrons.
Collapse
|
23
|
Dihydrolipoic acid reduces cytochrome b561 proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:159-68. [DOI: 10.1007/s00249-012-0812-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 12/11/2022]
|
24
|
Cenacchi L, Busch M, Schleidt PG, Müller FG, Stumpp TVM, Mäntele W, Trost P, Lancaster CRD. Heterologous production and characterisation of two distinct dihaem-containing membrane integral cytochrome b(561) enzymes from Arabidopsis thaliana in Pichia pastoris and Escherichia coli cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:679-88. [PMID: 22085541 DOI: 10.1016/j.bbamem.2011.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 10/29/2011] [Accepted: 10/31/2011] [Indexed: 01/07/2023]
Abstract
Cytochrome (cyt) b(561) proteins are dihaem-containing membrane proteins, belonging to the CYBASC (cytochrome-b(561)-ascorbate-reducible) family, and are proposed to be involved in ascorbate recycling and/or the facilitation of iron absorption. Here, we present the heterologous production of two cyt b(561) paralogs from Arabidopsis thaliana (Acytb(561)-A, Acytb(561)-B) in Escherichia coli and Pichia pastoris, their purification, and initial characterisation. Spectra indicated that Acytb(561)-A resembles the best characterised member of the CYBASC family, the cytochrome b(561) from adrenomedullary chromaffin vesicles, and that Acytb(561)-B is atypical compared to other CYBASC proteins. Haem oxidation-reduction midpoint potential (E(M)) values were found to be fully consistent with ascorbate oxidation activities and Fe(3+)-chelates reductase activities. The ascorbate dependent reduction and protein stability of both paralogs were found to be sensitive to alkaline pH values as reported for the cytochrome b(561) from chromaffin vesicles. For both paralogs, ascorbate-dependent reduction was inhibited and the low-potential haem E(M) values were affected significantly by incubation with diethyl pyrocarbonate (DEPC) in the absence of ascorbate. Modification with DEPC in the presence of ascorbate left the haem E(M) values unaltered compared to the unmodified proteins. However, ascorbate reduction was inhibited. We concluded that the ascorbate-binding site is located near the low-potential haem with the Fe(3+)-chelates reduction-site close to the high-potential haem. Furthermore, inhibition of ascorbate oxidation by DEPC treatment occurs not only by lowering the haem E(M) values but also by an additional modification affecting ascorbate binding and/or electron transfer. Analytical gel filtration experiments suggest that both cyt b(561) paralogs exist as homodimers.
Collapse
Affiliation(s)
- Lucia Cenacchi
- Max Planck Institute of Biophysics, Department of Molecular Membrane Biology, Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Opiyo SO, Moriyama EN. Mining Cytochrome b561 proteins from plant genomes. INTERNATIONAL JOURNAL OF BIOINFORMATICS RESEARCH AND APPLICATIONS 2010; 6:209-21. [PMID: 20223741 PMCID: PMC2846449 DOI: 10.1504/ijbra.2010.032122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome b561 (Cyt-b561) proteins are important for plant growth, development, and prevention of damage to plants. Because of their high sequence divergence, thorough mining of Cyt-b561 proteins from plant genomes are not easy. Currently there is only one Cyt-b561 gene found in the maize and none in the soybean genome. However, 22 have been identified in the Arabidopsis thaliana genome. We tested alignment-free protein classifiers based on partial least squares (PLS) and support vector machines to identify Cyt-b561. These classifiers performed better than profile hidden Markov models and PSI-BLAST. Using these classifiers we identified new Cyt-b561-related proteins from four plant genomes.
Collapse
Affiliation(s)
- S. O. Opiyo
- School of Biological Sciences, University of Nebraska-Lincoln, NE 68588
| | - E. N. Moriyama
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, 403 Manter Hall, Lincoln, NE 68588-0118, USA
| |
Collapse
|
26
|
Nakanishi N, Rahman MM, Sakamoto Y, Takigami T, Kobayashi K, Hori H, Hase T, Park SY, Tsubaki M. Importance of the conserved lysine 83 residue of Zea mays cytochrome b(561) for ascorbate-specific transmembrane electron transfer as revealed by site-directed mutagenesis studies. Biochemistry 2009; 48:10665-78. [PMID: 19803484 DOI: 10.1021/bi9010682] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochromes b(561), a novel class of transmembrane electron transport proteins residing in a large variety of eukaryotic cells, have a number of common structural features including six hydrophobic transmembrane alpha-helices and two heme ligation sites. We found that recombinant Zea mays cytochrome b(561) obtained by a heterologous expression system using yeast Pichia pastoris cells could utilize the ascorbate/mondehydroascorbate radical as a physiological electron donor/acceptor. We found further that a concerted proton/electron transfer mechanism might be operative in Z. mays cytochrome b(561) as well upon the electron acceptance from ascorbate to the cytosolic heme center. The well-conserved Lys(83) residue in a cytosolic loop was found to have a very important role(s) for the binding of ascorbate and the succeeding electron transfer via electrostatic interactions based on the analyses of three site-specific mutants, K83A, K83E, and K83D. Further, unusual behavior of the K83A mutant in pulse radiolysis experiments indicated that Lys(83) might also be responsible for the intramolecular electron transfer to the intravesicular heme. On the other hand, pulse radiolysis experiments on two site-specific mutants, S118A and W122A, for the well-conserved residues in the putative monodehydroascorbate radical binding site showed that their electron transfer activities to the monodehydroascorbate radical were very similar to those of the wild-type protein, indicating that Ser(118) and Trp(122) do not have major roles for the redox events on the intravesicular side.
Collapse
Affiliation(s)
- Nobuyuki Nakanishi
- Department of Molecular Science and Material Engineering, Graduate School of Science and Technology, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Preger V, Tango N, Marchand C, Lemaire SD, Carbonera D, Di Valentin M, Costa A, Pupillo P, Trost P. Auxin-responsive genes AIR12 code for a new family of plasma membrane b-type cytochromes specific to flowering plants. PLANT PHYSIOLOGY 2009; 150:606-20. [PMID: 19386804 PMCID: PMC2689961 DOI: 10.1104/pp.109.139170] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/15/2009] [Indexed: 05/05/2023]
Abstract
We report here on the identification of the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis (Arabidopsis thaliana) AIR12 (for auxin induced in root cultures). Soybean AIR12, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol modification signal and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a beta-sandwich domain and belonging to the DOMON (for dopamine beta-monooxygenase N terminus) domain superfamily. It is shown to be a b-type cytochrome with a symmetrical alpha-band at 561 nm, fully reduced by ascorbate, and fully oxidized by monodehydroascorbate radical. AIR12 is a high-potential cytochrome b showing a wide bimodal dependence from the redox potential between +80 mV and +300 mV. Optical absorption and electron paramagnetic resonance analysis indicate that AIR12 binds a single, highly axial low-spin heme, likely coordinated by methionine-91 and histidine-76, which are strongly conserved in AIR12 sequences. Phylogenetic analyses reveal that the auxin-responsive genes AIR12 represent a new family of PM b-type cytochromes specific to flowering plants. Circumstantial evidence suggests that AIR12 may interact with other redox partners within the PM to constitute a redox link between cytoplasm and apoplast.
Collapse
Affiliation(s)
- Valeria Preger
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, Bologna 40126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kohzuma K, Cruz JA, Akashi K, Hoshiyasu S, Munekage YN, Yokota A, Kramer DM. The long-term responses of the photosynthetic proton circuit to drought. PLANT, CELL & ENVIRONMENT 2009; 32:209-19. [PMID: 19021886 DOI: 10.1111/j.1365-3040.2008.01912.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proton motive force (pmf) across thylakoid membranes is not only for harnessing solar energy for photosynthetic CO(2) fixation, but also for triggering feedback regulation of photosystem II antenna. The mechanisms for balancing these two roles of the proton circuit under the long-term environmental stress, such as prolonged drought, have been poorly understood. In this study, we report on the response of wild watermelon thylakoid 'proton circuit' to drought stress using both in vivo spectroscopy and molecular analyses of the representative photosynthetic components. Although drought stress led to enhanced proton flux via a approximately 34% increase in cyclic electron flow around photosystem I (PS I), an observed approximately fivefold decrease in proton conductivity, g(H)(+), across thylakoid membranes suggested that decreased ATP synthase activity was the major factor for sustaining elevated q(E). Western blotting analyses revealed that ATP synthase content decreased significantly, suggesting that quantitative control of the complex plays a pivotal role in down-regulation of g(H)(+). The expression level of cytochrome b(6)f complex - another key control point in photosynthesis - also declined, probably to prevent excess-reduction of PS I electron acceptors. We conclude that plant acclimation to long-term environmental stress involves global changes in the photosynthetic proton circuit, in which ATP synthase represents the key control point for regulating the relationship between electron transfer and pmf.
Collapse
Affiliation(s)
- Kaori Kohzuma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K. Programmed proteome response for drought avoidance/tolerance in the root of a C(3) xerophyte (wild watermelon) under water deficits. PLANT & CELL PHYSIOLOGY 2008; 49:226-41. [PMID: 18178965 DOI: 10.1093/pcp/pcm180] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Water availability is a critical determinant for the growth and ecological distribution of terrestrial plants. Although some xerophytes are unique regarding their highly developed root architecture and the successful adaptation to arid environments, virtually nothing is known about the molecular mechanisms underlying this adaptation. Here, we report physiological and molecular responses of wild watermelon (Citrullus lanatus sp.), which exhibits extraordinarily high drought resistance. At the early stage of drought stress, root development of wild watermelon was significantly enhanced compared with that of the irrigated plants, indicating the activation of a drought avoidance mechanism for absorbing water from deep soil layers. Consistent with this observation, comparative proteome analysis revealed that many proteins induced in the early stage of drought stress are involved in root morphogenesis and carbon/nitrogen metabolism, which may contribute to the drought avoidance via the enhancement of root growth. On the other hand, lignin synthesis-related proteins and molecular chaperones, which may function in the enhancement of physical desiccation tolerance and maintenance of protein integrity, respectively, were induced mostly at the later stage of drought stress. Our findings suggest that this xerophyte switches survival strategies from drought avoidance to drought tolerance during the progression of drought stress, by regulating its root proteome in a temporally programmed manner. This study provides new insights into the complex molecular networks within plant roots involved in the adaptation to adverse environments.
Collapse
Affiliation(s)
- Kazuya Yoshimura
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
30
|
Lüthje S. Plasma Membrane Redox Systems: Lipid Rafts and Protein Assemblies. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
31
|
Furt F, Lefebvre B, Cullimore J, Bessoule JJ, Mongrand S. Plant lipid rafts: fluctuat nec mergitur. PLANT SIGNALING & BEHAVIOR 2007; 2:508-11. [PMID: 19704542 PMCID: PMC2634352 DOI: 10.4161/psb.2.6.4636] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 06/27/2007] [Indexed: 05/20/2023]
Abstract
Lipid rafts in plasma membranes are hypothesized to play key roles in many cellular processes including signal transduction, membrane trafficking and entry of pathogens. We recently documented the biochemical characterization of lipid rafts, isolated as detergent-insoluble membranes, from Medicago truncatula root plasma membranes. We evidenced that the plant-specific lipid steryl-conjugates are among the main lipids of rafts together with free sterols and sphingolipids. An extensive proteomic analysis showed the presence of a specific set of proteins common to other lipid rafts, plus the presence of a redox system around a cytochrome b(561) not previously identified in lipid rafts of either plants or animals. Here, we discuss the similarities and differences between the lipids and proteins of plant and animal lipid rafts. Moreover we describe the potential biochemical functioning of the M. truncatula root lipid raft redox proteins and question whether they may play a physiological role in legume-symbiont interactions.
Collapse
Affiliation(s)
- Fabienne Furt
- Laboratoire de Biogenèse Membranaire; Université Victor Segalen; Bordeaux, France
| | - Benoit Lefebvre
- Laboratoire des Interactions Plantes Micro-organismes; Castanet-Tolosan, France
| | - Julie Cullimore
- Laboratoire des Interactions Plantes Micro-organismes; Castanet-Tolosan, France
| | | | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire; Université Victor Segalen; Bordeaux, France
| |
Collapse
|
32
|
Pignocchi C, Kiddle G, Hernández I, Foster SJ, Asensi A, Taybi T, Barnes J, Foyer CH. Ascorbate oxidase-dependent changes in the redox state of the apoplast modulate gene transcript accumulation leading to modified hormone signaling and orchestration of defense processes in tobacco. PLANT PHYSIOLOGY 2006; 141:423-35. [PMID: 16603663 PMCID: PMC1475448 DOI: 10.1104/pp.106.078469] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/24/2006] [Accepted: 03/27/2006] [Indexed: 05/08/2023]
Abstract
The role of the redox state of the apoplast in hormone responses, signaling cascades, and gene expression was studied in transgenic tobacco (Nicotiana tabacum) plants with modified cell wall-localized ascorbate oxidase (AO). High AO activity specifically decreased the ascorbic acid (AA) content of the apoplast and altered plant growth responses triggered by hormones. Auxin stimulated shoot growth only when the apoplastic AA pool was reduced in wild-type or AO antisense lines. Oxidation of apoplastic AA in AO sense lines was associated with loss of the auxin response, higher mitogen-activated protein kinase activities, and susceptibility to a virulent strain of the pathogen Pseudomonas syringae. The total leaf glutathione pool, the ratio of reduced glutathione to glutathione disulfide, and glutathione reductase activities were similar in the leaves of all lines. However, AO sense leaves exhibited significantly lower dehydroascorbate reductase and ascorbate peroxidase activities than wild-type and antisense leaves. The abundance of mRNAs encoding antioxidant enzymes was similar in all lines. However, the day/night rhythms in the abundance of transcripts encoding the three catalase isoforms were changed in response to the AA content of the apoplast. Other transcripts influenced by AO included photorespiratory genes and a plasma membrane Ca(2+) channel-associated gene. We conclude that the redox state of the apoplast modulates plant growth and defense responses by regulating signal transduction cascades and gene expression patterns. Hence, AO activity, which modulates the redox state of the apoplastic AA pool, strongly influences the responses of plant cells to external and internal stimuli.
Collapse
Affiliation(s)
- Cristina Pignocchi
- Crop Performance and Improvement Division , Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|