1
|
Wang T, Chen X, Li S, Wang P, Wang Y, Huang B. Overexpression of StTCP10 Alters Tuber Number and Size in Potato ( Solanum tuberosum L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:1403. [PMID: 40364431 PMCID: PMC12073833 DOI: 10.3390/plants14091403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Potato (Solanum tuberosum L.), cultivated worldwide for its nutrient-rich underground tubers, represents a crucial staple crop whose yield is primarily determined by both tuber number and tuber size. TCP transcription factors, especially TCP containing miR319 binding sites, play pivotal roles in plant growth and development, yet their functions in potato tuber number and size remain largely unexplored. In this study, we systematically identified 32 TCP genes in potato harboring the conserved TCP domain, among which six were predicted to contain binding sites for Stu-miR319. Semi-quantitative experiments revealed that StTCP10 exhibited the highest expression levels in stolons, swollen stolons, and tuber tissues compared to other StTCP genes containing miR319 binding sites. To elucidate its biological function, we generated StTCP10-overexpressing transgenic potato lines through Agrobacterium-mediated genetic transformation. Phenotypic analysis demonstrated that overexpression of StTCP10 reduced tuber number per plant while enhancing tuber size, with no significant change in total yield. These findings reveal that StTCP10 with Stu-miR319 binding sites plays a critical role in tuber size and mediates the trade-off between tuber size and number, providing novel insights into the molecular breeding aimed at improving tuber size.
Collapse
Affiliation(s)
- Tingting Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; (T.W.); (X.C.); (S.L.); (P.W.)
| | - Xinyue Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; (T.W.); (X.C.); (S.L.); (P.W.)
| | - Shuangshuang Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; (T.W.); (X.C.); (S.L.); (P.W.)
| | - Ping Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; (T.W.); (X.C.); (S.L.); (P.W.)
- Southwest United Graduate School, Kunming 650500, China
| | - Yongbin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; (T.W.); (X.C.); (S.L.); (P.W.)
| | - Binquan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Agriculture, Yunnan University, Kunming 650500, China; (T.W.); (X.C.); (S.L.); (P.W.)
- Southwest United Graduate School, Kunming 650500, China
| |
Collapse
|
2
|
Chang X, Chen J, Liu Y, Luo W, Jin L, Deng S, Zou LH, Shao M, Hao Q, Xiao Y, Cao S, Gui R, Guo X. TEOSINTE BRANCHED1/CYCLOIDEA/PCF protein PeTCP4s positively regulate lateral bud development by activating PePIN2a expression in Phyllostachys edulis. Int J Biol Macromol 2025; 305:141163. [PMID: 39971057 DOI: 10.1016/j.ijbiomac.2025.141163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The development of lateral buds on the underground rhizome in bamboo is a major determinant of the yield of bamboo shoots. However, the regulating factors influencing this developmental process and the molecular mechanisms remain largely unknown. Here, we found that treatment with the Cytokinin significantly increased the lateral bud outgrowth of Moso bamboo (Phyllostachys edulis). A pair of plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) genes, PeTCP4a and PeTCP4b, were identified in Moso bamboo. The expression of both PeTCP4 genes was promoted by Cytokinin and synchronized with the development of lateral buds. Overexpression of PeTCP4 genes exhibited increased rosette-leaf branches. PeTCP4s upregulated the expression of auxin efflux carrier PIN-FORMED (PIN2) gene and those genes involved in lateral organ such as KNAT2, KNAT6, STM and IAA3 in transgenic plants. Similar to PeTCP4 genes, the expression of PePIN2a in Moso bamboo was also promoted by Cytokinin. Subsequently, we found both PeTCP4 proteins directly bound to the PePIN2a gene and activated its expression. Our data suggested that PeTCP4s, induced by Cytokinin, promote lateral bud outgrowth by activating PePIN2a expression and upregulating the expression of those genes involved in lateral organ. This study may provide new insights into the mechanism of lateral bud development of bamboo.
Collapse
Affiliation(s)
- Xin Chang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Jiaoyu Chen
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yujiao Liu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wenfen Luo
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Lei Jin
- School of Foreign Languages, Zhejiang A&F University, Hangzhou 311300, China
| | - Shixin Deng
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Mingxia Shao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Qin Hao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yaqian Xiao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Shan Cao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Renyi Gui
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Xiaoqin Guo
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
3
|
Zhao J, Shi D, Kaeufer K, Song C, Both D, Thier AL, Cao H, Lassen L, Xu X, Hamamura Y, Luzzietti L, Bennett T, Kaufmann K, Greb T. Strigolactones optimise plant water usage by modulating vessel formation. Nat Commun 2025; 16:3854. [PMID: 40295470 PMCID: PMC12037892 DOI: 10.1038/s41467-025-59072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Wood formation is crucial for plant growth, enabling water and nutrient transport through vessel elements, derived from cambium stem cells (CSCs). CSCs produce vascular cell types in a bidirectional manner, but their regulation and cell fate trajectories remain unclear. Here, using single-cell transcriptome analysis in Arabidopsis thaliana, we reveal that the strigolactone (SL) signalling pathway negatively regulates vessel element formation, impacting plant water usage. While SL signalling is generally active in differentiating vascular tissues, it is low in developing vessels and CSCs, where it modulates cell fate decisions and drought response. SL-dependent changes in vessel element formation directly affect transpiration rates via stomata, underscoring the importance of vascular tissue composition in water balance. Our findings demonstrate the role of structural alignment in water-transport tissues under unstable water conditions, offering insights for enhancing drought resistance in plants through long-term modulation of vascular development.
Collapse
Affiliation(s)
- Jiao Zhao
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Dongbo Shi
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.
| | - Kiara Kaeufer
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Changzheng Song
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Dominik Both
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Anna Lea Thier
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hui Cao
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Linus Lassen
- Genetics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Xiaocai Xu
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yuki Hamamura
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Laura Luzzietti
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Greb
- Developmental Physiology, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
4
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
5
|
Jone MJH, Siddique MNA, Biswas MK, Hossain MR. Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo). Genes Genomics 2025; 47:367-382. [PMID: 39849192 DOI: 10.1007/s13258-025-01617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/13/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done. OBJECTIVE The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions. METHODS The chromosomal location, gene structure, conserved motifs, protein domains, structural homology, cis-regulating elements, transcript expression patterns, and potential protein-protein interactions were analyzed using various databases and webtools. RESULTS A total of 29 putative TCP genes are identified in melon. These genes were classified into two classes: Class-I (13 genes) and Class-II (16 genes). The results revealed that the putative CmTCP genes are distributed across nine of the twelve melon chromosomes and exhibit diverse expression patterns in different tissues which mostly indicates their potential role in floral organ development, lateral branching, growth and development. Phylogenetic analysis suggests that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification. CONCLUSION This study paves the way for future investigations into the specific roles of individual CmTCP genes in melon and for elucidating the mechanisms by which TCP proteins regulate leaf elongation, floral development, and lateral branching.
Collapse
Affiliation(s)
- Md Jahid Hasan Jone
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Nure Adil Siddique
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mohammad Rashed Hossain
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
6
|
Li T, Tian P, Wang X, Li M, Xing S. Overexpression of TCP5 or Its Dominant Repressor Form, TCP5-SRDX, Causes Male Infertility in Arabidopsis. Int J Mol Sci 2025; 26:1813. [PMID: 40076439 PMCID: PMC11899387 DOI: 10.3390/ijms26051813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
TCP transcription factors have long been known to play a crucial role in leaf development, but their significance in reproduction has recently been revealed. TCP5 is a member of class II of the TCP family, which predominantly regulates cell differentiation. This study used overexpression and SRDX fusion to evaluate the role of TCP5 in anther development. TCP5 overexpression resulted in lower fertility, primarily due to anther non-dehiscence. We also observed reduced lignin accumulation in the anther endothecium. In addition, TCP5 overexpression resulted in smaller anthers with fewer pollen sacs and pollen due to early-anther defects before meiosis. TCP5 showed expression in early anthers, including the epidermis, endothecium, middle layer, tapetum, sporogenous cells (pollen mother cells), and vascular bundles. Conversely, during meiosis, the TCP5 signal was only detected in the tapetum, PMCs, and vascular bundles. The TCP5 signal disappeared after meiosis, and no signal was observed in mature anthers. Interestingly, the TCP5-SRDX transgenic plants were also sterile, at least for the early-arising flowers, if not all of them. TCP5-SRDX expression also resulted in undersized anthers with fewer pollen sacs and pollen. However, the lignin accumulation in most of these anthers was comparable to that of the wild type, allowing these anthers to open. The qRT-PCR results revealed that several genes associated with secondary cell wall thickening had altered expression profiles in TCP5 overexpression transgenics, which supported the non-dehiscent anther phenotype. Furthermore, the expression levels of numerous critical anther genes were down-regulated in both TCP5 overexpression and TCP5-SRDX plants, indicating a comparable anther phenotype in these transgenic plants. These findings not only suggest that an appropriate TCP5 expression level is essential for anther development and plant fertility, but also improve our understanding of TCP transcription factor functioning in plant male reproduction and contribute information that may allow us to manipulate fertility and breeding in crops.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Ping Tian
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Xinxin Wang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Mengyao Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (P.T.); (X.W.); (M.L.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, Taiyuan 030600, China
| |
Collapse
|
7
|
Mo T, Wang T, Sun Y, Kumar A, Mkumbwa H, Fang J, Zhao J, Yuan S, Li Z, Li X. The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module. PLANT COMMUNICATIONS 2024; 5:101073. [PMID: 39205390 PMCID: PMC11671761 DOI: 10.1016/j.xplc.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As an important yield component, rice tiller number controls panicle number and determines grain yield. Regulation of rice tiller number by chloroplast pentatricopeptide repeat (PPR) proteins has not been reported previously. Here, we report the rice reduced culm number22 (rcn22) mutant, which produces few tillers owing to suppressed tiller bud elongation. Map-based cloning revealed that RCN22 encodes a chloroplast-localized P-type PPR protein. We found that RCN22 specifically binds to the 5' UTR of RbcL mRNA (encoding the large subunit of Rubisco) and enhances its stability. The reduced abundance of RbcL mRNA in rcn22 leads to a lower photosynthetic rate and decreased sugar levels. Consequently, transcript levels of DWARF3 (D3) and TEOSINTE BRANCHED1 (TB1) (which encode negative regulators of tiller bud elongation) are increased, whereas protein levels of the positive regulator DWARF53 (D53) are decreased. Furthermore, high concentrations of sucrose can rescue the tiller bud growth defect of the rcn22 mutant. On the other hand, TB1 directly binds to the RCN22 promoter and downregulates its expression. The tb1/rcn22 double mutant shows a tillering phenotype similar to that of rcn22. Our results suggest that the TB1-RCN22-RbcL module plays a vital role in rice tiller bud elongation by affecting sugar levels.
Collapse
Affiliation(s)
- Tianyu Mo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tianhao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinglu Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ashmit Kumar
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Humphrey Mkumbwa
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xueyong Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Humphreys JL, Beveridge CA, Tanurdžić M. Strigolactone induces D14-dependent large-scale changes in gene expression requiring SWI/SNF chromatin remodellers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858857 DOI: 10.1111/tpj.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Strigolactones (SL) function as plant hormones in control of multiple aspects of plant development, mostly via the regulation of gene expression. Immediate early-gene regulation by SL remains unexplored due to difficulty in dissecting early from late gene expression responses to SL. We used synthetic SL, rac-GR24 treatment of protoplasts and RNA-seq to explore early SL-induced changes in gene expression over time (5-180 minutes) and discovered rapid, dynamic and SL receptor D14-dependent regulation of gene expression in response to rac-GR24. Importantly, we discovered a significant dependence of SL signalling on chromatin remodelling processes, as the induction of a key SL-induced transcription factor BRANCHED1 requires the SWI/SNF chromatin remodelling ATPase SPLAYED (SYD) and leads to upregulation of a homologue SWI/SNF ATPase BRAHMA. ATAC-seq profiling of genome-wide changes in chromatin accessibility in response to rac-GR24 identified large-scale changes, with over 1400 differentially accessible regions. These changes in chromatin accessibility often precede transcriptional changes and are likely to harbour SL cis-regulatory elements. Importantly, we discovered that this early and extensive modification of the chromatin landscape also requires SYD. This study, therefore, provides evidence that SL signalling requires regulation of chromatin accessibility, and it identifies genomic locations harbouring likely SL cis-regulatory sequences.
Collapse
Affiliation(s)
- Jazmine L Humphreys
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
9
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
10
|
Wan X, Zou LH, Pan X, Ge Y, Jin L, Cao Q, Shi J, Tian D. Auxin and carbohydrate control flower bud development in Anthurium andraeanum during early stage of sexual reproduction. BMC PLANT BIOLOGY 2024; 24:159. [PMID: 38429715 PMCID: PMC10908059 DOI: 10.1186/s12870-024-04869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Flower buds of Anthurium andraeanum frequently cease to grow and abort during the early flowering stage, resulting in prolonged planting times and increased commercialization costs. Nevertheless, limited knowledge exists of the mechanism of flower development after initiation in A. andraeanum. RESULTS In this study, the measurement of carbohydrate flow and intensity between leaves and flowers during different growth stages showed that tender leaves are strong sinks and their concomitant flowers are weak ones. This suggested that the tender leaves compete with their concomitant flower buds for carbohydrates during the early growth stages, potentially causing the abortion of the flower buds. The analysis of transcriptomic differentially expressed genes suggested that genes related to sucrose metabolism and auxin response play an important role during flower bud development. Particularly, co-expression network analysis found that AaSPL12 is a hub gene engaged in flower development by collaborating carbohydrate and auxin signals. Yeast Two Hybrid assays revealed that AaSPL12 can interact with AaARP, a protein that serves as an indicator of dormancy. Additionally, the application of exogenous IAA and sucrose can suppress the expression of AaARP, augment the transcriptional abundance of AaSPL12, and consequently expedite flower development in Anthurium andraeanum. CONCLUSIONS Collectively, our findings indicated that the combination of auxin and sugar signals could potentially suppress the repression of AaARP protein to AaSPL12, thus advancing the development of flower buds in Anthurium andraeanum.
Collapse
Affiliation(s)
- Xiao Wan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China.
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xiaoyun Pan
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Yaying Ge
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Liang Jin
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Qunyang Cao
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Jiewei Shi
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China
| | - Danqing Tian
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311251, Zhejiang, China.
| |
Collapse
|
11
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
13
|
Zhang M, Agassin RH, Huang Z, Wang D, Yao S, Ji K. Transcriptome-Wide Identification of TCP Transcription Factor Family Members in Pinus massoniana and Their Expression in Regulation of Development and in Response to Stress. Int J Mol Sci 2023; 24:15938. [PMID: 37958919 PMCID: PMC10648340 DOI: 10.3390/ijms242115938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Pinus massoniana is an important coniferous tree species for barren mountain afforestation with enormous ecological and economic significance. It has strong adaptability to the environment. TEOSINTE BRANCHED 1/CYCLOIDEA/PCF (TCP) transcription factors (TFs) play crucial roles in plant stress response, hormone signal transduction, and development processes. At present, TCP TFs have been widely studied in multiple plant species, but research in P. massoniana has not been carried out. In this study, 13 PmTCP TFs were identified from the transcriptomes of P. massoniana. The phylogenetic results revealed that these PmTCP members were divided into two categories: Class I and Class II. Each PmTCP TF contained a conserved TCP domain, and the conserved motif types and numbers were similar in the same subgroup. According to the transcriptional profiling analysis under drought stress conditions, it was found that seven PmTCP genes responded to drought treatment to varying degrees. The qRT-PCR results showed that the majority of PmTCP genes were significantly expressed in the needles and may play a role in the developmental stage. Meanwhile, the PmTCPs could respond to several stresses and hormone treatments at different levels, which may be important for stress resistance. In addition, PmTCP7 and PmTCP12 were nuclear localization proteins, and PmTCP7 was a transcriptional suppressor. These results will help to explore the regulatory factors related to the growth and development of P. massoniana, enhance its stress resistance, and lay the foundation for further exploration of the physiological effects on PmTCPs.
Collapse
Affiliation(s)
| | | | | | | | | | - Kongshu Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Open Laboratory of Forest Genetics and Gene Engineering of National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
15
|
Ishizaki T, Ueda Y, Takai T, Maruyama K, Tsujimoto Y. In-frame mutation in rice TEOSINTE BRANCHED1 (OsTB1) improves productivity under phosphorus deficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111627. [PMID: 36737003 DOI: 10.1016/j.plantsci.2023.111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Tillering is an important trait in rice productivity. We introduced mutations into the coding region of rice TEOSINTE BRANCHED1 (OsTB1), which is a negative regulator of tillering, using CRISPR/Cas9. The frameshift mutants exhibited substantially enhanced tillering and produced 3.5 times more panicles than the non-mutated plants at maturity. This enhanced tillering resulted in increased spikelet number; however, grain yields did not increase due to substantially reduced filled grain rate and 1,000-grain weight. In contrast, in-frame mutations in OsTB1 had the effect of slightly increasing tiller numbers, and the in-frame mutants had 40% more panicles than non-mutated plants. The grain yield of in-frame mutants also did not increase on nutrient-rich soil; however, under phosphorus-deficient conditions, where tillering is constrained, the in-frame mutants gave a significantly higher grain yield than non-mutated plants due to higher spikelet number and maintained filled grain rate. Rice grassy tiller1 (OsGT1)/OsHox12, which is directly regulated by OsTB1 to suppress tillering, was moderately down-regulated in in-frame mutants, suggesting that OsTB1 with the in-frame mutation shows partial function of intact OsTB1 in regulating OsGT1/OsHox12. We propose that mildly enhanced tillering by in-frame mutation of OsTB1 can improve grain yield under low phosphorus conditions.
Collapse
Affiliation(s)
- Takuma Ishizaki
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa 907-0002, Japan.
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Toshiyuki Takai
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Kyonoshin Maruyama
- Biological Resources and Post-harvest Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Yasuhiro Tsujimoto
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| |
Collapse
|
16
|
Xiong W, Zhao Y, Gao H, Li Y, Tang W, Ma L, Yang G, Sun J. Genomic characterization and expression analysis of TCP transcription factors in Setaria italica and Setaria viridis. PLANT SIGNALING & BEHAVIOR 2022; 17:2075158. [PMID: 35616063 PMCID: PMC9154779 DOI: 10.1080/15592324.2022.2075158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The plant-specific TCP transcription factor plays important roles in plant development and environment adaptation. Setaria italica and Setaria viridis, the C4 model plants, can grow on drought or arid soils. However, there is no systematic information about the genomic dissection and the expression of Setaria TCP genes. A total of 22 TCP genes were both identified from S. italica and S. viridis genomes. They all contained bHLH domain and were grouped into three main clades (PCF, CIN, and CYC/TB1). The TCP genes in the same clades shared similar gene structures. Cis-element in the TCP promoter regions were analyzed and associated with hormones and stress responsiveness. Ten TCP genes were predicted to be targets of miRNA319. Moreover, gene ontology analysis indicated three SiTCP and three SvTCP genes were involved in the regulation of shoot development, and SiTCP16/SvTCP16 were clustered together with tillering controlling gene TB1. The TCP genes were differentially expressed in the organs, but SiTCP/SvTCP orthologs shared similar expression patterns. Ten SiTCP members were downregulated under drought or salinity stresses, indicating they may play regulatory roles in abiotic stresses. The study provides detailed information regarding Setaria TCP genes, providing the theoretical basis for agricultural applications.
Collapse
Affiliation(s)
- Wangdan Xiong
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yiran Zhao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Hanchi Gao
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Yinghui Li
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wei Tang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lichao Ma
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Guofeng Yang
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Juan Sun
- Grassland Agri-Husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
17
|
Wei J, Yang Q, Ni J, Gao Y, Tang Y, Bai S, Teng Y. Early defoliation induces auxin redistribution, promoting paradormancy release in pear buds. PLANT PHYSIOLOGY 2022; 190:2739-2756. [PMID: 36200868 PMCID: PMC9706473 DOI: 10.1093/plphys/kiac426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 06/06/2023]
Abstract
Paradormancy of fruit trees occurs in summer and autumn when signals from adjacent organs stimulate buds to develop slowly. This stage has received less attention that the other stages of dormancy, and the underlying mechanism remains uncharacterized. Early defoliation in late summer and early autumn is usually followed by out-of-season blooming in pear (Pyrus spp.), which substantially decreases the number of buds the following spring and negatively affects fruit production. This early bud flush is an example of paradormancy release. Here, we determined that flower bud auxin content is stable after defoliation; however, polar distribution of the pear (Pyrus pyrifolia) PIN-FORMED auxin efflux carrier 1b (PpyPIN1b) implied that auxin tends to be exported from buds. Transcriptome analysis of floral buds after artificial defoliation revealed changes in auxin metabolism, transport, and signal transduction pathways. Exogenous application of a high concentration of the auxin analog 1-naphthaleneacetic acid (300 mg/L) suppressed PpyPIN1b expression and its protein accumulation in the cell membrane, likely leading to decreased auxin efflux from buds, which hindered flower bud sprouting. Furthermore, carbohydrates and additional hormones also influenced out-of-season flowering. Our results indicate that defoliation-induced auxin efflux from buds accelerates bud paradormancy release. This differs from release of apical-dominance-related lateral bud paradormancy after the apex is removed. Our findings and proposed model further elucidate the mechanism underlying paradormancy and will help researchers to develop methods for inhibiting early defoliation-induced out-of-season bud sprouting.
Collapse
Affiliation(s)
- Jia Wei
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Qinsong Yang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Haidian, Beijing 100083, China
| | - Junbei Ni
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yuhao Gao
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yinxin Tang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Yantai Institute, China Agricultural University, Yantai, Shandong 264670, China
| | - Songling Bai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
| | - Yuanwen Teng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Hangzhou, 310058 Zhejiang, China
- The Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture of China, Hangzhou, 310058, Zhejiang, China
- Hainan Institute of Zhejiang University, Sanya, Hainan 572000, China
| |
Collapse
|
18
|
Feng J, Deng Q, Lu H, Wei D, Wang Z, Tang Q. Brassica juncea BRC1-1 induced by SD negatively regulates flowering by directly interacting with BjuFT and BjuFUL promoter. FRONTIERS IN PLANT SCIENCE 2022; 13:986811. [PMID: 36247593 PMCID: PMC9561848 DOI: 10.3389/fpls.2022.986811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 06/01/2023]
Abstract
Flowering is crucial for sexual reproductive success in angiosperms. The core regulatory factors, such as FT, FUL, and SOC1, are responsible for promoting flowering. BRANCHED 1 (BRC1) is a TCP transcription factor gene that plays an important role in the regulation of branching and flowering in diverse plant species. However, the functions of BjuBRC1 in Brassica juncea are largely unknown. In this study, four homologs of BjuBRC1 were identified and the mechanism by which BjuBRC1 may function in the regulation of flowering time was investigated. Amino acid sequence analysis showed that BjuBRC1 contained a conserved TCP domain with two nuclear localization signals. A subcellular localization assay verified the nuclear localization of BjuBRC1. Expression analysis revealed that BjuBRC1-1 was induced by short days and was expressed abundantly in the leaf, flower, and floral bud but not in the root and stem in B. juncea. Overexpression of BjuBRC1-1 in the Arabidopsis brc1 mutant showed that BjuBRC1-1 delayed flowering time. Bimolecular fluorescent complementary and luciferase complementation assays showed that four BjuBRC1 proteins could interact with BjuFT in vivo. Notably, BjuBRC1 proteins formed heterodimers in vivo that may impact on their function of negatively regulating flowering time. Yeast one-hybrid, dual-luciferase reporter, and luciferase activity assays showed that BjuBRC1-1 could directly bind to the promoter of BjuFUL, but not BjuFT or BjuSOC1, to repress its expression. These results were supported by the reduced expression of AtFUL in transgenic Arabidopsis overexpressing BjuBRC1-1. Taken together, the results indicate that BjuBRC1 genes likely have a conserved function in the negative regulation of flowering in B. juncea.
Collapse
Affiliation(s)
- Junjie Feng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinlin Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Huanhuan Lu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Olericulture, Chongqing, China
| |
Collapse
|
19
|
de Souza Moraes T, van Es SW, Hernández-Pinzón I, Kirschner GK, van der Wal F, da Silveira SR, Busscher-Lange J, Angenent GC, Moscou M, Immink RGH, van Esse GW. The TCP transcription factor HvTB2 heterodimerizes with VRS5 and controls spike architecture in barley. PLANT REPRODUCTION 2022; 35:205-220. [PMID: 35254529 PMCID: PMC9352630 DOI: 10.1007/s00497-022-00441-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Understanding the molecular network, including protein-protein interactions, of VRS5 provide new routes towards the identification of other key regulators of plant architecture in barley. The TCP transcriptional regulator TEOSINTE BRANCHED 1 (TB1) is a key regulator of plant architecture. In barley, an important cereal crop, HvTB1 (also referred to as VULGARE SIX-ROWED spike (VRS) 5), inhibits the outgrowth of side shoots, or tillers, and grains. Despite its key role in barley development, there is limited knowledge on the molecular network that is utilized by VRS5. In this work, we performed protein-protein interaction studies of VRS5. Our analysis shows that VRS5 potentially interacts with a diverse set of proteins, including other class II TCP's, NF-Y TF, but also chromatin remodelers. Zooming in on the interaction capacity of VRS5 with other TCP TFs shows that VRS5 preferably interacts with other class II TCP TFs in the TB1 clade. Induced mutagenesis through CRISPR-Cas of one of the putative VRS5 interactors, HvTB2 (also referred to as COMPOSITUM 1 and BRANCHED AND INDETERMINATE SPIKELET 1), resulted in plants that have lost their characteristic unbranched spike architecture. More specifically, hvtb2 mutants exhibited branches arising at the main spike, suggesting that HvTB2 acts as inhibitor of branching. Our protein-protein interaction studies of VRS5 resulted in the identification of HvTB2 as putative interactor of VRS5, another key regulator of spike architecture in barley. The study presented here provides a first step to underpin the protein-protein interactome of VRS5 and to identify other, yet unknown, key regulators of barley plant architecture.
Collapse
Affiliation(s)
- Tatiana de Souza Moraes
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, CEP 13416-000, Brazil
| | - Sam W van Es
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | | | - Gwendolyn K Kirschner
- Institute of Crop Functional Genomics, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Froukje van der Wal
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sylvia Rodrigues da Silveira
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Laboratório de Biotecnologia Vegetal, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, CEP 13416-000, Brazil
| | - Jacqueline Busscher-Lange
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Gerco C Angenent
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Matthew Moscou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard G H Immink
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| | - G Wilma van Esse
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
20
|
Meng J, Yin J, Wang H, Li H. A TCP Transcription Factor in Malus halliana, MhTCP4, Positively Regulates Anthocyanins Biosynthesis. Int J Mol Sci 2022; 23:ijms23169051. [PMID: 36012317 PMCID: PMC9409405 DOI: 10.3390/ijms23169051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Anthocyanins belong to a group of flavonoids, which are the most important flower pigments. Clarifying the potential anthocyanins biosynthesis molecular mechanisms could facilitate artificial manipulation of flower pigmentation in plants. In this paper, we screened a differentially expressed gene, MhTCP4, from the transcriptome data of Malus halliana petals at different development stages and explored its role in anthocyanins biosynthesis. The transcriptome data and qRT-PCR analysis showed that the expression level of MhTCP4 gradually decreased from the flower color fades. Tissue specific expression analysis showed MhTCP4 was expressed in the petal, leaf, and fruit of M. halliana, and was highly expressed in the scarlet petal. Overexpression of MhTCP4 promoted anthocyanins accumulation and increased pigments in infected parts of M. 'Snowdrift' and M. 'Fuji' fruit peels. In contrast, when endogenous MhTCP4 was silenced, the anthocyanins accumulation was inhibited and pigments decreased in the infected peels. The qRT-PCR analysis revealed that overexpression or silence of MhTCP4 caused expression changes of a series of structural genes included in anthocyanins biosynthesis pathway. The yeast two-hybrid assays indicated that MhTCP4 did not interact with MhMYB10. Furthermore, the yeast one-hybrid assays indicated that MhTCP4 did not directly bind to the promoter of MhMYB10, but that of the anthocyanins biosynthesis genes, MhCHI and MhF3'H. Dual luciferase assays further confirmed that MhTCP4 can strongly activate the promoters of MhCHI and MhF3'H in tobacco. Overall, the results suggest that MhTCP4 positively regulates anthocyanins biosynthesis by directly activated MhCHI and MhF3'H in M. halliana flowers.
Collapse
Affiliation(s)
| | | | | | - Houhua Li
- Correspondence: ; Tel.: +86-151-1480-0050
| |
Collapse
|
21
|
Boonrod K, Strohmayer A, Schwarz T, Braun M, Tropf T, Krczal G. Beyond Destabilizing Activity of SAP11-like Effector of Candidatus Phytoplasma mali Strain PM19. Microorganisms 2022; 10:microorganisms10071406. [PMID: 35889125 PMCID: PMC9317525 DOI: 10.3390/microorganisms10071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
It was shown that the SAP11 effector of different Candidatus Phytoplasma can destabilize some TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTORs (TCPs), resulting in plant phenotypes such as witches’ broom and crinkled leaves. Some SAP11 exclusively localize in the nucleus, while the others localize in the cytoplasm and the nucleus. The SAP11-like effector of Candidatus Phytoplasma mali strain PM19 (SAP11PM19) localizes in both compartments of plant cells. We show here that SAP11PM19 can destabilize TCPs in both the nucleus and the cytoplasm. However, expression of SAP11PM19 exclusively in the nucleus resulted in the disappearance of leaf phenotypes while still showing the witches’ broom phenotype. Moreover, we show that SAP11PM19 can not only destabilize TCPs but also relocalizes these proteins in the nucleus. Interestingly, three different transgenic Nicotiana species expressing SAP11PM19 show all the same witches’ broom phenotype but different leaf phenotypes. A possible mechanism of SAP11-TCP interaction is discussed.
Collapse
Affiliation(s)
- Kajohn Boonrod
- Correspondence: ; Tel.: +49-6321-671-1333; Fax: +49-6321-671-1313
| | | | | | | | | | | |
Collapse
|
22
|
Yang L, Zhu S, Xu J. Roles of auxin in the inhibition of shoot branching in 'Dugan' fir. TREE PHYSIOLOGY 2022; 42:1411-1431. [PMID: 35088089 DOI: 10.1093/treephys/tpac008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Shoot branching substantially impacts vegetative and reproductive growth as well as wood characteristics in perennial woody species by shaping the shoot system architecture. Although plant hormones have been shown to play a fundamental role in shoot branching in annual species, their corresponding actions in perennial woody plants are largely unknown, in part due to the lack of branching mutants. Here, we demonstrated the role of plant hormones in bud dormancy transition toward activation and outgrowth in woody plants by comparing the physiological and molecular changes in the apical shoot stems of 'Yangkou' 020 fir and 'Dugan' fir, two Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) clones with normal and completely abolished branching phenotypes, respectively. Our studies showed that the defect in bud outgrowth was the cause of failed shoot branching in 'Dugan' fir whereas apically derived signals acted as triggers of this ectopic bud activity. Further studies indicated that auxin played a key role in inhibiting bud outgrowth in 'Dugan' fir. During bud dormancy release, the differential auxin resistant 1/Like AUX1 (AUX1/LAX) and PIN-formed (PIN) activity resulted in an ectopic auxin/indole-3-acetic acid (IAA) accumulation in the apical shoot stem of 'Dugan' fir, which could inhibit the cell cycle in the axillary meristem by decreasing cytokinin (CK) biosynthesis but increasing abscisic acid (ABA) production and response through the signaling pathway. In contrast, during bud activation and outgrowth, the striking increase in auxin biosynthesis and PIN activity in the shoot tip of 'Dugan' fir may trigger the correlative inhibition of axillary buds by modulating the polar auxin transport stream (PATS) and connective auxin transport (CAT) in shoots, and by influencing the biosynthesis of secondary messengers, including CK, gibberellin (GA) and ABA, thereby inducing the paradormancy of axillary buds in 'Dugan' fir by apical dominance under favorable conditions. The findings of this study provide important insights into the roles of plant hormones in bud outgrowth control in perennial woody plants.
Collapse
Affiliation(s)
- Liwei Yang
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Sheng Zhu
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
- Department of Molecular Biology and Biochemistry, College of Biology and Environment, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| | - Jin Xu
- Department of Forest Genetics & Biotechnology, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, No.159 Longpan Road, Nanjing, Jiangsu 210037, China
| |
Collapse
|
23
|
Shang X, Han Z, Zhang D, Wang Y, Qin H, Zou Z, Zhou L, Zhu X, Fang W, Ma Y. Genome-Wide Analysis of the TCP Gene Family and Their Expression Pattern Analysis in Tea Plant ( Camellia sinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:840350. [PMID: 35845692 PMCID: PMC9284231 DOI: 10.3389/fpls.2022.840350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors TEOSINTE BRANCHED1/CYCLOIDEA/PCF have been suggested to control the cell growth and proliferation in meristems and lateral organs. A total of 37 CsTCP genes were identified and divided into two classes, class I (PCF, group 1) and class II (CIN CYC/TB1, groups 2, and 3). The residues of TEOSINTE BRANCHED1/CYCLOIDEA/PCF of Camellia sinensis (Tea plant) (CsTCP) proteins between class I and class II were definitely different in the loop, helix I, and helix II regions; however, eighteen conserved tandem was found in bHLH. There are a large number of CsTCP homologous gene pairs in three groups. Additionally, most CsTCP proteins have obvious differences in motif composition. The results illuminated that CsTCP proteins in different groups are supposed to have complementary functions, whereas those in the same class seem to display function redundancies. There is no relationship between the number of CsTCP gene members and genome size, and the CsTCP gene family has only expanded since the divergence of monocots and eudicots. WGD/segmental duplication played a vital role in the expansion of the CsTCP gene family in tea plant, and the CsTCP gene family has expanded a lot. Most CsTCP genes of group 1 are more widely and non-specifically expressed, and the CsTCP genes of group 2 are mainly expressed in buds, flowers, and leaves. Most genes of group 1 and some genes of group 2 were up-/downregulated in varying degrees under different stress, CsTCP genes of group 3 basically do not respond to stress. TCP genes involved in abiotic stress response mostly belong to PCF group. Some CsTCP genes may have the same function as the homologous genes in Arabidopsis, but there is functional differentiation.
Collapse
Affiliation(s)
- Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dayan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hao Qin
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Agricultural and Forestry Service Center, Suzhou, China
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada
| | - Lin Zhou
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Xu Y, Wang L, Liu H, He W, Jiang N, Wu M, Xiang Y. Identification of TCP family in moso bamboo (Phyllostachys edulis) and salt tolerance analysis of PheTCP9 in transgenic Arabidopsis. PLANTA 2022; 256:5. [PMID: 35670871 DOI: 10.1007/s00425-022-03917-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Bioinformatic analysis of moso bamboo TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors reveals their conservation and variation as well as the probable biological functions in abiotic stress response. Overexpressing PheTCP9 in Arabidopsis thaliana illustrates it may exhibit a new vision in different aspects of response to salt stress. Plant specific TCPs play important roles in plant growth, development and stress response, but studies of TCP in moso bamboo are limited. Therefore, in this study, a total of 40 TCP genes (PheTCP1 ~ 40) were identified and characterized from moso bamboo genome and divided into three different subfamilies, namely, 7 in TEOSINTE BRANCHED 1 / CYCLOIDEA (TB1/CYC), 14 in CINCINNATA (CIN) and 19 in PROLIFERATING CELL FACTOR (PCF). Subsequently, we analyzed the gene structures and conserved domain of these genes and found that the members from the same subfamilies exhibited similar exon/intron distribution patterns. Selection pressure and gene duplication analysis results indicated that PheTCP genes underwent strong purification selection during evolution. There were many cis-elements related to phytohermone and stress responsive existing in the upstream promoter regions of PheTCP genes, such as ABRE, CGTCA-motif and ARE. Subcellular localization experiments showed that PheTCP9 was a nuclear localized protein. As shown by β-glucuronidase (GUS) activity, the promoter of PheTCP9 was significantly indicated by salt stress. PheTCP9 was significantly induced in the roots, stems and leaves of moso bamboo. It was also significantly induced by NaCl solution. Overexpressing PheTCP9 increased the salt tolerance of transgenic Arabidopsis. Meanwhile, H2O2 and malondialdehyde (MDA) contents were significantly lower in PheTCP9 over expression (OE) transgenic Arabidopsis than WT. Catalase (CAT) activity, K+/Na+ ratio as well as CAT2 expression level was also much improved in transgenic Arabidopsis than WT under salt conditions. In addition, PheTCP9 OE transgenic Arabidopsis held higher survival rates of seedlings than WT under NaCl conditions. These results showed the positive regulation functions of PheTCP9 in plants under salt conditions.
Collapse
Affiliation(s)
- Yuzeng Xu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Wei He
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Nianqin Jiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
25
|
Moraes TS, Immink RGH, Martinelli AP, Angenent GC, van Esse W, Dornelas MC. Passiflora organensis FT/TFL1 gene family and their putative roles in phase transition and floral initiation. PLANT REPRODUCTION 2022; 35:105-126. [PMID: 34748087 DOI: 10.1007/s00497-021-00431-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Comprehensive analysis of the FT/TFL1 gene family in Passiflora organensis results in understanding how these genes might be involved in the regulation of the typical plant architecture presented by Passiflora species. Passion fruit (Passiflora spp) is an economic tropical fruit crop, but there is hardly any knowledge available about the molecular control of phase transition and flower initiation in this species. The florigen agent FLOWERING LOCUS T (FT) interacts with the bZIP protein FLOWERING LOCUS D (FD) to induce flowering in the model species Arabidopsis thaliana. Current models based on research in rice suggest that this interaction is bridged by 14-3-3 proteins. We identified eight FT/TFL1 family members in Passiflora organensis and characterized them by analyzing their phylogeny, gene structure, expression patterns, protein interactions and putative biological roles by heterologous expression in Arabidopsis. PoFT was highest expressed during the adult vegetative phase and it is supposed to have an important role in flowering induction. In contrast, its paralogs PoTSFs were highest expressed in the reproductive phase. While ectopic expression of PoFT in transgenic Arabidopsis plants induced early flowering and inflorescence determinacy, the ectopic expression of PoTSFa caused a delay in flowering. PoTFL1-like genes were highest expressed during the juvenile phase and their ectopic expression caused delayed flowering in Arabidopsis. Our protein-protein interaction studies indicate that the flowering activation complexes in Passiflora might deviate from the hexameric complex found in the model system rice. Our results provide insights into the potential functions of FT/TFL1 gene family members during floral initiation and their implications in the special plant architecture of Passiflora species, contributing to more detailed studies on the regulation of passion fruit reproduction.
Collapse
Affiliation(s)
- Tatiana S Moraes
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil.
| | - Richard G H Immink
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Adriana P Martinelli
- Plant Biotechnology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Gerco C Angenent
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Wilma van Esse
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marcelo C Dornelas
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
26
|
Tong J, Knox EB, Morden CW, Cellinese N, Mossolem F, Zubair AS, Howarth DG. Duplication and expression patterns of CYCLOIDEA-like genes in Campanulaceae. EvoDevo 2022; 13:5. [PMID: 35125117 PMCID: PMC8819851 DOI: 10.1186/s13227-021-00189-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
CYCLOIDEA (CYC)-like transcription factors pattern floral symmetry in most angiosperms. In core eudicots, two duplications led to three clades of CYC-like genes: CYC1, CYC2, and CYC3, with orthologs of the CYC2 clade restricting expression dorsally in bilaterally symmetrical flowers. Limited data from CYC3 suggest that they also play a role in flower symmetry in some asterids. We examine the evolution of these genes in Campanulaceae, a group that contains broad transitions between radial and bilateral floral symmetry and 180° resupination (turning upside-down by twisting pedicle).
Results
We identify here all three paralogous CYC-like clades across Campanulaceae. Similar to other core eudicots, we show that CamCYC2 duplicated near the time of the divergence of the bilaterally symmetrical and resupinate Lobelioideae. However, in non-resupinate, bilaterally symmetrical Cyphioideae, CamCYC2 appears to have been lost and CamCYC3 duplicated, suggesting a novel genetic basis for bilateral symmetry in Cyphioideae. We additionally, utilized qRT-PCR to examine the correlation between CYC-like gene expression and shifts in flower morphology in four species of Lobelioideae. As expected, CamCYC2 gene expression was dorsoventrally restricted in bilateral symmetrical flowers. However, because Lobelioideae have resupinate flowers, both CamCYC2A and CamCYC2B are highly expressed in the finally positioned ventral petal lobes, corresponding to the adaxial side of the flower relative to meristem orientation.
Conclusions
Our sequences across Campanulaceae of all three of these paralogous groups suggests that radially symmetrical Campanuloideae duplicated CYC1, Lobelioideae duplicated CYC2 and lost CYC3 early in their divergence, and that Cyphioideae lost CYC2 and duplicated CYC3. This suggests a dynamic pattern of duplication and loss of major floral patterning genes in this group and highlights the first case of a loss of CYC2 in a bilaterally symmetrical group. We illustrate here that CYC expression is conserved along the dorsoventral axis of the flower even as it turns upside-down, suggesting that at least late CYC expression is not regulated by extrinsic factors such as gravity. We additionally show that while the pattern of dorsoventral expression of each paralog remains the same, CamCYC2A is more dominant in species with shorter relative finally positioned dorsal lobes, and CamCYC2B is more dominant in species with long dorsal lobes.
Collapse
|
27
|
Dou J, Yang H, Sun D, Yang S, Sun S, Zhao S, Lu X, Zhu H, Liu D, Ma C, Liu W, Yang L. The branchless gene Clbl in watermelon encoding a TERMINAL FLOWER 1 protein regulates the number of lateral branches. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:65-79. [PMID: 34562124 DOI: 10.1007/s00122-021-03952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
A SNP mutation in Clbl gene encoding TERMINAL FLOWER 1 protein is responsible for watermelon branchless. Lateral branching is one of the most important traits, which directly determines plant architecture and crop productivity. Commercial watermelon has the characteristics of multiple lateral branches, and it is time-consuming and labor-costing to manually remove the lateral branches in traditional watermelon cultivation. In our present study, a lateral branchless trait was identified in watermelon material WCZ, and genetic analysis revealed that it was controlled by a single recessive gene, which named as Clbl (Citrullus lanatus branchless). A bulked segregant sequencing (BSA-seq) and linkage analysis was conducted to primarily map Clbl on watermelon chromosome 4. Next-generation sequencing-aided marker discovery and a large mapping population consisting of 1406 F2 plants were used to further map Clbl locus into a 9011-bp candidate region, which harbored only one candidate gene Cla018392 encoding a TERMINAL FLOWER 1 protein. Sequence comparison of Cla018392 between two parental lines revealed that there was a SNP detected from C to A in the coding region in the branchless inbred line WCZ, which resulted in a mutation from alanine (GCA) to glutamate (GAA) at the fourth exon. A dCAPS marker was developed from the SNP locus, which was co-segregated with the branchless phenotype in both BC1 and F2 population, and it was further validated in 152 natural watermelon accessions. qRT-PCR and in situ hybridization showed that the expression level of Cla018392 was significantly reduced in the axillary bud and apical bud in branchless line WCZ. Ectopic expression of ClTFL1 in Arabidopsis showed an increased number of lateral branches. The results of this study will be helpful for better understanding the molecular mechanism of lateral branch development in watermelon and for the development of marker-assisted selection (MAS) for new branchless watermelon cultivars.
Collapse
Affiliation(s)
- Junling Dou
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Huihui Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dongling Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Shengjie Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xuqiang Lu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Changsheng Ma
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Wenge Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China.
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
- Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou, 450002, China.
| |
Collapse
|
28
|
Luo Z, Janssen BJ, Snowden KC. The molecular and genetic regulation of shoot branching. PLANT PHYSIOLOGY 2021; 187:1033-1044. [PMID: 33616657 PMCID: PMC8566252 DOI: 10.1093/plphys/kiab071] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 05/27/2023]
Abstract
The architecture of flowering plants exhibits both phenotypic diversity and plasticity, determined, in part, by the number and activity of axillary meristems and, in part, by the growth characteristics of the branches that develop from the axillary buds. The plasticity of shoot branching results from a combination of various intrinsic and genetic elements, such as number and position of nodes and type of growth phase, as well as environmental signals such as nutrient availability, light characteristics, and temperature (Napoli et al., 1998; Bennett and Leyser, 2006; Janssen et al., 2014; Teichmann and Muhr, 2015; Ueda and Yanagisawa, 2019). Axillary meristem initiation and axillary bud outgrowth are controlled by a complex and interconnected regulatory network. Although many of the genes and hormones that modulate branching patterns have been discovered and characterized through genetic and biochemical studies, there are still many gaps in our understanding of the control mechanisms at play. In this review, we will summarize our current knowledge of the control of axillary meristem initiation and outgrowth into a branch.
Collapse
Affiliation(s)
- Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Bart J Janssen
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
29
|
Zhang Y, Zhao M, Zhu W, Shi C, Bao M, Zhang W. Nonglandular prickle formation is associated with development and secondary metabolism-related genes in Rosa multiflora. PHYSIOLOGIA PLANTARUM 2021; 173:1147-1162. [PMID: 34343346 DOI: 10.1111/ppl.13510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Roses are among the most economically important ornamental plants worldwide. But prickles on the stem and leaves cause difficulties for cultivation or inconveniences during harvest and transportation, thus are an undesirable horticultural character. However, little is known about the molecular mechanisms of prickle development. In this study, we sought to develop Rosa multiflora (in the family Rosaceae) as a model plant to study prickle formation. The morphology, structure, and ontogeny of prickles were characterized, and transcriptome analysis of prickly and prickleless R. multiflora genotypes was performed. Morphological observation and microscopic analyses revealed that prickles of R. multiflora were non-glandular prickles (NGPs) and their maturation went through five developmental stages, which was accompanied by the accumulation of secondary metabolites such as lignin and anthocyanins. Comparative transcriptome analysis identified key pathways and hub genes potentially involved in prickle formation. Interestingly, among the differentially expressed genes (DEGs), several notable development and secondary metabolism-related transcription factors (TFs) including NAC, TCP, MYB, homeobox, and WRKY were up-regulated in prickly internodes. KEGG enrichment analysis indicated that DEGs were enriched in the pathways related to biosynthesis of secondary metabolites, flavonoids, and phenylpropanoids in the prickly R. multiflora. Our study provides novel insights into the molecular network underlying the regulation of prickle morphogenesis in R. multiflora, and the identified candidates might be applied to the genetic improvement of roses.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory of horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Mingjie Zhao
- Key Laboratory of horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Wan Zhu
- Key Laboratory of horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Chunmei Shi
- Key Laboratory of horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Manzhu Bao
- Key Laboratory of horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| | - Wei Zhang
- Key Laboratory of horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China (pilot run), Ministry of Agriculture, Wuhan, China
| |
Collapse
|
30
|
Systematic Characterization of TCP Gene Family in Four Cotton Species Revealed That GhTCP62 Regulates Branching in Arabidopsis. BIOLOGY 2021; 10:biology10111104. [PMID: 34827097 PMCID: PMC8614845 DOI: 10.3390/biology10111104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/14/2023]
Abstract
TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play an essential role in regulating various physiological and biochemical functions during plant growth. However, the function of TCP transcription factors in G. hirsutum has not yet been studied. In this study, we performed genome-wide identification and correlation analysis of the TCP transcription factor family in G. hirsutum. We identified 72 non-redundant GhTCP genes and divided them into seven subfamilies, based on phylogenetic analysis. Most GhTCP genes in the same subfamily displayed similar exon and intron structures and featured highly conserved motif structures in their subfamily. Additionally, the pattern of chromosomal distribution demonstrated that GhTCP genes were unevenly distributed on 24 out of 26 chromosomes, and that fragment replication was the main replication event of GhTCP genes. In TB1 sub-family genes, GhTCP62 was highly expressed in the axillary buds, suggesting that GhTCP62 significantly affected cotton branching. Additionally, subcellular localization results indicated that GhTCP62 is located in the nucleus and possesses typical transcription factor characteristics. The overexpression of GhTCP62 in Arabidopsis resulted in fewer rosette-leaf branches and cauline-leaf branches. Furthermore, the increased expression of HB21 and HB40 genes in Arabidopsis plants overexpressing GhTCP62 suggests that GhTCP62 may regulate branching by positively regulating HB21 and HB40.
Collapse
|
31
|
Xu Y, Liu H, Gao Y, Xiong R, Wu M, Zhang K, Xiang Y. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2021; 40:1971-1987. [PMID: 34392380 DOI: 10.1007/s00299-021-02765-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
PeTCP10 can be induced by salt stresses and play important regulation roles in salt stresses response in transgenic Arabidopsis. Salt stress is one of the major adverse environmental factors that affect normal plant development and growth. PeTCP10, a Class I TCP member, was markedly expressed in moso bamboo mature leaf, root and stem under normal conditions and also induced by salt stress. Overexpressed PeTCP10 was found to enhance salt tolerance of transgenic Arabidopsis at the vegetative growth stage. It was also found capable to increase relative water content, while decreasing relative electrolyte leakage and Na+ accumulation of transgenic Arabidopsis versus wild-type (WT) plants at high-salt conditions. In addition, it improved antioxidant capacity of transgenic Arabidopsis plants by promoting catalase activity and enhanced their H2O2 tolerance. In contrast to WT plants, transcriptome analysis demonstrated that multiple genes related to abscisic acid, salt and H2O2 response were induced after NaCl treatment in transgenic plants. Meanwhile, overexpressed PeTCP10 improved the tolerance of abscisic acid. Moreover, luciferase reporter assay results showed that PeTCP10 is able to directly activate the expression of BT2 in transgenic plants. In contrary, the germination rates of transgenic plants were significantly lower than those of WT plants under high-NaCl conditions. Both primary root length and survival rate at the seedling stage are also found lower in transgenic plants than in WT plants. It is concluded that overexpressed PeTCP10 enhances salt stress tolerance of transgenic plants at the vegetative growth stage, and it also improves salt sensitiveness in both germination and seedling stages. These research results will contribute to further understand the functions of TCPs in abiotic stress response.
Collapse
Affiliation(s)
- Yuzeng Xu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
32
|
Jiao Y, Xie R, Zhang H. Identification of potential pathways associated with indole-3-butyric acid in citrus bud germination via transcriptomic analysis. Funct Integr Genomics 2021; 21:619-631. [PMID: 34476672 DOI: 10.1007/s10142-021-00802-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/27/2022]
Abstract
Indole-3-butyric acid (IBA) is widely used to encourage root development in cuttings of general field crops, vegetables, forest trees, fruit trees, and flowers. However, previous studies reported that IBA inhibited the germination of citrus buds via an unknown molecular mechanism. This study aimed to unravel the regulatory mechanisms underlying this inhibition. Citrus apical buds were sprayed with 100 mg ⋅ L-1 IBA. Subsequently, the plant hormone levels were analyzed, and transcriptomic analysis was performed. The results identified 3325 upregulated genes and 2926 downregulated genes in the citrus apical buds. The gene set enrichment analysis method was used to determine the Gene Ontology related to the treatment. Genes were enriched into 157 sets, including 17 upregulated sets and 140 downregulated sets, after indole butyric acid treatment. The upregulated gene sets were related to glucose import, sugar transmembrane transporter activity, and photosynthesis. The downregulated genes were mainly related to the ribosomal subunit and cell cycle process under butyric acid treatment. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed the enrichment of 11 pathways. Of note, genes related to the ribosome and proteasome pathways were significantly downregulated. Only one pathway was significantly upregulated: the autophagy pathway. Overall, these results provided insights into the molecular mechanisms underpinning the IBA-mediated inhibition of citrus bud germination inhibition. Also, the study provided a large transcriptomics dataset that could be used for further research.
Collapse
Affiliation(s)
- Yun Jiao
- Institute of Forestry, Ningbo Academy of Agricultural Science, Ningbo, 315040, China.
| | - Rangjin Xie
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Hongjin Zhang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| |
Collapse
|
33
|
Kerr SC, Patil SB, de Saint Germain A, Pillot JP, Saffar J, Ligerot Y, Aubert G, Citerne S, Bellec Y, Dun EA, Beveridge CA, Rameau C. Integration of the SMXL/D53 strigolactone signalling repressors in the model of shoot branching regulation in Pisum sativum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1756-1770. [PMID: 34245626 DOI: 10.1111/tpj.15415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/24/2021] [Accepted: 07/04/2021] [Indexed: 05/08/2023]
Abstract
DWARF53 (D53) in rice (Oryza sativa) and its homologs in Arabidopsis (Arabidopsis thaliana), SUPPRESSOR OF MAX2-LIKE 6 (SMXL6), SMXL7 and SMXL8, are well established negative regulators of strigolactone (SL) signalling in shoot branching regulation. Little is known of pea (Pisum sativum) homologs and whether D53 and related SMXLs are specific to SL signalling pathways. Here, we identify two allelic pea mutants, dormant3 (dor3), and demonstrate through gene mapping and sequencing that DOR3 corresponds to a homolog of D53 and SMXL6/SMXL7, designated PsSMXL7. Phenotype analysis, gene expression, protein and hormone quantification assays were performed to determine the role of PsSMXL7 in regulation of bud outgrowth and the role of PsSMXL7 and D53 in integrating SL and cytokinin (CK) responses. Like D53 and related SMXLs, we show that PsSMXL7 can be degraded by SL and induces feedback upregulation of PsSMXL7 transcript. Here we reveal a system conserved in pea and rice, whereby CK also upregulates PsSMXL7/D53 transcripts, providing a clear mechanism for SL and CK cross-talk in the regulation of branching. To further deepen our understanding of the branching network in pea, we provide evidence that SL acts via PsSMXL7 to modulate auxin content via PsAFB5, which itself regulates expression of SL biosynthesis genes. We therefore show that PsSMXL7 is key to a triple hormone network involving an auxin-SL feedback mechanism and SL-CK cross-talk.
Collapse
Affiliation(s)
- Stephanie C Kerr
- ARC Centre for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, ICS, CAAS, Beijing, 100081, China
| | | | - Jean-Paul Pillot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Julie Saffar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Yasmine Ligerot
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Yannick Bellec
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Elizabeth A Dun
- ARC Centre for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Christine A Beveridge
- ARC Centre for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
34
|
The Effect of the Anticipated Nuclear Localization Sequence of ' Candidatus Phytoplasma mali' SAP11-like Protein on Localization of the Protein and Destabilization of TCP Transcription Factor. Microorganisms 2021; 9:microorganisms9081756. [PMID: 34442835 PMCID: PMC8401217 DOI: 10.3390/microorganisms9081756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/19/2022] Open
Abstract
SAP11 is an effector protein that has been identified in various phytoplasma species. It localizes in the plant nucleus and can bind and destabilize TEOSINE BRANCHES/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors. Although SAP11 of different phytoplasma species share similar activities, their protein sequences differ greatly. Here, we demonstrate that the SAP11-like protein of ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) strain PM19 localizes into the plant nucleus without requiring the anticipated nuclear localization sequence (NLS). We show that the protein induces crinkled leaves and siliques, and witches’ broom symptoms, in transgenic Arabidopsis thaliana (A. thaliana) plants and binds to six members of class I and all members of class II TCP transcription factors of A. thaliana in yeast two-hybrid assays. We also identified a 17 amino acid stretch previously predicted to be a nuclear localization sequence that is important for the binding of some of the TCPs, which results in a crinkled leaf and silique phenotype in transgenic A. thaliana. Moreover, we provide evidence that the SAP11-like protein has a destabilizing effect on some TCPs in vivo.
Collapse
|
35
|
Guo M, Long Y, Xu L, Zhang W, Liu T, Zhang C, Hou X, Li Y. CELL CYCLE SEITCH 52 regulates tillering by interacting with LATERAL SUPPRESSOR in non-heading Chinese cabbage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110934. [PMID: 34134841 DOI: 10.1016/j.plantsci.2021.110934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
With the discovery of essential genes regulating tillering, such as MONOCULM 1 (MOC1) in rice and LATERAL SUPPRESSOR (LAS in Arabidopsis, LS in tomato), research on tillering mechanisms has made great progress; however, the study of tillering in non-heading Chinese cabbage (NHCC) is rare. Here, we report that BcLAS, as a member of the GRAS family, plays an important role in the tillering of NHCC during its vegetative growth. BcLAS was almost not expressed in other examed parts except leaf axils throughout life. When the expression of BcLAS was silenced utilizing virus-induced gene silencing (VIGS) technology, we found that the tiller number of 'Maertou' decreased sharply. In 'Suzhouqing', overexpression of BcLAS significantly promoted tillering. BcCCS52, the orthologue to CELL CYCLE SEITCH 52 (CCS52), interacts with BcLAS. Downregulation of the expression of BcCCS52 promoted tillering of 'Suzhouqing'; therefore, we conclude that BcCCS52 plays a negative role in tillering regulation. Our findings reveal the tillering regulation mechanism of NHCCs at the vegetative stage and report an orthologue of CCS52 regulating tillering in NHCC.
Collapse
Affiliation(s)
- Mingliang Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Yan Long
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Lanlan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Wei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China.
| |
Collapse
|
36
|
Liu X, Chen J, Zhang X. Genetic regulation of shoot architecture in cucumber. HORTICULTURE RESEARCH 2021; 8:143. [PMID: 34193859 PMCID: PMC8245548 DOI: 10.1038/s41438-021-00577-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 05/08/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop species with great economic value. Shoot architecture determines the visual appearance of plants and has a strong impact on crop management and yield. Unlike most model plant species, cucumber undergoes vegetative growth and reproductive growth simultaneously, in which leaves are produced from the shoot apical meristem and flowers are generated from leaf axils, during the majority of its life, a feature representative of the Cucurbitaceae family. Despite substantial advances achieved in understanding the regulation of plant form in Arabidopsis thaliana, rice, and maize, our understanding of the mechanisms controlling shoot architecture in Cucurbitaceae crop species is still limited. In this review, we focus on recent progress on elucidating the genetic regulatory pathways underlying the determinant/indeterminant growth habit, leaf shape, branch outgrowth, tendril identity, and vine length determination in cucumber. We also discuss the potential of applying biotechnology tools and resources for the generation of ideal plant types with desired architectural features to improve cucumber productivity and cultivation efficiency.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
37
|
Wei X, Yang J, Lei D, Feng H, Yang Z, Wen G, He Z, Zeng W, Zou J. The SlTCP26 promoting lateral branches development in tomato. PLANT CELL REPORTS 2021; 40:1115-1126. [PMID: 33758995 DOI: 10.1007/s00299-021-02680-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The SlTCP26 negatively regulated auxin signal to relieve the apical dominance and suppressed abscisic acid signal to remove the lateral bud dormancy, promoting lateral branches development. Lateral branches formation from lateral buds is a complex regulatory process in higher plants, and the interaction between transcription factors and hormones is indispensable during this process. TCP transcription factors have been reported to regulate lateral branches development, while the detailed function, especially interacting with auxin and ABA during this process, was still ambiguous in tomato. In this study, a branch regulatory gene, SlTCP26, was identified in tomato, and its role along with its interaction to hormones during branch development, as investigated. The results indicated that overexpression of SlTCP26 would promote lateral branches development, and could suppress the expressing of the genes associated with IAA signaling, presenting similar effects in decapitated plants. Conversely, the exogenous IAA application could inhibit the expression of SlTCP26. Furthermore, the expressing of the ABA signaling-related genes was inhibited in SlTCP26 overexpressed tomato, similar to that in decapitated tomato. Our findings suggested that SlTCP26 may be a crucial adjuster for synergistic action between ABA and IAA signals during the development of lateral branches, and it could promote the lateral buds grow into lateral shoots, via inhibiting IAA signal to relieve the apical dominance and suppressing ABA signal to remove the lateral bud dormancy. Our study provided some insights for the development of tomato lateral branches to understand the apical dominance regulatory network.
Collapse
Affiliation(s)
- Xiaoying Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Jun Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Dou Lei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Hao Feng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Zhenan Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Guoqin Wen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Zhuoyuan He
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Wenjing Zeng
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China
| | - Jian Zou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, 637009, Sichuan, China.
| |
Collapse
|
38
|
Bolortuya B, Kawabata S, Yamagami A, Davaapurev BO, Takahashi F, Inoue K, Kanatani A, Mochida K, Kumazawa M, Ifuku K, Jigjidsuren S, Battogtokh T, Udval G, Shinozaki K, Asami T, Batkhuu J, Nakano T. Transcriptome Analysis of Chloris virgata, Which Shows the Fastest Germination and Growth in the Major Mongolian Grassland Plant. FRONTIERS IN PLANT SCIENCE 2021; 12:684987. [PMID: 34262584 PMCID: PMC8275185 DOI: 10.3389/fpls.2021.684987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Plants in Mongolian grasslands are exposed to short, dry summers and long, cold winters. These plants should be prepared for fast germination and growth activity in response to the limited summer rainfall. The wild plant species adapted to the Mongolian grassland environment may allow us to explore useful genes, as a source of unique genetic codes for crop improvement. Here, we identified the Chloris virgata Dornogovi accession as the fastest germinating plant in major Mongolian grassland plants. It germinated just 5 h after treatment for germination initiation and showed rapid growth, especially in its early and young development stages. This indicates its high growth potential compared to grass crops such as rice and wheat. By assessing growth recovery after animal bite treatment (mimicked by cutting the leaves with scissors), we found that C. virgata could rapidly regenerate leaves after being damaged, suggesting high regeneration potential against grazing. To analyze the regulatory mechanism involved in the high growth potential of C. virgata, we performed RNA-seq-based transcriptome analysis and illustrated a comprehensive gene expression map of the species. Through de novo transcriptome assembly with the RNA-seq reads from whole organ samples of C. virgata at the germination stage (2 days after germination, DAG), early young development stage (8 DAG), young development stage (17 DAG), and adult development stage (28 DAG), we identified 21,589 unified transcripts (contigs) and found that 19,346 and 18,156 protein-coding transcripts were homologous to those in rice and Arabidopsis, respectively. The best-aligned sequences were annotated with gene ontology groups. When comparing the transcriptomes across developmental stages, we found an over-representation of genes involved in growth regulation in the early development stage in C. virgata. Plant development is tightly regulated by phytohormones such as brassinosteroids, gibberellic acid, abscisic acid, and strigolactones. Moreover, our transcriptome map demonstrated the expression profiles of orthologs involved in the biosynthesis of these phytohormones and their signaling networks. We discuss the possibility that C. virgata phytohormone signaling and biosynthesis genes regulate early germination and growth advantages. Comprehensive transcriptome information will provide a useful resource for gene discovery and facilitate a deeper understanding of the diversity of the regulatory systems that have evolved in C. virgata while adapting to severe environmental conditions.
Collapse
Affiliation(s)
- Byambajav Bolortuya
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | | | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Bekh-Ochir Davaapurev
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Asaka Kanatani
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Minoru Kumazawa
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kentaro Ifuku
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sodnomdarjaa Jigjidsuren
- Research Institute of Animal Husbandry, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Tugsjargal Battogtokh
- Research Institute of Animal Husbandry, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Gombosuren Udval
- Research Institute of Animal Husbandry, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| |
Collapse
|
39
|
Niu K, Zhang R, Zhu R, Wang Y, Zhang D, Ma H. Cadmium stress suppresses the tillering of perennial ryegrass and is associated with the transcriptional regulation of genes controlling axillary bud outgrowth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:112002. [PMID: 33529920 DOI: 10.1016/j.ecoenv.2021.112002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/26/2021] [Indexed: 05/04/2023]
Abstract
Perennial ryegrass (Lolium perenne L.), a grass species with superior tillering capacity, plays a potential role in the phytoremediation of cadmium (Cd)-contaminated soils. Tiller production is inhibited in response to serious Cd stress. However, the regulatory mechanism of Cd stress-induced inhibition of tiller development is not well documented. To address this issue, we investigated the phenotype, the expression levels of genes involved in axillary bud initiation and bud outgrowth, and endogenous hormone biosynthesis and signaling pathways in seedlings of perennial ryegrass under Cd stress. The results showed that the number of tillers and axillary buds in the Cd-treated seedlings decreased by 67% and 21%, respectively. The suppression of tiller production in the Cd-treated seedlings was more closely associated with the inhibition of axillary bud outgrowth than with bud initiation. Cd stress upregulated the expression level of genes related to axillary bud dormancy and downregulated bud activity genes. Additionally, genes involved in strigolactone biosynthesis and signaling, auxin transport and signaling, and cytokinin degradation were upregulated in Cd-treated seedlings, and cytokinin biosynthesis gene expression were decreased by Cd stress. The content of zeatin in the Cd-treated pants was significantly reduced by 69~85% compared to the control plants. The content of indole-3-acetic acid (IAA) remains constant under Cd stress. Overall, Cd stress induced axillary bud dormancy and subsequently inhibited axillary bud outgrowth. The decrease of zeatin content and upregulation of genes involved in strigolactone signaling and bud dormancy might be responsible for the inhibition of axillary bud outgrowth.
Collapse
Affiliation(s)
- Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ran Zhang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Ruiting Zhu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Dan Zhang
- Gansu Provincial Key Lab of Aridland Crop Science / Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
40
|
Fang Y, Zheng Y, Lu W, Li J, Duan Y, Zhang S, Wang Y. Roles of miR319-regulated TCPs in plant development and response to abiotic stress. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.cj.2020.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Shang Y, Yuan L, Di Z, Jia Y, Zhang Z, Li S, Xing L, Qi Z, Wang X, Zhu J, Hua W, Wu X, Zhu M, Li G, Li C. A CYC/TB1-type TCP transcription factor controls spikelet meristem identity in barley. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7118-7131. [PMID: 32915968 DOI: 10.1093/jxb/eraa416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 05/08/2023]
Abstract
Barley possesses a branchless, spike-shaped inflorescence where determinate spikelets attach directly to the main axis, but the developmental mechanism of spikelet identity remains largely unknown. Here we report the functional analysis of the barley gene BRANCHED AND INDETERMINATE SPIKELET 1 (BDI1), which encodes a TCP transcription factor and plays a crucial role in determining barley inflorescence architecture and spikelet development. The bdi1 mutant exhibited indeterminate spikelet meristems that continued to grow and differentiate after producing a floret meristem; some spikelet meristems at the base of the spike formed two fully developed seeds or converted to branched spikelets, producing a branched inflorescence. Map-based cloning analysis showed that this mutant has a deletion of ~600 kb on chromosome 5H containing three putative genes. Expression analysis and virus-induced gene silencing confirmed that the causative gene, BDI1, encodes a CYC/TB1-type TCP transcription factor and is highly conserved in both wild and cultivated barley. Transcriptome and regulatory network analysis demonstrated that BDI1 may integrate regulation of gene transcription cell wall modification and known trehalose-6-phosphate homeostasis to control spikelet development. Together, our findings reveal that BDI1 represents a key regulator of inflorescence architecture and meristem determinacy in cereal crop plants.
Collapse
Affiliation(s)
- Yi Shang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lu Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Zhaocan Di
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Yong Jia
- Western Barley Genetics Alliance, Murdoch University, Murdoch WA, Australia
| | - Zhenlan Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Sujuan Li
- Central Laboratory of Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Zengjun Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Xiaoyun Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinghuan Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Wei Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Xiaojian Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Minqiu Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/ JCIC-MCP, Nanjing, Jiangsu, China
| | - Gang Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- School of Agriculture, Food, and Wine, University of Adelaide, Waite campus, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, Murdoch University, Murdoch WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
42
|
Holalu SV, Reddy SK, Blackman BK, Finlayson SA. Phytochrome interacting factors 4 and 5 regulate axillary branching via bud abscisic acid and stem auxin signalling. PLANT, CELL & ENVIRONMENT 2020; 43:2224-2238. [PMID: 32542798 DOI: 10.1111/pce.13824] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 05/21/2023]
Abstract
The ratio of red light to far-red light (R:FR) is perceived by phytochrome B (phyB) and informs plants of nearby competition. A low R:FR indicative of competition induces the shade avoidance syndrome and suppresses branching by incompletely understood mechanisms. Phytochrome interacting factors (PIFs) are transcription factors targeted by phytochromes to evoke photomorphogenic responses. PIF4 and PIF5 promote shade avoidance responses and become inactivated by direct interaction with active phyB in the nucleus. Here, genetic and physiological assays show that PIF4 and PIF5 contribute to the suppression of branching resulting from phyB loss of function and a low R:FR, although roles for other PIFs or pathways may exist. The suppression of branching is associated with PIF4/PIF5 promotion of the expression of the branching inhibitor BRANCHED 1 and abscisic acid (ABA) accumulation in axillary buds and is dependent on the function of the key ABA biosynthetic enzyme Nine-cis-epoxycarotenoid dioxygenase 3. However, PIF4/PIF5 function is not confined to a single hormonal pathway, as they also promote stem indole-3-acetic acid accumulation and stimulate systemic auxin signalling, which contribute to the suppression of bud growth when phyB is inactive.
Collapse
Affiliation(s)
- Srinidhi V Holalu
- Department of Plant and Microbial Biology, University of California Berkeley, California, USA
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
| | - Srirama K Reddy
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
- Valent BioSciences LLC, Biorational Research Center, Libertyville, Illinois, USA
| | - Benjamin K Blackman
- Department of Plant and Microbial Biology, University of California Berkeley, California, USA
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, Texas, USA
- Faculty of Molecular and Environmental Plant Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
43
|
Zhang F, Rossignol P, Huang T, Wang Y, May A, Dupont C, Orbovic V, Irish VF. Reprogramming of Stem Cell Activity to Convert Thorns into Branches. Curr Biol 2020; 30:2951-2961.e5. [DOI: 10.1016/j.cub.2020.05.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/20/2022]
|
44
|
He J, He X, Chang P, Jiang H, Gong D, Sun Q. Genome-wide identification and characterization of TCP family genes in Brassica juncea var. tumida. PeerJ 2020; 8:e9130. [PMID: 32461831 PMCID: PMC7231505 DOI: 10.7717/peerj.9130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/14/2020] [Indexed: 01/28/2023] Open
Abstract
Background Teosinte branched1/Cycloidea/proliferating cell factors (TCPs) are plant-specific transcription factors widely involved in leaf development, flowering, shoot branching, the circadian rhythm, hormone signaling, and stress responses. However, the TCP function in Brassica juncea var. tumida, the tumorous stem mustard, has not yet been reported. This study identified and characterized the entire TCP family members in B. juncea var. tumida. Methods We identified 62 BjTCP genes from the B. juncea var. tumida genome and analyzed their phylogenetic relationship, gene structure, protein motifs, chromosome location, and expression profile in different tissues. Results Of the 62 BjTCP genes we identified in B. juncea var. tumida, containing 34 class I and 28 class II subfamily members, 61 were distributed on 18 chromosomes. Gene structure and conserved motif analysis showed that the same clade genes displayed a similar exon/intron gene structure and conserved motifs. Cis-acting element results showed that the same clade genes also had a similar cis-acting element; however, subtle differences implied a different regulatory pathway. The BjTCP18s members were low-expressed in Dayejie strains and the unswelling stage of Yonganxiaoye strains. Treatment with gibberellin (GA) and salicylic acid (SA) showed that GA and SA affect the expression levels of multiple TCP genes. Conclusion We performed the first genome-wide analysis of the TCP gene family of B. juncea var. tumida. Our results have provided valuable information for understanding the classification and functions of TCP genes in B. juncea var. tumida.
Collapse
Affiliation(s)
- Jing He
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Xiaohong He
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Pingan Chang
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Huaizhong Jiang
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| | - Daping Gong
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Quan Sun
- Chongqing University of Posts and Telecommunications, College of Bioinformation, Chongqing Key Laboratory of Big Data for Bio Intelligence, ChongQing, China
| |
Collapse
|
45
|
Ding N, Qin Q, Wu X, Miller R, Zaitlin D, Li D, Yang S. Antagonistic regulation of axillary bud outgrowth by the BRANCHED genes in tobacco. PLANT MOLECULAR BIOLOGY 2020; 103:185-196. [PMID: 32124178 DOI: 10.1007/s11103-020-00983-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
As a key integrator of shoot branching, BRANCHED 1 (BRC1) coordinates and is orchestrated by endogenous and environmental signals involved in the regulation of axillary bud outgrowth. In the present study, we characterized the regulatory roles of five BRC gene members in tobacco (Nicotiana tabacum L.) using CRISPR site-directed mutagenesis and overexpression assays. It was shown that lateral branching was negatively regulated by NtBRC1A-1, 1B-1, and 1B-2, but was unexpectedly promoted by NtBRC2A. Suppression of bud growth may be attained by direct binding of NtBRCs to the Tassels Replace Upper Ears 1 (TRU1) genes. It was speculated that NtBRC2A probably confers a dominant negative effect by interfering with the branching-inhibitory BRC1 genes. Our results suggested that highly homologous gene family members may function antagonistically in the same signaling pathway. However, the molecular mechanism underlying NtBRC2A-mediated outgrowth of axillary buds needs to be further addressed. KEY MESSAGE: Axillary bud outgrowth in general is negatively regulated by the BRANCHED gene. Here we show that the BRANCHED genes play opposing regulatory roles in tobacco lateral branching.
Collapse
Affiliation(s)
- Na Ding
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Qiulin Qin
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Xia Wu
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Robert Miller
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - David Zaitlin
- Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Dandan Li
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Shengming Yang
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA.
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
46
|
Cunha CP, de Abreu LSGF, Grassi MCB, Aricetti JA, Machado EC, Pereira GAAG, Oliveira JVC. Metabolic Regulation and Development of Energy Cane Setts upon Auxin Stimulus. PLANT & CELL PHYSIOLOGY 2020; 61:606-615. [PMID: 31830271 DOI: 10.1093/pcp/pcz229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
Energy cane is a bioenergy crop with an outstanding ability to bud sprouting and increasing yield in ratoon cycles even in marginal lands. Bud fate control is key to biomass production and crop profits due to vegetative propagation and tiller dependency, as well as phenotype plasticity to withstand harsh environmental conditions. During the establishment stage (plant cane cycle), energy cane has a tendency for low root:shoot ratio, which might hamper the ability to cope with stress. Auxin is known to modulate bud sprouting and stimulate rooting in sugarcane. Hence, we treated a slow and a fast bud sprouting energy cane cultivars with auxin or controls (with and without water soaking) for 6 h prior to planting and evaluate plant growth parameters and metabolic profiling using two techniques (gas chromatography with time-of-flight mass spectrometer and nuclear magnetic resonance) to characterize the effect and identify metabolite markers associated with bud inhibition and outgrowth. Auxin inhibited bud burst and promote rooting in setts changing the root:shoot ratio of plantlets. Metabolome allowed the identification of lactate, succinate and aspartate family amino acids as involved in bud fate control through the potential modulation of oxygen and energy status. Investigating environmental and biochemical factors that regulate bud fate can be incremental to other monocot species. Our study provides new insights into bud quiescence and outgrowth in cane hybrids, with the potential to leverage our understanding of yield-related traits, crop establishment and adaptation to global climate change.
Collapse
Affiliation(s)
- Camila P Cunha
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
- Genomics and bioEnergy Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-864, Brazil
| | - Luï S Guilherme F de Abreu
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
- Genomics and bioEnergy Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-864, Brazil
| | - Maria Carolina B Grassi
- Genomics and bioEnergy Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-864, Brazil
| | - Juliana A Aricetti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
| | - Eduardo C Machado
- Center for Ecophysiology and Biophysics, Agronomic Institute of Campinas (IAC), Campinas 13001-970, Brazil
| | - Gonï Alo A G Pereira
- Genomics and bioEnergy Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (Unicamp), Campinas 13083-864, Brazil
| | - Juliana V C Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil
| |
Collapse
|
47
|
Lyu J, Huang L, Zhang S, Zhang Y, He W, Zeng P, Zeng Y, Huang G, Zhang J, Ning M, Bao Y, Zhao S, Fu Q, Wade LJ, Chen H, Wang W, Hu F. Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nat Commun 2020; 11:725. [PMID: 32024833 PMCID: PMC7002408 DOI: 10.1038/s41467-019-14264-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/19/2019] [Indexed: 12/02/2022] Open
Abstract
The rice orthologue of maize domestication gene Teosinte branched 1 (Tb1) affects tillering. But, unlike maize Tb1 gene, it was not selected during domestication. Here, we report that an OsTb1 duplicate gene (OsTb2) has been artificially selected during upland rice adaptation and that natural variation in OsTb2 is associated with tiller number. Interestingly, transgenic rice overexpressing this gene shows increased rather than decreased tillering, suggesting that OsTb2 gains a regulatory effect opposite to that of OsTb1 following duplication. Functional analyses suggest that the OsTb2 protein positively regulates tillering by interacting with the homologous OsTb1 protein and counteracts the inhibitory effect of OsTb1 on tillering. We further characterize two functional variations within OsTb2 that regulate protein function and gene expression, respectively. These results not only present an example of neo-functionalization that generates an opposite function following duplication but also suggest that the Tb1 homologue has been selected in upland rice.
Collapse
Affiliation(s)
- Jun Lyu
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Liyu Huang
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Shilai Zhang
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Yesheng Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Weiming He
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Peng Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yan Zeng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China
| | - Guangfu Huang
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Jing Zhang
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Min Ning
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Yachong Bao
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Shilei Zhao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Qi Fu
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China
| | - Len J Wade
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia.
| | - Hua Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, Yunnan, China.
- Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Polytechnical University, 710072, Xi'an, China.
| | - Fengyi Hu
- State Key laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091, Kunming, Yunnan, China.
| |
Collapse
|
48
|
Molecular characterization of teosinte branched1 gene governing branching architecture in cultivated maize and wild relatives. 3 Biotech 2020; 10:77. [PMID: 32058540 DOI: 10.1007/s13205-020-2052-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022] Open
Abstract
We sequenced the entire tb1 gene in six maize inbreds and its wild relatives (parviglumis, mexicana, perennis and luxurians) to characterize it at molecular level. Hopscotch and Tourist transposable elements were observed in the upstream of tb1 in all maize inbreds, while they were absent in wild relatives. In maize, tb1 consisted of 431-443 bp 5'UTR, 1101 bp coding sequence and 211-219 bp 3'UTR. In promoter region, mutations in the light response element in mexicana (~ 35 bp and ~ 55 bp upstream of TSS) and perennis (at ~ 35 bp upstream of TSS) were found. A 6 bp insertion at 420 bp downstream of the polyA signal site was present among teosinte accessions, while it was not observed in maize. A codominant marker flanking the 6 bp InDel was developed, and it differentiated the teosintes from maize. In Tb1 protein, alanine (12.7-14.6%) was the most abundant amino acid with tryptophan as the rarest (0.5-0.9%). The molecular weight of Tb1 protein was 38757.15 g/mol except 'Palomero Toluqueno' and HKI1128. R and TCP motifs in Tb1 protein were highly conserved across maize, teosinte and orthologues, while TCP domain differed for tb1 paralogue. Tb1 possessed important role in light-, auxin-, stress-response and meristem identity maintenance. Presence of molecular signal suggested its localization in mitochondria, nucleus and nucleolus. Parviglumis and mexicana shared closer relationship with maize than perennis and luxurians. A highly conserved 59-60 amino acids long bHLH region was observed across genotypes. Information generated here assumes significance in evolution of tb1 gene and breeding for enhancement of prolificacy in maize.
Collapse
|
49
|
Ren C, Guo Y, Kong J, Lecourieux F, Dai Z, Li S, Liang Z. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC PLANT BIOLOGY 2020; 20:47. [PMID: 31996144 PMCID: PMC6990564 DOI: 10.1186/s12870-020-2263-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/20/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Shoot branching is an important trait of plants that allows them to adapt to environment changes. Strigolactones (SLs) are newly identified plant hormones that inhibit shoot branching in plants. The SL biosynthesis genes CCD7 (carotenoid cleavage dioxygenase 7) and CCD8 have been found to regulate branching in several herbaceous plants by taking advantage of their loss-of-function mutants. However, the role for CCD7 and CCD8 in shoot branching control in grapevine is still unknown due to the lack of corresponding mutants. RESULTS Here we employed the CRISPR/Cas9 system to edit the VvCCD7 and VvCCD8 genes in the grape hybrid 41B. The 41B embryogenic cells can easily be transformed and used for regeneration of the corresponding transformed plants. Sequencing analysis revealed that gene editing has been used successfully to target both VvCCD genes in 41B embryogenic cells. After regeneration, six 41B plantlets were identified as transgenic plants carrying the CCD8-sgRNA expression cassette. Among these, four plants showed mutation in the target region and were selected as ccd8 mutants. These ccd8 mutants showed increased shoot branching compared to the corresponding wild-type plants. In addition, no off-target mutation was detected in the tested mutants at predicted off-target sites. CONCLUSIONS Our results underline the key role of VvCCD8 in the control of grapevine shoot branching.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
| | - Yuchen Guo
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Junhua Kong
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
| | - Fatma Lecourieux
- EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, Bordeaux, France
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
- CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, the Chinese Academy of Science, Beijing, 100093 People’s Republic of China
| | - Zhenchang Liang
- Institute of Botany, the Chinese Academy of Sciences, Nanxin Village 20, Xiangshan, Haidian District, Beijing, 100093 China
| |
Collapse
|
50
|
Yu H, Cui H, Chen J, Li X. Regulation of Aegilops tauschii Coss Tiller Bud Growth by Plant Density: Transcriptomic, Physiological and Phytohormonal Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:1166. [PMID: 32849721 PMCID: PMC7403227 DOI: 10.3389/fpls.2020.01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 05/08/2023]
Abstract
Aegilops tauschii Coss is one of the most hazardous weeds that severely infests wheat fields in China. The tillering ability of Ae. tauschii strongly affects the occurrence and spread by influencing its seed output. In this study, Ae. tauschii was sown at low plant density (LPD) and high plant density (HPD) to investigate the effect of plant density on tiller bud outgrowth and its potential regulators using RNA-Seq. Additionally, the chlorophyll content and photosynthesis, soluble sugar and phytohormone levels were also determined at different plant densities. The results showed that an increased plant density significantly inhibited the elongation of tiller buds in the axil of the first leaf at 15 days after planting, with 7.69 mm at LPD and 1.69 mm at HPD. A total of seven putative tiller-related genes were selected and validated using quantitative real-time PCR. Furthermore, chlorophyll levels, photosynthetic efficiency, and soluble sugar contents were distinctly inhibited by HPD in Ae. tauschii, which may be responsible for the restriction of tiller bud growth. In addition, differentially expressed genes (DEGs) were markedly enriched in indole-3-acetic acid (IAA), abscisic acid (ABA), and gibberellin metabolism and signaling. Accordingly, the levels of ABA and gibberellin A3 in Ae. tauschii were strikingly higher at HPD compared with those at LPD, yet the reverse tendency was observed for IAA. Undoubtedly, such results will be highly beneficial for illuminating the underlying regulators of the Ae. tauschii tillering response to plant density and may provide new ideas for the control of this weed in the future.
Collapse
|